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AbstractÐThe multi-armed bandits (MAB) framework is widely
used for sequential decision-making under uncertainty, finding
applications in various domains, including computer and commu-
nication networks. To address the increasing complexity of real-
world systems and their operational requirements, researchers
have proposed and studied various extensions to the basic MAB
framework. In this paper, we focus on an adversarial MAB
problem inspired by real-world systems with combinatorial semi-
bandit arms, switching costs, and anytime cumulative arm selec-
tion constraints. To tackle this challenging problem, we introduce
the Block-structured Follow-the-Regularized-Leader (B-FTRL) al-
gorithm. Our approach employs a hybrid Tsallis-Shannon entropy
regularizer in arm selection and incorporates a block structure
that divides time into blocks to minimize arm switching costs. The
theoretical analysis shows that B-FTRL achieves a reward regret

bound of O(T
2a−b+1

1+a + T
b

1+a ) and a switching regret bound of

O(T
1

1+a ), where a and b are tunable algorithm parameters. By
carefully selecting the values of a and b, we are able to limit the to-

tal regret to O(T 2/3) while satisfying the arm selection constraints
in expectation. This outperforms the state-of-the-art regret bound

of O(T 3/4) and expected constraint violation bound o(1), which
are derived in less challenging stochastic reward environments.
Additionally, we provide a high-probability constraint violation

bound of O(
√

T ). To validate the effectiveness of the proposed B-
FTRL algorithm, numerical results are presented to demonstrate
its superiority in comparison to other existing methods.

I. INTRODUCTION

Multi-armed bandits (MAB) problems are a fundamental

class of sequential decision-making under uncertainty prob-

lems, which involve a crucial tradeoff between exploration

and exploitation. In the simplest form, a learner is presented

with a set of arms, each representing a different action, and in

each round, the learner must choose an arm to play based on

past observations. The objective is to maximize the cumulative

reward obtained from the chosen arms, or equivalently, to

minimize the cumulative regret, which measures the difference

between the rewards obtained and the rewards that would have

been obtained by always choosing the best arm. Depending on

how rewards are generated, bandit problems can be classified

as either stochastic bandits or adversarial bandits (also known

as non-stochastic bandits). In stochastic bandits, rewards are

drawn from fixed but unknown probability distributions asso-

ciated with each arm. In contrast, adversarial bandits make no
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statistical assumptions about the reward generation process,

and as a result, they are considered more challenging to

solve. In both settings, the learner must balance exploration,

trying out different arms to learn their potential rewards, and

exploitation, choosing arms with the highest expected rewards

based on current knowledge, in order to achieve good overall

performance over time. The study of MAB has important

applications in various fields, such as online advertising [1],

recommendation systems [2], clinical trials [3] and resource

allocation in network systems [4], where decisions must be

made sequentially in the face of uncertainty.

To address sequential decision problems in more complex

systems, researchers have proposed and studied various exten-

sions of the basic MAB model. One well-explored variant is

combinatorial bandits [5], where multiple arms can be played

simultaneously in each decision round. This extension poses

greater challenges for learning due to the significantly expanded

decision space. Another important extension considers the

inclusion of switching costs [6], which arise when changing

actions between consecutive rounds incurs non-negligible over-

head costs. In practical systems, such as network management

or robotic control, these costs can be significant. Consequently,

exploration of different actions must now consider the addi-

tional switching cost, making the task of maximizing the reward

more complex. Recently, MAB problems under arm selection

constraints [7] have gained significant attention, particularly in

the domain of computer networking. These constraints model

situations where fairness considerations require that each arm

(representing a user or a specific task) should be played suffi-

ciently often. Additionally, these constraints can be utilized to

handle budget restrictions arising from the overhead associated

with playing different arms. This paper is motivated by real-

world systems that simultaneously feature combinatorial arms,

switching costs, and arm selection constraints. Here, we present

some applications that illustrate the relevance and significance

of considering these combined features.

• Cloud Resource Management. In cloud computing envi-

ronments, tasks can be assigned to different virtual ma-

chines (arms) with varying costs and processing capabil-

ities. However, switching tasks between virtual machines

incurs switching costs and may disrupt ongoing processes.

Additionally, cloud providers may want to ensure fair

utilization of resources by enforcing arm selection con-
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straints to maintain a minimum assignment ratio for each

virtual machine. Adversarial Combinatorial Bandits with

Switching Cost and Arm Selection Constraints (ACB-

SCSC) can be used to optimize resource allocation in

cloud systems while considering the cost of switching

tasks and adhering to resource fairness requirements.

• Distributed Sensing and Monitoring. In distributed sensing

systems, multiple sensors (arms) are deployed to monitor

a large area. Switching sensors between monitoring tasks

may introduce delays or data loss. Moreover, some sensors

may have limited battery or communication resources,

requiring the system to impose constraints on their utiliza-

tion. ACB-SCSC can be applied to optimize sensor task

allocation while minimizing switching costs and ensuring

that sensors are used fairly and efficiently.

• Vehicle Routing and Fleet Management. In logistics and

transportation, optimizing vehicle routes involves choosing

between different delivery routes (arms) while considering

switching costs associated with rerouting vehicles and

adhering to constraints on vehicle utilization. ACB-SCSC

can be employed to optimize vehicle routing decisions and

maximize fleet efficiency.

• Healthcare Resource Allocation. In healthcare settings,

patients may require different treatments (arms), and

switching treatments may have associated costs or adverse

effects on patient outcomes. Arm selection constraints may

be applied to ensure a fair distribution of treatments among

patients. ACB-SCSC can be used to optimize treatment

allocation in healthcare to improve patient outcomes while

considering switching costs and adhering to resource con-

straints.

