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1 Introduction

Axions and axion-like particles (ALPs) - potentially long-lived pseudoscalars with weak
couplings to the Standard Model (SM) that may have masses from the sub-eV to the GeV
- are central features in the landscape of solutions to the strong CP problem [1–7], dark
matter problem [8–11], and in the spontaneous breaking of generic global symmetries [12–
14]. In addition to being dark matter candidates, axion-like particles in the keV to sub-eV
mass range produced in the sun are well motivated [15, 16]. Searches were carried out
by several experimental collaborations by looking for a → γ Primakoff conversion in solid
crystal detectors, including DAMA [17] (NaI), CUORE [18, 19] (TeO2), Edelweiss-II [20],
SOLAX [21], COSME [22], CDMS [23], and Majorana [24] (Ge). Other upcoming experiments
like SuperCDMS [25], LEGEND [26], and SABRE [27] are projected to greatly expand coverage
over the axion parameter space and test QCD axion solutions to the strong CP problem in
the eV mass range. These experiments aim to take advantage of coherence in the conversion
rate when axions satisfy the Bragg condition, enhancing the detection sensitivity by orders
of magnitude relative to incoherent scattering.

Searching for solar axions via their coherent conversion in perfect crystals was first treated
by Buchmüller & Hoogeveen [28] using the Darwin theory of classical X-ray diffraction under
the Bragg condition [29]. The authors also alluded to potential enhancements in the signal
yield when one considers the symmetrical Laue-case of diffraction for the incoming ALP
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waves. Yamaji et al. [30] treated this case thoroughly for the 220 plane of cubic crystals, also
using the classical theory, and included the effect of anomalous absorption, also known as the
Borrmann effect. It was shown by these authors that an enhancement to the signal yield was
possible, replacing the Bragg penetration depth (Lbragg ∼ 1 µm) with the Borrmann-enhanced
attenuation length (ranging from 10 µm all the way to centimeter scales).

The effect of anomalous absorption of X-rays was first shown by Borrmann [31], and
theoretically explained by Zachariasen [32, 33] and other later authors (Battermann [34, 35],
Hirsch [36]). A quantum mechanical treatment was offered by Biagini [37, 38] in which the
Borrmann effect was explained by the interference of statistical ensembles of the so-called |α⟩
and |β⟩ Bloch waves. There have been numerous modern studies that utilize the Borrmann
effect, notably as in photon-photon dissipation on Bragg-spaced arrays of superconduncting
qubits [39], and in measuring quadrupole transitions in X-ray absorption spectra [40].

Now, the calculation of the event rates expected for the Primakoff conversion of solar
axions coherently with a perfect crystal was treated in a more traditional, particle physics-
based approach in refs. [19, 41, 42] and it was applied to derive many of the constraints set
by crystal-based solar axion experiments including DAMA, CUORE, Edelweiss-II, SOLAX,
COSME, CDMS, and Majorana Demonstrator [17, 18, 20–24]. However, absorption effects
in Bragg and Laue case diffraction were not considered in refs. [19, 41, 42]; indeed, when
comparing the event rates between these references and those presented in light-shining-
through-wall (LSW) experiments, which used the classical Darwin theory approach (e.g.
ref. [28] and more recently ref. [30]), there is a clear inconsistency. While the event rates
in the LSW literature only consider the coherent volume of the crystal up to the relevant
attenuation length (λ ∼ 1 µm in the Bragg diffraction case or λ ≲ 100 µm in the Laue-case),
the solar axion searches have considered the whole volume of the crystal to exhibit coherence.
This should not be the case, as coherence requires undamped plane wave solutions that have
vanishing phase differences. This also does not depend on whether or not the axion is in
the initial or final state; while its feeble coupling with ordinary matter admits a negligible
damping, the photon does experience damping from absorption and may lose coherence
over the scattering volume. Indeed, in the LSW literature one finds a dependence on the
absorption length of x-rays in both the a → γ and γ → a conversion probabilities [28, 30],
regardless of whether the undamped axion is in the initial or final states.

In this work, we show that such effects reduce the expected event rates potentially up to
the O(103) level depending on the assumed crystal size (and therefore, the assumed coherent
volume enhancement) and material. Although this may impact the existing sensitivities set
by solar axion searches in solid crystals, measures can be taken to optimize suppression of the
event rate due to absorption effects and recover some or potentially all of the coherent volume.

In section 2 we re-derive the event rate formula for solar axion Primakoff scattering
under the Bragg condition, and in section 3 we discuss the anomalous enhancement to
the absorption length under the Borrmann effect and numerically estimate the level of
suppression in the coherent sum. In section 4 we write down the event rates for a perfect
crystal exposed to the solar axion flux with and without the absorption effects and discuss
the relevant phenomenology. In section 5 we project the impact on sensitivities with and
without absorption effects for SuperCDMS, LEGEND-200, LEGEND-1000, SABRE, and
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multi-tonne benchmark detector setups and discuss possibilities to restore sensitivity from
coherence in section 6. Finally, in section 7 we conclude and discuss further work.

2 Coherence and absorption

In order to show how photon absorption in coherent Bragg-Primakoff scattering affects the
event rate, it is worth going through a pedagogical review of what we mean by coherent
scattering and first assume that no absorption takes place. For the reader who is familiar
with coherence in neutrino scattering, please refer to the approach illustrated by Bednyakov
and Naumov [43] in which coherent neutrino-nucleus scattering is calculated by taking a sum
over N scattering centers in a nucleus. A more in depth discussion is contained in ref. [44].

Let f(k⃗, k⃗′) be the Primakoff scattering matrix element for a single atomic target, for
an incoming ALP 3-momentum k⃗ and outgoing γ 3-momentum k⃗′. Written in terms of
the atomic form factor FA,

f = MfreeFA(q) (2.1)

where Mfree is the single-atomic scattering amplitude, q is the momentum transfer, with
the angle of scattering defined by k⃗ · k⃗′ = Eγk cos 2θ, averaged over spins and taken in the
limit k ≫ ma, mN ≫ k,Eγ [45],

| ⟨Mfree⟩ |2 =
8e2g2

aγ

q4 E2
γm

2
Nk

2 sin2 2θ (2.2)

for a nuclear mass mN . The real atomic scattering form factor can be taken from ref. [46]
which is defined such that FA(0) = Z;

FA(q) = Zr2
0q

2

1 + r2
0q

2 (2.3)

for atomic number Z and screening constant parameterization r0 = 184.15e−1/2Z−1/3/me,
where me is the electron mass.

