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Abstract—The multi-armed bandits (MAB) framework is widely
used for sequential decision-making under uncertainty, finding
applications in various domains, including computer and commu-
nication networks. To address the increasing complexity of real-
world systems and their operational requirements, researchers
have proposed and studied various extensions to the basic MAB
framework. In this paper, we focus on an adversarial MAB
problem inspired by real-world systems with combinatorial semi-
bandit arms, switching costs, and anytime cumulative arm selec-
tion constraints. To tackle this challenging problem, we introduce
the Block-structured Follow-the-Regularized-Leader (B-FTRL) al-
gorithm. Our approach employs a hybrid Tsallis-Shannon entropy
regularizer in arm selection and incorporates a block structure
that divides time into blocks to minimize arm switching costs. The
theoretical analz)(flsiirslhows that B-FTRL achieves a reward regret
bound1 of O(T T+e
O(T7+a), where a and b are tunable algorithm parameters. By
carefully selecting the values of ¢ and b, we are able to limit the to-
tal regret to O(T2/ 3) while satisfying the arm selection constraints
in expectation. This outperforms the state-of-the-art regret bound
of O(T%/*) and expected constraint violation bound o(1), which
are derived in less challenging stochastic reward environments.
Additionally, we provide a high-probability constraint violation
bound of O(+/T). To validate the effectiveness of the proposed B-
FTRL algorithm, numerical results are presented to demonstrate
its superiority in comparison to other existing methods.

+ Tl%a) and a switching regret bound of

I. INTRODUCTION

Multi-armed bandits (MAB) problems are a fundamental
class of sequential decision-making under uncertainty prob-
lems, which involve a crucial tradeoff between exploration
and exploitation. In the simplest form, a learner is presented
with a set of arms, each representing a different action, and in
each round, the learner must choose an arm to play based on
past observations. The objective is to maximize the cumulative
reward obtained from the chosen arms, or equivalently, to
minimize the cumulative regret, which measures the difference
between the rewards obtained and the rewards that would have
been obtained by always choosing the best arm. Depending on
how rewards are generated, bandit problems can be classified
as either stochastic bandits or adversarial bandits (also known
as non-stochastic bandits). In stochastic bandits, rewards are
drawn from fixed but unknown probability distributions asso-
ciated with each arm. In contrast, adversarial bandits make no
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statistical assumptions about the reward generation process,
and as a result, they are considered more challenging to
solve. In both settings, the learner must balance exploration,
trying out different arms to learn their potential rewards, and
exploitation, choosing arms with the highest expected rewards
based on current knowledge, in order to achieve good overall
performance over time. The study of MAB has important
applications in various fields, such as online advertising [1],
recommendation systems [2], clinical trials [3] and resource
allocation in network systems [4], where decisions must be
made sequentially in the face of uncertainty.

To address sequential decision problems in more complex
systems, researchers have proposed and studied various exten-
sions of the basic MAB model. One well-explored variant is
combinatorial bandits [5], where multiple arms can be played
simultaneously in each decision round. This extension poses
greater challenges for learning due to the significantly expanded
decision space. Another important extension considers the
inclusion of switching costs [6], which arise when changing
actions between consecutive rounds incurs non-negligible over-
head costs. In practical systems, such as network management
or robotic control, these costs can be significant. Consequently,
exploration of different actions must now consider the addi-
tional switching cost, making the task of maximizing the reward
more complex. Recently, MAB problems under arm selection
constraints [7] have gained significant attention, particularly in
the domain of computer networking. These constraints model
situations where fairness considerations require that each arm
(representing a user or a specific task) should be played suffi-
ciently often. Additionally, these constraints can be utilized to
handle budget restrictions arising from the overhead associated
with playing different arms. This paper is motivated by real-
world systems that simultaneously feature combinatorial arms,
switching costs, and arm selection constraints. Here, we present
some applications that illustrate the relevance and significance
of considering these combined features.

e Cloud Resource Management. In cloud computing envi-
ronments, tasks can be assigned to different virtual ma-
chines (arms) with varying costs and processing capabil-
ities. However, switching tasks between virtual machines
incurs switching costs and may disrupt ongoing processes.
Additionally, cloud providers may want to ensure fair
utilization of resources by enforcing arm selection con-
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straints to maintain a minimum assignment ratio for each
virtual machine. Adversarial Combinatorial Bandits with
Switching Cost and Arm Selection Constraints (ACB-
SCSC) can be used to optimize resource allocation in
cloud systems while considering the cost of switching
tasks and adhering to resource fairness requirements.

o Distributed Sensing and Monitoring. In distributed sensing
systems, multiple sensors (arms) are deployed to monitor
a large area. Switching sensors between monitoring tasks
may introduce delays or data loss. Moreover, some sensors
may have limited battery or communication resources,
requiring the system to impose constraints on their utiliza-
tion. ACB-SCSC can be applied to optimize sensor task
allocation while minimizing switching costs and ensuring
that sensors are used fairly and efficiently.

e Vehicle Routing and Fleet Management. In logistics and
transportation, optimizing vehicle routes involves choosing
between different delivery routes (arms) while considering
switching costs associated with rerouting vehicles and
adhering to constraints on vehicle utilization. ACB-SCSC
can be employed to optimize vehicle routing decisions and
maximize fleet efficiency.

e Healthcare Resource Allocation. In healthcare settings,
patients may require different treatments (arms), and
switching treatments may have associated costs or adverse
effects on patient outcomes. Arm selection constraints may
be applied to ensure a fair distribution of treatments among
patients. ACB-SCSC can be used to optimize treatment
allocation in healthcare to improve patient outcomes while
considering switching costs and adhering to resource con-
straints.

