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The amount of energy available in a system constrains large-scale patterns
of abundance. Here, we test the role of temperature and net primary
productivity as drivers of flying insect abundance using a novel continental-
scale data source: weather surveillance radar. We use the United States
NEXRAD weather radar network to generate a near-daily dataset of insect
flight activity across a gradient of temperature and productivity. Insect
flight activity was positively correlated with mean annual temperature,
explaining 38% of variation across sites. By contrast, net primary productivity
did not explain additional variation. Grassland, forest and arid-xeric shrub-
land biomes differed in their insect flight activity, with the greatest
abundance in subtropical and temperate grasslands. The relationship
between insect flight abundance and temperature varied across biome
types. In arid-xeric shrublands and in forest biomes the temperature-
abundance relationship was indirectly (through net primary productivity)
or directly (in the form of precipitation) mediated by water availability.
These results suggest that temperature constraints on metabolism, develop-
ment, or flight activity shape macroecological patterns in ectotherm
abundance. Assessing the drivers of continental-scale patterns in insect abun-
dance and their variation across biomes is particularly important to predict
insect community response to warming conditions.

This article is part of the theme issue “Towards a toolkit for global insect
biodiversity monitoring’.

1. Introduction

A key objective in ecology is to understand how properties such as abundance,
diversity and biomass vary across gradients in time and space [1]. At macro-
scales, the amount of energy available in a system sets the upper limit to the
abundance of individuals. Energy can be quantified in several ways; in ‘solar
energy metrics’ or temperature that drives biological processes including
metabolism, or in “productive energy metrics’, in resources available for consu-
mers [2,3]. Understanding the role of temperature and productivity as drivers of
abundance across broad scales will improve our understanding of how insect
communities respond to changing climatic conditions.

Species—energy theory posits that the number of individuals in a system is
primarily restricted by energy in the form of net primary productivity [4]. Net
primary productivity (NPP) quantifies the amount of resources available to con-
sumers, with more productive sites able to support more individuals. NPP may
also be a more accurate proxy for available energy than solar energy, because it
accounts for the amount of energy as well as the water availability necessary to
convert that energy into biomass [2,5]. While a positive relationship between
net primary productivity and abundance is widely assumed, the evidence for
the abundance—productivity relationship is mixed. For example, continental-
scale abundance of African ungulates was correlated with primary productivity,
while for bird abundance some studies have found a positive relationship and
others have found no correlation with productivity [6-8].
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Figure 1. Sites along a gradient of temperature and productivity. (a) Geographic location of sites, colour indicates observed insect flight density per radar snapshot;
i.e. mean site insect flight density scan™" m~2 (b) Site mean annual temperature, annual net primary productivity, and biome.

Geographical patterns in abundance and distribution may differ between endotherms and ectotherms due to their differences
in energy use and performance constraints. While energy availability is a primary constraint on endotherm abundance and dis-
tribution, ectotherms have much lower energetic maintenance costs [9] and are restricted by rates of energy assimilation rather
than resource availability [10]. As a result, endotherm abundance is hypothesized to be more strongly associated with primary
productivity, whereas ectotherm abundance is better predicted by temperature [11].

Temperature drives key functions in ectotherms such as insects, and influences rates of development, reproduction and move-
ment. Basal metabolic rates are a positive nonlinear function of temperature between thermal minima and maxima [12]. Metabolic
rate constrains development, with development rate a function of energy input in the form of heat. Thermal development curves
are commonly used in agriculture to develop degree day models and predict pest emergence or outbreak as a function of temp-
erature [13]. Macroecological patterns in insect abundance may result from variation in temperature and growing seasons, which
are associated with increased development rates, higher fecundity, shorter generation times and higher voltinism, leading to larger
population sizes and higher abundances in warmer regions. Movement itself, including insect flight, is metabolically constrained
and therefore also predicted to vary unimodally with temperature between thermal limits. Ant activity at baits for example
increases predictably with temperature throughout the day and season [14]. Various mechanisms may be responsible for greater
abundances in regions with warmer temperatures.

