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Abstract: Additive manufacturing (AM) has impacted the manufacturing of complex three-dimensional
objects in multiple materials for a wide array of applications. However, additive manufacturing, as an
upcoming field, lacks automated and specific design rules for different AM processes. Moreover, the
selection of specific AM processes for different geometries requires expert knowledge, which is difficult
to replicate. An automated and data-driven system is needed that can capture the AM expert knowledge
base and apply it to 3D-printed parts to avoid manufacturability issues. This research aims to develop
a data-driven system for AM process selection within the design for additive manufacturing (DFAM)
framework for Industry 4.0. A Genetic and Evolutionary Feature Weighting technique was optimized
using 3D CAD data as an input to identify the optimal AM technique based on several requirements and
constraints. A two-stage model was developed wherein the stage 1 model displayed average accuracies
of 70% and the stage 2 model showed higher average accuracies of up to 97.33% based on quantitative
feature labeling and augmentation of the datasets. The steady-state genetic algorithm (SSGA) was
determined to be the most effective algorithm after benchmarking against estimation of distribution
algorithm (EDA) and particle swarm optimization (PSO) algorithms, respectively. The output of this
system leads to the identification of optimal AM processes for manufacturing 3D objects. This paper
presents an automated design for an additive manufacturing system that is accurate and can be extended
to other 3D-printing processes.

Keywords: genetic algorithm; design for additive manufacturing; expert system; Industry 4.0

1. Introduction

Additive Manufacturing (AM) is poised to be part of the industrial revolution given
its versatility to fabricate free-form designs in a variety of materials [1-4]. In recent years,
the AM field has evolved from rapid prototyping to mainstream manufacturing due to
the capability of building complex three-dimensional freeform features with multiple
materials [5-8]. Additive manufacturing, popularly called “3D Printing” is now being
implemented in fields ranging from biomedical devices [9-11], semiconductor electron-
ics [12,13], and energy devices [14-16] to the construction industry [17,18]. Several additive
manufacturing technologies have mushroomed, each with their own unique process ca-
pabilities [19-21]. The parts to be fabricated on commercial 3D printers need appropriate
evaluation from AM experts for optimal usage of material and machine capability [22].
However, it takes longer spans of time and working knowledge of different AM tech-
nologies to be proficient in this task. Moreover, access to such specialized resources and
biases in expert opinion can hamper their implementation. Since AM is still in its evolv-
ing stages of its industrial application [23], off-the-shelf AM process guidelines, test data,
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and machine capability know-how are limited, thereby restricting the usage of AM tech-
nologies to subject matter experts [24]. Thus, it is imperative that a generic system be
developed that can assist novice designers and AM enthusiasts in finding the optimal
solution/technique for their tasks [25,26]. Consequently, such a generic system would lead
to effective maximization of the benefits and widespread use of AM technologies. Even
though AM technologies exempt designers from the myriad constraints often encountered
in traditional manufacturing, they require several design rules and constraints that must be
adhered to. As aforementioned, the current structure of AM lacks systematic guidance to
encapsulate AM expert know-how, test data, and design rules [26,27]. To tackle this issue,
ASTM International aims to publish a guide to standardize the work process and simplify
the creation of parts with additive manufacturing [28]. Without such a guide, engineers
and researchers in the field will be faced with the problem of choosing appropriate AM
processes and material specifications for their applications. The ASTM Committee F42 has
already produced several standards relating to AM [29].

With the rise of automation, expert systems have gained significant popularity in man-
ufacturing and material processing, leading to more efficient processes through automatic
control mechanisms [30,31]. These systems are powered by artificial intelligence (AI) and
heuristic algorithms, enabling autonomous decision-making [32,33]. For instance, Nagara-
jan et al. [34] developed a novel knowledge-based artificial neural network (KB-ANN) by
combining dimensional analysis conceptual modeling (DACM) with classical ANNs. Their
approach incorporated existing literature and expert knowledge of additive manufacturing
(AM) processes to design a KB-ANN model. This hybrid network includes topological
zones informed by process knowledge and zones where knowledge gaps are filled using
traditional ANNSs. Similarly, Dwivedi, Rajeev, and Radovan Kovacevic created an expert
system for laser-based multi-directional metal deposition (LBMDMD) to automate previ-
ously manual process planning steps. Their system utilized an Al-based computer-aided
design and manufacturing platform to fabricate parts directly from digital models [35].
Additionally, a rapid manufacturing (RM) system was developed to assist designers in se-
lecting optimal production parameters based on initial design requirements [36]. The team
introduced a computer-aided system (RMADS) that utilized fuzzy inference, relational
databases, and rule-based decision-making. This rule-based expert system recommended
rapid prototyping (RP) systems and their specifications through an interactive question-
and-answer session with the user [31]. Fountas et al. explored [37] the optimization of
fused deposition modeling (FDM) using a variety of single and multi-objective evolutionary
algorithms. Their research tested algorithms such as Dragonfly, Ant-Lion, and Grey Wolf
in optimizing critical parameters like compressive strength, sliding wear, dimensional error,
and build time. The results highlighted the effectiveness of these algorithms in improving
the performance of FDM processes and validated the “No-Free Lunch” theorem, which
suggests that no single algorithm performs optimally across all optimization problems.
In a second study, Fountas et al. [38] also made significant contributions to the field by
introducing a Virus-Evolutionary Genetic Algorithm (VEGA) for optimizing selective laser
sintering /melting (SLS/SLM) processes. Their research demonstrated VEGA’s superior
performance over other algorithms such as Grey Wolf and Ant-Lion, particularly in solving
multi-objective optimization problems. VEGA’s ability to optimize critical parameters like
density, hardness, and tensile strength for materials like Ti6Al4V and L316 stainless steel
underscores its potential to enhance the efficiency and quality of additive manufacturing
operations. Despite these advancements, the development of a versatile expert system that
can operate across multiple processes, materials, and application domains remains an area
in need of further research.