Despite its wide applicability, there has been limited effort
to address the challenging problem of combinatorial bandits
considering both switching costs and arm selection constraints,
especially in the adversarial setting. Such problems present
significant challenges, as exploration to learn the quality of
different arms leads to increased reward loss due to arm
switching, with an unclear impact on constraint violation. In
this paper, we propose a novel algorithm to tackle this complex
sequential decision-making problem under uncertainty.

Specifically, we address a combinatorial bandits problem
with semi-bandit feedback, where the learner observes the
reward of each arm in the selected subset. The arm selection
constraints are expressed as “anytime cumulative constraints”,
which impose stringent conditions that must hold cumula-
tively within each time slot, rather than considering long-term
averages. Our proposed algorithm, named B-FTRL (Block-
structured Follow-the-Regularized-Leader), draws inspiration
from [8], which introduced a Follow-the-Regularized-Leader
(FTRL) algorithm with a novel hybrid regularizer for gen-
eral semi-bandit problems. This FTRL algorithm achieves an
impressive O(logT') regret for stochastic environments and
O(\/T) regret for adversarial environments, where T denotes
the number of decision rounds. The B-FTRL algorithm adopts
a block structure that divides time into blocks, allowing arm
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switching only between blocks. This design significantly re-
duces the switching cost associated with arm selections. We
provide theoretical analygisb alnd shov;/ that B-FTRL achieves
a regret bound of O(7" T+« + T'T+a), where a and b are
algorithm parameters. Additionally, we offer a high-probability
constraint violation bound of O(v/T). By carefully tuning the
algorithm parameters, specifically setting a = 1/2 and b = 1,
B-FTRL achieves an improved regret bound of O(T%/%), out-
performing the O(7T%/4) regret bound presented in [9]. Notably,
this improvement is observed even in the more challenging
setting where combinatorial arm selection is considered, unlike
the setting in [9], which focused on the less complex stochastic
environment without considering combinatorial arms.

II. RELATED WORK

Adversarial Bandits Adversarial bandits problems deal with
scenarios where the rewards for each arm follow an arbitrary
process. In stochastic bandits, the minimax optimal regret is of
order O(logT') [10], while in adversarial bandits, it increases
to order O(v/T) [11]. Recent research has attempted to bridge
the gap by achieving a “best-of-both-worlds” outcome [12]-
[16]: attaining O(logT') regret in stochastic environments and
simultaneously achieving O(\/T) regret even in adversarial
environments.

Combinatorial Semi-Bandits Stochastic semi-bandit prob-
lems have seen several algorithms based on the optimistic
principle, achieving a regret bound of O(log T") [5]. Algorithms
with O(V/T) regret for the adversarial semi-bandit setting
have also been well-studied [17]-[21]. These algorithms typi-
cally rely on either Follow-the-Regularized-Leader (FTRL) or
Follow-the-Perturbed-Leader (FTPL) techniques. In a particular
work [8], a novel hybrid regularizer was introduced within
the FTRL framework, leading to O(logT') regret in stochastic
environments and O(+/T') regret in adversarial environments.
Building upon this idea, our B-FTRL algorithm adopts the same
hybrid regularizer to address problems with switching costs and
arm selection constraints.

Bandits with Switching Cost Dealing with bandits with
switching costs often involves dividing time into blocks of
increasing length. For stochastic bandits with switching costs,
an asymptotically optimal O(logT) regret bound can be de-
rived using a block-based Upper-Confidence-Bound (UCB)
algorithm [6]. However, introducing a unit switching cost incurs
a lower bound of (7T2/3) on the minimax regret [22]. Re-
cent state-of-the-art block-based algorithms [23], [24] achieve
O(T?/3) regret in the more general adversarial bandits setting,
matching the minimax lower bound, and O(T'/3) regret in the
stochastic bandits setting. Other approaches [25], such as those
based on the Gittens index, have also been developed.

Bandits with Arm Selection Constraints Bandit problems
with arm selection constraints have gained significant attention,
starting with a work [7] that considered fairness constraints
to ensure each arm is played a minimum fraction of time. A
more comprehensive framework was later developed in another
work [26]-[29]. These algorithms fall under the category of
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pessimistic-optimistic algorithms, which consider long-term
constraints and utilize the Lyapunov drift theorem [30] to
ensure long-term queue stability. However, their results imply a
constraint violation of o(t) for the anytime cumulative version
of these constraints. Follow-up works [31] have attempted
to reduce the constraint violation by adding a “tightness”
parameter to the virtual queues. Additionally, kernelized bandits
with constraints were studied in [32], [33], achieving O(\/T)
regret and constraint violation.