Quantifying the role of temperature and productivity as drivers of abundances across regional or continental scales can be chal-
lenging due to the number of species and populations, particularly in species-rich groups such as insects. One study of ant
abundance in communities spanning from desert to rainforest biomes found that NPP explained more than half of the geographi-
cal variation in colony abundance, with another 13% explained by temperature through foraging time and metabolic rate [15].
Similarly, continental-scale variation in ‘discovery rates'—a proxy for ant predation—was explained by NPF, with annual NPP
accounting for 40% of variation and temperature failing to account for more [16]. However, moth abundance was not explained
by NPP across a continent-wide gradient of productivity in South African savannahs [17]. Analysis of continental patterns in
Lepidoptera abundance across the contiguous US showed that temperature did not drive butterfly abundance in annual NABA
counts [18]. The role of productivity and temperature as drivers of insect abundance has not been clarified, perhaps due to the
challenge of monitoring insects at large spatial scale in a standardized way.

Here, we test the temperature and productivity hypotheses using a novel continental-scale data source on insects in the air:
weather surveillance radar. Weather surveillance radar networks are widely distributed across large spatial scales, providing auto-
mated and standardized data collection at low cost. Radars have a long history of use in monitoring animals in the air [19,20], have
been extensively validated [21,22], and weather radar has become a standard tool to quantify bird migration [23,24]. Novel
methods are rapidly being developed to adapt weather radar for quantitative entomological applications [25,26], with recent
studies using weather radar to quantify mayfly emergence [27], monitor pest exodus flights [28], and differentiate classes of insects
[29]. Weather radar only observes insects in flight in the free airspace (i.e. at least 20 m above ground level, depending on topo-
graphy and beam blockage of the radar) which excludes local flights such as foraging. While not all insects engage in high-altitude
flights, these represent a broad range of taxa from most insect orders with diverse life histories, including aphids (Hemiptera),
small flies and wasps (Diptera and Hymenoptera), ladybugs (Coleoptera), and butterflies and moths (Lepidoptera). Aerial habitats
are key environments for winged organisms that have remained challenging to study, but radar can provide unique insights.

We explore large-scale drivers of aerial insect abundance along a gradient of productivity and temperature using ten-year
means of day-flying insect abundance quantified with the United States weather surveillance radar network. The analysis focuses
on radars in the central United States (figure 1a), providing coverage across the parameter space for both variables (figure 1b).
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We test two alternate hypotheses: (1) insect flight density is principally limited by net primary productivity; or (2) insect flight [ 3 |

density is primarily limited by temperature. We also analyze the role of secondary climatic and landscape covariates, including
precipitation, biome and forested land cover, in explaining variation in insect flight activity.

2. Methods

(a) Site selection

To focus on the role of temperature and productivity as drivers of insect density in the air, we selected the central United States region
(figure 1a). We omitted coastal regions because these areas may experience greater effects of urbanization and anthropogenic activity
(EK Tielens 2012-2021, unpublished data). We included radar stations between 30° and 48° latitude and between —85° and —115° in longi-
tude, resulting in 78 radar sites. These sites covered 18° in latitude, more than 20°C in mean annual temperature, and a factor of ten
variation in annual net primary productivity (figure 1b).

(b) Radar monitoring

We generated a dataset of day-flying insect density using the NEXRAD weather surveillance system, a network of high-resolution
Doppler weather radars (WSR-88D) operated by the NOAA National Weather Service (NWS), the Federal Aviation Administration
and the US Air Force. Use of the NEXRAD radar system for ecological applications has been widely discussed elsewhere [30-32].
NEXRAD radar stations operate at S-band, with a frequency of 2.7-3.0 GHz and an approximate 10.7 cm wavelength. The NWS provides
technical details on the NEXRAD system," and radar data is archived and publicly available from Amazon Web Services.”

(c) Data generation

Insect density in the air was quantified from radar products following workflows laid out in previous work [33]. We produced a near daily
dataset of insect density aloft across 78 radar stations in the contiguous United States and for the period for which dual-polarized radar
data has been archived (2012-2021). To minimize interference from other aerial animals and to avoid double-counting insects we used a
daily noon radar scan to provide a snapshot of insect density. We generated the initial radar product dataset using Python 3.7.4, and pro-
cessed as described in previous work [27]. Broadly, we read radar scans from the NEXRAD archive into Python using the Py-Art package
[34]. We subset each volumetric scan to non-redundant sweeps, converted radar reflectivity factor (dBZ) to total scattering area (cm?) and
scattering area density (cm> km™) in each resolution volume [21]. We used a binary clutter mask to filter pixels with persistent or per-
manent features (i.e. ground clutter) following van Doren & Horton [24], using an 85th percentile cutoff and removing pixels with
permanent features from the scan. We restricted our sampling to 150 km radius from the radar. We limited non-arthropod signals by
focusing our analysis on diurnal insects and sampling at noon. We removed non-arthropod signals on the radar scans based on depolar-
ization ratio (CDR), which is calculated from differential reflectivity and correlation coefficient. Differential reflectivity is the ratio of
horizontal to vertical polarized equivalent reflectivity factor, providing information on the aspect ratio. Correlation coefficient is given
by the cross correlation between the time of arrival of horizontal and vertical polarized waves. Together, these variables allow reliable
distinction between round water drops in the air and biological signals of varying shapes [35]. We filtered for weather and avian signals
on a pixel by pixel basis, excluding weather signals by removing pixels with circular depolarization ratio of less than —12.5 and reflectivity
greater than 40 dBZ, and potential avian signals by excluding pixels with differential reflectivity less than 5 dB. This resulted in a scatter
density of insects for each pixel in the volume scan.