Despite its wide applicability, there has been limited effort

to address the challenging problem of combinatorial bandits

considering both switching costs and arm selection constraints,

especially in the adversarial setting. Such problems present

significant challenges, as exploration to learn the quality of

different arms leads to increased reward loss due to arm

switching, with an unclear impact on constraint violation. In

this paper, we propose a novel algorithm to tackle this complex

sequential decision-making problem under uncertainty.

Specifically, we address a combinatorial bandits problem

with semi-bandit feedback, where the learner observes the

reward of each arm in the selected subset. The arm selection

constraints are expressed as ªanytime cumulative constraintsº,

which impose stringent conditions that must hold cumula-

tively within each time slot, rather than considering long-term

averages. Our proposed algorithm, named B-FTRL (Block-

structured Follow-the-Regularized-Leader), draws inspiration

from [8], which introduced a Follow-the-Regularized-Leader

(FTRL) algorithm with a novel hybrid regularizer for gen-

eral semi-bandit problems. This FTRL algorithm achieves an

impressive O(log T ) regret for stochastic environments and

O(
√
T ) regret for adversarial environments, where T denotes

the number of decision rounds. The B-FTRL algorithm adopts

a block structure that divides time into blocks, allowing arm

switching only between blocks. This design significantly re-

duces the switching cost associated with arm selections. We

provide theoretical analysis and show that B-FTRL achieves

a regret bound of O(T
2a−b+1

1+a + T
b

1+a ), where a and b are

algorithm parameters. Additionally, we offer a high-probability

constraint violation bound of O(
√
T ). By carefully tuning the

algorithm parameters, specifically setting a = 1/2 and b = 1,

B-FTRL achieves an improved regret bound of O(T 2/3), out-

performing the O(T 3/4) regret bound presented in [9]. Notably,

this improvement is observed even in the more challenging

setting where combinatorial arm selection is considered, unlike

the setting in [9], which focused on the less complex stochastic

environment without considering combinatorial arms.

II. RELATED WORK

Adversarial Bandits Adversarial bandits problems deal with

scenarios where the rewards for each arm follow an arbitrary

process. In stochastic bandits, the minimax optimal regret is of

order O(log T ) [10], while in adversarial bandits, it increases

to order O(
√
T ) [11]. Recent research has attempted to bridge

the gap by achieving a ªbest-of-both-worldsº outcome [12]±

[16]: attaining O(log T ) regret in stochastic environments and

simultaneously achieving O(
√
T ) regret even in adversarial

environments.

Combinatorial Semi-Bandits Stochastic semi-bandit prob-

lems have seen several algorithms based on the optimistic

principle, achieving a regret bound of O(log T ) [5]. Algorithms

with O(
√
T ) regret for the adversarial semi-bandit setting

have also been well-studied [17]±[21]. These algorithms typi-

cally rely on either Follow-the-Regularized-Leader (FTRL) or

Follow-the-Perturbed-Leader (FTPL) techniques. In a particular

work [8], a novel hybrid regularizer was introduced within

the FTRL framework, leading to O(log T ) regret in stochastic

environments and O(
√
T ) regret in adversarial environments.

Building upon this idea, our B-FTRL algorithm adopts the same

hybrid regularizer to address problems with switching costs and

arm selection constraints.

Bandits with Switching Cost Dealing with bandits with

switching costs often involves dividing time into blocks of

increasing length. For stochastic bandits with switching costs,

an asymptotically optimal O(log T ) regret bound can be de-

rived using a block-based Upper-Confidence-Bound (UCB)

algorithm [6]. However, introducing a unit switching cost incurs

a lower bound of Ω̃(T 2/3) on the minimax regret [22]. Re-

cent state-of-the-art block-based algorithms [23], [24] achieve

O(T 2/3) regret in the more general adversarial bandits setting,

matching the minimax lower bound, and O(T 1/3) regret in the

stochastic bandits setting. Other approaches [25], such as those

based on the Gittens index, have also been developed.

Bandits with Arm Selection Constraints Bandit problems

with arm selection constraints have gained significant attention,

starting with a work [7] that considered fairness constraints

to ensure each arm is played a minimum fraction of time. A

more comprehensive framework was later developed in another

work [26]±[29]. These algorithms fall under the category of

2
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pessimistic-optimistic algorithms, which consider long-term

constraints and utilize the Lyapunov drift theorem [30] to

ensure long-term queue stability. However, their results imply a

constraint violation of o(t) for the anytime cumulative version

of these constraints. Follow-up works [31] have attempted

to reduce the constraint violation by adding a ªtightnessº

parameter to the virtual queues. Additionally, kernelized bandits

with constraints were studied in [32], [33], achieving O(
√
T )

regret and constraint violation.

Recent works [9], [34], [35] investigated constrained bandit

problems with switching costs under the non-combinatorial set-

ting. In the most recent work [9], a blocked-based pessimistic-

optimistic algorithm was developed, achieving O(T 3/4) regret

and o(1) constraint violation in expectation. In comparison, our

proposed algorithm achieves a O(T 2/3) regret and guarantees

that constraints are satisfied in expectation. Moreover, we

provide a high probability bound on the realized constraint

violation.

III. PROBLEM FORMULATION

A. Model

We investigate a sequential game involving a learner and an

adversary that models the environment. The game consists of

d fixed (base) arms. At each time t = 1, 2, ..., the learner must

select no more than m out of these d arms to play, forming

a set of arms called a super-arm denoted by Xt ∈ {0, 1}d,

where Xt,i = 1 indicates that arm i is played, and Xt,i = 0
otherwise. Let D ⊆ {0, 1}d be the set of feasible super-arms

that are composed of m base arms.