This research aims to develop a data-driven expert system for the optimal selection of
additive manufacturing (AM) processes based on CAD data and user-defined preferences.
To achieve this, we implemented a genetic algorithm (GA) for classifying AM techniques
using the parametric data of 3D-printed parts. GAs, which are inspired by Darwinian prin-
ciples of natural selection [39], are well-suited for solving complex classification problems
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in datasets with intricate, confounding relationships among variables [40-43]. Previous
research has demonstrated the efficacy of GAs for classification tasks, particularly when
combined with neural networks for problems such as geographical image classification,
where GAs optimized the neural network architecture for enhanced performance [23,44,45].
In the context of AM, GAs have been employed in a variety of optimization tasks. For
instance, Ashan and Khoda [46] utilized a GA to optimize build orientation and tool path
deposition, reducing the complexity of AM production. Similarly, Zhishuai et al. [47]
applied a GPU-based parallel GA to minimize build time, surface quality degradation,
and support structure requirements in a multi-objective optimization problem. Deka and
Behda [48] further extended the application of GAs to improve productivity through part
separation optimization, while others have used GAs to refine the geometry and topology
of internal and external support structures [49].

In this study, the GA was selected for its ability to quantify solutions based on a
fitness function, which allowed for flexibility in adapting to user preferences and system
requirements. While neural networks are traditionally more suited for pattern recognition
tasks [22], the GA proved to be an appropriate choice for designing a classification system
for AM process selection. Specifically, we implemented a genetic and evolutionary feature
weighting (GEFeW) algorithm [50] to account for all criteria necessary for manufacturing
a 3D-printed object. To the best of our knowledge, there has been limited exploration
of GA application in AM process selection, making this study a novel contribution. In
this research, the weights for each criterion were evaluated to identify an unknown print
object by comparing it to a database of other known objects labeled with the optimal AM
technique. The trained weights were tested on a dataset of 3D-printed objects to determine
their effectiveness. The data-driven AM process selection methodology developed in this
research serves as the basis for a new Design for Additive Manufacturing paradigm.

Contributions of this Research

The key contributions of this paper are:

o  Identifying the need for a versatile AM expert system capable of selecting the optimal
additive manufacturing technique for 3D printed parts across different processes,
materials, and application domains, underscoring this as a key area for future research.

o  The development of a novel data-driven expert system for the optimal selection of
additive manufacturing (AM) processes, based on CAD data and user preferences.

e The implementation of a genetic algorithm (GA) to classify AM techniques by analyz-
ing parametric data, addressing complex classification challenges specific to AM.

e Introduction of the genetic and evolutionary feature weighting (GEFeW) algorithm,
which systematically evaluates and weighs criteria for AM process selection, providing
a flexible and adaptive optimization approach.

2. Methodology

This research aims to develop a heuristic model that can determine the preferred
additive manufacturing (AM) technique for a 3D-printed part. Figure 1 shows a schematic
of the DFAM methodology, which consists of the input part characteristics, knowledge
base, genetic algorithm engine, and output identification of an optimal AM technique. In
this methodology, the input part characteristics were extracted from both the part CAD
file and user requirements. A knowledgebase was compiled from OEM datasheets to
determine AM process specifications. Datasets were populated by combining inputs from
the CAD extraction, user requirements, and knowledgebase. Evolutionary algorithms were
implemented on the datasets to generate weights on different features for each part design.
A two-stage Metamodel was developed using the genetic algorithm based on input vector
specification and data augmentation. The developed genetic algorithm engine had high
prediction accuracy for identifying optimal AM processes for different part designs.
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Figure 1. Framework for a data-driven process selection system for additive manufacturing.

User preferences for the material types were obtained, as each AM technique can be
built with a limited set of material combinations. In addition, other specified components,
such as desired build speed, surface finish, and feature resolution, were recorded. These
inputs were used to evaluate potential AM techniques for building each part based on the
machine’s capabilities.

As shown in Figure 2, the flow of steps that determined the optimal AM technique
started with extracting all the information needed from the part CAD file, converting it to
.stl or .amf formats, and creating the datasheet file. The user preferences were recorded,
and part designs were classified based on inputs from the knowledge base. Then, the data
on file were divided into instances such as the training set and the test set, to assign the
appropriate GA parameters. Also, the eXploratory tool set for the optimization of launch
and space systems (XTOOLSS) software [51] was used to run the genetic algorithm. It
evolved solutions to training sets to be applied to test sets to finalize the results.
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Figure 2. Flowchart for a data-driven process selection system for additive manufacturing.