We generated an altitudinal profile of scattering density by integrating over the mean density in 50 m bins up to 3 km above ground
level, producing column-summed scattering density (cm® km™). We converted scattering density (cm® km™) to insect density
(insects km™2) by assuming the most common day-flying insect scatterers are micro-insects [36] with a radar cross section (RCS) of 1 x
107® cm? [36,37]. This RCS corresponds to common day-flying micro-insects, including Aphididae (Hemiptera), braconid wasps (e.g.
Aphidius nigripes, Hymenoptera), thrips (e.g. Frankliniella sp., Thysanoptera) and fungus gnats (e.g. Sciara sp., Diptera) [38,39]. Our filtering
was efficient in removing the main expected sources of non-insect signal (precipitation), and we conducted quality control by calculating
weekly mean biomass and removing all data points greater than two standard deviations from the weekly mean. We then visually
inspected a subset of scans and removed observations with potential contamination from the dataset.

(d) Analyses

We calculated mean insect flight abundance by taking the site mean of 10 years of near-daily observations in the dataset (median =2937
observation scans per site), resulting in a mean flight abundance per m” at a given snapshot in time. We extracted monthly data on local
climatic conditions from WorldClim for each radar station for the period 2012-2021 [40] and calculated 10-year mean annual temperatures.
We identified biomes for each site based on the WWF Terrestrial Ecoregions of the World [41], and analysed insect flight abundance
per biome as well as in three general biome types: forests (consisting of subtropical coniferous forests, temperate broadleaf forests, and
temperate coniferous forests), grasslands (consisting of temperate grasslands and subtropical grasslands), and arid-xeric shrublands.
We extracted annual net primary productivity from the NASA MODIS satellite at 500 m pixel resolution, which is derived from the
sum of all 8-day GPP Net Photosynthesis products for a given year [42], calculating mean site annual NPP within an 80 km radius
from the radar.

All statistical analyses were conducted using R [43]. We evaluated the role of mean annual temperature and mean annual net primary
productivity in explaining site-to-site variation in insect flight abundance. We log10-transformed insect flight density as it varied by a
factor 100 and the relationship between insect flight density and drivers such as temperature or productivity best fit a log-linear response.
We confirmed this choice by comparing between models with linear and log-linear relationships using the Akaike information
criterion (AIC).

We then used model selection and averaging to estimate the effects of mean annual temperature, annual net primary productivity, and
other potential variables including latitude, longitude, mean precipitation and biome on log insect flight abundance with linear models
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Figure 2. Mean insect flight density (log10, scan™ m™") as a function of mean summer temperature (a) and net primary productivity (b). Fitted line and 95%

confidence interval are derived from OLS regression.

[44]. Correlations between explanatory variables are provided in the electronic supplementary material, figure S3. These variables were all
included in a global model, with no interaction effects, and we then used the function dredge to identify component models within the
global model [45]. We conducted model averaging of all component models for which AAIC was less than 4, and reported conditional
averaged coefficients. Fitted line and 95% confidence interval in figures were derived from ordinary least squares (OLS) regression.

We analysed insect flight abundance and its drivers per biome and per biome type. We tested for differences in mean flight abundance
using ANOVA. We analysed the relationship between insect flight abundance and temperature and between insect flight abundance and
productivity for each biome and biome type using separate linear models for each biome. To reflect figure slopes, we reported
the estimates and p-values are reported for the relationship between a single potential driver and insect flight abundance within a
biome. We then tested whether the relationship with temperature and the relationship with productivity differ significantly between
biomes by adding an interaction effect to the global model above.