Recent works [9], [34], [35] investigated constrained bandit
problems with switching costs under the non-combinatorial set-
ting. In the most recent work [9], a blocked-based pessimistic-
optimistic algorithm was developed, achieving O(T3/ 1) regret
and o(1) constraint violation in expectation. In comparison, our
proposed algorithm achieves a O(T' 2/ 3) regret and guarantees
that constraints are satisfied in expectation. Moreover, we
provide a high probability bound on the realized constraint
violation.

III. PROBLEM FORMULATION
A. Model

We investigate a sequential game involving a learner and an
adversary that models the environment. The game consists of
d fixed (base) arms. At each time t = 1, 2, ..., the learner must
select no more than m out of these d arms to play, forming
a set of arms called a super-arm denoted by X, € {0,1},
where X;; = 1 indicates that arm ¢ is played, and X;; = 0
otherwise. Let D C {0,1}? be the set of feasible super-arms
that are composed of m base arms.

Reward: At each time ¢, the adversary selects a reward
vector £; € [—1,1]? simultaneously with the learner’s choice
of the super-arm. The learner receives a reward r, = (X, ¢;)
and observes the individual rewards of the selected base arms,
denoted by 0; = X;0/; € [—1,1]%, where o stands for element-
wise product. It should be noted that for any unselected arm
1, no reward is observed, but we let o;; = 0 for simplicity.
Importantly, the adversary in this context is an oblivious one,
meaning that the reward vectors ¢1, /5, ... are pre-determined
and independent of the learner’s actions.

Switching Cost: Additionally, the problem accounts for costs
incurred due to switching arms in consecutive time slots. A
cost hy = H(X;, X;_1) is incurred if the chosen super-arm
X, is different from the previous one, X;_ ;. The switching
cost function H(-,-) can take various forms, for example,
H(Xt,Xt_l) = ||Xt — Xt—lHl or H(Xt,Xt_l) = ]I{Xt 7é
Xi;—1}. Our model accommodates different switching cost
functions, as long as the switching cost is upper-bounded by
A, defined as follows:

H(Xy, Xi—1) <X 1{X, # X1}

To complete the formulation, we set Xg = X3 to ensure that

the first-slot switching cost h; = H (X1, Xo) = 0.
Constraints: Furthermore, the problem involves K anytime

cumulative constraints, each characterized by a d-dimensional

coefficient w* € [—1,1]¢, where wf € [—1,1] represents a
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penalty associated with constraint k of playing arm ¢ at time .
The penalty of playing a super-arm X ; at time ¢ for constraint
kis ¢f = (Xy,wF). The anytime cumulative constraints require
that the cumulative penalty be no greater than 0 for each
constraint k at any time ¢, i.e., 23:1 c’j <0, Vt.

The objective of the adversarial combinatorial bandits with
switching cost and arm selection constraints problem is to
devise an algorithm that selects the super-arm to play in each
time slot, aiming to maximize the cumulative net reward (i.e.,
reward minus switching cost) subject to K anytime cumulative
constraints. Formally, the problem can be expressed as follows:
T
D (X be) = H(X4, Xi1))

t=1
t

subject o » (X, wk) <0, Vk=1,..,KVt=1,.T

T=1

max
X1,...XT€D

B. Regret

We evaluate the performance of our algorithm in terms of
(expected) regret, which quantifies the difference in expected
net reward between our algorithm and the best fixed random-
ized policy with complete information about the adversary’s
reward vectors. A fixed randomized policy is represented by a
fixed vector x € [0,1]¢ with the constraint that ||z|[; < m. In
each time slot, the policy randomly selects an m-sized super-
arm based on the probabilities defined by the vector = according
to a sampling rule P (see Appendix).

The best fixed randomized policy can be found by solving
the following constrained optimization problem:

T
<$, Z£f>

subject to  (z, w*) <0,

max
z€[0,1]4,[|z]|1 <m

Vk=1,.. K

Let z* be the optimal solution of the randomized policy
to the above problem, and let OPT(T') represent the optimal
cumulative reward. It is important to note that OPT(T") does not
account for the switching cost incurred when two realizations
of X; and X;_;, generated according to the fixed policy x*,
are different. Therefore, it serves as an optimistic upper-bound
on the actual cumulative net reward.

