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Abstract—With the rapid digitization of the world, an in-
creasing number of real-world applications are turning to non-
Euclidean data, modeled as graphs. Due to their intrinsic high
complexity and irregularity, learning from graph data demands
tremendous computational power. Recently, CMOS-compatible
Ising machines, i.e., dynamical systems fabricated with CMOS
technologies, have emerged as a new approach that harnesses the
inherent power of nature within dynamical systems to efficiently
resolve binary optimization problems and have been adopted for
traditional graph computation, such as max-cut. However, when
performing complex Graph Learning (GL) tasks, Ising machines
face significant hurdles: (i) they are binary and thus ill-suited
for real-valued problems; (ii) their expensive all-to-all coupling
network that guarantees generality for optimization problems
poses daunting scalability concerns.

To address these challenges, this paper proposes a nature-
powered graph learning framework dubbed DS-GL, which is
the first effort to transform the process of solving graph
learning problems into the natural annealing process within a
parameterized dynamical system embodied as a CMOS chip.
To tackle the two major hurdles, DS-GL first augments the
Ising machine architecture to modify the self-reaction term of its
Hamiltonian function from linear to quadratic, effectively serving
as an energy regulator. This adjustment maintains the system’s
original physical interpretation while enabling it to process
continuous, real-valued data. Second, to address the scaling issue,
DS-GL further upgrades the real-valued dense Ising machine by
decomposing it into a mesh-based multi-PE dynamical system
that supports efficient distributed spatial-temporal co-annealing
across different PEs through sparse interconnects. By exploiting
the inherent sparsity and community structures in real-world
graphs, DS-GL is able to map complex graph learning tasks onto
the scalable dynamical system while maintaining high accuracy.
Evaluations with four diverse GL applications across seven real-
world datasets, including traffic flow and COVID-19 prediction,
show that DS-GL can deliver from 10®x to 10°x speedups over
Graph Neural Networks on GPUs while operating at a power 2
orders of magnitude lower than GPUs, with 5% — 30% accuracy
enhancement.

Index Terms—Dynamical System, Graph Learning, Nature-
Powered Computing

I. INTRODUCTION

As the world experiences rapid informatization and digital-
ization, a growing number of applications are turning to non-
Euclidean data with high complexity and best represented as
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graphs. These applications span a broad spectrum of critical
areas, including power grid cascading failure prediction, traffic
flow management, and pandemic forecasting, among many
others. Most of these applications pose stringent demands on
real-time processing, low energy consumption, and simultane-
ously high accuracy. Meeting these demands presents substan-
tial challenges, primarily due to the intrinsic complexity and
irregularity of graph data [12].

Graph Neural Networks (GNNs), as the current State-Of-
The-Art (SOTA) Graph Learning (GL) approach, have recently
drawn tremendous attention due to their strong capability to
extract latent information from graph data. Following years
of advancements in algorithms [4], [8], [11] and the devel-
opment of specialized hardware accelerators [12], [30], [42],
[43], GNN research is transitioning into an era of practical
application. The pursuit of exceptional accuracy has spurred
the emergence of numerous application-specific GNNs [34],
[35], characterized by their rapidly escalating algorithmic com-
plexity and the consequent need for tremendous computational
power. Historically, the fast growth in computational power of
digital hardware, driven by Moore’s Law, has facilitated the
pursuit of enhanced accuracy through trading model complex-
ity while maintaining computational efficiency. Regrettably,
the approaching end of Moore’s Law has cast a shadow over
the future advancement and real-world adoption of GNNs.
While the optimization of digital processors remains a vital
area of exploration, it is equally imperative to investigate
alternative computational paradigms and assess their potential
in advancing the field of GL.

The recent development of CMOS-compatible Ising ma-
chines [2], coupled with their impressive efficacy in addressing
traditional graph problems (e.g., max-cut), suggests that the
intrinsic power of nature within dynamical systems can be
potentially exploited in GL. Specifically, an Ising machine is a
parameterized dynamical system governed by the Hamiltonian
of the Ising model'. As a dynamical system, the machine
naturally evolves towards fixed points. Combined with proper
annealing control, the machine has the effect of autonomously
seeking states of lowest energy — a phenomenon termed as

'Ising model: a binary statistical physics model widely used to represent
spin glasses; Hamiltonian: the energy function of dynamical systems.

979-8-3503-2658-1/24/$31.00 ©2024 IEEE 45
DOI 10.1109/ISCA59077.2024.00014
Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.



natural annealing. When the parameters of the Ising machine
are properly configured, lowest energy states correspond to
the desired solutions of an optimization problem. Thus the
machine has the effect of “solving” these problems through
natural annealing with extraordinarily energy efficiency and
at “the speed of electrons”. Take graph cut as an example, a
~200 mW Ising machine can perform high-quality max-cut
delivering orders of magnitude speedup over 200 W GPUs.

The remarkable capabilities of modern Ising machines
present a compelling question: Can we leverage the natural
computational power of such dynamical systems to advance
graph learning by simultaneously offering clearly lower la-
tency, better energy efficiency, and higher accuracy? Most
graph learning problems fundamentally target dynamical sys-
tems, e.g., power grid, traffic systems, and supply chain. It is
natural to wonder whether a programmable dynamical system
can better analyze the behaviors of these dynamical systems
than general-purpose processors. Intuitively, the answer is
affirmative. Specifically, we can construct a dynamical system
whose data distribution aligns with that of the target Graph
Learning (GL) problem by training the system’s parameters
with the problem’s training data. Accurate alignment ensures
that the system’s lowest energy states correspond to the desired
GL solutions with the highest probability. Consequently, the
dynamical system can swiftly conduct GL inference through
natural annealing at negligible cost. The statistical basis under-
pinning this method is analogous to that of modern generative
Als, such as stable diffusion [21].