2.1. Generating Inputs to the Framework

To generate inputs specific to the framework shown in Figure 1, 3D CAD models
of parts (see Figure 3) were downloaded from an online CAD repository—3D Content
Central [52]. The part geometries represented different parts to be fabricated using additive
manufacturing. These parts were converted to .stl or .amf format and analyzed for volu-
metric and surface area data using the Materialize Magics© software suite [53]. Figure 4a
shows the XYZ dimensions, volumetric and surface area data being extracted for this part.
The minimum part thickness was evaluated based on quantifying the variation in thickness
for the part geometry as shown in Figure 4b.

The data collected using the above steps were populated within a datasheet to be
fed to the GA. Nine input variables were defined for capturing the part information. The
dimensional information was recorded in millimeters. Table 1 shows the sample input and
output features for training the GA model.

The genetic algorithm was trained with instances representing the features that de-
scribed a model to be printed. The features listed below (thickness, dimension, surface
finish, etc.) were initially placed in a datasheet where each row denoted an object, as
shown in Table 1. The material keys include 1—Polymer, 2-Metal, 3—Ceramic, 4—Paper,
5—Composite. The objects were classified based on the best technique to print them. As
an example, set number 11 (SLA2 1 299 130 213 8279310 8.5) represented an object with
material using plastic (where plastic is 1, metal is 2, and so on) with a length of 299 mm, a
width of 130 mm, a height of 213 mm, an object volume of 8,279,310 mm?3, and a minimum
thickness of 8.5 mm for the part. The best technique to print this object was determined to
be stereolithography.
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Figure 3. Sample parts with different topologies as inputs for the GA algorithm.
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—Dimensions
Min Max Delta
X 0.000 50.000 50.000 mm
Y 0.000 49.966 49.966 mm
Z 0.000 50.000 50.000 mm
Volume 93887.212 mm?
Surface 16258.001 mm?
—Mesh info
# Triangles 734
# Points 361
—Diagnostics
v/ Inverted normals 0
\/ Bad edges 0
v/ shells 1
(a)

15.000 mm
13,900 mm

5 12,800 mm
4 11.700 mm
10.500 mm
9.500 mm
8,400 mm
7,300 mm
6.200 mm

5.100 mm
jl +.000 mm

(b)

Figure 4. (a) Dimensional, volumetric, and surface area data being extracted from part design
and (b) minimum part thickness evaluated based on quantifying the variation in thickness for the
part geometry.
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Table 1. Sample datasheet contains some features classified based on best techniques.

INPUT Variables Units
OUTPUT (mm)
Features Extracted from AMF and STL GUI Specified Features
Length . Height Object Minimum Surface Build Feature
Set Tecll?rll\;[ ue Material X) Wzilt:‘)w) (2) Volume Thickness Finish Speed Resolution
9 (mm) (mm) (mm?) (mm) (um) (mm/h) (um)
1 LOM2 4 3000 3000 3000 27,000,000,000 30 3 3 3
2 LOM2 4 15104 755 1030 1,174,562,560 2.5 3 3 3
3 SLS1 3 59.538 39.642 20.015 47,239.511 0.3 2 2 2
4 LOM1 4 100.631 99.2 24.2 241,578.8038 2.8 2 2 2
5 LOM1 1 66 50 60 198,000 3 2 2 2
6 LOM1 4 88.9 157.15 6.35 88,713.53225 55 2 2 2
7 FDM2 1 228.6 228.6 165.1 8,627,789.196 9 2 2 2
8 FDM2 1 152.4 151.724 203.2 4,698,540.28 8 2 2 2
9 FDM1 1 54.247 24.581 6.924 9232.77669 1 2 2 2
10 FDM1 1 40 20.005 11.09 8874.218 0.35 2 2 2
11 SLA2 1 299 130 213 8,279,310 8.5 2 2 2
12 SLS2 3 150 120 150 2,700,000 3.65 2 2 2
2.2. Knowledge Base
A knowledge database was created by populating information from a literature review,
AM manufacturer specifications, and experimental and computational models for different
AM processes [54-58]. As shown in Table 2, examples of AM technique specifications were
introduced for knowledge base such as surface finish, minimum thickness, build volume
(XYZ), resoultion, material, and build speed.
Table 2. Specifications of AM processes populated as part of knowledge base.
AM Build Volume Build Speed St}rf.ace . Resolution M1}11mum
No. . 3 Finish Material Thickness
Technique (mm?) (mm/hr) (um)
(um) (mm)
1 FDM (355 x 305 x 305) 743 150-300 Polymers 200400 0.33
2 SLA (736 x 635 x 533) 7-30 80-130 Polymers 35-100 0.1
3 SLS (381 x 330 x 460) 25-60 125-250 Metal 60-150 0.10
4 3DP (914 x 610 x 914) 20-50 180-300 PLA, ABS 50-180 0.02
Paper, plastic, 1122_3;1)‘0
6 LOM (381 x 254 x 355) 40-150 200-500 and some 150F3O,O 0.1-0.19
sheet metals .
Plastic

2.3. Genetic and Evolutionary Weighting for AM Classification

Advancements in technology, modeling, and simulation tools are vital in engineering
design to improve the speed and enhance the cost efficiency of the design cycle. Evo-
lutionary computations, such as genetic algorithms, can be used to optimize solutions
for any defined problem. With increasing design parameters, it becomes very difficult
to obtain optimal solutions as systems become more complex. Genetic algorithms (GAs)
operate on the principle of natural selection (survival of the fittest) to search the population.
GAs were made relatively easier to use by the development of software with user-friendly
interfaces. This enables engineers to solve complex optimization problems with minimal
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understanding of the system (mainly the system parameters being optimized and their role
in system operation).