After identifying mean annual temperature as main explanatory variable, we evaluated residual variation across biome types. We
evaluated all explanatory variables from the global model and used model selection to identify for each biome type which variables
best explained residual variation after accounting for temperature. We then reported coefficients for the best model per biome type.

3. Results

Temperature was the strongest driver of insect flight abundance, with surface air temperature explaining 38% of variation in abun-
dance across sites (figure 2a, LM, coefficient + 95% CI=0.045 +0.014, p <0.0001). By contrast, net primary productivity did not
explain significant variation in flight abundance (figure 2b, LM, p = 0.32). Insect flight abundance decreased with increasing lati-
tude, which explained 22% of variation (LM, coefficient + 95% CI=—0.0085 = 0.025, p <0.001). While flight abundance showed a
strong latitudinal pattern, temperature explained additional variation beyond that of latitude (AAIC = 6.2; electronic supplemen-
tary material, table S1). The full model with all variables explained 67% of variation (full model included temperature,
precipitation, net primary productivity, biome, latitude and longitude; Fyg¢; =16.9 p <0.00001). Model averaging estimates of
all candidate models within AAIC less than 4 of the full model are shown in table 1, with mean annual temperature and
biome as significant predictors retained in all candidate models over which averaging took place.

Insect flight abundance varied across biome (ANOVA, F5 7, =5.9 p <0.0005; electronic supplementary material, figure S5). We
combined subtropical grasslands with temperate grasslands, and subtropical coniferous forests with temperate broadleaf forests
and temperate coniferous forests to create three biome types. Insect flight abundance also varied across biome type, and was great-
est in grasslands, intermediate in forests, and lowest in arid-xeric systems (electronic supplementary material, figure S4; ANOVA,
F>7,=11.4 p<0.0001).

The relationship between insect flight abundance and temperature and net primary productivity varied across biome types
(figure 3). Insect flight abundance increased with temperature in all three biome types but differed in magnitude, showing the weakest
increase in arid-xeric systems (est. = 1.9 p < 0.05), stronger increases in forested systems (est. = 5.8 p < 0.0001), and the greatest increase in
grasslands (est. = 9.4 p < 0.0001). These slopes differed significantly across biome types (temperature x biome type interaction with arid-
xeric as intercept, p <0.05). For net primary productivity within biome types, insect flight abundance increased with NPP only for
forested systems (est. = 0.007 p < 0.05), while flight abundances did not vary with NPP in grasslands or arid-xeric systems.

For all biome types temperature was the main driver of insect flight abundance. Key variables explaining patterns in residual vari-
ation in insect abundance differed across biome types. We used model selection to identify variables that best explain residual
variation within each biome type (see electronic supplementary material, table S3 for model selection output). In forests, residual vari-
ation was best explained by mean precipitation (AAIC = 3.4, d.f. = 3), where temperature overpredicted insect abundance in drier areas
(figure 4a, est. = 0.085, Adj. R*=0.15, p < 0.05). In grasslands, residual variation was best explained by longitude (AAIC =2.0, d.f. = 3),
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Figure 3. Biome type pattems in the relationship between mean insect flight density (log10, scan™' m™") and temperature (left) and net primary productivity

(right). Insect flight density in forest biomes (a,b), grassland biomes (¢,d), and arid-xeric biomes (e, ). Fitted line and 95% confidence interval are derived from OLS
regression.

where insect flight abundance was underpredicted by temperature further west (i.e. at lower longitudes, figure 4b, est. = —0.016, Adj.
R*=0.20, p < 0.005). In arid-xeric shrublands, residual variation was best explained by net primary productivity (AAIC = 3.4, d.f .= 3),
where insect flight abundance was lower than predicted based on temperature at sites with lower net primary productivity (figure 4c,
est. = 0.00025, Adj. R*=0.42, p <0.05).

4. Discussion

Understanding drivers of insect abundance across large geographical scales is challenging due to the lack of standardized data
spanning habitats and taxa. Here, we use a unique data source, 10 years of weather surveillance radar observations across the cen-
tral United States, to test drivers of macroecological patterns in insect high-altitude flight. We find that temperature forms the
primary driver of insect flight activity in the air at this scale, explaining nearly half of site-to-site variation. These results corre-
spond with previous work on activity density of invertebrates moving across the soil surface, which found that air temperature
explained between one third and three quarters of variation in pitfall trap abundances across the US NEON network [46]. Our
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Fitted line and 95% confidence interval provided for significant predictors, derived from OLS regression.