Reward: At each time t, the adversary selects a reward

vector ℓt ∈ [−1, 1]d simultaneously with the learner’s choice

of the super-arm. The learner receives a reward rt = ⟨Xt, ℓt⟩
and observes the individual rewards of the selected base arms,

denoted by ot = Xt◦ℓt ∈ [−1, 1]d, where ◦ stands for element-

wise product. It should be noted that for any unselected arm

i, no reward is observed, but we let ot,i = 0 for simplicity.

Importantly, the adversary in this context is an oblivious one,

meaning that the reward vectors ℓ1, ℓ2, ... are pre-determined

and independent of the learner’s actions.

Switching Cost: Additionally, the problem accounts for costs

incurred due to switching arms in consecutive time slots. A

cost ht = H(Xt, Xt−1) is incurred if the chosen super-arm

Xt is different from the previous one, Xt−1. The switching

cost function H(·, ·) can take various forms, for example,

H(Xt, Xt−1) = ∥Xt − Xt−1∥1 or H(Xt, Xt−1) = 1{Xt ̸=
Xt−1}. Our model accommodates different switching cost

functions, as long as the switching cost is upper-bounded by

λ, defined as follows:

H(Xt, Xt−1) ≤ λ · 1{Xt ̸= Xt−1}.
To complete the formulation, we set X0 = X1 to ensure that

the first-slot switching cost h1 = H(X1, X0) = 0.

Constraints: Furthermore, the problem involves K anytime

cumulative constraints, each characterized by a d-dimensional

coefficient wk ∈ [−1, 1]d, where wk
i ∈ [−1, 1] represents a

penalty associated with constraint k of playing arm i at time t.
The penalty of playing a super-arm Xt,i at time t for constraint

k is ckt = ⟨Xt, w
k
t ⟩. The anytime cumulative constraints require

that the cumulative penalty be no greater than 0 for each

constraint k at any time t, i.e.,
∑t

τ=1 c
k
τ ≤ 0, ∀t.

The objective of the adversarial combinatorial bandits with

switching cost and arm selection constraints problem is to

devise an algorithm that selects the super-arm to play in each

time slot, aiming to maximize the cumulative net reward (i.e.,

reward minus switching cost) subject to K anytime cumulative

constraints. Formally, the problem can be expressed as follows:

max
X1,...,XT∈D

T∑

t=1

(⟨Xt, ℓt⟩ −H(Xt, Xt−1))

subject to

t∑

τ=1

⟨Xτ , w
k⟩ ≤ 0, ∀k = 1, ...,K, ∀t = 1, ..., T

B. Regret

We evaluate the performance of our algorithm in terms of

(expected) regret, which quantifies the difference in expected

net reward between our algorithm and the best fixed random-

ized policy with complete information about the adversary’s

reward vectors. A fixed randomized policy is represented by a

fixed vector x ∈ [0, 1]d with the constraint that ∥x∥1 ≤ m. In

each time slot, the policy randomly selects an m-sized super-

arm based on the probabilities defined by the vector x according

to a sampling rule P (see Appendix).

The best fixed randomized policy can be found by solving

the following constrained optimization problem:

max
x∈[0,1]d,∥x∥1≤m

⟨x,
T∑

t=1

ℓt⟩

subject to ⟨x,wk⟩ ≤ 0, ∀k = 1, ...,K

Let x∗ be the optimal solution of the randomized policy

to the above problem, and let OPT(T ) represent the optimal

cumulative reward. It is important to note that OPT(T ) does not

account for the switching cost incurred when two realizations

of Xt and Xt−1, generated according to the fixed policy x∗,

are different. Therefore, it serves as an optimistic upper-bound

on the actual cumulative net reward.

The regret of our algorithm is defined as:

REG(T ) = OPT(T )− E

[
T∑

t=1

⟨Xt, ℓt⟩ −H(Xt, Xt−1)

]

.

In general, an algorithm, especially being a randomized policy,

may not always produce actions that strictly adhere to the

constraints in every time slot. In fact, prioritizing aggressive

reward maximization can easily lead to constraint violations.

Therefore, we also measure the performance of our algorithm

in terms of constraint violation at every time t, which is defined

as:

V k
t =

t∑

τ=1

⟨Xτ , w
k⟩.

3
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In particular, V k
t ≤ 0 means constraint k in time slot t is

satisfied while V k
t > 0 means that constraint k is violated by

an amount V k
t .

IV. ALGORITHM

To tackle the constrained adversarial combinatorial bandits

with switching cost problem, we introduce a novel algorithm

called B-FTRL, where ªBº stands for block. Our algorithm

draws inspiration from the FTRL (Follow-The-Regularized-

Leader) algorithm proposed in [8], which was originally pro-

posed for combinatorial bandits problems under both stochastic

and adversarial settings.

In the B-FTRL algorithm, we group the T time slots into

several time blocks, indexed by n = 1, 2, ..., to minimize the

impact of switching costs. Within each time block, the same

super-arm is played in every time slot, and switching is only

allowed in the first time slot of a block. Let Bn denote the set of

time slots that belong to block n, and |Bn| be the length of that

block. In the first time slot of block n, the algorithm computes

the ªregularized leaderº using information from the past n− 1
blocks. The regularized leader xn is defined as follows:

xn = argmax
x∈X

⟨x, L̂n−1⟩ − η−1
n Ψ(x). (1)

Here, X represents the feasible set with constraints: x ∈ [0, 1]d,

∥x∥1 ≤ m, and ⟨xi, w
k⟩ ≤ 0 for all k. The term ηn represents

a time-decaying learning rate schedule. Let us now explain

the remaining components of Equation (1), namely L̂n−1 and

Ψ(x).

Cumulative reward estimate: L̂n−1 is the cumulative re-

ward estimate up to block n, i.e., L̂n−1 =
∑n−1

s=1 ℓ̂s, where

ℓ̂s ∈ R
d represents the total reward estimate in block s.