Similarly, we sum over the N scattering centers in a crystal;

M(k⃗, k⃗′) =
N∑

j=1
fj(k⃗, k⃗′)ei(k⃗′−k⃗)·r⃗j (2.4)

where ei(k⃗′−k⃗)·r⃗j is a phase factor that comes from assuming plane wave solutions for the in
and out states. This assumption is key; for atomic scattering in vacuum, the eigenstates of
the final state photon should be a spectrum of plane waves.

If we square the total matrix element, we get

| M(k⃗, k⃗′) |2=
N∑

i=1
| fi |2 +

N∑
j ̸=i

N∑
i=1

f †j fie
−iq⃗·(r⃗i−r⃗j) (2.5)

taking q⃗ ≡ k⃗ − k⃗′. The first (diagonal) term is the incoherent piece, while the second term is
usually suppressed by the average destructive interference of the phase factors. Using the
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Laue diffraction condition [29], q⃗ · (r⃗i − r⃗j) = 2πn for n ∈ Z, then the phase factor in the
exponential goes to one and the scattering is coherent. In this limit, the diagonal term is
subdominant and the final matrix element squared tends to M2 → N2f2 and we have full
coherence.1 See appendix B for a derivation of the event rate in full with this approach.

Now consider interactions of the final state γ with the crystal lattice, including the
absorption and scattering effects. Pragmatically, we modify the plane wave solutions of the
final state photon to that of one in a dielectric medium,

k⃗′ → n̄k⃗′, n̄ = n− iκ, (2.6)

where n̄ is the complex index of refraction with real part n and imaginary part κ. Making
this modification, we have

ein̄k⃗′·(r⃗i−r⃗j) → eink⃗′·(r⃗i−r⃗j)e−
µ
2 |k̂

′·(r⃗j−r⃗i)|, (2.7)

The absorption coefficient µ (which can also be expressed in terms of attenuation length or
mean free path λ = 1/µ) is related to the imaginary part of the index of refraction through
µ ≡ 2κ|⃗k|. Conceptually, this factor encodes the effect of a reduced coherent interference
amplitude between any two scattering centers, since a photon plane wave sourced at one
scattering center will have been attenuated after reaching another scattering center.

We note that eq. (2.6) and eq. (2.7) are heuristic modifications, since the attenuated
plane wave solution is not a true eigenstate of the interaction Hamiltonian, but rather a
simple ansatz made to estimate the phenomenology of absorption. For further convenience,
we use zij ≡| k̂′ · (r⃗i − r⃗j) | and λ = 1/µ. We then have

| M(k⃗, k⃗′) |2 =
N∑

i=1
| fi |2 +

N∑
j ̸=i

N∑
i=1

f †j fje
−iq⃗·(r⃗i−r⃗j)e−zij/(2λ) (2.8)

After using the Laue diffraction condition q⃗ · (r⃗i − r⃗j) = 2πn and several manipulations
of the sum, we find that

| M(k⃗, k⃗′) |2 ≳ f †f
N∑

j ̸=i

λLxLyN

V

≳ f †fN2 λ

Lz
(2.9)

Comparing the proportionailty in eq. (2.9) to the usual result ∝ N2, we see that the coherent
volume is V × λ/Lz, and the total scattering rate is suppressed by a factor λ/Lz, and is now
more consistent with Darwin theory calculations [28, 30].

This inequality above is strictly a lower limit because, as we will show in section 3, the
suppression to the coherent sum by the absorptive sum, which we label as I,

I ≡
N∑

j ̸=i

N∑
i=1

e−zij/(2λ), (2.10)

1Though, note that the overall cross section should be proportional to V/v2
c through the relation N = V/vc

after taking into account the phase space integration; see appendix B for details.
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Figure 1. Crystallographic planes cut by the hkl = 220, 224, and 333 reciprocal lattice vectors in
the FCC lattice, and their basis vectors.

may be mitigated under certain conditions. Therefore, the suppression factor λ/Lz serves
as a pessimistic guiding estimate, but in principle we should compute the sum in eq. (2.10)
explicitly.

3 Anomalous absorption and the Borrmann effect

The suppression to the event rate can be alleviated by considering the anomalous enhancement
to the absorption depth or mean free path λ, which, in crystallographic diffraction, is not
strictly proportional to the inverse photon cross section multiplying into the material number
desnsity, 1/(nσ).

Take for instance ref. [30] in which the authors have found that for the Laue-case
conversion of ALPs, the attenuation length is modified as

Latt → Lα/β ≡ 2Latt,α/β

(
1 − exp

(
− L

2Latt,α/β

))
(3.1)
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where Latt,α/β = Latt
1 ∓ ϵ

and ϵ is a ratio involving the imaginary parts of the scattering form
factor. These modifications come from the anomalous dispersion or anomalous absorption
effect, or the Borrmann effect. It is an effect that occurs for so-called “Bloch waves” α and
β that form in the crystal, discussed further in refs. [37, 38].