Table 1. Model averaging output for conditional average estimates. Model averaging conducted on all candidate models within AAIC less than 4 of the global
model. Model selection resulted in 10 candidate models for model averaging. Model selection table provided in electronic supplementary material, table S2.

variable estimate standard error z-value p-value
intercept —0.57 0.93 0.62 0.54
latitude 0.0085 0.013 0.65 0.52
longitude —0.0090 0.0071 12 0.21
mean annual temperature 0.045 0.0073 6.0 <2*1071
annual net primary productivity —0.000072 0.00036 0.197 0.84
mean precipitation 0.063 0.055 1.1 0.26
biome: temperate broadleaf & mixed forests 0.69 0.22 3.0 0.0024
biome: temperate conifer forests 0.66 0.22 2.9 0.0038
biome: tropical & subtropical grasslands 0.98 0.26 3.7 0.00019
biome: temperate grasslands 0.96 0.21 45 6.2¢107°
biome: arid-xeric shrublands 0.50 0.21 23 0.019

results suggest that large-scale abundance may be more limited by direct effects of energy on insects than indirectly through
resource availability.

By contrast, net primary productivity was not an important driver of regional patterns in insect flight abundance. Productivity
only explained a significant portion of flight abundance in forested biomes, and this effect was strongly driven by the inclusion of
coniferous forest sites in the western US. Contrary to species—energy theory, an increase in productivity did not result in a proportion-
ate increase in insect flight abundance. Within the contiguous United States, productivity varies only by one order of magnitude, and
strong productivity effects on secondary production and biomass may only be apparent when a wider range of ecosystems are con-
sidered (i.e. when comparing along gradients from tundra to tropical systems; [16]). A study in South Africa along a productivity
gradient comparable to that in our study similarly found that moth abundance did not vary in response to productivity [17].

We show clear support for temperature as the strongest driver of radar-observed insect flight activity. However, extrapolating
from this study to insect abundance patterns generally is challenging, as insect activity observed in the air may not be represen-
tative of overall insect abundance in a system. Only a subset of insect species fly at altitudes high enough to be visible on radar,
although those that do are diverse in size, life history, feeding strategy and order [39]. High-altitude flight may be more common in
some biomes than others, for example because open habitats produce more convective lift to bring insects aloft [47]. However, our
main result identifying temperature rather than annual net primary productivity as a strong driver of insect activity density was
consistent both within and across biomes. Moreover, this corresponds with patterns of invertebrate biomass moving across the soil
surface [46], suggesting that this pattern may be general beyond flying insects.

Systematic bias may also arise when an individual’s propensity to engage in flight behaviour varies across habitats or latitude.
Flight is an energetically expensive activity, which is temperature limited and does not occur below a lower temperature threshold
[48]. At higher latitudes, where temperatures are typically cooler, insects may be present in similar abundances as at lower latitudes
but less likely to engage in flight behaviour. A temperature-activity pattern can result from differences in the inclination to move as
well as differences in population size. This potential bias is present in all activity-based entomological methods, such as pitfall traps or
nationwide butterfly counts (i.e. the UK ‘Big Butterfly Count’), and is specifically challenging for large-scale analyses spanning a wide
gradient in habitats or temperature [16]. A deeper understanding of spatial variation in insect movement behaviour is integral to the
use of activity density-based methods in large-scale insect monitoring. With these considerations, weather surveillance radar can
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prove a valuable tool for addressing macroecological questions, given the standardized nature of data collection and the spatial extent

of nationwide weather radar networks, which frequently span climatic gradients and multiple biomes.

While flight abundance increased with temperature across all biome types in the study, the magnitude of the response was
mediated by biome type. The strongest effect of temperature on insect flight abundance occurred in temperate and subtropical grass-
lands, with less strong increases in flight abundance with temperature in coniferous and broadleaf subtropical and temperate forests,
and the smallest effect of temperature on flight abundance in arid-xeric shrublands. In forested biomes, the effects of temperature may
be less strong due to differences in microclimate; insects likely experience buffered temperatures under the forest canopy. In arid and
xeric shrublands, temperature effects on abundance are likely mediated directly or indirectly by water limitation. In this biome,
residual variation after accounting for temperature varied across a productivity gradient, indicating that low productivity sites
observed lower flight abundances than expected based on temperature. Similarly, temperature residuals varied with precipitation
in forest biomes, with lower abundances at drier sites. These results indicate that other gradients, and particularly direct and indirect
water limitation, affect the way temperature drives insect flight activity.