Unfortunately, in practice, the full potential of Ising ma-
chines in real-world GL cannot be realized until two major
challenges are addressed. (1) Binary Nature: Ising machines
focus only on binary values (Ising spins), limiting their ap-
plications in real-valued contexts. Efforts [15] to circumvent
this limitation by using multiple binary nodes to represent
high-precision values not only compromise solution quality but
also necessitate a substantial increase in the required number
of nodes of the machine, exacerbating the second problem —
scalability. (2) Poor Scalability: To enhance versatility and
solution quality, SOTA Ising machines use all-to-all connec-
tions with n? couplers connecting n nodes through a huge
crossbar, ensuring direct and immediate interactions between
any two nodes during annealing. However, this design leads
to scalability issues. Attempts [31], [40] to improve scalability
using partially connected interconnects with uniform patterns,
such as King’s graph topology (where each physical node
connects with eight neighbors), fall short in handling high-
degree nodes, a common occurrence in real-world graphs.
In light of this, a new Dynamical-System-based Processing
Unit (DSPU) — capable of supporting real-valued natural
annealing and scalable for GL applications — is highly desired.

To this end, this paper proposes a novel Dynamical-System-
based Graph Learning framework, DS-GL, which incorporates
a real-valued and scalable DSPU coupled with a series of
training algorithms for constructing efficient and scalable
dynamical systems for GL problems. The overview of DS-GL
is illustrated in Fig. 1. Specifically, to enable stable real-valued
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Fig. 1. Overview of DS-GL framework and its performance over GNNs.

natural annealing, DS-GL first upgrades the SOTA Ising
machine hardware with a circulative resistor ring and the self-
reaction term of its corresponding Hamiltonian (Sec.IIl.A);
then, a training algorithm (Sec.II.B) that accurately config-
ures the system is developed. The algorithm transforms the
process of solving GL problems into a process of natural
annealing. Coupled with this algorithm, the new “Real-Valued
DSPU” can perform real-valued GL with high performance
and accuracy. To enhance the scalability, DS-GL further up-
grades Real-Valued DSPU into a larger system, dubbed “Scal-
able DSPU”’, with a mesh-based multi-PE architecture that
efficiently supports distributed spatial-temporal co-annealing
(Sec.IV.D); Coupled with a learning-based clustering algo-
rithm (Sec.IV.C) that can reconstruct dense dynamical systems
into the sparse ones with community structures while main-
taining high accuracy in natural annealing, Scalable DSPU can
solve over 4x larger real-valued GL problems than an Ising
machine with only a 30% increase in chip are.

To the best of our knowledge, DS-GL is the first work that
uses physical dynamical systems and harnesses their intrin-
sic nature’s computational power to solve real-world graph
learning problems and outperforms SOTA GNN solutions. The
contributions are summarized below:

« We propose a novel nature-powered graph learning frame-
work, DS-GL, that unleashes the inherent computational
power of dynamical systems in graph learning.

o We propose learning-based algorithms that accurately
transform the process of solving graph learning problems
to the natural annealing process of sparse dynamical
systems with a hardware-friendly community structure.

« We propose a new dynamic-system-based processing unit,
Scalable DSPU, rooted in a CMOS-compatible Ising
machine. Scalable DSPU inherits the extraordinary com-
putational efficiency of the Ising machine and extends its
potential to real-valued and larger-scale GL problems.

« Experimental results across four real-world applications
and seven datasets show that DS-GL achieves from 10°%x
to 10°x speedup and 5% — 30% higher accuracy over
GNNs on GPUs while operating at a power 2 orders of
magnitude lower than GPUs.
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II. BACKGROUND
A. Ising Model

The Ising model [6] is a statistical model widely used in
the study of physics, chemistry, and biology. The Ising model
is defined by its energy function or Hamiltonian:

N N
Hising = — Z Jijoio; — thi (D

i#j i
where o; € {—1,+1} represents the spins within the system.
Jij is the coupling parameter representing the correlation
between spin ¢ and spin j, and h; refers to the self-reaction
strength to external influences.

B. BRIM: the Current SOTA Ising Machine

Ising machines are essentially physical embodiments of
the Ising model. Specifically, through their designed spin
dynamics, lower energy states of the Ising Hamiltonian are
automatically pursued. Besides many existing Ising machines
implemented with quantum or optical components, CMOS-
based Ising machines have recently emerged and drawn in-
creasing attention due to their low-barrier deployment. One
typical example is BRIM [2]. Furthermore, they typically
solve problems through the movement of electrons among
electronic components such as capacitors, therefore being able
to deliver solutions with the “speed of electrons”. Despite
the many advantages and potential of Ising machines, their
unique problem-solving power has only been demonstrated
for binary problems. Inspired by the superior performance of
BRIM in solving graph optimization problems, we develop
DS-GL, which takes the BRIM architecture reported in [2] as
a building block. Before delving into DS-GL design, we first
briefly introduce the BRIM architecture below.

Fig. 2 shows the overview of the BRIM architecture. The
values of nodes are represented by the voltages of capacitors in
each NNV, block. To facilitate all-to-all connection among nodes,
BRIM is equipped with a fully-connected coupling network
(the network of J;; blocks) based on programmable resistors.
Therefore, the differences between the voltages of nodes
will naturally generate currents among the coupling network
to reduce the system energy and push the system towards
equilibrium. Programming Units are used to program BRIM
by configuring the coupling parameters of the network (i.e.,
the resistance of the programmable resistors). The couplers
are programmed column by column controlled by the Column
Select Unit. Node Control Unit is in charge of node value
initialization and flipping the binary values of nodes at runtime
for effective annealing. More details can be found in [2].

C. Graph Learning

In the context, GL refers to the acquisition of unknown
graph node features using observed node features. Taking
GNNs for example, node features are obtained by iteratively
aggregating features from neighboring nodes. During GL
training, the spatial and temporal relations among graph nodes
are distilled into a selected model (GNNs or DS-GL), which
processes observed node features as its input and generates
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Fig. 2. Overview of BRIM hardware architecture.

unknown node features as its output. The model’s parameters
are adjusted (through backward-propagation in GNNs) accord-
ing to the discrepancies between the generated outputs and
the ground truth. This refinement process allows the model
parameters to effectively capture the underlying distribution
of the data. During inference, the trained model consumes
the observed node features and generates the corresponding
unknown node features. Particularly, for temporal prediction
tasks, GL uses historical graph information to predict the
future states of the graph.