The total scattering form factor can be decomposed into the real and imaginary parts [47];

f = f0 + ∆f ′ + i∆f ′′ (3.2)

where f0 is the atomic form factor, usually given as the Fourier transform of the charge density;

f0(q) ≡
∫
d3x⃗ρ(x⃗)eiq⃗·x⃗ (3.3)

The second term in the real part of the form factor is the anomalous form factor ∆f ′, and ∆f ′′

is the imaginary part of the form factor associated with absorption. From Batterman [34, 35],
the anomalous absorption due to the Borrmann effect modifies the absorption coefficient
µ0 = 1/λ as

1/λ = µeff = µ0

[
1 − F ′′(hkl)

F ′′(000)

]
(3.4)

Here F ′′(hkl) is the combination of structure function and imaginary form factor, F ′′(hkl) =
S(hkl)∆f ′′. The ratio in the second term of the expression is the Borrmann parameter,
usually denoted as ϵ.2 More explicitly, studies by Wagenfield have related the Borrmann
parameter to the quadrupole photoelectric cross section [48–50];

ϵ ≡ D

(
1 − 2 sin2 θB

σQ

σPE

) |S(h, k, l)|
|S(0, 0, 0)| (3.5)

where D is the Debye-Waller factor accounting for thermal vibrations in anomalous absorption,
D = e−Bs2 where s = sin θ/λ and B is a temperature-dependent constant. The Debye-Waller
factors for cryogenic temperatures can be found in ref. [51] as well as fits to ∆f ′′ for several
pure materials of interest. Equivalently, we can express the Borrmann factor in terms of
the imaginary form factor ∆f ′′ and the quadrupole form factor ∆f ′′Q (which obeys the
selection rules ℓ = ℓ′ ± 2);

ϵ ≡ D

(
1 − 2 sin2 θB

∆f ′′Q
∆f ′′

) |S(h, k, l)|
|S(0, 0, 0)| (3.6)

and ∆f ′′ is more explicitly written as [48]

∆f ′′ =
∑
ℓ′,m′

∑
n,ℓ,m

πℏ2

me

∣∣∣∣ ∫
ψ∗

f (r)ε0 · ∇eik·rψi(r)d3r

∣∣∣∣2 (3.7)

While fits to this form factor can be found in ref. [51], we can also usefully relate it to
the vectorial form factor defined in ref. [52] and calculated using the DarkARC (Python) or
DarkART (C++) codes;

∆f ′′(k) = πℏ2me|f1→2(k)|2DarkARC (3.8)

For more discussion and example functional forms of the Borrmann parameter, see ap-
pendix D.

2In ref. [30], they use κ.
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(hkl)
Ge Si

ϵ λ [µm] ϵ λ [µm]
111 0.69 34.2 0.68 96.26
220 0.95 229.69 0.91 357.44
131 0.66 31.08 0.63 82.62
400 0.91 122.95 0.85 209.55
133 0.64 28.77 0.59 74.85
422 0.88 86.13 0.81 158.64
440 0.85 67.99 0.77 131.92

(hkl)
NaI CsI

ϵ λ [µm] ϵ λ [µm]
200 0.92 181 0.53 27.03
220 0.86 104.3 0.27 17.47
222 0.82 76.84 0.13 14.55
400 0.77 62 0.04 13.28
420 0.73 52.48 0 12.66
440 0.62 37.1 -0.05 12.13
600 0.58 34.12 -0.05 12.11

Table 1. Anomalous coefficients ϵ(hkl) and attenuation lengths λ(Eγ , hkl) in Ge, Si (diamond cubic),
NaI, and CsI (FCC) due to the Borrmann effect were computed using the imaginary form factor with
Eγ = 3 keV. At this energy the normal attenuation length is ∼ 10 µm. See also figure 9.

While a dedicated study of the Borrmann parameter would require the calculation of the
photoelectric quadrupole cross section σQ, Borrmann parameters for germanium crystal are
already reported in the literature. We use the form factors derived in ref. [34] to estimate
the Borrmann effect for each reciprocal lattice plane, giving us an anomalous attenuation
length along the direction of travel of photons inside the detector I(k⃗, G⃗). We tabulate
these and the corresponding values of ϵ in table 1 and plot the Borrmann parameters for
Ge, Si, CsI, and NaI crystals in figure 9.

The absorptive part of the coherent sum that remains after the Laue condition is met is

I(k⃗, G⃗) ≡
N∑

j ̸=i

N∑
i=1

e
− (k⃗−G⃗)

|k⃗−G⃗|
·(r⃗i−r⃗j)/(2λ) (3.9)

which, when the Bragg condition is met, is strictly a function of k⃗ and G⃗ since the mean
free path λ can be related via eq. (3.4). Taking the Ge lattice as an example, with lattice
constant d = 5.657 Å, we evaluate I(k⃗, G⃗) numerically by constructing a lattice of N Ge
atoms. Since computing the full sum for a real crystal of centimeter length scale would
require a huge number of evaluations (∝ N2), we take a sparse sampling of N atoms across
the physical crystal volume such that the sum is computationally feasible. The sum can then

– 7 –



J
H
E
P
0
2
(
2
0
2
4
)
1
9
0

100 101 102 103

λ [µm]

10−2

10−1

I
(~ k
,
~ G
,λ

)

hkl = 220

k̂ = (1, 0, 0)

k̂ = (0, 0, 1)

k̂ = (1, 1, 1)

Figure 2. The absorption factor I(k⃗, G⃗) as a function of the mean free path λ = 1/µ for a crystal of
cubic volume with side length 5 cm.

be evaluated in increments of increasing N to test for convergence. We find that a lattice of
around N ≃ 104 atoms in a cubic geometry is enough to obtain a convergent error of around
5%. Some evaluations of I(k⃗, G⃗) as a function of varying mean free path λ are shown in
figure 2 for several choices of scattering planes G⃗ and incoming wavevectors k⃗.