Our results suggest that in spite of higher productivity, insect flight abundances were lower in temperate forests than in grass-
lands or other biomes. This pattern of high altitude insect flight corresponds with observations of day-flying butterfly abundance
in the US, which found highest abundance in the Great Plains region [18], and flying insect abundance in Germany (at ground
level), where insect biomass was lowest in forests [49]. Forests may provide fewer floral resources for flying insects [50]. Grassland
productivity may also be more readily available for conversion to insect biomass, as more of it is stored in leaf or underground
material. By contrast, biomass in forests is heavily defended by secondary metabolites and plant structural elements such as
lignin, which reduce incidence of herbivory, reducing herbivore population sizes and reproductive success [51]. The difference
between forest and grassland insect flight abundances may also result indirectly from temperature. Forest microclimates experi-
ence lower air temperatures, as solar radiation is intercepted by the canopy. This difference between interpolated temperature
data at 1-km resolution and effective local temperature may result in the residual differences in observed insect flight abundance
in our study. Lastly, radar-based estimates of insect abundance measure flight activity, and observed activity density is a function
of both the number of individuals present in a system and their velocity [16]. In forested habitats, increased structural complexity
of the habitat likely reduces velocity, and may then result in lower observed activity density. A recent study on activity density of
insects moving across the soil surface suggested that differences in velocity across habitats in the US was an important driver of
variation in pitfall trap observations at NEON sites spanning from Alaska to Puerto Rico [46]. This insight complicates entomo-
logical sampling that depends on activity (i.e. pitfall traps, flight intercept traps, radar observations), introducing bias if the
relationship between observations of activity density and population size differs between systems. Understanding the relationship
between abundances on the ground and in the air, and direct measurements of velocity and activity in different habitats, would
provide insight into these hypotheses.

Temperature constrains metabolic activity and development time [52], and high latitudes may not accumulate the thermal units
necessary for reproductive success in some taxa. Insect species may have fewer generations in parts of their range with lower temp-
eratures and shorter growing seasons, and taxa may also increase population sizes in response to temperature. For example, during
warmer years, 190 out of 263 lepidopteran species in central Europe had increased abundance in the second or following gener-
ations relative to the first generation [53]. However, such responses have rarely been studied at levels above the population, and
results on large-scale abundance across taxa are mixed. Continental patterns in US butterflies did not show a positive relationship
with temperature or latitude [18], while NEON pitfall traps found higher abundances in warmer regions [46].

Differences in the importance of temperature and productivity as drivers of insect abundance may vary across taxa, particu-
larly between herbivores and higher trophic levels. The rate at which energy is converted into resources, and the relationship
between resource availability and temperature or precipitation, likely varies between types of resources. We lack life-history infor-
mation in this study, as radar-based estimates of insect flight abundance are agnostic to species identity, although diurnal insect
flight at higher altitudes is commonly made up of a combination of aphids, hoverflies and butterflies [39,54]. However, taxonomic
composition will vary across sites, and the assemblage of flying insects likely shifts throughout the growing season as different
species cycle in and out of seasonal abundance. While this complicates interpretation of the observed spatial patterns in flight
abundance, shifts in composition across a sampling gradient is common regardless of sampling method.

Our findings that insect flight abundance does not correlate with productivity at regional scales has implications for species
richness—energy theory, which aims to explain macroecological patterns in species richness as a function of productivity. One
mechanism for this pattern hypothesizes that more productive areas support larger numbers of individuals, which leads to
higher population sizes, lower extinction risk, and thus higher diversity (i.e. the More Individuals Hypothesis; [4]). However,
experimental tests of this hypothesis in tree hole invertebrate communities found increased richness but not higher abundances
in more productive tree holes [55]. Similarly, productivity was positively correlated with moth diversity, but not with abundance,
in South African savannahs [17]. These results suggest that the role of abundance in driving species richness is complex [56], or
that greater richness in productive areas is more likely to result from other mechanisms, such as greater niche breadth, reduced
physiological limitation, or higher diversification rates [2].

Increased warming patterns under global change are likely to affect insect abundances. In particular, in temperate areas higher
temperatures may result in higher abundances, while in other areas increased warming may generate high enough temperatures to
cause overheating or heat avoidance behaviours [57,58]. While the magnitude of climate warming may vary across latitude, the
consequences of such warming may also vary in predictable ways, with biome-specific patterns. Understanding large-scale drivers
of insect abundance is key to predicting how insect populations will respond to ongoing global change.

This work did not require ethical approval from a human subject or animal welfare committee.
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