III. REAL-VALUED GL ON DENSE DYNAMICAL SYSTEMS

Despite the exceptional capability of CMOS-compatible
Ising machines in solving binary optimization problems like
max-cut, the binary limitation hinders the method’s further
deployment for real-world graph learning problems. However,
lifting the binary restriction is not a trivial task, as the
adjustment made to this model must be general enough to
accommodate real-world problems, and practical enough for
hardware implementation.

To enable real-value support, we introduce our modifications
applied to the model, together with Real-Valued DSPU, which
incorporates the hardware upgrade to the baseline BRIM to
establish the basic hardware components for this work.

A. The Binary Limitation and Hardware Upgrade

A naive approach to facilitate real-value support is to
directly extend the variables o from binary to real-value.
However, o do not converge to real values but are polarized
towards +oo. This polarization can be justified by a stationary
point analysis on the Hamiltonian. The stationary points are
reached by solving for the following condition:

%I—(JO‘—F’E):O; diag(J) =0 (2)
Spins and parameters are shown in their matrix form, with
linear substitutions (J;; + Jj;) — Jij;, and 2h; — h;. Next,
the Hessian matrix H is applied to analyze the properties of
stationary points.

H(Hlsing) =

As J is a constant matrix, all stationary points share the
same property. If all the eigenvalues of H ()|, are positive,

—J = constant; diag(J) =0 3)
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the stationary points og are local minima; if all negative,
local maxima; otherwise, oo are saddle points. Notice that
diag(J) = 0, based on the linear algebraic property tr(.J) =
Zf\] Ai, Where )\; is the i’th eigenvalue of J, there is a mixture
of positive and negative eigenvalues, thus saddle points. In
practice, the saddle points are not stable as they have zero tol-
erance for fluctuation, leading to diverging spins. Essentially,
this divergence is due to diag(J) = 0. To compensate, pure
quadratic or higher-order terms of o are necessary.

This can also be viewed in an intuitive way. According to the
Ising Hamiltonian (Eq. (1)), the lowest energy state approaches
—oo. Even if an upper bound and a lower bound are applied
to prevent o from reaching infinity, the resulting variables are
polarized at their upper or lower bound, essentially reducing
a real-valued problem to binary.

Algorithm-wise, as a countermeasure to the polarized o, we
modify the original Ising model as Equation 4 demonstrates:

N
,HRV - - Z Ji]‘UZ'O'j

N
= hioi? “
i i

In the modified model, only the second term is different — now
we use a pure quadratic term to replace the original linear term.
In this way, the second term still represents the self-reaction
of a spin, preserving the physical interpretation. Meanwhile,
the pure quadratic term prevents the variables from diverging
given the negative and sufficiently large parameters h, as this
modified term contributes to a quadratic increase in energy.

With the model generalized to support real values, the
hardware needs enhancements satisfying the following criteria:
(1) variables (voltages) must be able to stabilize as real values.
(2) the spontaneous decrease in Hamiltonian must be satisfied.

The first criterion is satisfied through the implementation
of circulative resistor rings, as depicted in Fig. 3. This setup
incorporates the variable resistor Ry within a node along with
the pairwise coupling mechanism between nodes to achieve
the desired functionality. To accommodate both positive and
negative values of .J, each pair of nodes is equipped with two
circulative resistor rings.

In baseline BRIM, without the resistor regulating the volt-
age, o continues to vary whenever there is an incoming current
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Fig. 4. Circuit-level validation with an example graph.

until the capacitor is fully charged, only to represent polarized
values. Now with the presence of the resistor, nonzero currents
are enabled to flow consistently through this node, allowing o
to be stabilized at

JijU j
o= ]1/TRV = IanV = - Z TZ (5)
J#i

Similar to J, the parameters h also have the unit of Q71
corresponding to the conductance of resistors embedded in
the nodes on hardware. Meanwhile, real-world graph nodes
are modeled as variables o, physically implemented as the
voltages applied to the nano-scale capacitors.

The stabilization capability is further demonstrated by
circuit-level validation. For clarity, we consider an illustrative
graph consisting of 6 spins, labeled vO~v5 in Fig. 4, which
are separately deployed on DSPU and BRIM platforms. In
this setup, v0, v2, and v4 are predetermined as inputs, leaving
the others free to evolve. With identical input and coupling
parameters, the DSPU yields real-valued outcomes between
the upper and lower bounds, whereas BRIM only produces
two polarized values.

To meet the second criterion, the dynamics of the variables
is designed through Lyapunov analysis, establishing a dynam-
ical system of electrons that can be deployed on hardware.
Accordingly, the following inequality needs to be satisfied:

dHRV Z aHRv dO’L

do; dt — =0 ©

Obviously, the variable dynamics can be designed as:

do; 1 0H,
9i _ RV 7
dt —  C 0o
where C is a positive constant with the unit of capaci-
tance. Substituting this equation into Eq. (6), the quadratic
(OHRy/00;)? appears, satisfying the target inequality above.
The following question is, how to map it on hardware?
In fact, the equation is automatically satisfied with the
resistors. Based on textbook capacitor knowledge, we have:
dO’i 1

=5 Iz'n - Im"
dt C( )

1
= —GZJZ‘J'O']‘ _hz‘Ui (8)
J#i
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which agrees with the shape of 0Hgy/Jo; and effectively
facilitates the spontaneous energy decrease.