The eXploratory tool set for the optimization of launch and space systems (XTOOLSS)
source code [51,59] was used to execute the genetic algorithm. Table 3 shows the parameters
used for the stage 1 and stage 2 datasets. For each algorithm, there were 30 runs performed
on the training set. For normally distributed data, approximately 30 observations were
needed to have reasonably short confidence bounds on the variance estimate. The best
solution from each run was applied to a test set.

Table 3. GA parameters used in stage 1 and stage 2.

Parameters 100 Datasets 300 Datasets
Population size 20 30
Total evaluations 1000 8000

Gaussian mutation rate 0.2 0.2
Mutation usage rate 1.0 1.0
Number of runs 30 30

Crossover type Uniform Uniform
Crossover usage rate 1.0 1.0

XTOOLSS [51] allows the user to implement the fitness function in java. The problem
is, ‘if a person has an object that they want to 3D print, what is the best AM technique
to use?” To come up with the solution, consider all the information that the user could
possibly know. A training set was constructed that contained instances that were each
represented by a set of nine variables described earlier. The Genetic and Evolutionary
Feature Weighting (GEFeW) [50] technique was used to evolve a set of weights, denoted as
a vector of feature weights (FWs). Wi = {wi, 0, wi, 1,..., wi,n — 1} represents the weighting
values for each set of weights. The fitness f; = 10 € represents the fitness of any evolved FW,
where ¢ denotes the number of errors that an FW obtains on a dataset.

Fitness = Minimize {10 X the number of incorrect instances} (1)

The Fitness formula explains a minimizing evaluation function that seeks to attain
solutions close to a fitness value of zero. Offspring FWs are created based on the previously
selected parents. The offspring are then evaluated and assigned fitness based on their
performance on the training set. After the offspring is evaluated, a new population is then
formed by replacing the worst individual in the population with the offspring.

For this problem, identification is used to classify the best technique to use for a
job. Identification is the process of comparing different instances to one another and
determining whether the system can determine the identity of an instance. Instances are
classified based on the best technique for that instance to use for 3D printing. Given the
problem definition, the ‘solution’ is represented as a set of weights to apply to instances
as they are being compared. The weights were trained on the training set. The fitness is
the number of instances incorrectly classified in the training set. The absolute best fitness
solution can have from the fitness function is 0.0, while the worst is the number of instances
in the training set.

The best weights (that were optimized on the training set) were generalized on some
test sets of mutually exclusive instances to gauge the performance of the evolved weights.
The test set was used to test how accurate the evolved weights were in classifying unknown
objects by the optimal printing technique. An unknown portion of the test set was compared
to the remaining portions of the test set via identification. The weights were applied to
all instances during identification. The output of the model was defined as the accuracy
of identifying the unknown portions by technique. GEFeW was chosen as the technique
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for classification due to its low computational cost compared to other techniques such as
neural network classifiers or random forest classifiers for feature selection [50].

3. Results and Discussion
3.1. CAD Data Extraction and Knowledge Base

To demonstrate the feasibility of the framework, a two-stage case study was imple-
mented. CAD part files were downloaded from the online CAD database, where part
types represented different part geometries used in real-life examples. These included
prismatic, cylindrical, and combinatorial features and topographies such as brackets, cou-
plings, housings, etc. A genetic algorithm was used to evolve weights for the AM technique
classification problem, as seen in the flow chart in Figure 2. Two different datasets and input
attributes were used. Stage 1 comprised 100-part designs with coded keys for user-specified
attributes, whereas stage 2 comprised 300-part designs with actual numerical values for
all attributes.

3.1.1. Stage 1 GA with 100-Part Designs

In stage 1, the datasheet was populated with 100 print objects. In total, 50% of the
instances composed the training set, while the other 50% composed the testing set. Each
part’s information was represented by nine features. These include material type, length
(x), width (y), height (z), object volume, minimum wall thickness, surface finish, build
speed, and feature resolution. The dimensions were measured in millimeters. Surface
finish, build speed, and feature resolution were coded as three-level keys as shown in
Table 5. The material type feature was numerically coded as five types of materials as
shown in Table 4. There were 10 AM techniques used for classification: Stereolithography
(SLA1, SLA2), Fused Deposition Modelling (FDM1, FDM2), Selective Laser Sintering (SLS1,
SLS2), 3D Printing (3DP1, 3DP2), Laminated Object Manufacturing (LOM1 and LOM2).
The larger dimensions were labeled technique_1, and the smaller-sized objects were labeled
technique_2. The two sub-classifications for the AM machines were labeled to represent
differences in AM process capability in terms of build volume and build speed. Each
classification had 10 instances. Instances were labeled appropriately as the best technique
to use by consulting experts in the AM field. The coded keys for the AM technique and
part feature attributes are shown in Table 4.