One interesting phenomenon that can be seen in figure 2 is that there are certain choices
of k⃗′ = k⃗− G⃗ such that k⃗′ · (r⃗i − r⃗j) = 0. In this special circumstance, while many of the terms
in the coherent sum will tend to zero with decreasing λ, the terms where this dot product is
zero will survive. What this means physically is that the plane in which r⃗i − r⃗j lies will avoid
the decoherence from absorption as long as it remains orthogonal to k⃗′. This relation can be
made more apparent by considering the dot product under the Bragg condition;

k̂′ · (r⃗i − r⃗j) =
(

G⃗

2k⃗ · Ĝ
− G⃗

k

)
· (r⃗i − r⃗j) = 0 (3.10)

where we take k̂ = (cosϕ sin θ, sinϕ sin θ, cos θ), solving this equation for θ in the hkl = 400
case gives

θ = cot−1
(
nx cos(ϕ) − ny sin(ϕ)

nz

)
+ πc1 (3.11)

for nx, ny, nz, c1 ∈ Z. This defines a family of lattice points that remain in the absorption sum
I even in the limit λ→ 0, resulting a lower bound on I as shown for some example choices
of k̂ in figure 2. This effect is similar in nature to the Laue-case diffraction enhancements
where the photoconversion occurs down the scattering planes, minimizing the absorption,
as studied in ref. [30].
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Figure 3. The absorption factor I(k⃗, G⃗) for the hkl = 111 plane as a function of the incoming ALP
direction k̂(θ, ϕ) when the Bragg condition is satisfied and the mean free path is given by the Borrmann
anomalous absorption coefficient. Here we take a crystal of cubic volume with side length 5 cm. The
solid white lines trace sample paths of the daily solar angle in January (solid), March (dashed), June
(dash-dotted), and September (dotted) at the latitude and longitude of the Gran Sasso site.

In figure 3 the absorption factor I is shown for the plane G⃗(1, 1, 1) as a function of
azimuthal and polar angles of the incoming axion momentum θ, ϕ under the Bragg condition.
This fixes k = Eγ for a given (θ, ϕ), and therefore the attenuation length λ given by eq. (3.4).
We see a two prominent features of mitigated absorption in the S-shaped band (tracing out
a great circle on the 2-sphere), where (i) I → 1 as these (θ, ϕ) combinations correspond to
larger energies where the photon absorption cross section falls off as we move further into
the S, and (ii) there is a jump discontinuity in the S-band due to an absorption edge in the
photoelectric cross section for germanium at around 11 keV.

4 Event rates

The event rate for Primakoff coherent scattering with a perfect crystal worked out in [19, 41, 42]
where full-volume coherence was assumed and there is no dependence on the attenuation
length;3 the event rate in an energy window [E1, E2] is

dN

dt
= πg2

aγ(ℏc)3 V

v2
cell

∑
G⃗

[
dΦa

dEa

|Fj(G⃗)Sj(G⃗)|2

|G⃗|2
sin2(2θ)W

]
(4.1)

where Sj is the crystal structure factor (see appendix), Fj is the atomic form factor for species
j, and dΦa/dEa is the solar axion flux from Primakoff scattering and photon coalescence

3Notice the factor of (ℏc)3 rather than ℏc as written in ref. [41] for dimensional consistency.

– 9 –



J
H
E
P
0
2
(
2
0
2
4
)
1
9
0

0 5 10 15 20
Time of Day (h)

10−3

10−2

10−1

100

101

102

R
at

e
(c

ou
n
ts

/h
ou

r)
2.0 keV< Eee < 3.5 keV

Full Volume Coherence

With Anomalous Absorption

Incoherent Lattice

0 5 10 15 20
Time of Day (h)

10−2

10−1

100

101

102

R
at

e
(c

ou
n
ts

/h
ou

r)

3.5 keV< Eee < 6.0 keV

Full Volume Coherence

With Anomalous Absorption

Incoherent Lattice

0 5 10 15 20
Time of Day (h)

10−2

10−1

100

101

102

R
at

e
(c

ou
n
ts

/h
ou

r)

6.0 keV< Eee < 8.5 keV

Full Volume Coherence

With Anomalous Absorption

Incoherent Lattice

0 5 10 15 20
Time of Day (h)

10−2

10−1

100

101

102

R
at

e
(c

ou
n
ts

/h
ou

r)

8.5 keV< Eee < 12.0 keV

Full Volume Coherence

With Anomalous Absorption

Incoherent Lattice

Figure 4. Solar ALP scattering rates in a 250 cm3 Ge crystal, comparing the rates with full volume
coherence to ours with anomalous absorption effects included through the absorption factor I(k⃗, G⃗).
Here we fix the coupling gaγ = 10−8 GeV−1, energy resolution to be ∆ = 1.0 keV (for Eee < 6 keV)
and ∆ = 1.5 keV (for Eee > 6 keV).

in the sun [53, 54]. For the solar axion flux, we take the parameterized form appearing in
ref. [55] which expands upon the form originally given by CAST [56] by accounting for the
axion mass; see eq. (C.1). The event rate in eq. (4.1) encodes the effect of detector energy
resolution ∆ within the function W;

W(Ea, E1, E2,∆) = 1
2

(
erf

(
Ea − E1√

2∆

)
− erf

(
Ea − E2√

2∆

))
(4.2)

The sum over the reciprocal lattice vectors G⃗ effectively counts the contributions to the
coherent scattering from each set of lattice planes, illustrated in figure 1. The reader may
refer to appendix A for a compact description of the reciprocal lattice.

At this stage the effect of absorption will simply modify the event rate, as seen in
the previous section, by replacing the full coherent volume V → V × I(k⃗, G⃗) with λ =
[µ0(1 − ϵ(G⃗))]−1, giving

dN

dt
= πg2

aγ(ℏc)3 V

v2
cell

∑
G⃗

[
dΦa

dEa
· I(k⃗, G⃗)

|G⃗|2
|Fj(G⃗)Sj(G⃗)|2 sin2(2θ)W

]
(4.3)
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With sin2(2θ) simplifying to 4(Ĝ · k̂)2(1 − (Ĝ · k̂)2) [42] where k̂ is the unit vector pointing
toward the Sun’s location, we have

dN

dt
= πg2

aγ(ℏc)3 V

v2
cell

∑
G⃗

I(k⃗, G⃗)
[
dΦa

dEa
|Fj(G⃗)Sj(G⃗)|2 4(Ĝ · k̂)2(1 − (Ĝ · k̂)2)

|G⃗|2
W

]
(4.4)

At this stage, we have also used the Bragg condition Ea = ℏc|G⃗|2/(2k̂ · G⃗). The
time dependence is encoded in the solar position, which we can express through k̂ =
(cosϕ sin θ, sinϕ sin θ, cos θ) for θ = θ(t) and ϕ = ϕ(t). For the solar angle as a function of
time and geolocation, we use the NREL solar position algorithm [57].