The regret of our algorithm is defined as:

T
REG(T) = OPT(T) — E | Y (X;,0:) — H(Xy, X; 1)

t=1
In general, an algorithm, especially being a randomized policy,
may not always produce actions that strictly adhere to the
constraints in every time slot. In fact, prioritizing aggressive
reward maximization can easily lead to constraint violations.
Therefore, we also measure the performance of our algorithm
in terms of constraint violation at every time ¢, which is defined
as:

t

V;k = Z<Xﬂwk>'

T=1
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In particular, V;k < 0 means constraint £ in time slot ¢ is
satisfied while V;¥ > 0 means that constraint k is violated by
an amount V¥,

IV. ALGORITHM

To tackle the constrained adversarial combinatorial bandits
with switching cost problem, we introduce a novel algorithm
called B-FTRL, where “B” stands for block. Our algorithm
draws inspiration from the FTRL (Follow-The-Regularized-
Leader) algorithm proposed in [8], which was originally pro-
posed for combinatorial bandits problems under both stochastic
and adversarial settings.

In the B-FTRL algorithm, we group the 7' time slots into
several time blocks, indexed by n = 1,2, ..., to minimize the
impact of switching costs. Within each time block, the same
super-arm is played in every time slot, and switching is only
allowed in the first time slot of a block. Let 13,, denote the set of
time slots that belong to block 7, and |5,,| be the length of that
block. In the first time slot of block 7, the algorithm computes
the “regularized leader” using information from the past n — 1
blocks. The regularized leader x,, is defined as follows:

= Ln_1) —n 10(x).
T, argggg(% n—1) = N, ()

(D

Here, X represents the feasible set with constraints: = € [0, 1]¢,
|lz|l1 < m, and (z;,w*) <0 for all k. The term 1™ represents
a time-decaying learning rate schedule. Let us now explain
the remaining components of Equation (1), namely L,_1 and

Cumulative reward estimate: ﬁn_l is the cumulative re-
ward estimate up to block n, i.e., f)n_l = Z::_ll és, where
iy € RY represents the total reward estimate in block s.
Specifically, 0, is computed at the end of each time block n
using the observed rewards o,, = ZteBn X, 04, € R?, where
X, is the super-arm sampled using the sampling rule P (see
Appendix) according to z,, and it remains the same for all
time slots in block n. The formula for (fn is as follows:

R ; 1, (2
gn’i — ((On,z/|8n+ ) n(l) . 1) |Bn|7 Vi = 1’... 7d

LT i

where 1,,(i) € {0, 1} indicates whether arm i is played in block
n or not. It can be shown that ¢, ; is an unbiased estimator of
¢y, as follows:

. b i /1Br] +1
E[ﬁnl] :.fL'n’i (ZtGBn t, /| ‘ _ 1) |Bn|

Tn,i

+ (1= 2,0)(=1)|Bn|

=Y lei=ln,

teB,

where we slightly abuse notation to use ¢, ; to denote the
total reward obtained by playing arm 7 in block n, while ¢, ;
represents the reward by playing arm ¢ in time slot .

Algorithm 1 B-FTRL
1 Input: X = {z|0 <z <1,z <m,Y, z;wF <0,Vk}
2. Initialization: L, = 0,...,0),n, = B/n,|B.| =
max{[ayn] 1}
3: for block n =1,2,..., do
4: Compute

Tp = arg gleaz}(( {<J),IA/”_1> - 777:1\1’(33)} )

Sample X,, ~ P(z,) such that Exp[X,] = =,
Play X, for all rounds ¢ € B,

Observe 0, =3 5 Xy ol

Construct estimator En, Vi

- ((on,z—/w + DL() 1) Bl

LTni

® AW

9: Update ]in = ﬁn_l + én
10: end for

Regularizer: The term ¥(z) is a regularization term with
the following expression:

d
U(z) = (Vai — (1 — ;) log(1 — 7))
i=1
In essence, W(x) combines the Tsallis entropy (with power
1/2), denoted by — Z?Zl z;, and the Shannon entropy on
the complement of x, denoted by Z?zl(l —x;)log(1 — ;).
After computing the “regularized leader” x,,, the algorithm
samples X,, ~ P(x,,) using the sampling rule P and plays the
selected super-arm in every time slot within block n.

V. REGRET ANALYSIS

In this section, we analyze the regret of the proposed B-
FTRL algorithm.

A. Main results

To facilitate our analysis, we divide regret into two parts:

REG(T) — REGreward (T) + REGswitching (T),

where REG™(T) = OPT — E {Z?ﬂ(Xt,ét) accounts
for the reward difference between the optimal fixed ran-
domized policy and our algorithm, and REG®™'n¢(T) —
E Zil H(Xt,Xt,l)] accounts for the cost due to action
switching. Theorem 1 presents the main results of the regret
analysis.