Table 4. Coded keys for AM technique and part feature attributes.

AM Material Surface . Feature

Coded Key Technique Type Finish Build Speed Resolution

1 LOM 1 Polymer Smooth Slow Fine Detail

2 LOM 2 Metal Medium Medium Medium

3 FDM 1 Ceramic Coarse Fast Coarse

4 FDM 2 Paper

5 SLS1 Composite

6 SLS2

7 SLA1

8 SLA 2

9 3DP 1

10 3DP 2

There were 30 runs of GEFeW performed on the AM dataset, resulting in 30 optimized
sets of weights on the training set. Table 5 shows the average identification accuracy of the
30 weights on the test sets as well as the best accuracy. These were compared to a baseline
approach. The baseline approach uses the Manhattan distance metric to identify different
instances with no weights for features.
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Table 5. Average identification accuracy for 100 and 300 datasets.

Method Average Accuracy Best Accuracy
Identification accuracy for 100

datasets

Baseline N/A 10.0%

GEFeW 70.0% 80.0%
Identification accuracy for 300

datasets

Baseline N/A 40.0%

GEFeW (SSGA) 97.33% 100.0%

The results show that the Genetic and Evolutionary Feature Weighting (GEFeW)
approach has a better performance than the baseline approach regarding the identification
of the average and the best.

Figure 5a,b show the cumulative match characteristic (CMC) curves and receiver
operator characteristic (ROC) curves for the baseline approach and GEFeW applied on
the test set, respectively. The CMC curve (Figure 5a) denotes the rank accuracy of both
techniques. The rank represents the closeness of identification; therefore, a rank of two
means that an approach correctly identified an object within the two closest matches.
GEFeW has a rank 1 accuracy of 80% and achieved a 100% accuracy at rank 4, whereas the
baseline approach did not achieve 100% until rank 10 and had an initial accuracy of 10%.
The ROC curve (Figure 5b) denotes the verification performance of both GEFeW and the
baseline on the test set. Verification is a representation of how similar two objects are to each
other. The ROC curve plots the true accept rate (TAR) against the false accept rate (FAR).
TAR represents the similarity of all instances compared to their respective counterparts,
whereas FAR represents the instances compared to other, nonmatching, instances. The
results show that the GEFeW technique has a superior TAR to FAR ratio, while the baseline
has poor performance.

There were 30 runs of GEFeW performed on the AM dataset, resulting in 30 optimized
sets of weights on the training set. The 30 weights were generalized on a test set of instances
mutually exclusive from the training set, and the performance was recorded. The GEFeW
approach had a significantly better performance than the baseline (no weights), suggesting
that weighting features are necessary for correct AM classification.

Table 6 shows the average weight for each feature; each weight signifies the importance
of that feature for classification. The highest-weighted features are material type, build
speed, surface finish, and feature resolution. The features with the lowest weights were
the XYZ dimensions, build volume and minimum thickness. Though there were AM
techniques that were better for certain-sized objects, overall, the user preferences such as
surface finish, build speed, and feature resolution seem to contribute the most towards
determining the best AM technique to use. The dimension-related weights seem to have
the lowest weights, but when GEFeW was run on a dataset with these features removed,
the overall classification accuracy decreased. More specifically, the average accuracy
decreased from 70% to 64% when these features were eliminated. This result suggests that,
though the significance of the dimension features is minimal, the inclusion of these features
is important.

Table 6. Average weights of GEFeW for AM classification for 100 datasets.

. . Build Min. Surface Build Feature
Feature Material Length Width Height Volume Thickness Finish Speed Resolution
(mm) (mm) (mm) 3
(mm?) (mm) (1um) (mm/h) (1um)
Weight 0.8282 0.0078 0.0004 0.0031 0.0 0.0645 0.63432 0.8276 0.76555
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Figure 5. (a) Cumulative match characteristic (CMC) curves and (b) receiver operator characteristic
(ROC) for stage 1 (100 dataset).

Table 7 shows the frequency of correct AM classifications for each instance when apply-
ing the 30 sets of weights on the test set. The classification labeled 3DP2 was misclassified
most often (not getting any correct), while the LOM instances were correctly classified for
all 30 weights. There are several instances where, among the same set, one set had nearly all
30 weights correctly classify the instance (FDM1, SLA1, 3DP1) while the other set only had
one or fewer correctly classified (FDM2, SLA2, 3DP2). The FDM2 instances were incorrectly
classified as SLS2, the 3DP1 instances were mislabeled as 3DP2, and the SLA2 instances
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were misclassified as FDM2 in most of the runs. A comparison of the testing data shows
that the SLA2 and FDM2 instances have similar build speeds, feature resolutions, and
material features. Between the FDM1 and FDM2 sets, the dimensions were vast enough to
distinguish between the two sets. The dimension sizes are also similar for the SLS 1 and
2 sets, suggesting that more attention must be paid to the user preference features when
doing classification. The 3DP1 dataset had a higher classification than 3DP2, due to the
dimension sizes as well. The Manhattan distance metric was used, but normalization may
be necessary to prevent any large difference in similarity scores.