In principle, the sum over reciprocal lattice vectors G⃗ is taken to arbitrarily large
combinations (h, k, l), but due to the 1/|G⃗|2 suppression and the upper limit of the solar
axion flux of around ∼ 20 keV, we can safely truncate the sum at max{h, k, l} = 5.

The corresponding event rates for various energy windows are shown in figure 4 for Ge
crystal, where we compare the relative enhancements with and without the Borrmann effect
to the case of full-volume coherence and to the case of incoherent scattering on an amorphous
lattice.4 The fluctuating features in the event rate are the result of the sum over G⃗ which
contributes to the Bragg peaks. Here we have assumed a volume of 260 cm3 (corresponding
roughly to the volumetric size of a SuperCDMS germanium module), and so the relative
suppression for each G⃗ lattice plane goes like V 1/3/λ(k⃗, G⃗), giving a suppression on the order
of 102 compared to the full-volume coherence assumption.

The time-dependence can be visualized further by viewing the event rates as a function
of incident angles integrated across the whole solar axion energy window, as shown in figure 5.
Depending on the time of year, different sets of Bragg peaks will be traced over during the
day, inducing an annual modulation in addition to the intra-day modulation of the signal.

Since the time of day fixes the solar zenith and azimuth (θ, ϕ), we can finally show the
spectrum of the Primakoff signal as a function of energy deposition and time of day; see figure 6.

5 Projected sensitivities for solar axion searches

We forecast the event rates for SuperCDMS [25], LEGEND-200, LEGEND-1000, SABRE,
in addition to envisioned multi-tonne setups, with detector specifications listed in table 2.
For the background-free limits, we look for the Poisson 90% CL corresponding to ≃ 3 events
observed for a given exposure. The projected reach over the (gaγ −ma) parameter space
for these detector benchmarks is shown in figure 7, where we show projections including the
effects of absorption and the Borrmann enhancement to the absorption length, in addition
to the projected limits assuming full volume coherence (FVC), i.e. I(k⃗, G⃗) → 1, indicated
by the arrows and dotted lines.

The QCD axion parameter space is shown (yellow band) for the Kim-Shifman-Vainshtein-
Zakharov (KSVZ) type [58, 59] and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type bench-
mark models [6, 60–62], where the range is defined by taking the anomaly ratios of E/N = 44/3
to E/N = 2 [63], although the space of heavier masses is also possible in high-quality axion

4Atomic Primakoff scattering is still coherent here; we only turn off the coherence at the level of the lattice
for the sake of comparison with scattering on amorphous materials, in this case, amorphous germanium.
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Figure 5. Event rates in germanium as a function of incident angles θ, ϕ for the integrated energy
range (1, 10) keV and for reciprocal lattice planes (h, k, l) up to max{h, k, l} = 5. The solid white lines
trace sample paths of the daily solar angle in January (solid), March (dashed), June (dash-dotted),
and September (dotted) at the latitude and longitude of the Gran Sasso site.

Figure 6. Differential energy-time event rate with energy resolution ∆ = 2.5 keV. The time of year
was taken to be January at the latitude and longitude of the Gran Sasso site.
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Experiment Module Mass
×no. Modules Total Mass Energy

Resolution
Threshold Exposure

(ton-years)

SuperCDMS (Ge) 1.4 kg × 18 25.2 kg 2.5 keV 1 keV 0.1
SuperCDMS (Si) 0.6 kg × 6 3.6 kg 2.5 keV 1 keV 0.0144
LEGEND-200 (Ge) 2.6 kg × 75 195 kg 2.5 keV 1 keV 0.78
LEGEND-1000 (Ge) 2.6 kg × 400 1 tonne 2.5 keV 1 keV 5
SABRE (NaI) 2 kg × 25 50 kg 1 keV 1 keV 0.15
10-tonne NaI 2 kg × 2500 5 tonne 1 keV 1 keV 50
10-tonne CsI 2 kg × 2500 5 tonne 1 keV 1 keV 50

Table 2. Assumed detector parameters for the SuperCDMS [25], LEGEND [26], and SABRE [27]
configurations.

models and other scenarios [64, 65]. To probe this model parameter space beyond the existing
bounds from CAST and horizontal branch (HB) stars, when FVC is maintained, multi-tonne
scale experiments are needed. Additionally, the stellar cooling hints that could be explained
by ALPs with gaγ ≲ 10−11 GeV−1 (and for non-vanishing gae ≃ 10−13), are also shown in
figure 7, indicated by the gray band (1σ) and down to vanishing gaγ [66–68]. These hints,
though mild, could be tested by the multi-tonne setups with FVC restored.

With the effects of absorption included, we project SuperCDMS, LEGEND, and SABRE
to test parameter space unexplored by laboratory-based probes beyond the CAST and
XENONnT constraints for ma ≳ 1 eV, but already excluded by HB stars constraints. However,
multi-tonne CsI and NaI setups would extend this to nearly cover the HB stars exclusion.
Similar reach could in principle be found when considering the joint parameter space of multiple
ALP couplings to photons, electrons, and nucleons [69]. For instance, by considering the 57Fe
solar axion flux, one could look for 14.4 keV energy signatures and their Bragg-Primakoff
peaks, although the sensitivity would likely contend with astrophysics constraints as well [70].

The existing bounds from DAMA [17], CUORE [18], Edelweiss-II [20], SOLAX [21],
COSME [22], CDMS [23], and Majorana [24] are not shown here, but their exclusions would
necessarily shift to larger coupling values to account for absorption effects in the Bragg-
Primakoff rates, depending on the detector volume and material. Note that the relative reach
between NaI and CsI crystals is relatively suppressed when absorption is included here, due to
the behavior of the imaginary form factor for CsI giving more modest Borrmann enhancements
at the lower reciprocal lattice planes; see figure 9. In order to push the sensitivity envelope
beyond the current bounds by CAST and HB stars, even with multi-tonne setups, the
absorption effects need to be mitigated. Some possibilities are discussed in the next section.