Specifically, ℓ̂n is computed at the end of each time block n
using the observed rewards on =

∑

t∈Bn
Xt ◦ ℓt ∈ R

d, where

Xt is the super-arm sampled using the sampling rule P (see

Appendix) according to xn, and it remains the same for all

time slots in block n. The formula for ℓ̂n is as follows:

ℓ̂n,i =

(
(on,i/|Bn|+ 1)1n(i)

xn,i
− 1

)

|Bn|, ∀i = 1, · · · , d

where 1n(i) ∈ {0, 1} indicates whether arm i is played in block

n or not. It can be shown that ℓ̂n,i is an unbiased estimator of

ℓn,i as follows:

E[ℓ̂n,i] =xn,i

(∑

t∈Bn
ℓt,i/|Bn|+ 1

xn,i
− 1

)

|Bn|

+ (1− xn,i)(−1)|Bn|
=
∑

t∈Bn

ℓt,i = ℓn,i,

where we slightly abuse notation to use ℓn,i to denote the

total reward obtained by playing arm i in block n, while ℓt,i
represents the reward by playing arm i in time slot t.

Algorithm 1 B-FTRL

1: Input: X = {x|0 ≤ x ≤ 1, ∥x∥1 ≤ m,
∑

i xiw
k
i ≤ 0, ∀k}

2: Initialization: L̂0 = (0, . . . , 0), ηn = β/n, |Bn| =
max{⌈α√n⌉ , 1}

3: for block n = 1, 2, ..., do

4: Compute

xn = argmax
x∈X

{

⟨x, L̂n−1⟩ − η−1
n Ψ(x)

}

,

5: Sample Xn ∼ P (xn) such that EX∼P [Xn] = xn

6: Play Xn for all rounds t ∈ Bn

7: Observe on =
∑

t∈Bn
Xt ◦ ℓt

8: Construct estimator ℓ̂n, ∀i:

ℓ̂n,i =

(
(on,i/|Bn|+ 1)1t(i)

xn,i
− 1

)

· |Bn|

9: Update L̂n = L̂n−1 + ℓ̂n
10: end for

Regularizer: The term Ψ(x) is a regularization term with

the following expression:

Ψ(x) =

d∑

i=1

(
√
xi − (1− xi) log(1− xi)) .

In essence, Ψ(x) combines the Tsallis entropy (with power

1/2), denoted by −
∑d

i=1

√
xi, and the Shannon entropy on

the complement of x, denoted by
∑d

i=1(1− xi) log(1− xi).
After computing the ªregularized leaderº xn, the algorithm

samples Xn ∼ P (xn) using the sampling rule P and plays the

selected super-arm in every time slot within block n.

V. REGRET ANALYSIS

In this section, we analyze the regret of the proposed B-

FTRL algorithm.

A. Main results

To facilitate our analysis, we divide regret into two parts:

REG(T ) = REGreward(T ) + REGswitching(T ),

where REGreward(T ) = OPT − E

[
∑T

t=1⟨Xt, ℓt⟩
]

accounts

for the reward difference between the optimal fixed ran-

domized policy and our algorithm, and REGswitching(T ) =

E

[
∑T

t=1 H(Xt, Xt−1)
]

accounts for the cost due to action

switching. Theorem 1 presents the main results of the regret

analysis.

Theorem 1. By setting the block length as |Bn| =
max{⌈α√n⌉, 1} and the learning rate ηn = β/n, where

α, β > 0 are constants satisfying αβ ≤
√
2−1
2 , B-FTRL ensures

that the regret is bounded as REG(T ) ≤ O(T 2/3). Moreover,

the constraints are satisfied in expectation, i.e., E[V k
T ] ≤ 0, ∀k

and V k
T ≤ O

(√

T log 1
δ

)

with probability 1 − δ for any

δ ∈ (0, 1).

4
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TABLE I
CUMULATIVE REWARD REGRET VS. SWITCHING REGRET

Parameter a Parameter b Reward regret Switching regret

1/2 1 O(T 2/3) O(T 2/3)

1 1 O(T ) O(
√
T )

0 1/2 O(
√
T ) O(T )

Now, let us discuss our regret and constraint violation

bounds compared to those derived in [9], which studied a

constrained stochastic bandits with switching costs problem.

Our considered setting generalizes that in [9] by allowing adver-

sarial rewards (instead of stochastic rewards) and combinatorial

actions (instead of individual actions), making the comparison

meaningful in this special case. Regret: In the stochastic

reward setting, [9] proves a regret bound of O(T 3/4) for their

algorithm. However, our B-FTRL algorithm can improve the

regret bound to O(T 2/3) even in the more difficult adversarial

reward setting. Constraint Violation: In [9], a o(1) bound is

provided on the expected constraint violation. In our algorithm,

the expected constraint violation is guaranteed to be satisfied

because the sampling vector xt at every time slot t is chosen

such that ⟨xt, w
k⟩ ≤ 0. Moreover, we also provide a sublinear

high-probability bound on the realized constraint violation.

In Theorem 2, we characterize the impact of algorithm

parameters on the regret bound:

Theorem 2. By setting the block length as |Bn| =
max{⌈αna⌉, 1} and the learning rate as ηn = βn−b, where

αβ ≤
√
2−1
2 and b ≥ a, B-FTRL ensures the following bounds

on the reward regret and the switching regret:

REGreward(T ) ≤ O
(

T
2a−b+1

1+a + T
b

1+a

)

(2)

REGswitching(T ) ≤ O
(

T
1

1+a

)

(3)

Moreover, the constraints are satisfied in expectation, i.e.,

E[V k
T ] ≤ 0, ∀k and V t

T ≤ O
(√

T log 1
δ

)

with probability 1−δ

for any δ ∈ (0, 1).