Theorem 1. By setting the block length as |B,| =
max{[ay/n],1} and the learning rate 7, = [/n, where
«, B > 0 are constants satisfying a5 < \/52’1, B-FTRL ensures
that the regret is bounded as REG(T) < O(T?/3). Moreover,
the constraints are satisfied in expectation, i.e., E[VX] < 0, Vk

and V¥ < O (,/T log %) with probability 1 — ¢ for any
J € (0,1).
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TABLE I
CUMULATIVE REWARD REGRET VS. SWITCHING REGRET

[ Parameter a [ Parameter b | Reward regret | Switching regret |

1/2 1 O(T?/3) O(T?/3)
1 1 o(T) O(WT)
0 1/2 O(/T) o(T)

Now, let us discuss our regret and constraint violation
bounds compared to those derived in [9], which studied a
constrained stochastic bandits with switching costs problem.
Our considered setting generalizes that in [9] by allowing adver-
sarial rewards (instead of stochastic rewards) and combinatorial
actions (instead of individual actions), making the comparison
meaningful in this special case. Regret: In the stochastic
reward setting, [9] proves a regret bound of O(T3/%) for their
algorithm. However, our B-FTRL algorithm can improve the
regret bound to O(T'%/3) even in the more difficult adversarial
reward setting. Constraint Violation: In [9], a o(1) bound is
provided on the expected constraint violation. In our algorithm,
the expected constraint violation is guaranteed to be satisfied
because the sampling vector x; at every time slot ¢ is chosen
such that (z;,w*) < 0. Moreover, we also provide a sublinear
high-probability bound on the realized constraint violation.

In Theorem 2, we characterize the impact of algorithm
parameters on the regret bound:

Theorem 2. By setting the block length as [B,| =
max{[an®],1} and the learning rate as 7, = Bn~", where
af < @ and b > a, B-FTRL ensures the following bounds

on the reward regret and the switching regret:

2a—b+41
14+a

REG™¢(T) < O (T n Tﬁ) 2)
REGswitching(T) <0 (TH%) 3)
Moreover, the constraints are satisfied in expectation, i.e.,

E[VA] < 0,¥k and Vi < O (\/:ng) with probability 1—
for any § € (0,1).

Theorem 2 shows that B-FTRL is able to make a tradeoff
between the reward regret and the switching regret. Specifically,
fixing b and decreasing a decreases the reward regret at the
expense of a larger switching regret. The values of a and b
can be chosen depending on the relative importance of the
reward and the switching cost. Table I lists the respective
reward regret and switching cost for specific values of a and
b. We remark that when a 0 and b 1, B-FTRL is
equivalent to the algorithm in [8], in which the switching costs
are not considered, and hence, our regret bound recovers their
theoretical results.

B. Proofs

We start by introducing some preliminary definitions and
results. Let ¥, () =1, '¥(x), and ®,, be defined as

©n(C) = max {(z, C) — ¥ (x)} )

5

Then we have V&, (C) argmaxzex {(z,C) — ¥, (z)}.
Recall that the sampling vector z,, in our algorithm is cho-
arg max;cy {(m,ﬁn,l) - \I/n(x)}
T, = V@n(ﬁn,l). Following the standard analysis for FTRL,

we decompose the reward regret into a sum of stability and
penalty terms:

T T
Z LC gt Z $t7€t>] =
t=1 t=1

—E [f: (—<mm€n> + &, (L) — @n(ﬁnfl))

and hence

sen as I,

N

D" b

n=1

N
E xna n
n=1

+

stability

E iv: (q)n(i/n—l) - ‘I)n(i/n) + <$*,fn>)‘|
n=1

penalty
_ REGstability + REGpenalty

where x* is the optimal sampling vector in hindsight, N is
the number of blocks and £, = 7, 5 ¢; with a slight abuse
of notation. Lemmas 1 and 2 below develop bounds on the
stability and the penalty parts of the regret, respectively. These
results generalize those in [8], to handle block-based decision
processes and randomized benchmarks in the regret definition.
Their proofs can be found in the appendix.

Lemma 1. For any sequence of learning rate and block size
sequences {n, = B/n’ |B,| = max{[an®],1} that satisfy
af < @ and b > a, the stability term in the regret is
bounded as

N

REG*Y < Z 16vV2mdn,,|B,)?. (5)
n=1

Lemma 2. For any non-increasing sequence of learning rates

{Nn}n, the penalty term in the regret is bounded as

(6)

We now prove Theorem 1 and Theorem 2 by combining the
results in Lemma 1 and Lemma 2. In order to apply our results
to blocks, we first derive an upper bound on the number of
blocks N. Because |B,,| is chosen as max{[an®], 1} we have

(1) T Pt and

REGPenalty < ;1 /m, d7)1:r1~

|B,,| > an® and non-decreasing. Let I' =
r+1

observe that:
r+1
Z |B,| > Zan“ > / an®dn
n=1 n=1 0

I'+1
r «o
> / an®dn = ——T1ett > T,
0 a + 1

Thus, we can upper bound N by I' 4 1.

To bound the regret incurred by our algorithm, we need
to control the terms ZnN:1 Nn|Bnl?, Ny'» and the number of
switches. Note that the number of switches is bounded by the
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number of blocks, i.e., I' + 1. Thus, the cumulative switching
regret satisfies

REG™V“""¢(T) < \(T' + 1) < O(T'#+1).
The reward regret can be bounded by
REGreward(T) — REGstability + REGpenalty
N
3
< Z 16V 2mdn, |B,|* + §de7];,1.
n=1
By choosing 1, = 8/n® and |B,,| = max{[an®], 1},
N N
REGreward(T) < O(Za25n2a_b + Zﬁn—b + Nb/ﬁ)

n=1

TaFt 4 Tatn) < O(T

n=1
14+2a—b
a1

14+2a—b

SO(T at1

+T7),

where the second inequality uses 3.0 n2*~0 < O(N1+2a-b),
SV nb < O(N'~?) and the bound I on N. This proves the
general regret bounds in Theorem 2. Now, by letting a = 1/2
and b = 1, the maximum order is the reward regret and the
switching regret is minimized at 72/3 and hence, the regret
bound in Theorem 1 is proved.