6 Restoring coherence

There may be ways to recover the sensitivity initially projected in the case of full-volume
coherence by mitigating the loss of coherence due to absorption. These are of course speculative
routes. Some of these routes for future work are enumerated below;
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Figure 7. We show sensitivity projections for Ge experiments (SuperCDMS, LEGEND-200, and
LEGEND-1000), NaI (SABRE) and multi-tonne CsI and NaI setups with absorption effects included.
Existing bounds from solar axion searches at XENONnT [71] and CAST [56] as well as the constraint
from HB star cooling [68] are shown. The complementary reach of axion helioscope BabyIAXO [72] is
shown for comparison. Changes to the projected reach for crystal detectors if full volume coherence
(FVC) is restored are indicated by the dotted lines.

1. Since the attenuation of the coherent volume is direction-dependent, as shown in
figure 3, one could imagine optimizing a detector geometry such that the size and
orientation relative to the incoming flux of axions is ideal, maximizing use of the
Laue-type scattering and Borrmann effect to minimize the absorption. This would
require precise knowledge of the crystal purity and plane orientation obtained from
X-ray measurements.

2. Along a similar vein, since the effects of absorption are minimized when the detector
scale V 1/3 becomes comparable to the photon mean free path λ, one could instead
prefer to use smaller detector volumes but with a large total mass partitioned into
many individual modules. As long as each module is optically insulated from the others,
the loss of coherence due to absorption will be contained within each module and the
suppression to the event rate can be mitigated.

3. It might be possible to apply the principles in this work to radioisotope experiments
like those proposed in refs. [73, 74], where a keV-scale nuclear transition line (e.g. the
14.4 keV line of 57Fe) could source ALPs through a coupling to nucleons. Subsequent
detection by an array of crystals encasing the radioactive source searching for transition
photons of known energy Primakoff-converting in the crystal would leave a missing
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energy signature in the detector. By looking for disappearing keV-scale transitions the
signal rate would enjoy the coherent enhancement relative to the incoherent scattering
considered in ref. [74].

4. A dedicated keV photon source that would impinge on a crystal detector could fire at a
fixed angle of incidence such that the event rate enhancement from the Borrmann effect
and Laue effects are optimized and full volume coherence is restored as best as possible.
One might achieve this with a keV laser [75] or synchrotron sources in a similar fashion
to LSW experiments [76–80]. By performing a similar “missing” photon search as the
one discussed above, the event rate for the detection of missing energy will be propor-
tional to g2

aγ , rather than g4
aγ as in solar axion searches, greatly enhancing the sensitivity.

In the case where we assume full volume coherence, shown in figure 7, dotted lines,
ton-scale setups like LEGEND-200 and LEGEND-1000 can reach significantly smaller
couplings, probing values of gaγ beyond the existing bounds fom HB Stars [66, 68] and
CAST [81] for masses ma ≲ 10 keV, losing sensitivity for higher masses for which the axion
production rates from photon coalescence and Primakoff scattering are diminished (see
also figure 8). These reach more than an order of magnitude lower in the coupling than
previous Bragg-Primakoff solar axion searches.

7 Conclusions

In this work, we have taken into account a more proper estimate of the effects of anomalous
absorption into the event rate, i.e. via the Borrmann effect on the coherence condition of
Bragg-Primakoff photoconversion of solar axions. The sensitivity of crystal technologies used
in the SuperCDMS, LEGEND, and SABRE setups has been demonstrated, and we find that
the inclusion of absorption effects even with Borrmann-enhanced signal rates still would re-
quire multi-tonne scale detectors to surpass the existing astrophysical constraints in sensitivity
to ALPs. However, a dedicated study with a thorough and careful treatment of the absorption
suppression and Borrmann effects is definitely needed to better understand its impact on exper-
iments that utilize Bragg-Primakoff conversion. In particular, the evaluation of the imaginary
form factor in other crystals (namely, PbWO4 may be an interesting option) would help deter-
mine potential enhancements to the anomalous absorption effect in other detector materials.

Crystal detector technologies are also necessary tools to discriminate axion-like particle
signals from other types of BSM and neutrino signatures, with high sensitivity to time
modulation from the directional sensitivity of Bragg-Primakoff scattering. This is a powerful
tool for background rejection as well, and ideally a joint analysis of multiple detectors
situated at different latitudes and longitudes would benefit greatly from leveraging the time
modulation of the signal. They are also complimentary to future helioscope experiments like
IAXO; while the projected reach for IAXO over the axion-photon coupling parameter space
is vast, the sensitivity to solar axions with masses ma ≳ 1 eV becomes weaker to coherent
Primakoff conversion in magnetic field helioscopes. Sensitivity to this region of parameter
space is necessary in order to test QCD axions, especially in non-traditional models of high
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quality axions and the like, which have parametrically larger masses [64, 82, 83]. It was
shown in ref. [69] that future liquid noble gas detectors for dark matter direct detection at
kiloton-year scales could begin to probe couplings beyond the astrophysics constraints for
axion-like particles, while in this work we find that equivalent reach is possible at ton-year
exposures with crystal detector technology, if utilized to its fullest potential. The presence
of complimentary searches at these mass scales is essential for a complete test of the axion
solution to the strong CP problem and the broader space of ALPs.
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A Crystal structure

For convenience of the reader we repeat the standard discussion on the description of the
lattice vector space for the crystals we have considered, much of which can be found in [29] and
other canonical literature. The α⃗j describe the positions of each atom within the cell, while
the basis vectors a⃗i describe the Bravais lattice. The linear combination of the two is used to
translate anywhere on the lattice by stepping in integer multiples of these basis vectors;

r⃗i = n1a⃗1 + n2a⃗2 + n3a⃗3 + α⃗i (A.1)

We can then introduce the reciprocal lattice, giving reciprocal lattice basis vectors b⃗i which
satisfy b⃗i · a⃗j = 2πδij . In general the transformations give

b⃗1 = 2π a⃗2 × a⃗3
|⃗a1 · (⃗a2 × a⃗3)|

b⃗2 = 2π a⃗3 × a⃗1
|⃗a1 · (⃗a2 × a⃗3)|

b⃗3 = 2π a⃗1 × a⃗2
|⃗a1 · (⃗a2 × a⃗3)| (A.2)