Table 7. The frequency of correct classifications for each AM classification for 100 datasets.

LOM2 LOM1

FDM2 FDM1 SLS2 SLS1 SLA2 SLA1 3DP2 3DP1

30 30

1 29 1 30 29 30 0 30

3.1.2. Stage 2 GA with 300-Part Designs

The AM classification accuracies for part designs in stage 1 were low for reliable AM
process selection prediction. This problem was addressed by increasing the datasets to
300-part designs and quantifying the coded keys for specific attributes (surface finish, build
speed, and feature resolution). The 300 datasets were divided into 200 training and 100 test
datasets. Each AM sub-classification was assigned an equal number of part designs in the
training set. The user input features (surface finish, build speed, and feature resolution)
were quantified as numerical range values for each AM process based on information
gathered from OEM data sheets and expert feedback [60-62]. The ranges for surface finish,
build speed, and feature resolution are shown in Table 8 for different AM processes.

Table 8. Design rule ranges for different AM processes.

SLA SLS FDM 3DP LOM
Build speed 7 to 30 25 to 60 7 to 43 20 to 50 40 to 150
(mm/h)

S“rf?;fnf;mh 80 to 130 125 to 250 150 to 300 180 to 300 200 to 500

100-300
Resolution (paper) and

o) 35 to 100 60 to 150 200 to 400 50 to 180 150300
(plastic)

The instances were labeled with the optimal technique for the job. The design rules
obtained through the literature review helped determine what would be included in the
instances. Therefore, if an instance was labeled as selective laser sintering (SLS), it could
have used specific materials and would have a certain build speed associated with it [56].
Five additive manufacturing techniques were further subdivided into two categories based
on the differences in build volume [63]. A total of 300 datasets were split into 200 for
training and 100 for testing sets, respectively. This dataset was used to execute the genetic
algorithm with nine (9) part attributes (input variables).

The steady generational genetic algorithm (SSGA), estimation of distribution algorithm
(EDA) and a particle swarm optimization (PSO) technique were selected due to their distinct
algorithmic properties and proven effectiveness in optimization tasks, particularly in
complex, multi-dimensional search spaces encountered in additive manufacturing. In this
research, SSGA demonstrated its ability to maintain genetic diversity and avoid premature
convergence, which is critical in finding optimal solutions in highly non-linear and multi-
modal landscapes typical in additive manufacturing. SSGA'’s steady-state nature allows for
a more controlled and gradual evolution of the population, providing a balance between
exploration and exploitation of the search space.
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EDA was included because it represents a probabilistic model-based approach, which
differs significantly from the population-based search mechanisms of genetic algorithms
and PSO. EDA constructs and updates a probabilistic model of promising solutions, en-
abling it to capture and exploit the underlying structure of the problem space. This
characteristic is particularly useful when the problem domain has inherent probabilistic
relationships between variables such as build volume and build speed, as is often the case
in additive manufacturing processes.

PSO was selected due to its simplicity, ease of implementation, and effectiveness
in handling continuous optimization problems. It mimics the social behavior of birds
flocking or fish schooling, making it well-suited for searching large, continuous spaces.
PSO’s reliance on the collective behavior of particles to explore the search space can
be advantageous for global optimization, which is essential in additive manufacturing
where parameter interactions are complex and non-linear. In our research, the relationship
between material type, resolution and surface finish depends on several factors such as
build speed and layer height.

By comparing these three distinct techniques, this research aimed to assess the
strengths and limitations of each approach in the context of additive manufacturing, ulti-
mately demonstrating the robustness and superior performance of SSGA in this application.
The diversity in the selected algorithms ensured a comprehensive evaluation of different
optimization strategies, providing valuable insights into the most effective methods for
optimizing additive manufacturing parameters.

Given the low dimension space of the problem (selecting parameters to optimize the
AM process), it was determined that the computational complexity of the environment
used to execute the genetic algorithm is not the key aspect of this research, as the created
solution from XTOOLSS would be generally used and the time of creation will not impact
future uses of the generated parameters.

Several researchers have applied machine learning and artificial intelligence models
to AM process modeling. Aminzadeh and Kurfess implement a Bayesian classification in
powder-bed AM using visual camera images [64] for quality monitoring. Zhu et al. [65]
provided a prescriptive deviation modeling methodology to control geometrical variations
in AM. Further, Wu et al. [66] utilized an acoustic emission sensor coupled with a hidden
semi-Markov model to identify failure states in fused deposition modeling. Olowe et al. [67]
implemented a harmonic-percussive source separation technique along with eight different
machine learning algorithms for predictive quality control in AM. Yang et al. [68,69]
incorporated a rheological process parameter study to identify optimal factors in slurry-
based 3D printing processes. Mehrpouya et al. [70] applied neural networks to generate a
nonlinear map to identify optimal operational parameters in shape memory alloys using
AM. Hoenig et al. [71] discussed the need to integrate explainable artificial intelligence (XAI)
with cyber-physical systems such as additive manufacturing. In spite of these attempts
to improve AM processes, there exists no holistic Al model that can assist in translating
input product designs to specific AM processes based on design and user requirements.
Our results described herein clearly demonstrate the potential of SSGA to address process
selection issues in AM.