Finally, we consider the constraint violation. Because
every slot t, the arms are chosen so that E[(X;,w")]
(z¢,wk) < 0, the constraint is guaranteed to be satisfied in
expectation in our algorithm, i.e., E[V}*] < 0. Next, we bound
the realized constraint violation using the Hoeffding inequality.
Let 0 = maxy; |wg ;|- Then we have for all k,

1 Tlog 1
Prob (V{f —E[VE] >4/ Tlog 5) <e o =0(6).

Therefore,

VE<E[VF)+0 <\/Tlog(1s> <0 (\/Tlog§> ,w.p.l—4

VI. NUMERICAL RESULTS

in

In this section, we present the numerical results to assess the
performance of our proposed B-FTRL algorithm and compare
it against baseline approaches. While our algorithm is designed
for the adversarial setting, we extend the evaluation to include
both the adversarial and stochastic settings. The inclusion of
the stochastic setting is valuable as it represents a special
(and comparatively easier) case of the adversarial setting.
Furthermore, evaluating our algorithm in the stochastic setting
enables us to directly compare its performance with existing
algorithms designed specifically for stochastic environments.

A. Setup

Rewards We conduct simulations with d = 7 individual arms.
In the stochastic setting, the expected rewards for each arm are
setas £ = [0.2,0.3,0.4,0.5,0.6,0.7,0.8]. To introduce variabil-
ity, a random noise e uniformly sampled from [—0.01, 0.01] is
added to the realized reward at each time slot, i.e., {; = l+e.
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In the adversarial setting, following the approach in [8], [16],
we divide time into multiple phases as follows:

Looytisti 1, oy ety T
—— — o ———

Tl T2 Tn

The length of phase s is defined as T = [1.6°|. Within each
phase, the expected rewards are set as:

7+0.2,

0 —0.2,
Again, a random noise term € uniformly sampled from
[—0.01,0.01] is added to the realized reward ¢; = {4 + ¢ for
time slots belonging to phase s.

Switching cost We incorporate the switching cost function
as H(Xy, Xi—1) = || Xt — X¢—1]|1, which means that the
switching cost is proportional to the L; norm (Manhattan
distance) between the arm choices at two consecutive time slots.

Constraints We consider both K = 1 and K = 3 arm selec-
tion constraints. The constraint vectors w* are uniformly and
randomly sampled from the range [—1,1]¢. These constraints
provide additional criteria that need to be satisfied during the
decision-making process.

if s is odd

if s is even

s =

B. Baseline algorithm

We extend the POSS algorithm proposed in [9] to the
combinatorial setting, which we refer to as CPOSS, and utilize
it as the baseline algorithm for performance comparison. In
CPOSS, we adopt the same underlying concept as POSS but
modify the arm selection strategy to choose the super-arm with
the highest sum of the pessimistic-optimistic indices. It is worth
noting that this modification does not impact the asymptotic
bounds of the algorithm.

Regarding our B-FTRL algorithm, the default parameter
values are set as follows: a = ‘/54’1, 8 =1, b =1, and
a = % We conduct a comprehensive evaluation by averaging
the results over 30 independent random experiments to ensure
robustness and reliability in our analysis.

C. Results in the stochastic setting

Figures 1 and 2 depict the reward regret, switching regret
(equivalently, switching cost), and constraint violation achieved
by B-FTRL and CPOSS in the stochastic setting. In the
experiments corresponding to Figure 1, we set m = 1 and
K = 1. Under this configuration, CPOSS reduces to POSS,
enabling a direct comparison between B-FTRL and POSS. On
the other hand, the experiments corresponding to Figure 2 were
conducted with m = 3 and K = 3, allowing comparisons to
be made in a more general setting.

1) Regret: Figures 1(a)(b) present a comparison of reward
regret and switching regret achieved by B-FTRL and CPOSS,
both with m = 1 and K = 1. Additionally, Figures 2(a)(b)
showcase the results with m = 3 and K = 3. In both setups,
B-FTRL and CPOSS exhibit sublinear growth in reward regret
and switching regret over time, with B-FTRL consistently
outperforming CPOSS (while we note that CPOSS’s regret
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Fig. 2. Performance Comparison in the Stochastic Setting (m = 3, K = 3).

is sublinear, though not as apparent). This trend aligns with
the theoretical regret bound results: B-FTRL’s regret follows
O(T?/3), while CPOSS’s regret follows O(T3/*). Notably, B-
FTRL’s bound of O(T?/3) is derived in the more challenging
adversarial setting, making its actual performance even better
than the theoretical bound in the stochastic setting. Improving
the theoretical bound for B-FTRL in the stochastic setting
remains an interesting future research direction. Additionally,
we observed that B-FTRL’s regret exhibits higher variance,
likely due to the arm sampling operation in the algorithm.