The reciprocal lattice basis vectors are used to construct the reciprocal lattice vector G⃗ that
point along the surface normals of the scattering planes. In terms of integers m1, m2, and
m3, each scattering plane is defined;

G⃗ = m1⃗b1 +m2⃗b2 +m3⃗b3 (A.3)
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Material Lattice Constant
a (Å)

Cell Volume
vcell (Å3)

Primitive
Basis

Bravais
Basis

a
2π G⃗(m1,m2,m3)

Ge (Diamond Cubic) 5.657 181.0 α⃗0 = (0,0,0)
α⃗1 = a

4 (1,1,1)
a⃗0 = a

2 (0,0,0)
a⃗1 = a

2 (1,0,1)
a⃗2 = a

2 (0,1,1)
a⃗3 = a

2 (1,1,0)

(m1 −m2 +m3,

−m1 +m2 +m3,

m1 +m2 −m3)

Si (Diamond Cubic) 5.429 160.0
CsI (FCC) 4.503 91.3 α⃗0 = (0,0,0)

α⃗1 = a
2 (1,1,1)NaI (FCC) 6.462 67.71

Table 3. Lattice information for typical crystal detector technologies.

Sometimes the integers h, k, l are used instead, and in some contexts one can use this basis
to express G⃗ as

G⃗(hkl) = 2π
a

(h, k, l) (A.4)

The lattice constants, cell volumes, and basis vectors for a few examples (Ge, Si, CsI, and
NaI) are listed in table 3.

B Derivation of the event rate

Let f(k⃗, k⃗′) be the Primakoff scattering matrix element for a single atomic target, for an
incoming ALP 3-momentum k⃗ and outgoing γ 3-momentum k⃗′;

f = MfreeFA(q) (B.1)

where Mfree is the single-atomic scattering amplitude and FA is the atomic form factor
defined in eq. (2.3). At the moment we will work in the elastic limit k ≫ ma, mN ≫ k,Eγ

and define the angle of scattering by k⃗a · k⃗γ = Eγk cos 2θ. Averaging over helicities, we have

⟨Mfree⟩ =
8e2g2

aγ

q4 E2
γm

2
Nk

2 sin2 2θ (B.2)

We then take the total crystal scattering amplitude as the sum over amplitudes at each
of the N scattering centers in a crystal;

M(k⃗, k⃗′) =
N∑

j=1
fj(k⃗, k⃗′)ei(k⃗′−k⃗)·r⃗j (B.3)

where ei(k⃗′−k⃗)·r⃗j is a phase factor that comes from assuming plane wave solutions for the
in and out states. The position vector r⃗j can be expressed in terms of the Bravais lattice
basis vectors and the primitive basis vectors for each unit cell of the crystal. For germanium
crystal with lattice constant a, we have primitive basis vectors

α⃗0 = (0, 0, 0)

α⃗1 = a

4(1, 1, 1) (B.4)
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while the basis vectors of the Bravais lattice are described by a⃗1, a⃗2, and a⃗3;

a⃗1 = a

2(0, 1, 1)

a⃗2 = a

2(1, 0, 1)

a⃗3 = a

2(1, 1, 0) (B.5)

we can represent any scattering site as a linear combination of the a’s and either the first
or second primitive;

r⃗i,0 = R⃗i + α⃗0 = n1a⃗1 + n2a⃗2 + n3a⃗3 + α⃗0 (B.6)

r⃗i,1 = R⃗i + α⃗1 = n1a⃗1 + n2a⃗2 + n3a⃗3 + α⃗1 (B.7)

where the index i maps to a unique combination (n1, n2, n3). If we square this, we get

| M(k⃗, k⃗′) |2=
N∑

i=1
| fi |2 +

N∑
j ̸=i

N∑
i=1

f †j fie
−iq⃗·(r⃗i−r⃗j) (B.8)

taking q⃗ ≡ k⃗ − k⃗′. Rewriting in terms of a sum over Nc cells and the cell primitives, the
coherent part (second term) is

| M(k⃗, k⃗′) |2=
Nc∑
j ̸=i

Nc∑
i=1

1∑
µ=0

1∑
ν=0

f †j fie
−iq⃗·(R⃗i−R⃗j+α⃗µ−α⃗ν) (B.9)

When the Laue condition is met, we have q⃗ = G⃗ and G⃗ · R⃗i is a 2π integer multiple;

|M|2 ≡
Nc∑
j ̸=i

Nc∑
i=1

1∑
µ,ν=0

f †j fie
−iG⃗·(α⃗µ−α⃗ν) (B.10)

Now we can factorize the sum over primitives, and since we are considering a monoatomic
crystal we can also take the fi = fj , simplifying things;

|M|2 = N2
c f

†f
1∑

µ,ν=0
e−iG⃗·(α⃗µ−α⃗ν) (B.11)

In eq. (B.11) the structure function can be substituted, which is nothing but the sum over
primtives;

S(G⃗) =
∑

µ

eiG⃗·αµ (B.12)

and we have no need for a species index j on Sj(G⃗) since we only have one atomic species,
but it is trivial to extend this derivation to include it - we just need to add another index
to the primitive basis vectors and sum over it. With this identification and also taking
f †f = |Mfree|2F 2

A(G⃗), we have

|M|2 = N2
c |Mfree|2|FA(G⃗)S(G⃗)|2 (B.13)
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Now let’s write down the cross section using the standard flux factor in the lab frame
and Lorentz-invariant phase space for a 2-body final state;

dσ = 1
4EamNva

|M|2 d3k′

(2π)32Eγ

d3p′

(2π)32Ep′
(2π)4δ4(k + p− k′ − p′) (B.14)

Taking the ALP velocity va = 1, momentum transfer minimal such that Ep′ = mN , and
integrating out the δ3 we get

dσ = 1
64π2EaEγm2

N

|M|2d3k′δ(Ea − Eγ) (B.15)