Each run was executed for 8000 generations. A steady-state genetic algorithm (SSGA)
was determined to be the most effective algorithm after preliminary testing. A preliminary
experiment was performed on a training set of 200 instances (40 instances per technique).
The recognition accuracy of the steady generational genetic algorithm (SSGA) was shown
to be significantly superior when compared to an estimation of distribution algorithm
(EDA) and a particle swarm optimization (PSO) technique. The EDA and PSO techniques
were run for 8000 function evaluations, with a population size of 20 for each algorithm.
To verify the observation that SSGA outperformed EDA and PSO, a factorial analysis of
variance (ANOVA) was performed. Table 9 shows the ANOVA that was carried out with
an « = 0.05, and a resulting p-value of 0.0033, suggesting a significant difference among
the three groups of data (SSGA, EDA, and PSO). Figure 6 shows the comparative analysis
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of the three algorithms. A significant difference was shown suggesting SSGA as the best
performance, which had an average performance of 97.33%. The average PSO accuracy
was 91.33%, and the average accuracy of the EDA was 93.33%.

Table 9. ANOVA for evaluating algorithms.

SUMMARY
Groups Count Sum Average Variance
SSGA 30 292 97.33 0.34
EDA 30 280 93.33 0.44
PSO 30 274 91.33 0.60
ANOVA
Source of Variation SS df MS F p-value F crit
Between Groups 5.6 2 2.8 6.09 0.0033 3.10
Within Groups 40 87 0.46
Total 45.6 89
= Significance(p<0.05) :|Accuracy
100 ~
80+
7}
© 60
3
3]
Q
<
40 -
20 |
0 T T T T T
SSGA EDA PSO

Algorithm

Figure 6. Comparative statistical analysis of algorithms for additive manufacturing process selection.

The SSGA for the experimental results was implemented with a population size of 30,
a Gaussian mutation rate of 0.2, and uniform crossover and binary tournament selection.
The best solution from each run was applied to a test set. Each instance within the datasets
was an object represented by its dimensions, wall thickness, volume, material, preferred
build speed, and preferred surface finish.

Figure 7a,b show the cumulative match characteristic (CMC), curves and receiver
operator characteristic (ROC) curves for the baseline approach and GEFeW applied to the
test set. The CMC curve denotes the rank accuracy of both techniques. The rank represents
the closeness of identification, so a rank of two means that an approach correctly identified
an object within the two closest matches. GEFeW has a rank 1 accuracy of 100%, whereas
the baseline approach does not achieve 100% until rank 5 and had an initial accuracy of
40%. The ROC curve denotes the verification performance of both GEFeW and the baseline
on the test set. Verification is a representation of how similar two objects are to each
other. The ROC curve plots the true accept rate (TAR) against the false accept rate (FAR).
TAR represents the similarity of all instances compared to their respective counterparts,
whereas FAR represents the instances compared to other, nonmatching instances. The
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results show that the GEFeW technique has a superior TAR to FAR ratio, while the baseline
has poor performance.

CMC for 300 Dataset

110 : :

100 - - - - - - = 9

90 - i
80 -
70 -
60 -
50 -
40 4

Accuracy (%)

30

1 —a—RBaseline
20 - — e —GEFeW
10 -

1.2'3.4.élé'%';3.é'10
Rank

(@)

ROC for 300 Dataset

1.1 : :

T

1.0—-
0.9—-
0.8—-
0.7—-
0.6—-
0.5—-

@ 0.4

Accept Rate

Tru

0.3
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—eo—GEFeW

0.2 4

0.1

0.0

. : : . :
0.0 0.2 0.4 0.6 0.8 1.0
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Figure 7. (a) Cumulative match characteristic (CMC) curves and (b) receiver operator characteristic
(ROC) for stage 2 (300 dataset).

There were 30 runs of GEFeW performed on the AM dataset, resulting in 30 optimized
sets of weights on the training set. The 30 weights were generalized on a test set of instances
mutually exclusive from the training set, and the performance was recorded. The GEFeW
approach had a significantly better performance than the baseline (no weights), suggesting
that weighting features are necessary for correct AM classification. Table 10 shows the
average weight for each feature; each weight signifies the importance of that feature for
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classification. The highest-weighted features were build speed, build volume, and surface
finish.

Table 10. Average weights of GEFeW for AM classification for 300 datasets.

Feature Material

Length Width Height
(mm) (mm) (mm)

Build Min. Surface Build Feature
Volume Thickness Finish Speed Resolution
(mm?) (mm) (um) (mm/h) (um)

Weight 0.684

0.003435 0.00223 0.08627 0.040351 0.23344 0.388319 0.78108 0.2250195

The features with the lowest weights were the minimum thickness, XYZ dimensions,
and feature resolution. Though there are techniques that are better for certain-sized objects,
overall, object preference seems to contribute the most towards determining the best AM
technique to use. The dimension-related weights seem to have the lowest weights, but
when GEFeW was run on a dataset with these features removed, the overall classification
accuracy decreased. This result suggests that, though the significance of the dimension
features is minimal, the inclusion of these features is important overall.