B. Model Training

To provide a complete view of our proposed work and
show how the dynamical system is tamed, we briefly introduce
the training algorithm here. The training process aims to
obtain a set of parameters J and h that map the desired real-
valued result to the lowest energy state, in other words, to
construct a data distribution described by a dynamical system.
During training, to guarantee the convexity of the Hamiltonian,
the parameters h are forced to be negative. Subsequently,
the lowest energy state can be obtained by letting the first
derivative of the Hamiltonian equal to zero:

ey v
90, ;(Jz'j +Jji)

Without losing generality, we substitute (J;; + Jj;) — Jyj,
and 2h; — h;. The regression formula for ¢ is then derived:

— N, Jijo;
h;
which is exactly the hardware stability criterion (Eq. (5)). That
is, given the current parameters .J/h, and the values of all other
variables as conditions, the difference between the computed
variable o; and its ground truth is used as a loss function,

updating the parameters through back-propagation.

0'] — th(fz =0 (9)

(10)

g; =

C. Inference on a Dynamical System

With the learned parameters, GL inference can be inter-
preted as the evolution of our dynamical system. The observed
graph nodes are considered as input, while the remaining
unknown nodes are taken as output. To initiate the inference
process, the input observed nodes are fixed to the observations,
as the capacitors are charged and maintained accordingly.

Meanwhile, the unknown nodes are randomly initialized. Next,
the natural annealing process starts and the system approaches
equilibrium, so as to locate a lowest energy state.

IV. SCALABLE GL ON SPARSE DYNAMICAL SYSTEMS

This section tackles the scalability hurdle by co-designing
the learning-based algorithm for decomposing dense dynami-
cal systems and the multi-PE dynamical system architecture.

A. Overview of Scalable DS-GL

Despite the communication effectiveness of all-to-all in-
teractions among nodes, the size of the coupling network
increases quadratically with the number of nodes. To address
the problem of scalability, our design strategy is to prune
links based on the strength of inter-node connections, which
refers to the magnitude of coupling parameters. Compared to
the weakly coupled nodes, we observe that, strongly coupled
nodes contribute predominantly to the quality of solution. Con-
sidering the fact that real-world graphs are typically extremely
sparse with communities composed of strongly-related nodes,
it is feasible to only preserve strong connections and relax
the weak links between the communities. To accomplish this,
as Fig. 5 illustrates, we train DS-GL as a dynamical system
with community structure through three steps: (i) prune the
fully connected coupling matrix to a sparse matrix depending
on the coupling strength; (ii) extract the communities indi-
cated within the sparse matrix, and group the communities
into “super-communities” to match per-DSPU capacity; (iii)
further reform the coupling matrix to fit the desired sparse
interconnection pattern. To alleviate communication pres-
sure, different super-communities are interconnected through a
sparse hierarchy, including Chain, Mesh, DMesh (Diagonally-
connected Mesh [18]), and Wormholes (for unavoidable global
communication outliers).

On the hardware side, to provide the foundation for scaling,
we design a mesh-based network “Scalable DSPU” as a grid
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of small DSPUs comprised of Processing Elements (PEs) and
Coupling Units (CUs). In essence, each PE serves as a local
dynamical system, with neighboring PEs linked through a lim-
ited number of analog I/Os via CUs for instantaneous synchro-
nization. In the 2D mesh, communities of nodes are mapped
to different DSPUs with their interconnections sparsified into
patterns. The patterns are specially designed for efficient “co-
annealing” processes upgraded from the annealing concept in
Real-Valued DSPU. Furthermore, the co-annealing process is
categorized into Spatial co-annealing and Temporal & Spatial
co-annealing for different scenarios (detailed in Section IV. D).
Consequently, the scalability of Scalable DSPU is optimized
with balanced annealing quality and efficiency.

B. Training Algorithm for Decomposing Dynamical System

For our proposed dynamical system, the scalability issue
arising from the all-to-all connection can be decomposed into
three sub-problems. First, to reduce communication complex-
ity, how to decompose the dynamical system to sparsify the
coupling matrix? Second, assuming the coupling is sparse,
how to perform computing efficiently? Third, accuracy will
drop during the sparsification, how to restore the accuracy?
To answer these questions, our solution is also three-fold.

(1) Decomposition of the dynamical system. Communities
typically exist in real-world graphs as a valuable property.
Similar to cliques in graph theory, communities consist of
nodes with dense interconnects but with sparse connections
to the external nodes. It can be inferred that although more
information is embedded in the original all-to-all node in-
terconnection, the majority of the interconnects should be
redundant and removable with minimal consequences.

The key is to extract the communities in the target graphs,
which is a well-researched topic. In this work, the Louvain
algorithm [5] is adopted due to its high efficiency and scal-
ability. To start, we limit the number of non-zero elements
(defined as “communication demand density” and annotated
as “D” in this work) in the coupling matrix in order to attain
an initial sparse coupling matrix for communities extraction.
In the next steps, after communities are extracted, they are
further sparsified by eliminating weak couplings, drastically
reducing the demand for communication bandwidth.

(2) Community redistribution. The extracted communities
are grouped into super-communities, with each initially dis-
tributed to a PE. However, the size of a single community
occasionally exceeds the pre-defined hardware capacity of a
PE, causing the demand for the community to be further
decomposed into smaller sub-communities to fit on hardware.
As a consequence, this redistribution process potentially re-
duces connections within communities, causing accuracy to
drop. To make amends, the sub-communities are redistributed
onto neighboring super-communities for more communication
opportunities. In the meantime, larger communities are granted
higher priority to be redistributed. In Fig. 6(a), for example,
assuming that the largest community (or a sub-community of
the largest community when it exceeds hardware capacity)
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fits into super-community 0, it is centered to have more con-
nections with its neighbors. The second largest community is
then distributed to super-community O if allowed by capacity,
otherwise to super-community 1. Finally, for the sake of a
balanced workload, smaller communities or isolated nodes are
redistributed to fill the blanks left by larger communities on
super-communities. Through these redistribution approaches,
the locality of communities is exploited with the utilization of
a single super-community enhanced.

(3) Parameter fine-tune with patterns. With the communi-
ties extracted and redistributed, we aim to address the final
problem — to restore the lost accuracy in these processes. To
this end, a fine-tuning process is conducted with constraints
to develop a communication-friendly pattern.