Performing a change of variables to d3k′ → d3q (since q = k − k′ and k is fixed), we would
integrate this over q⃗. Since we have q⃗ = G⃗ at this stage, we should replace the integral
with a sum; ∫

d3q → (2π)3

V

∑
G⃗

(B.16)

The event rate formula is constructed from a convolution of the detector response, axion
flux Φa, and cross section;

dN

dt
=

∫ E2

E1
dEee

∫ ∞

0
dEa

(2π)3

V

∑
G⃗

dΦa

dEa

1
64π2EaEγm2

N

|M|2δ(Ea−Eγ)·
( 1

∆
√

2π
e−(Eee−Eγ)2/2∆2

)
(B.17)

Putting in the definition of |M|2 that we worked out and substituting the free Primakoff
cross section, integrating over the energy delta function (and identifying Ea = Eγ = E for
simplicity), and integrating over dEee we get

dN

dt
=

(2π)3e2g2
aγ

8π2
V

v2
cell

∑
G⃗

dΦa

dE

k2 sin2(2θ)
|G⃗|4

|FA(G⃗)S(G⃗)|2W(E1, E2, E) (B.18)

This is almost identical to the rate in ref. [41], which uses a definition of the atomic form
factor that is different by a factor of q2

ek2 ∼ |G⃗|2
ek2 . Putting eq. (B.18) in terms of the form

factor of ref. [41] (let us denote it as F ′
A), we find the factors in the event rate get replaced as

e2k
2 sin2(2θ)
|G⃗|4

|FA(G⃗)S(G⃗)|2 → sin2(2θ)
k2 |F ′

A(G⃗)S(G⃗)|2

Using the elastic limit, |G⃗|2 = 4k2 sin2 θ, this leaves our event rate different than that of
ref. [41] by a factor of 4 sin2 θ.

However, the event rate formula derived here is consistent with the calculation performed
in refs. [18, 19]. After rederiving the coherent sum using the replacements in eqs. (2.6)–(2.10)
involving the attenuation factor I(k⃗, G⃗), the event rate becomes

dN

dt
=

(2π)3e2g2
aγ

8π2
V

v2
cell

∑
G⃗

I(k⃗, G⃗)dΦa

dE

k2 sin2(2θ)
|G⃗|4

|FA(G⃗)S(G⃗)|2W(E1, E2, E) (B.19)

– 19 –



J
H
E
P
0
2
(
2
0
2
4
)
1
9
0

100 101 102

Ea [keV]

105

106

107

108

109

1010

1011

1012

Φ
a

[c
m
−

2
ke

V
−

1
s−

1
]

γγ → a, ma = 1 keV

γγ → a, ma = 5 keV

γγ → a, ma = 10 keV

γγ → a, ma = 15 keV

Primakoff, ma = 1 keV

Primakoff, ma = 5 keV

Primakoff, ma = 10 keV

Primakoff, ma = 15 keV

Figure 8. Solar Axion fluxes produced from Primakoff scattering (γZ → aZ) and coalescence
(γγ → a) in the sun.

C Solar axion flux

We use the parameterization appearing in ref. [55] for massive axion production in the sun;
the flux parameterizations are repeated here for convenience

dΦγ→a

dEa
= 4.20 · 1010

cm−2s−1keV−1

(
gaγ

10−10GeV−1

)2 Eap
2
a

eEa/1.1 − 0.7
(1 + 0.02ma) (C.1)

dΦγγ→a

dEa
= 1.68 · 109

cm−2s−1keV−1

(
gaγ

10−10GeV−1

)2
m4

apa

(
1 + 0.0006E3

a + 10
E2

a + 0.2

)
e−Ea (C.2)

where Φγ→a is the Primakoff solar flux and Φγγ→a is the flux resulting from resonant photon
coalescence, both in units of cm−2s−1keV−1, given for axion energy and momentum Ea and
pa in keV, and for the coupling gaγ in GeV−1. The solar axion flux from photon coalescence
and Primakoff conversion is shown in figure 8 for several benchmark axion masses.

D Utilizing DarkARC/DarkART for calculation of the absorptive form factor

Wagenfield’s form factor for the anomalous dispersion of X-rays with incoming and outgoing
momenta and polarizations k, ε0, k′, ε′

0 is [48]

∆f ′′ = πℏ2

me

( ∫
ψ∗

f (r)ε0 · ∇eik·rψi(r)d3r

)( ∫
ψf (r)ε′

0 · ∇e−ik′·rψ∗
i (r)d3r

)
(D.1)

Applying the gradient and expanding, we get some terms proportional to ε0 · k which vanish,
leaving us with

∆f ′′ = πℏ2

me

(
ε0 ·

∫
ψ∗

f (r)eik·r∇ψi(r)d3r

)(
ε′

0 ·
∫
ψf (r)e−ik′·r∇ψ∗

i (r)d3r

)
(D.2)

Referring to Catena et al. [52], we can then apply the definition of the vectorial form factor
(eq B18, but with some changes made to keep the notation more consistent),

f1→2(q) =
∫
d3rψ∗

f (r)eiq·r i∇
me

ψi(r). (D.3)
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Figure 9. Borrmann parameter ϵ as a function of the momentum transfer sin θ/λ = |G⃗|/4π for
several crystal materials.

Here the final state and initial state wave functions have quantum numbers i = n, ℓ,m and
f = p′, ℓ′,m′ where p′ is the final state electron momentum, and {n, ℓ,m}, {ℓ′,m′} are the
initial and final quantum numbers, respectively. Applying this definition, we have

∆f ′′ = πℏ2

me

(
ε0 · (−ime)f1→2(k)

)(
ε′

0 · (ime)f∗
1→2(k′)

)
= πℏ2me

(
ε0 · f1→2(k)

)(
ε′

0 · f∗
1→2(k′)

)
(D.4)

If our photons are unpolarized, then we can take a sum over the helicity states, giving
the completeness relation

∑
s(ε0(s))i(ε′

0(s))j = δij . Taking k′ = k − q, this reduces the
polarization-summed imaginary form factor to

∆f ′′(k, q) = πℏ2me

(
f1→2(k) · f∗

1→2(k − q)
)

(D.5)
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