Theorem 2 shows that B-FTRL is able to make a tradeoff

between the reward regret and the switching regret. Specifically,

fixing b and decreasing a decreases the reward regret at the

expense of a larger switching regret. The values of a and b
can be chosen depending on the relative importance of the

reward and the switching cost. Table I lists the respective

reward regret and switching cost for specific values of a and

b. We remark that when a = 0 and b = 1, B-FTRL is

equivalent to the algorithm in [8], in which the switching costs

are not considered, and hence, our regret bound recovers their

theoretical results.

B. Proofs

We start by introducing some preliminary definitions and

results. Let Ψn(x) = η−1
n Ψ(x), and Φn be defined as

Φn(C) = max
x∈X

{⟨x,C⟩ −Ψn(x)} (4)

Then we have ∇Φn(C) = argmaxx∈X {⟨x,C⟩ −Ψn(x)}.

Recall that the sampling vector xn in our algorithm is cho-

sen as xn = argmaxx∈X
{

⟨x, L̂n−1⟩ −Ψn(x)
}

and hence

xn = ∇Φn(L̂n−1). Following the standard analysis for FTRL,

we decompose the reward regret into a sum of stability and

penalty terms:

T∑

t=1

⟨x∗, ℓt⟩ − E[

T∑

t=1

⟨xt, ℓt⟩] =
N∑

n=1

⟨x∗, ℓn⟩ − E[

N∑

n=1

⟨xn, ℓn⟩]

= E

[
N∑

n=1

(

−⟨xn, ℓn⟩+Φn(L̂n)− Φn(L̂n−1)
)
]

︸ ︷︷ ︸

stability

+

E

[
N∑

n=1

(

Φn(L̂n−1)− Φn(L̂n) + ⟨x∗, ℓn⟩
)
]

︸ ︷︷ ︸

penalty

= REGstability + REGpenalty

where x∗ is the optimal sampling vector in hindsight, N is

the number of blocks and ℓn =
∑

t∈Bn
ℓt with a slight abuse

of notation. Lemmas 1 and 2 below develop bounds on the

stability and the penalty parts of the regret, respectively. These

results generalize those in [8], to handle block-based decision

processes and randomized benchmarks in the regret definition.

Their proofs can be found in the appendix.

Lemma 1. For any sequence of learning rate and block size

sequences {ηn = β/nb, |Bn| = max{⌈αna⌉, 1} that satisfy

αβ ≤
√
2−1
2 and b ≥ a, the stability term in the regret is

bounded as

REGstability ≤
N∑

n=1

16
√
2mdηn|Bn|2. (5)

Lemma 2. For any non-increasing sequence of learning rates

{ηn}n, the penalty term in the regret is bounded as

REGpenalty ≤ 3

2

√
mdη−1

N . (6)

We now prove Theorem 1 and Theorem 2 by combining the

results in Lemma 1 and Lemma 2. In order to apply our results

to blocks, we first derive an upper bound on the number of

blocks N . Because |Bn| is chosen as max{⌈αna⌉, 1}, we have

|Bn| ≥ αna and non-decreasing. Let Γ =
(
a+1
α

) 1
a+1 T

1
a+1 and

observe that:

Γ+1∑

n=1

|Bn| ≥
Γ+1∑

n=1

αna ≥
∫ Γ+1

0

αnadn

≥
∫ Γ

0

αna dn =
α

a+ 1
Γa+1 ≥ T.

Thus, we can upper bound N by Γ + 1.

To bound the regret incurred by our algorithm, we need

to control the terms
∑N

n=1 ηn|Bn|2, η−1
N , and the number of

switches. Note that the number of switches is bounded by the

5
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number of blocks, i.e., Γ + 1. Thus, the cumulative switching

regret satisfies

REGswitching(T ) ≤ λ(Γ + 1) ≤ O(T
1

a+1 ).

The reward regret can be bounded by

REGreward(T ) = REGstability + REGpenalty

≤
N∑

n=1

16
√
2mdηn|Bn|2 +

3

2

√
mdη−1

N .

By choosing ηn = β/nb and |Bn| = max{⌈αna⌉, 1},

REGreward(T ) ≤ O(

N∑

n=1

α2βn2a−b +

N∑

n=1

βn−b +N b/β)

≤O(T
1+2a−b

a+1 + T
1−b
a+1 + T

b
a+1 ) ≤ O(T

1+2a−b
a+1 + T

b
a+1 ),

where the second inequality uses
∑N

n=1 n
2a−b ≤ O(N1+2a−b),

∑N
n=1 n

−b ≤ O(N1−b) and the bound Γ on N . This proves the

general regret bounds in Theorem 2. Now, by letting a = 1/2
and b = 1, the maximum order is the reward regret and the

switching regret is minimized at T 2/3 and hence, the regret

bound in Theorem 1 is proved.

Finally, we consider the constraint violation. Because in

every slot t, the arms are chosen so that E[⟨Xt, w
k⟩] =

⟨xt, w
k⟩ ≤ 0, the constraint is guaranteed to be satisfied in

expectation in our algorithm, i.e., E[V k
t ] ≤ 0. Next, we bound

the realized constraint violation using the Hoeffding inequality.

Let σ = maxk,i |wk,i|. Then we have for all k,

Prob

(

V k
T − E[V k

T ] ≥
√

T log
1

δ

)

≤ e−
T log 1

δ

2σ2T = O(δ).