To maintain the general coupling matrix pattern obtained
from the previous steps, we generate a controlling mask to
confine the regions in the coupling matrix where non-zero
elements can populate during the fine-tuning process, also
eliminating non-zeros outside the region due to the pre-set
communication demand density D.

Next, the interconnect pattern of the super-communities is
studied. In Fig. 6(a), four patterns are summarized, which
respectively correspond to four types of connections between
the super-communities on a 2-D array. Fig. 6(b) shows the
distribution of the patterns in the re-ordered coupling matrix.
The green links represent the “Chain” type of connections
between neighbor super-communities such as 0 and 1. The
“Mesh” type of patterns contains all the connections between
neighbor super-communities on the 2-D array as orange links
including the one between 0 and 3, as well as all of the “Chain”
type of patterns. The blue links show the additional connec-
tions in “DMesh” type of patterns based on “Mesh” which
refer to the diagonal connections between super-communities
such as 0 and 2. The “Wormhole” in Fig. 6 refers to super-
connections over the 2-D array, supporting rare connections
between any two super-communities, for example, 7 and 13.

C. Proposed Hardware Architecture

The structurally sparse coupling matrix with clustered non-
zeros obtained through the decomposition of the dynamical
system (introduced in Sec IV. B) brings opportunities to
achieve efficient and accurate natural annealing with highly
sparse dynamical systems.
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To this end, we propose Scalable DSPU, a new dynamical
system architecture based on Real-Valued DSPU proposed in
Section III. Fig. 7 shows the proposed hardware architecture.
Scalable DSPU is equipped with a 2D array of Processing Ele-
ments (PEs). Each PE is a small Real-Valued DSPU with addi-
tional buffers, routers, and digital controllers for the support of
co-annealing. The PEs are connected to a mesh-based network
through configurable Coupling Units (CUs) at the intersection
of the mesh. Each CU contains a mini coupling crossbar,
which can be reconfigured as different types of connections to
bridge nodes from the neighbor PEs. During natural annealing,
each PE is in charge of the local annealing of a single super-
community. Mesh-based interconnect network, together with
the configurable CUs, builds direct connections for nodes that
are from different PEs but with non-zero coupling parameters.
During annealing, voltage differences across node pairs drive
currents across different PEs, enabling “Spatial co-annealing”.
When the number of nodes in a PE that need to communicate
with external nodes exceeds the limited input/output capacity
of this PE, these nodes will occupy the I/O in a time division
multiplexing manner, which is scheduled collaboratively by
their PE and the corresponding CUs, enabling the Temporal
& Spatial co-annealing. In the following, we will elaborate
on the architecture design of each major super-community in
Scalable DSPU in detail.

PE architecture: As shown in Fig. 7, each PE contains
K nodes (blue and green blocks connected to Routers). All
nodes are fully connected through an internal K x K crossbar
coupling network, like in Real-Valued DSPU. Different from
Real-Valued DSPU, the nodes are divided into two partitions.
Each partition contains k/2 nodes and is connected to either
Bottom-Left (BL) & Top-Right (TR) routers or Top-Left (TL)
& Bottom-Right(BR) routers. Each router, jointly controlled
by Spatial and Temporal Schedulers, is able to route its own
share of nodes to its corresponding two neighboring CUs
through analog-based exporting portals at the four corners
of the PEs. The Spatial Scheduler selects the nodes that
need to be connected with external PEs and supervises the

Coupler
1 i
“Coupler
PE-A IH g !
e ittt ¢ S R
: Analog Swich BL&TR Router l :
en
| ‘@Q s} €U between PE-A !
| in- | and PE-B |
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Fig. 8. Detailed PE-to-CU connections via Analog I/O.

corresponding Router to allocate I/O resources at one of
the selected exporting portals for the nodes. This builds the
foundation of Spatial co-annealing. The Temporal Scheduler
is in charge of selecting nodes for temporal co-annealing
when the number of nodes that need to communicate with
external PEs exceeds the I/O resources (L lanes within each
portal) at the exporting portals. Each PE is also equipped
with several banks of buffers that cache the communication
mapping information generated during training.

CU architecture: CU is at the intersection of the mesh-
based network and is used to connect PEs to the network.
The coupling parameters in a CU are stored locally in the In-
CU Weight Buffer controlled by the Weight Select module.
Similarly to PEs, each CU has four exporting portals which
connect the CU with four PEs. To align the communication
bandwidths of CUs and PEs, each portal in a CU is also
equipped with L lanes of connection. Therefore, each CU
can be connected with 4L nodes in four neighboring PEs
simultaneously. Each CU is equipped with a 4L x 3L crossbar
connecting all pairs of nodes in different PEs. Note that a
CU does not need a 4L x 4L full-size crossbar as the nodes
from the same PE are already fully connected locally. With
nodes from different PEs directly connected within CUs, their
Spatial co-annealing is enabled. Here, we define the number
of lanes in each portal of both CU and PE (L) as hardware
communication capability. In our evaluation, we set L as 30
for better performance and hardware tradeoff.

Interconnect Architecture: The interconnect architecture of
Scalable DS-GL is composed of two parts: (1) the connections
between exporting portals of CUs and PEs together compose
a tiled mesh-based interconnect (the green grid in Figure.
7); and (2) the super connections (orange lines) that connect
exporting portals of neighboring CUs compose another grid-
based interconnect (the orange grid). As aforementioned, the
green grid enables the Spatial co-annealing among nodes
from neighboring PEs. In contrast, the yellow grid enables
the co-annealing among nodes from remote PEs. From the
perspective of the coupling matrix, the scattered non-zeros
located in the blank space require remote communication
in pursuit of efficient and accurate annealing and therefore
require “Wormholes”. To open a Wormhole for two nodes from
remote PEs, the corresponding PEs first map both nodes to
their neighboring CUs and then enable the super connections
in the route between the two CUs.
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Fig. 9. The hardware architecture for Spatial co-annealing and Spatial & Temporal co-annealing methods.