Table 11 shows the frequency of correct classifications for each instance when applying
the 30 sets to weights on the test set. The instances labeled 3DP2 were misclassified most
often (not getting some correct), while the LOM instances were correctly classified for
all 30 weights. Both FDM and SLA processes had 100% prediction accuracy for part
classification. The SLS1 had accurate predictions; however, the SLS2 process missed
correctly predicting two-part instances. Between the FDM1 and FDM2 sets, the dimensions
were vast enough to distinguish between the two sets. The dimension sizes are also similar
for the SLS 1 and 2 sets, suggesting that more attention must be paid to the user preference
features when doing classification. The 3DP1 dataset had a higher classification than
3DP2, due to the dimension sizes as well. The Manhattan distance metric was used but
normalization may be necessary to prevent any large difference in similarity scores.

Table 11. Frequency of correct classifications for each AM classification for 300 datasets.

LOM1 LOM2

FDM1 FDM2 SLS1 SLS2 SLA1 SLA2 3DP1 3DP2

30 30

30 30 30 28 30 30 30 24

In stage 2, the inclusion of quantitative datasets for each feature as well as augmenting
data to 300 printable objects had a positive influence on the prediction accuracies of the
GA algorithm. The frequency of correct classification for each AM process subset increased
substantially as compared to stage 1 (100 datasets). In particular, the FDM2, SLS1 and 3DP2
processes had a dramatic increase in classification accuracy from 1 or 0 in 30 instances
(shown in Table 7) to 30 of 30 (Table 11) object classifications accurately identified for
stage 2. Figure 6 clearly shows that the 300 datasets had a superior ROC performance
reaching 90% accuracy far earlier as compared to Figure 5 for the 100 datasets. Thus,
it can be estimated that providing specific quantitative feature instances and a higher
number of datasets provides a higher discriminating power of the genetic algorithm. The
steady-state generational genetic algorithm (SSGA) provided a 97% average accuracy
as benchmarked against the estimation of distribution algorithm (EDA) and a particle
swarm optimization (PSO) technique. This research demonstrates an automated additive
manufacturing selection system wherein parts can be accurately assigned to respective
3D printing processes which would require expert guidance that is acquired over several
years in the AM field. Its practical utility can benefit additive manufacturing service
bureaus to assign CAD designs to different AM machines on their network with minimal
human intervention.
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4. Limitations and Future Work

While this research presents a promising data-driven system for identifying opti-
mal additive manufacturing (AM) processes based on CAD data and user requirements,
one key limitation is the relatively small size and variety of the dataset used for train-
ing and testing the genetic and evolutionary feature weighting (GEFeW) algorithm. The
limited dataset may have affected the robustness of the model, particularly in the consis-
tent misclassification of SL.S2 and 3DP2 labeled instances. In terms of future work, the
first focus is expanding the dataset to include a broader variety of instances, which will
further improve the system’s performance and ensure its adaptability to a wider range
of applications. Future research will also explore combining multiple classifiers with the
GEFeW approach to enhance classification accuracy further. This will establish a more
comprehensive framework for identifying optimal printing techniques. The ultimate aim
is to evolve this work into a comprehensive Design for Additive Manufacturing (DFAM)
system that can define precise design guidelines tailored to the specific AM process used,
thereby enabling more efficient and automated decision-making in 3D printing. In addition,
this proof-of-concept methodology will be interfaced with industry-based CAD software
packages and commercial 3D printing portals to demonstrate its practical impact.

5. Conclusions

A data-driven system for identifying preferred additive manufacturing processes
is presented based on input part CAD data and user requirements. The genetic and
evolutionary feature weighting (GEFeW) approach was used to classify the optimal AM
technique based on several input features including part dimensions, build speed, surface
finish, and material specification. The results were obtained when identifying a set of
print object instances in a database of instances with different preferable techniques. The
results showed that the GEFeW technique was superior to the generic distance metric
approach with no weights regarding identification. The verification results also show
superior performance for GEFeW compared to the baseline, though the fitness function
was optimizing identification. Out of the 30 runs, the SLS2 and 3DP2 labeled instances
were the most consistently misclassified, while other objects were consistently classified
correctly. This research shows promise as a new method for determining optimal printing
techniques for 3D-printed objects over the current practice of consulting an AM expert.
This work will be extended by creating larger datasets, with a greater variety of instances
for optimal training. Different classifiers can also be combined for improved performance.
GEFeW was purely optimized on a training set, and overfitting was avoided to have a
winning performance on the mutually exclusive test set. For larger datasets, a validation
set of mutually exclusive instances will be introduced during the training process. During
the training process, masks will be trained on the training set, but the trained instances
will be applied to the validation set, and the best-performing mask will be recorded over
time. This will ensure that no mask is overfitted to only seek the local optimal solution.
This research establishes the foundation for the development of a Design for Additive
Manufacturing (DFAM) system that can be extended to specify design rules based on the
underlying AM process.
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