Therefore,

V k
t ≤ E[V k

t ] +O

(√

T log
1

δ

)

≤ O

(√

T log
1

δ

)

,w.p.1− δ

VI. NUMERICAL RESULTS

In this section, we present the numerical results to assess the

performance of our proposed B-FTRL algorithm and compare

it against baseline approaches. While our algorithm is designed

for the adversarial setting, we extend the evaluation to include

both the adversarial and stochastic settings. The inclusion of

the stochastic setting is valuable as it represents a special

(and comparatively easier) case of the adversarial setting.

Furthermore, evaluating our algorithm in the stochastic setting

enables us to directly compare its performance with existing

algorithms designed specifically for stochastic environments.

A. Setup

Rewards We conduct simulations with d = 7 individual arms.

In the stochastic setting, the expected rewards for each arm are

set as ℓ̄ = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. To introduce variabil-

ity, a random noise ϵ uniformly sampled from [−0.01, 0.01] is

added to the realized reward at each time slot, i.e., ℓt = ℓ̄+ ϵ.

In the adversarial setting, following the approach in [8], [16],

we divide time into multiple phases as follows:

1, ..., t1
︸ ︷︷ ︸

T1

, t1 + 1, ..., t2
︸ ︷︷ ︸

T2

, ..., tn−1, ..., T
︸ ︷︷ ︸

Tn

.

The length of phase s is defined as Ts = ⌈1.6s⌉. Within each

phase, the expected rewards are set as:

ℓ̄s =

{

ℓ̄+ 0.2, if s is odd

ℓ̄− 0.2, if s is even

Again, a random noise term ϵ uniformly sampled from

[−0.01, 0.01] is added to the realized reward ℓt = ℓ̄s + ϵ for

time slots belonging to phase s.

Switching cost We incorporate the switching cost function

as H(Xt, Xt−1) = ∥Xt − Xt−1∥1, which means that the

switching cost is proportional to the L1 norm (Manhattan

distance) between the arm choices at two consecutive time slots.

Constraints We consider both K = 1 and K = 3 arm selec-

tion constraints. The constraint vectors wk are uniformly and

randomly sampled from the range [−1, 1]d. These constraints

provide additional criteria that need to be satisfied during the

decision-making process.

B. Baseline algorithm

We extend the POSS algorithm proposed in [9] to the

combinatorial setting, which we refer to as CPOSS, and utilize

it as the baseline algorithm for performance comparison. In

CPOSS, we adopt the same underlying concept as POSS but

modify the arm selection strategy to choose the super-arm with

the highest sum of the pessimistic-optimistic indices. It is worth

noting that this modification does not impact the asymptotic

bounds of the algorithm.

Regarding our B-FTRL algorithm, the default parameter

values are set as follows: α =
√
2−1
4 , β = 1, b = 1, and

a = 1
2 . We conduct a comprehensive evaluation by averaging

the results over 30 independent random experiments to ensure

robustness and reliability in our analysis.

C. Results in the stochastic setting

Figures 1 and 2 depict the reward regret, switching regret

(equivalently, switching cost), and constraint violation achieved

by B-FTRL and CPOSS in the stochastic setting. In the

experiments corresponding to Figure 1, we set m = 1 and

K = 1. Under this configuration, CPOSS reduces to POSS,

enabling a direct comparison between B-FTRL and POSS. On

the other hand, the experiments corresponding to Figure 2 were

conducted with m = 3 and K = 3, allowing comparisons to

be made in a more general setting.

1) Regret: Figures 1(a)(b) present a comparison of reward

regret and switching regret achieved by B-FTRL and CPOSS,

both with m = 1 and K = 1. Additionally, Figures 2(a)(b)

showcase the results with m = 3 and K = 3. In both setups,

B-FTRL and CPOSS exhibit sublinear growth in reward regret

and switching regret over time, with B-FTRL consistently

outperforming CPOSS (while we note that CPOSS’s regret

6
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(a) Reward regret (b) Switching regret (c) Time-average constraint value

Fig. 1. Performance Comparison in the Stochastic Setting (m = 1, K = 1).

(a) Reward regret (b) Switching regret (c) Time-average constraint value

Fig. 2. Performance Comparison in the Stochastic Setting (m = 3, K = 3).

is sublinear, though not as apparent). This trend aligns with

the theoretical regret bound results: B-FTRL’s regret follows

O(T 2/3), while CPOSS’s regret follows O(T 3/4). Notably, B-

FTRL’s bound of O(T 2/3) is derived in the more challenging

adversarial setting, making its actual performance even better

than the theoretical bound in the stochastic setting. Improving

the theoretical bound for B-FTRL in the stochastic setting

remains an interesting future research direction. Additionally,

we observed that B-FTRL’s regret exhibits higher variance,

likely due to the arm sampling operation in the algorithm.

2) Constraint Violation: Figures 1(c) and 2(c) demonstrate

that both CPOSS and B-FTRL satisfy the constraints in the

experiments for both configurations. However, it is evident that

B-FTRL has a distinct advantage in meeting the constraints.

This is because B-FTRL ensures that the constraint is satisfied

in expectation for each time slot, providing a more robust

approach, whereas CPOSS only guarantees that the expected

constraint violation is o(1), which may not offer the same level

of reliability in fulfilling the constraints.

D. Results in the adversarial setting

Figures 3 and 4 display the reward regret, switching regret

(equivalently, switching cost), and constraint violation achieved

by B-FTRL and CPOSS in the adversarial setting. Specifically,

in the experiments corresponding to Figure 3, we set m = 1
and K = 1, and in the experiments corresponding to Figure 4,

we set m = 3 and K = 3.