Analog 1/0O Details: Fig. 8 shows the signal channel be-
tween two nodes from different PEs containing two high-speed
analog switches and an analog resistive component, i.e., CU
coupling unit. In each PE, a router selects the corresponding
analog switches to establish analog connections between nodes
in the PEs and ports on the CU, thereby enabling the inter-PE
communication via the analog coupling crossbar in CUs. This
analog-fashioned connection avoids extra A/D or D/A conver-
sion and fully supports heterogeneous interconnect patterns in
Fig. 6, leveraging the flexibility of analog coupling crossbars
in CUs and routers in PEs. As shown in Fig. 7, each node
in a PE can be connected to up to 4 neighbor CUs. Within
each CU, a node is further connected to up to 90 nodes from
3 neighboring PEs through the coupling network.

Challenge in decomposing large-scale graphs: With DS-
GL, graphs can be decomposed more aggressively without
sacrificing accuracy than GNNs. The underlying reasons are
two-fold. First, as an electronic dynamical system, DS-GL
hardware constantly propagates node information to their di-
rectly connected neighbors through the movement of electrons
(flow of electric current) among capacitors, facilitating fast and
long-range cascading information propagation among remotely
connected nodes. Therefore, with DS-GL, information can be
seamlessly transmitted even among nodes that are not directly
connected. This feature is distinguished from GNNs, where
information is propagated from one node to its neighbors for
only once per layer. Second, for nodes in the clusters that are
not directly connected through CUs, if their connections are
critical for high accuracy, the Wormhole interconnection in-
troduced above will be enabled to establish direct connections
among them. It is worth highlighting that the “Wormholes”
require no extra hardware, but only share little resources from
CUs to enable direct connections among remote PEs with
considerable bandwidth.

D. Featuring Co-Annealing Methods

Since the proposed sparse dynamical system is no longer
fully connected, the natural annealing process in a Real-
Valued DSPU should be adjusted accordingly. In particular, we

confront two imperative problems. First, in contrast to the all-
to-all connections in a Real-Valued DSPU, what modifications
are required in the hardware to make the PEs collaboratively
anneal through the sparse connections? Second, how can the
hardware manage situations where its capacity is inadequate
to facilitate the concurrent annealing of all nodes? In response
to these problems, the co-annealing approaches are also cat-
egorized in a bipartite manner. (a) Spatial co-annealing is
the standard annealing process performed on the proposed
sparse dynamical system. Given the communication patterns
of the super-communities, natural annealing is collectively
performed in all super-communities leveraging the proposed
hierarchical interconnect architecture. (b) Temporal & Spatial
co-annealing is designed in the case of insufficient capacity
of the dynamical system. In this scenario, one Spatial co-
annealing is transformed into iterative partial annealing until
convergence is reached.

Spatial co-annealing method: Fig. 9 depicts the coupling
between two example PEs on the left, demonstrating the sparse
communication pattern between nodes. The blue squares de-
note the communication facilitated between the nodes depicted
as the green squares, aka “activated nodes”. Subsequently,
annealing is performed following the communication pattern
as Spatial co-annealing, featuring its real-time synchronization
capability through CUs. In the black-framed box centered
in Fig. 9, taking PE1 for example, the Spatial co-annealing
mechanism starts from a “PE-CU Map Buffer” which stores
all the lists of activated nodes to be deployed to neighbor CUs.
For a hardware configuration with specific L, the mapping
method is further selected depending on whether D is less
than L. If yes, the Spatial co-annealing method shown in
the box with green dotted frame is applied. In this situation,
the spatial scheduler directly fetches the node-to-CU mapping
information from “PE-CU Map Buffer”. It first detects the
overlapping between the nodes to different CUs, and then
generates the mapping signal to the routers. Meanwhile, the
“Super Connect” module sends a control signal to enable com-
munication between CUs for overlapped nodes or “Wormhole”
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Fig. 11. DS-GL Accuracy vs inference latency (annealing time). Temporal & Spatial co-annealing is adopted for higher accuracy with longer annealing time.

patterns. Since the communication demand density is lower
than the hardware communication capability, all nodes can be
directly mapped to the corresponding CUs. The TR CU of PE1
is drawn in the figure as an example, where the weights (or the
coupling parameters) for the couplings in the CU are stored
locally in the “In-CU Weight Buffer” in each CU. For Spatial
co-annealing, the weights do not change and are programmed
to the coupling crossbar via DACs.

Temporal & Spatial co-annealing method: In the high
communication demand density scenario, when D is greater
than L, the CUs become saturated with some unaddressed
couplings, and the standard Spatial co-annealing no longer
applies. Under this circumstance, a Temporal & Spatial co-
annealing approach is adopted, with a single Spatial co-
annealing decomposed into iterations of partial annealing. In
Fig. 9, the box with orange dotted frame shows the hardware
for the Temporal co-annealing component, which functions
collectively with the Spatial co-annealing part as follows. First,
the node lists from the “PE-CU Map Buffer” are sent to the
temporal scheduler to divide the lists into smaller “slices”,
with each size not greater than L. The slices are then stored
in the “Temporal Map Buffer”, where the buffer sends only
one group of slices at a time to the spatial scheduler for further
spatial mapping. The “Switch Controller” generates the control
signals to inform the buffer to exchange the groups of slices
in turn, namely, a Switch-in-turn process. Since the weight pa-
rameters in a CU need to be exchanged within different slices,
the switch control signals are also connected to the “Weight
Select” module in the CU. In this way, high communication
demand is supported by the proposed hardware architecture,
even with limited capacity of CUs.

