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ABSTRACT

Convolutional Neural Networks (CNNs) exhibit strong performance in medical image segmentation tasks by
capturing high-level (local) information, such as edges and textures. However, due to the limited field of view
of convolution kernels, it is hard for CNNs to fully represent global information. Recently, transformers have
shown good performance for medical image segmentation due to their ability to better model long-range de-
pendencies. Nevertheless, transformers struggle to capture high-level spatial features as effectively as CNNs. A
good segmentation model should learn a better representation from local and global features to be both pre-
cise and semantically accurate. In our previous work, we proposed CATS, which is a U-shaped segmentation
network augmented with transformer encoder. In this work, we further extend this model and propose CATS
v2 with hybrid encoders. Specifically, hybrid encoders consist of a CNN-based encoder path paralleled to a
transformer path with a shifted window, which better leverage both local and global information to produce
robust 3D medical image segmentation. We fuse the information from the convolutional encoder and the trans-
former at the skip connections of different resolutions to form the final segmentation. The proposed method
is evaluated on three public challenge datasets: Beyond the Cranial Vault (BTCV), Cross-Modality Domain
Adaptation (CrossMoDA) and task 5 of Medical Segmentation Decathlon (MSD-5), to segment abdominal or-
gans, vestibular schwannoma (VS) and prostate, respectively. Compared with the state-of-the-art methods, our
approach demonstrates superior performance in terms of higher Dice scores. Our code is publicly available at
https://github.com/MedICL-VU/CATS.
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1. INTRODUCTION

In recent years, deep learning (DL) has shown excellent performance in many medical image segmentation
tasks.1 As a fundamental unit of DL, convolutional neural networks (CNNs) are widely used for segmentation
due to their ability to learn complex patterns and structures from medical datasets. By hierarchically learning
parameters using both linear and non-linear layers, CNNs leverage both local and global information from images
to predict segmentations. For instance, U-Net2 is a popular architecture specifically designed for biomedical
image segmentation. This U-shaped network consists of an encoder and a decoder, interconnected by skip
connections. These connections ensure that high-resolution features are combined with upsampled low-resolution
features to facilitate precise segmentation. Furthermore, variants of U-Net have demonstrated state-of-the-art
performance across various medical image segmentation tasks and different imaging modalities.3–9 However, due
to the local receptive field of convolution kernels, convolutional encoders have limitations in modeling long-range
dependencies and potentially missing out on global context in medical images.

Inspired by the success of the Vision Transformer (ViT),10 transformers have recently been adapted to the
medical imaging field to produce high-quality segmentation.11–13 These transformer-based methods process an
input image/patch as a sequence of subpatches, rather than analyzing the entire input at once. With this
property, the primary advantage of transformers is their ability to model long-range dependencies using the
self-attention mechanism and to interact with all pixels in the image, in contrast to CNNs which possess a
localized field of view. This global perspective is especially valuable in medical image segmentation, where
contextual information from distant parts of the image can be important. However, ViT is computationally
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intensive and struggles to capture local information, especially for high-resolution medical data. As a variant
of the ViT, the Swin Transformer14 has shown good performance by computing representations hierarchically
within shifted windows instead of applying self-attention to the entire image. Compared to ViT, the Swin
Transformer reduces computational redundancies using the shifted window scheme, and it has been utilized in
medical applications to produce robust segmentations from high-resolution medical data.15–18 In addition to
preserving global information, the shifted window approach also enhances the capture of local details. Given
the importance of precise segmentation of anatomical structures and pathological regions in medical imaging,
the ability to focus on fine-grained details is particularly advantageous for tasks like tumor and multi-organ
segmentation.15–18

Although the shifted window approach is effective, it may still not match the local specificity of a carefully
designed CNN for certain medical image segmentation tasks, because fine-level details can be of paramount
importance in medical imaging. Thus, a hybrid approach that combines the strengths of both CNN and trans-
former might provide an optimal solution.19–21 This raises the question: could hybrid encoders incorporating
Swin Transformers enhance the current segmentation networks used for 3D medical image segmentation?

In this work, we introduce a 3D segmentation network with hybrid encoders named CATS v2. This is an im-
proved version of our previous work, CATS (complementary CNN and transformer encoders for segmentation),20

and offers better performance. In particular, we replace the ViT with the Swin Transformer, which is used as an
additional independent encoder in a U-shaped CNN. The multi-scale features extracted from the Swin Trans-
former are fused with the features from the CNN and then delivered to the CNN-based decoder for segmentation.
We evaluate the proposed methods on three different segmentation tasks, including abdominal organs, vestibular
schwannoma (VS), and prostate, where large inter-subject variations are present. We compare our model to
state-of-the-art models on three public datasets. The better performance of the proposed method in terms of
Dice scores indicates that Swin Transformer improves the segmentation ability of existing segmentation networks
with hybrid encoders. Moreover, our method has the potential to serve as a backbone for recent methods21–25

based on the Segment Anything Model (SAM26) in the field of medical image segmentation.