1) Regret: Figures 3(a)(b) provide a comparison of the

reward regret and switching regret achieved by B-FTRL and

CPOSS, with both algorithms configured with m = 1 and

K = 1. Additionally, Figures 4(a)(b) showcase the results

when m = 3 and K = 3. In line with the findings from the

stochastic setting, B-FTRL continues to exhibit significantly

superior performance compared to CPOSS. However, it is

worth noting that both B-FTRL and CPOSS show relatively

poorer performance in the adversarial setting compared to the

stochastic setting. For B-FTRL, the regret still demonstrates

sublinear growth over time, which aligns with our theoretical

expectations. Nevertheless, the growth rate is faster in the

adversarial setting than in the stochastic setting. As for CPOSS,

since it is explicitly designed for the stochastic setting, its

performance is notably worse when faced with adversarial

conditions.

2) Constraint Violation: Figures 3(c) and 4(c) provide ev-

idence that both CPOSS and B-FTRL successfully satisfy the

constraints in the experiments for both configurations in the

adversarial setting. However, it is notable that the constraint

violation is larger (although still negative) for both algorithms

in the adversarial environment, as they need to make more

frequent adaptations to cope with the adversarial challenges.

It is worth mentioning that CPOSS utilizes the virtual queue

technique to handle constraints, which mitigates the impact of

the adversarial reward setting on constraint violation compared

to its effect on regret performance. Nevertheless, B-FTRL

still demonstrates an advantage in effectively meeting the

constraints when compared to CPOSS.

VII. CONCLUSION

This paper delves into a novel adversarial combinatorial ban-

dits problem, encompassing switching costs and arm selection

constraints, which hold immense practical relevance in cloud

resource management, distributed sensing and monitoring, and

7
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(a) Reward regret (b) Switching regret (c) Time-average constraint value

Fig. 3. Performance Comparison in the Adversarial Setting (m = 1, K = 1).

(a) Reward regret (b) Switching regret (c) Time-average constraint value

Fig. 4. Performance Comparison in the Adversarial Setting (m = 3, K = 3).

healthcare resource management, among other applications.

We introduced a novel algorithm called B-FTRL, adept at

effectively balancing exploration and exploitation while taking

into account the switching costs and adhering to the arm

selection constraints. Through both theoretical analysis and ex-

tensive numerical simulations, we demonstrated the significant

superiority of B-FTRL over existing methods.

An interesting aspect of our work is that although the

algorithm is designed for the adversarial setting, its techniques

have the potential to tackle ªbest-of-both-worldsº problems,

thus extending its applicability beyond the adversarial domain.

As a future research direction, we aim to establish tighter regret

bounds for B-FTRL in the stochastic bandits setting, further

enhancing the algorithm’s performance and versatility. Such

advancements hold great promise in a wide range of real-world

decision-making scenarios.

APPENDIX

PROOF OF LEMMA 1

In order to bound the stability term, we recall several

properties of the potential function provided by [8], which we

use in this proof:

∇Ψn(x) = η−1
n

(
1

2
√
xi

+ log(1− xi) + 1

)

i=1,...,d

,

∇2Ψn(x) = η−1
n diag





(

1

4
√

x3
i

+
1

1− xi

)

i=1,...,d



 ,

(∇2Ψn(x))
−1 ⪯ ηndiag

[(

min

{

4
√

x3
i , (1− xi)

})

i=1,...d

]

.

We define the convex conjugate and the associated Bregman

divergence of a convex function f : C → R as

f∗(·) = max
x∈C

{⟨x, ·⟩ − f(x)}

Df (x, y) = f(x)− f(y)− ⟨∇f(y), x− y⟩
respectively. Then we have Ψ∗

n(·) = maxx∈X {⟨x, ·⟩ −Ψn(x)}
and the following statements are true [36]

• S1: ∇Ψ∗
n(·) = argmaxx∈X {⟨x, ·⟩ − Ψn(x)}, ∇Ψn =

(∇Ψ∗
n)

−1, ∇2Ψn(x) = (∇2Ψ∗
n(∇Ψn(x)))

−1.

• S2: For any x, y ∈ R
d, by Taylor’s theorem, there exist

a z ∈ Conv({x, y}) such that DΨ∗

n
(x, y) = 1

2∥x −
y∥2∇2Ψ∗

n(z)
.

• S3: For any L, let L̃ = ∇Ψn(∇Φn(L)). Then it holds for

any ℓ ∈ R
d, DΦn

(L+ ℓ, L) ≤ DΨ∗

n
(L̃+ ℓ, L̃).

Now, using these preliminary results, we have

REGstability = E

[
N∑

n=1

DΦn
(L̂n, L̂n−1)

]

(i)

≤E

[
N∑

n=1

DΨ∗

n
(∇Ψn(xn) + ℓ̂n,∇Ψn(xn))

]

(ii)
= E

[
N∑

n=1

1

2
||ℓ̂n||2∇2Ψ∗

n(zn)

]

= E

[
N∑

n=1

1

2
||ℓ̂n||2∇2Ψ∗

n(∇Ψn(yn))

]

(iii)
= E

[
N∑

n=1

1

2
||ℓ̂n||2∇2Ψn(yn)−1

]

,

where (i), (ii) and (iii) hold due to S3, S2 and S1, respec-

tively. Here, we let x̃n = ∇Ψ∗
n(∇Ψn(xn) + ℓ̂n), and choose

zn ∈ Conv{∇Ψn(xn),∇Ψn(x̃n)} and yn ∈ [xn, x̃n] such that

∇Ψn(yn) = zn.