V. EVALUATION

In this section, the tradeoff between communication density
and accuracy, and that between inference latency and accuracy
are evaluated. In addition, DS-GL is compared with various
SOTA GNNs across different hardware platforms on the fol-
lowing metrics: accuracy, latency, energy, and hardware costs.
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A. Experimental Setup

Applications and Datasets. We evaluate the proposed
framework on seven real-world datasets from four application
scenarios. (1) Traffic flow prediction: traffic [20] contains the
traffic flow data in Japan. (2) Air quality prediction: PM25,
PM10, NO2 and O3, containing PM2.5, PM10, NO,, and O3
data from 2019.5 to 2019.12 in Chinese Air Quality Reanalysis
database [22]. (3) Pandemic progression prediction: Covid [7]
contains 2020-2023 daily case increments of COVID-19 in
US. (4) Stock price prediction: predicting the daily prices
of stocks. Stock [28] contains prices for tickers trading on
NASDAQ up to 2020.4.

Algorithm Baselines. For fair evaluation, three SOTA
spatial-temporal GNNs are selected as the baselines, including
GWN [36], MTGNN [35], and DDGCRN [34]. Their hyper-
parameters are set according to their released codes.

Platforms. NVIDIA A100 40GB SXM GPUs are used to
measure the training time, inference latency, and accuracy
of the SOTA GNNs. For DS-GL, the accuracy and latency
are measured using a CUDA-based Finite Element Analysis
(FEA) software simulator implemented on top of the one of
BRIM [2]. Cadence Mix-signal Design Environment (with 45-
nm technology node) is used to evalaute the power and area
of DSPU and DS-GL.

B. Tradeoff among Accuracy, Latency, and Graph Sparsity

Fig. 10 shows the accuracy (in Root Mean Square Error,
RMSE) of DS-GL with different levels of post-decomposition
graph sparsity (= 1—Density) and various decomposition
patterns across seven real-world graph learning problems. The
decomposition patterns include Chain, Mesh, and DMesh, each
with Wormhole enabled. The red dotted lines represent the best
accuracy of our selected SOTA GNNs. Results show that the
accuracy of DS-GL increases with higher graph density (or
lower graph sparsity). Moreover, more complex communica-
tion patterns enable higher flexibility in graph decomposition,
therefore resulting in higher accuracy.
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TABLE 1
HARDWARE COMPARISON WITH BRIM, A SOTA ISING MACHINE.

Effective spins Power Area Scalable | Data type
BRIM [2] 2000 250 mW 5 mm No Binary
DSPU-2000 2000 260 mW | 5.1 mm No Real-Value
DS-GL 8000 550 mW | 6.5 mm Yes Real-Value
TABLE II

RMSE COMPARISON BETWEEN DS-GL AND SOTA GNNSs.

Dataset NO2 Covid 03 Traffic PM25 PM10 Stock
GWN [36] 5.52e-2 [ 1.75e-3 | 2.40e-2 | 1.27e-1 [ 3.20e-2 | 2.74e-2 | 8.44e-2
MTGNN [35] 4.51e-2 | 1.85e-3 | 2.23e-2 | 1.14e-1 | 2.83e-2 | 2.73e-2 | 8.39e-2

DDGCRN [34] | 5.17e-2 | 1.16e-3 | 2.21e-2 | 8.43e-2 | 2.77e-2 | 2.78e-2 | 8.42e-2
DS-GL-Spatial | 3.94e-2 | 1.1le-3 | 2.2le-2 | 7.97e-2 | 2.37e-2 | 2.53e-2 | 6.06e-2
DS-GL-Chain | 3.60e-2 | 1.1le-3 | 1.89e-2 | 7.8%e-2 | 2.08e-2 | 2.30e-2 | 5.92e-2
DS-GL-Mesh 3.48e-2 | I.11e-3 | 1.78e-2 | 7.86e-2 | 1.97e-2 | 2.22e-2 | 5.86e-2
DS-GL-DMesh | 3.4le-2 | 1.11e-3 | 1.70e-2 | 7.83e-2 | 1.93e-2 | 2.19e-2 | 5.82e-2

Fig. 11 shows the best accuracy obtainable with different
inference latency. Recall that while a high density of the
coupling matrix enhances accuracy, it often exceeds hard-
ware capacity. Therefore, Temporal & Spatial co-annealing
is adopted to support higher density at the cost of increased
annealing time (i.e., inference latency), leading to a tradeoff
between accuracy and latency. For most datasets, the RMSE
decreases sharply with increasing latency until an inflection
point (~5 us), after which the decline is more gradual.

C. Evaluation of DS-GL Hardware Costs

The hardware costs of BRIM, DSPU, and DS-GL are listed
in Table I, where DSPU-2000 refers to a DSPU consisting of
2000 spins for a fair comparison with BRIM [2]. It shows
that the Real-Valued DSPU can support real-world problems
with minor extra costs compared to the binary machine.
Furthermore, DS-GL scales the number of spins by 4x at
the cost of 2x higher power.

D. Evaluation of Inter-tile Synchronization

Although DS-GL does not need synchronization among tiles
within the same mapping, synchronization is necessary among
multiple mappings. Specifically, the synchronization frequency
(1/500ns) required for high accuracy is much lower than that
supported by the DS-GL hardware (1/200ns). To demonstrate
the efficacy of synchronization, Fig. 12 uses Stock, NO2, and
Traffic datasets to evaluate the variation in accuracy (RMSE)
over the synchronization interval from 1 ns to 5 ps. Fig. 12
shows that the accuracy generally decreases with the increase
of synchronization interval. However, the accuracy drop is
negligible when synchronization interval is less than 500 ns,
which is easily achievable on the DS-GL hardware.

E. Accuracy Comparison with SOTA GNN

Table II compares the accuracy among four DS-GL design
choices and three SOTA GNNs including GWN [36], MT-
GNN [35], and DDGCRN [34]. The accuracy is evaluated in
terms of RMSE. The four design choices include “DS-GL-
Spatial”, “DS-GL-Chain”, “DS-GL-Mesh”, “DS-GL-DMesh”.
Particularly, DS-GL-Spatial refers to the design with only
spatial co-annealing (temporal co-annealing disabled) which
trades accuracy for low inference latency. In contrast, “DS-
GL-Chain”, “DS-GL-Mesh”, and “DS-GL-DMesh” represent
the designs with different decomposition patterns, each with
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Fig. 13. RMSE vs matrix density under noise percentage n.

both spatial and temporal co-annealing enabled, therefore,
delivering slower inference but higher accuracy. As the table
shows, DS-GL outperforms SOTA GNNs on all datasets.
Taking the air-quality-NO, dataset as an example, DS-GL-
Spatial achieves 12.6%-28.6% reduced RMSE compared to
SOTA GNNs while DS-GL-DMesh achieves 22.4%-38.2%
RMSE reduction.