2. METHODS

2.1 Framework overview

Fig. 1 (a) shows the proposed segmentation network with hybrid encoders. Our model consists of two encoder
paths: a CNN path and a transformer path with shifted window. The CNN-based encoder progressively encodes
information using convolution and downsampling operations. On the Transformer path, the input images pass
through the patch partition layer to reduce the dimension and visualize high-level features by a convolution
operation and are then fed into the transformer blocks. The information from both paths is fused at each level
using addition operations, and this combined information is delivered to the CNN-based decoder to predict the
final segmentation.

2.2 Swin Transformer encoder

The proposed Swin Transformer encoder is adopted from.14,15 Specifically, the input of the Swin Transformer
encoder is a 3D image, and a patch partition layer is applied to create a sequence of 3D patches/tokens with a
given patch size. However, unlike ViT that flattens these patches and feeds them directly into the Transformer,
non-overlapping local windows are created for efficient patch interaction modeling. Each local window goes
through a linear projection layer to transform it into a sequence of token vectors. The transformed vectors are
then processed by the self-attention mechanism of the transformer. Our encoder has four Swin blocks and each
contains two successive transformer layers, i.e., regular window multi-head self-attention (W-MSA) and shifted
window MSA (SW-MSA), which are shown in Fig. 1 (a).

Fig. 1 (b) demonstrates the shifted window scheme for subsequent transformer layers. In the layer l (W-
MSA), we evenly partition the patch into subregions with same window size at each dimension. In the subsequent
layer, l + 1, the partitioned window regions are shifted by half of window size. The position of the windows is
shifted to allow the model to gradually increase its receptive field and incorporate a more global context into
its representations. To preserve the hierarchical structure of the encoder, a patch merging layer is employed at
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Figure 1. (a) Proposed network architecture. (b) 2D illustrations of shifted window where self-attention is only computed
within each non-overlapping local window. Note that the patch sizes vary.

the end of each stage. This reduces the resolution of feature representations by a factor of 2, thereby decreasing
the complexity and increasing the efficiency of the model. Following Hatamizadeh et al.,15 the embedding layer
reduces the dimension of its input by half. Note that the linear projection layer enables the model to efficiently
handle high-resolution inputs by reducing the dimensionality.

2.3 Convolutional neural network architecture

Fig. 1 (a) also shows the proposed CNN, which is adapted from the 3D U-Net and its variants.27,28 Max-pooling
and deconvolution operations are employed for down-sample and up-sample, respectively. The feature maps
from the highest level are sent directly to the decoder, while feature maps from the lower levels are combined
with encoded information from the Swin Transformer encoder path via addition. This fused information is then
delivered to the decoder using skip connections, following the pattern of the 3D U-Net27 to produce the final
segmentation.

2.4 Datasets

We use three publicly available datasets in our experiments.

• The BTCV29 dataset contains 30/20 subjects with abdominal CT images for training/testing, with 13
different organs labeled by experts. The results are obtained from the official leaderboard.

• CrossModa30 has 105 contrast-enhanced T1-weighted MRIs with manual labels for vestibular schwanno-
mas (VS). We split the dataset into 55/20/30 for training/validation/testing.

• MSD-531 consists of 32 MRIs with manual prostate labels. 2 MRIs in validation were excluded due to
the wrong labels being provided in the public dataset. We use this dataset in a 5-fold cross-validation
framework, and follow the setting in nnUnet.32

Dice score, average surface distance (ASD) and 95-percent Hausdorff distance (HD95) are used as evaluation
metrics. The details of preprocessing steps for all datasets can be found in the original CATS paper.20



Table 1. Mean Dice scores in BTCV dataset. Bold numbers denote the highest Dice scores. The results of TransUNet are
directly copied from.12 The experiments follow the public pipeline of Swin UNETR.15 The organs from left to right are:
spleen, right and left kidney, gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, portal vein and splenic vein,
pancreas, right and left adrenal gland, and overall average. Bold numbers indicate the best performance. The results can
be found on the official leaderboard.

Method Spl RKid LKid Gall Eso Liv Sto
TransUNet12 85.1 77.0 81.9 63.1 - 94.1 75.6
UNETR13 93.4 85.5 87.6 61.9 74.7 95.7 76.8
Swin UNETR15 95.9 87.8 92.9 65.7 77.2 96.5 83.3
CATS 95.8 90.2 93.4 65.9 77.1 96.8 83.0
CATS v2 94.8 87.1 93.2 70.7 78.1 96.7 85.8

Aor IVC Veins Pan RAG LAG Avg.
TransUNet12 87.2 - - 55.9 - - 77.5
UNETR13 85.2 77.2 69.8 61.5 64.4 59.4 76.9
Swin UNETR15 85.5 82.8 75.1 72.5 74.0 72.0 81.6
CATS 88.6 83.1 76.9 73.8 70.2 62.6 81.4
CATS v2 88.0 82.5 77.0 76.1 72.2 66.3 82.2

2.5 Implementation details

We followed the implementation settings in CATS20 for our experiments for a fair comparison. Briefly, we
normalized the image intensity to range [0, 1]. The constant learning rate was set to 0.0001. Training batch size
was 2 for all experiments which are conducted on Pytorch, MONAI and an NVidia Titan RTX GPU.