8
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Next, we show that when αβ ≤
√
2−1
2 and b ≥ a (which

means ηn|Bn| ≤
√
2−1
2 ), the following always holds:

x̃n = ∇Ψ∗
n(∇Ψn(xn) + ℓ̂n) ≤ 2xn (7)

Because function ∇Ψn and ∇Ψ∗
n are symmetric and inde-

pendent in each coordinate, it is sufficient to consider one

dimension and drop the index i to prove (7). We consider

only xn ≤ 1/2, otherwise the statement is trivial since the

range of ∆Ψ∗
n is [0, 1]d. Now suppose the opposite holds:

x̃n > 2xn. Note that by the construction of ℓ̃n, we have

−|Bn| ≤ ℓ̂n ≤ 2|Bn|
xn

. Since ∇Ψn(xn) is strictly decreasing

in (0, 1), we have

−ℓ̂n = ∇Ψn(xn)−∇Ψn(xn)− ℓ̂n

= ∇Ψn(xn)−∇Ψn(∇Ψ∗
n(∇Ψn(xn) + ℓ̂n))

= ∇Ψn(xn)−∇Ψn(x̃n) > ∇Ψn(xn)−∇Ψn(2xn)

= η−1
n

(
1

2
√
xn

+ log(1− xn)−
1

2
√
2xn

− log(1− 2xn)

)

> η−1
n

(√
2− 1

2
√
2

)

1√
xn

> η−1
n

(√
2− 1

2

)

,

where the second inequality uses the monotonicity of the log

function and the last inequality uses xn ≤ 1/2. Because −ℓ̂n ≤
|Bn|, we have ηn|Bn| ≥

√
2−1
2 , which leads to a contradiction

when αβ ≤
√
2−1
2 and b ≥ a. Therefore (7) is proved. Thus,

we have

∇2Ψn(yn)
−1 ⪯ ηn · diag

[(

4
√

(x̃n,i)3
)

i=1,...,d

]

⪯ ηn · diag

[(

4
√

(2xn,i)3
)

i=1,...,d

]

.

Going back to the stability term, we thus have

REGstability ≤ E

[
N∑

n=1

1

2
||ℓ̂n||2∇2Ψn(yn)−1

]

≤
N∑

n=1

E

[

ηn
2

d∑

i=1

(ℓ̂n,i)
24
√

(2xni)3

]

(iv)

≤
N∑

n=1

ηn|Bn|2
2

d∑

i=1

4

xni
4
√

(2xni)3

=
N∑

n=1

16
√
2ηn|Bn|2

d∑

i=1

√
xn,i

(v)

≤
N∑

n=1

16
√
2
√
mdηn|Bn|2.

where (iv) is due to

E[(ℓ̂n,i)
2
] = |Bn|2



xn,i ·
(
1 +

on,i

|Bn|
xn,i

− 1

)2

+ (1− xn,i) · 12




≤ |Bn|2
(

xn,i ·
(

2

xn,i
− 1

)2

+ (1− xn,i) · 12
)

≤ |Bn|2(
4

xn,i
− 3) ≤ |Bn|2

4

xn,i
.

and (v) applies the Cachy-Schwarz inequaility
∑d

i=1

√
xn,i ≤√

md considering
∑d

i=1 xn,i ≤ m.

PROOF OF LEMMA 2

We note that −(1 − x) log(1 − x) ≤
√
x
2 when x ∈ [0, 1].

By the definition of Ψ(x) and using the Cauchy-Schwarz

inequality, we have

0 ≤ Ψ(x) ≤
d∑

i=1

3

2

√
xi ≤

3

2

√
md, ∀x ∈ X .

Using the definitions of Φn, we have

REGpenalty =

N∑

n=1

(

−Φn(L̂n) + Φn(L̂n−1) + ⟨x∗, ℓ̂n⟩
)

=
N∑

n=1

(

−max
x∈X

{

⟨x, L̂n⟩ − η−1
n Ψ(x)

}

+
{

⟨xn, L̂n−1⟩ − η−1
n Ψ(xn)

})

+

N∑

n=1

⟨x∗, ℓ̂n⟩

≤ − ⟨x∗, L̂N ⟩+ η−1
N Ψ(x∗)

−
N−1∑

n=1

(

⟨xn+1, L̂n⟩ − η−1
n Ψ(xn+1)

)

+

N∑

n=1

(

⟨xn, L̂n−1⟩ − η−1
n Ψ(xn)

)

+ ⟨x∗, L̂N ⟩

=η−1
N Ψ(x∗) +

N∑

n=2

η−1
n−1Ψ(xn)−

N∑

n=1

η−1
n Ψ(xn)

≤η−1
N Ψ(x∗) +

N∑

n=2

(η−1
n − η−1

n−1) (−Ψ(xn)) ≤ η−1
N Ψ(x∗)

Plugging the bound on Ψ(x) yields the claimed result.

SAMPLING RULE P (·)
For a given x ∈ Conv(X ), one sampling rule P such that

EX∼P [X] = x is the following:

We first define the following auxiliary vectors for 0 ≤ i ≤ m,

0 ≤ j ≤ d−m, and we define βi,j ∈ Conv(X ) as:

βi,j =



1, · · · , 1
︸ ︷︷ ︸

i

,
m− i

d− i− j
, · · · , m− i

d− i− j
, 0, · · · , 0
︸ ︷︷ ︸

j





It is trivial to sample with mean βi,j with the sampling rule:

Pi,j = Uniform({x ∈ X |x1,··· ,i = 1 ∧ xd−j+1,··· ,d = 0}).

Then we decompose x =
∑d

s=0 px,sβis,js such that px,s ∈
[0, 1],

∑d
s=0 px,s = 1,(i0, j0) = (0, 0) and (is+1, js+1) −

(is, js) ∈ {(1, 0), (0, 1)}. In other words, either i or j increases

by one from s to s + 1. Finally the full sampling scheme is
∑d

s=0 px,sβis,js .

When inputting an x, we first create sample s based on

the sampling expression
∑d

s=0 px,sβis,js , where i in βis corre-

sponds to the index of the arm that will definitely be sampled,

j corresponds to the index of arms that will not be sampled,

and the remaining i−m arms are sampled based on a uniform

distribution.

9
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