2) Constraint Violation: Figures 1(c) and 2(c) demonstrate
that both CPOSS and B-FTRL satisfy the constraints in the
experiments for both configurations. However, it is evident that
B-FTRL has a distinct advantage in meeting the constraints.
This is because B-FTRL ensures that the constraint is satisfied
in expectation for each time slot, providing a more robust
approach, whereas CPOSS only guarantees that the expected
constraint violation is o(1), which may not offer the same level
of reliability in fulfilling the constraints.

D. Results in the adversarial setting

Figures 3 and 4 display the reward regret, switching regret
(equivalently, switching cost), and constraint violation achieved
by B-FTRL and CPOSS in the adversarial setting. Specifically,
in the experiments corresponding to Figure 3, we set m =1
and K = 1, and in the experiments corresponding to Figure 4,
we set m =3 and K = 3.

1) Regret: Figures 3(a)(b) provide a comparison of the
reward regret and switching regret achieved by B-FTRL and
CPOSS, with both algorithms configured with m 1 and
K = 1. Additionally, Figures 4(a)(b) showcase the results
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when m = 3 and K = 3. In line with the findings from the
stochastic setting, B-FTRL continues to exhibit significantly
superior performance compared to CPOSS. However, it is
worth noting that both B-FTRL and CPOSS show relatively
poorer performance in the adversarial setting compared to the
stochastic setting. For B-FTRL, the regret still demonstrates
sublinear growth over time, which aligns with our theoretical
expectations. Nevertheless, the growth rate is faster in the
adversarial setting than in the stochastic setting. As for CPOSS,
since it is explicitly designed for the stochastic setting, its
performance is notably worse when faced with adversarial
conditions.

2) Constraint Violation: Figures 3(c) and 4(c) provide ev-
idence that both CPOSS and B-FTRL successfully satisfy the
constraints in the experiments for both configurations in the
adversarial setting. However, it is notable that the constraint
violation is larger (although still negative) for both algorithms
in the adversarial environment, as they need to make more
frequent adaptations to cope with the adversarial challenges.
It is worth mentioning that CPOSS utilizes the virtual queue
technique to handle constraints, which mitigates the impact of
the adversarial reward setting on constraint violation compared
to its effect on regret performance. Nevertheless, B-FTRL
still demonstrates an advantage in effectively meeting the
constraints when compared to CPOSS.

VII. CONCLUSION

This paper delves into a novel adversarial combinatorial ban-
dits problem, encompassing switching costs and arm selection
constraints, which hold immense practical relevance in cloud
resource management, distributed sensing and monitoring, and
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healthcare resource management, among other applications.
We introduced a novel algorithm called B-FTRL, adept at
effectively balancing exploration and exploitation while taking
into account the switching costs and adhering to the arm
selection constraints. Through both theoretical analysis and ex-
tensive numerical simulations, we demonstrated the significant
superiority of B-FTRL over existing methods.

An interesting aspect of our work is that although the
algorithm is designed for the adversarial setting, its techniques
have the potential to tackle “best-of-both-worlds” problems,
thus extending its applicability beyond the adversarial domain.
As a future research direction, we aim to establish tighter regret
bounds for B-FTRL in the stochastic bandits setting, further
enhancing the algorithm’s performance and versatility. Such
advancements hold great promise in a wide range of real-world
decision-making scenarios.

APPENDIX

PROOF OF LEMMA 1

In order to bound the stability term, we recall several
properties of the potential function provided by [8], which we
use in this proof:

1
VU, (z) = 77;1 <W +log(l —z;) + 1) ,
i i=1,...d

V2, (z) = n, 'diag (

1 + 1
4z 1 —ay i d’

PR

(V20 (2))"! < diag Kmin {4\/§, (1— xi)}>i—1,...d] .

We define the convex conjugate and the associated Bregman
divergence of a convex function f:C — R as
f7() = max{(z,-) - f(z)}
zeC
Dy(z,y) = f(z) = fy) = (Vf(y),z —y)
respectively. Then we have ¥ (1) = max,ecx{{(z, ")
and the following statements are true [36]
o S1: VU () = argmax,ex{(z,") — U,(z)}, V¥, =
(VI) L, V20, () = (VAU (VI () .
e S2: For any z,y € R? by Taylor’s theorem, there exist
a z € Conv({z,y}) such that Dy (z,y) = 1|z —
Yews (o) )
o 83: For any L, let L = VW, (V®,(L)). Then it holds for
any £ € RY, Do, (L+(,L) < Dy« (L+(,L).
Now, using these preliminary results, we have

N A~ A
> Da, (Ln, Lnl)]