3. RESULTS

3.1 BTCV results

The quantitative and qualitative results of BTCV dataset are shown in Tab. 1 and Fig. 2, respectively. The
compared methods include TransUNet,12 UNETR,13 Swin UNETR,15 CATS,20 and the proposed CATS v2.
Briefly, UNETR13 is composed of a ViT encoder and a CNN decoder, while Swin UNETR replaces the ViT with
a Swin encoder. Similarly, CATS20 is built upon the 3D U-Net27 and integrates a ViT encoder. The proposed
CATS v2 employs a Swin encoder as the upgrade.

From Tab. 1, the proposed CATS v2 achieves the best overall performance among the state-of-the-art com-
pared methods (the ‘Avg.’ column). In the comparison between Swin UNETR and proposed CATS v2, we
observe the improvements in 8 out of 13 organs when a CNN encoder is integrated. Furthermore, the proposed
CATS v2 outperforms original CATS in 7 out of 13 organs, with larger improvements observed in organs of
smaller volume, such as the gallbladder, and the right and left adrenal glands. These improvements suggest that
the Swin encoder could further refine the local details. Fig. 2 shows qualitative results, with major differences
highlighted by orange arrows. Compared to the Swin UNETR and the original CATS, our proposed model
produces smoother results.

Table 2. Quantitative results in CrossMoDA dataset, presented as mean(std.dev.). Bold numbers indicate the best
performance.

Method Dice ASD HD95
2.5D CNN33 0.856 (1.000) 0.69 (1.20) 3.5 (5.2)
TransUNet12 0.792 (0.234) 7.86 (27.6) 12 (31)
UNETR13 0.772 (0.139) 7.95 (14.2) 26 (43)
CATS20 0.873 (0.088) 0.48 (0.63) 2.6 (3.6)
CATS v2 0.886 (0.076) 0.48 (0.79) 2.4 (4.0)
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Figure 2. Qualitative results in BTCV. Some major differences are highlighted by orange arrows.

3.2 CrossMoDA results

The quantitative results for the CrossMoDA dataset are presented in Tab. 2. We compare the models against
a 2.5D CNN model,33 which was specifically designed to segment VS from MRIs characterized by substantial
discrepancies between in-plane resolution and slice thickness, which is a common feature of this dataset. We
observe that this CNN-only network performs better than the transformer-based encoders12,13 for this task. The
original CATS20 model outperformed the 2.5D CNN. With subsequent enhancements, our updated CATS v2
model further refined the quality of segmentation, delivering the highest performance in terms of Dice score.
Fig. 3 shows the qualitative results of VS segmentation. While the original CATS model undersegments the
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Figure 3. Qualitative results in CrossMoDA. Local segmentation errors are highlighted with arrows.

VS (marked by arrow), the proposed CATS v2 effectively compensates for this limitation and produces robust
results that align more closely with the ground truth segmentations.

3.3 MSD-5 results

We compared the nnUnet,32 TransFuse19 and CATS20 to our proposed method for the prostate segmentation task
in Tab. 3. CATS v2 has the highest Dice scores on all labels, i.e., both the peripheral zone (PZ) and the transition
zone (TZ). This dataset was chosen because of the inherent challenge in segmenting two closely adjoined regions
that exhibit considerable inter-subject variability. The qualitative improvements between original CATS and
CATS v2 are shown in Fig. 4. A more robust segmentation is produced by the proposed method by correcting
the false positives.

4. DISCUSSION AND CONCLUSION

In this work, we introduce CATS v2, which is a segmentation network with hybrid encoders, specifically, a
U-shaped CNN complemented with a Swin Transformer. We evaluated our proposed methods on three public
datasets that present large inter-subject variations. Our proposed model outperforms state-of-the-art models on
each task. Relative to the original CATS, the Swin Transformer is able to further enhance the segmentation
ability of the encoder. However, we observe inconsistent improvements in the BTCV dataset, indicating that
one encoder may dominate the results. Exploration of other fusion strategies to overcome this issue remains as
future work. In addition, due to the use of hybrid encoders as well as deeper architecture design, our proposed
network might require slightly more computational resources than the original CATS. In the future work, we
aim to design a light-weight model for 3D medical image segmentation.

Table 3. Mean Dice scores in MSD-5 dataset. PZ and TZ denote the peripheral zone and the transition zone, respectively.
Bold numbers indicate the best performance.

Method PZ TZ Avg.
2D nnUnet32 0.6285 0.8380 0.7333
3D nnUnet32 0.6663 0.8410 0.7537
TransFuse19 0.6738 0.8539 0.7639
CATS20 0.7136 0.8618 0.7877
CATS v2 0.7356 0.8713 0.8034

Image CATS !2CATS Ground truth

Figure 4. Qualitative results in MSD-5. Local segmentation errors are highlighted with arrows. Red and green labels
denote the peripheral zone (PZ) and the transition zone (TZ), respectively.
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