= Un(2)}

REGStability — E

n=1

@) [ X
<E |>_ Du:(V¥,(zn) +fn,wn(xn>)]

Ln=1
D) (X 21,
=E Z§||€n||2v2\ll;(z") =E ZQ|£n||%2W:(VW,L(y,L))]
(#41) :n;ll S -
£ o] D TAT S

Ln=1

where (i), (ii) and (iii) hold due to S3, S2 and S1, respec-
tively. Here, we let &, = VU*(V¥,(z,) + /,), and choose
zn € Conv{VV, (z,), VU, (Z,)} and y,, € [z, T,] such that
VU, (Yn) = 2n.
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Next, we show that when af8 < \/52_1 and b > a (which PROOF OF LEMMA 2

means 7, |B,| < %), the following always holds: We note that —(1 — z)log(l — z) < g when z € [0,1].
T = V‘I’Z(V‘I’n(xn)-an) <2z, (7) By the definition of U(z) and using the Cauchy-Schwarz

. . . inequality, we have
Because function V¥, and V¥; are symmetric and inde- auatity

pendent in each coordinate, it is sufficient to consider one 0<U(z) < Z VT < F dVz e X.
dimension and drop the index ¢ to prove (7). We consider
only x, < 1/2, otherwise the statement is trivial since the
range of AU is [0,1]%. Now suppose the opposite holds:
Ty, > 2x,. Note that by the construction of Zn, we have N

~ .1 o) a * ~
—|Bn] < 4, < mxin"l. Since VW, (z,) is strictly decreasing REGP™Y = Z (—‘I’n(Ln) + @ (Lp-1) + (= ,€n>)

Using the definitions of ®,,, we have

nA(O, 1), we have ) N n=1
_En = V\I/n(xn) - van(xn) - én _ _ max? (z ﬁ —1\11 x
= VU, (2,) — VU, (VT (VT (2) + £n)) ;( zeX {< L) =m0 )}
= VU, (2,) — VU, (Zn) > VU, (2,) — VT, (22, . N R
! (( i (<1 )_> ) - - -1 (( —)2 >) b ¥} ) -t
="Mn 2\/@ Tn 2\/% 0og T - <x ’LN> . 77;[1\11(96*) n=
> —1 \/5_]- 1 >771 \/5_1 N-1
\evE JvE T\ ) =3 (@arr L) = 1 W)

where the second inequality uses the monotonicity of the log

function and the last inequality uses xz,, < 1/2. Because —¢,, < ( = -1 ) . 7
+ T, U (x + (x

|B,| > \/52_1, which leads to a contradiction Z {wn (¥n) (2"

when af < @ and b > a. Therefore (7) is proved. Thus, N N
we have 77]N Z Z I (x,)
V20, (y,) "t < n, - diag [(4 (fn)i)g’) ] n=2 n=1
i=1,...,d N
Z = ty) (=¥ (2n)) <yt (")

<ny' v
= 1), - diag (4 (2$n,i)3> .
i=1,....d

Plugging the bound on ¥(x) yields the claimed result.
Going back to the stability term, we thus have

N ] SAMPLING RULE P(+)

I BN
S 5lalen, gy

n=1

REGStabﬂily <E

For a given z € Conv(X), one sampling rule P such that
Ex~p[X] = z is the following:

N d . - .
< Z E l Mn Z i) 4 W} We first define the following auxiliary vectors for 0 < 7 < m,

— 2 — 0 < j <d—m, and we define f3; ; € Conv(X) as:
(“’)Nn\l")’ 2 a4 m—i m—i
| B 3 =11, 1, e .0, .0
n= = i J

It is trivial to sample with mean ; ; with the sampling rule:
=) 16v2n,|B, Vi < 16V2Vmdn,|B, |* I
Z 210 |Bn " Z Z @i |Bnl”- P; ; = Uniform({z € X|z1,... ; = 1A 2q_jq1,... a = 0}).
Whefe (IV) is due to Then we decompose = = Y °_ p, ;. ;. such that p, , €
d o . .

~ 2 1+ B ? [0’ 1]’Zs=0 Pz,s = 1’(20a]0) = (0’0) and (Zs+lvjs+l) -
E[(4n:) | = |B.|? T i —_Bal 4 +(1—2zpy) - 12| (is,4s) € {(1,0),(0,1)}. In other words, either i or j increases
Tni by one from s to s + 1. Finally the full sampling scheme is

On,i

2 2 25:0 Dz sﬁzé,jb
< |B'n|2 <xm ( - 1) + (1 —xn,)- 12> When inputting an x, we first create sample s based on
T, the sampling expression ZZ:O Da,sPi,.j.» Where 4 in j; corre-
< Bn|2( 4 _3)<| Bn|2 4 . sponds to the index of the arm that will definitely be sampled,
- T - Tni 7 corresponds to the index of arms that will not be sampled,
and the remaining ¢ —m arms are sampled based on a uniform

and (v) applies the Cachy-Schwarz inequaility Zle Tn,i <

— distribution.
v'md considering Z —1 T < m.
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