F. Latency & Energy Comparison with Accelerators & GPU

In Table. II, DS-GL exhibits substantial accuracy improve-
ments over SOTA GNNs. To further evaluate the latency and
energy efficiency, we present a comparison with several SOTA
hardware accelerators, including AWB-GCN [12], [-GCN [13],
NTGAT [17], GraphAGILE [42], and RACE [41]. Since GNN
models are often specifically designed for these applications,
while accelerators are not designed for these models - for
a fair comparison, we assume these accelerators are of full
utilization, achieving peak TFLOPs with typical power. Even
with this assumption, DS-GL still consistently outperforms
all SOTA accelerators and modern GPU on both latency and
energy consumption, as summarized in Table. III.

G. Evaluation of System robustness

To estimate the impact of noise on the system, we inject
dynamic noises at both nodes and coupling units. The noise is
generated by the Gaussian distribution with standard deviation
values of 5%, 10%, and 15% each. The results of three
representative datasets with ‘DMesh’ pattern are shown in Fig.
13, where n in the legend represents the standard deviation of
noise. We observe that the impact of dynamic noise is not
significant, showing the natural good tolerance of physical
dynamical systems to noise. As a result, in practical situations,
DS-GL still achieves better accuracy over the GNNs.

H. Multi-Dimensional Applications

To further demonstrate the wide applicability of DS-GL,
two datasets (house prices in California [26] and global
climate [10], denoted separately as CA housing and climate)
including multiple features for a node are evaluated, with
results shown in Table IV. For example, climate contains

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.



TABLE III

COMPARISON OF INFERENCE LATENCY AND ENERGY COST PER INFERENCE AMONG DS-GL, SOTA GNNsS ON GNN ACCELERATORS, AND GPUSs.

Hardware Platforms

Stratix 10 SX

Xilinx Alveo U200

Xilinx Alveo U250

Xilinx Alveo U280

NVIDIA A100 SXM

Related WorksT

NTGAT [17]

RACE [41]

Peak TFLOPS

AWRB [12], IGCN [13]
2.7

1.4

GraphAGILE [42]
2.8

2.1

156

Max Power (W)

215

225

225

225

400

Typical Power (W)

137

100

110

100

250

Application covid [ air | traffic [ stock | covid [ air | traffic [ stock | covid | air | traffic | stock | covid [ air [ traffic | stock [ covid [ air [ traffic | stock
GNNs GWN 1141 1335 985 1751 2203 | 2578 1902 3382 1101 1289 951 1691 1469 1719 1268 2255 2757 4601 4176 5333
Latency MTGNN 516 604 446 792 996 1166 860 1530 498 583 430 765 664 777 574 1021 9319 1.6e4 1.2¢4 2.3c¢4
(118) DDGCRN 690 847 443 1063 1333 1636 855 2051 667 818 427 1018 889 1090 570 1364 | 3.7e4 | 6.0e4 2.6e4 1.2e5
DS-GL Latency (1) 0.15 1.1 0.65 1.0 0.15 1.1 0.65 1.0 0.15 1.1 0.65 1.0 0.15 1.1 0.65 1.0 0.15 1.1 0.65 1.0
GNNs GWN 156 183 135 240 220 258 190 338 121 142 105 186 147 172 127 225 674 1138 984 1298
Energy MTGNN 70.7 82.7 61.0 109 100 118 85.1 152 549 64.1 46.9 84.2 66.5 78.0 575 101 2241 4164 2973 5419
(mJ) DDGCRN 94.6 116 60.6 145 134 165 85.4 205 73.2 89.9 47.1 113 89.1 110 56.8 136 9457 1.5¢4 6392 3.0c4
DS-GL Energy (mJ) 9e-5 6e-4 4de-4 6e-4 9e-5 6e-4 4e-4 6e-4 9e-5 6e-4 4e-4 6e-4 9e-5 6e-4 de-4 6e-4 9e-5 6e-4 4e-4 6e-4

T The latency of GNN accelerators is reported based on their theoretical peak performance with full utilization.

TABLE IV
RMSE & LATENCY COMPARISON ON MULTI-DIMENSIONAL DATASETS.
Multi-Di I Dataset CA housing climate
Comparison Metric RMSE | latency (us) | RMSE | latency (us)
GWN [36] 1.89¢-2 6.40e+3 4.32e-1 1.37e+4
MTGNN [35] 2.10e-2 2.08e+4 4.33e-1 1.87e+4
DDGCRN [34] 1.86e-2 5.03e+4 4.03e-1 3.54e+4
DS-GL 1.62¢-2 1.08 3.89%-1 0.97

12 features per node, including humidity, temperature, wind
speed, etc. Latency is evaluated on an A100-40G SXM GPU.

VI. RELATED WORKS

Variances of Ising Machines: In addition to BRIM, there
are many other Ising machine concepts and prototypes includ-
ing D-Wave’s quantum annealers that have been put into com-
mercial use [1]. As a quantum Ising machine, a D-Wave an-
nealer [14] takes advantage of the quantum effects introduced
by its superconducting qubits to achieve extraordinary speed.
However, quantum Ising machines require a cryogenic system
for extremely low temperatures as the operating environment.
This cryogenic system is also the main reason for its high
energy consumption (~25KW), which significantly limits its
practical use at the current stage. In Coherent Ising machines
(CIM) [19], [25], [38], optical parametric oscillators are used
to represent spins, while the coupling is currently emulated
through digital computation. Consequently, the efficiency of
current CIMs is rather limited. In contrast, Ising machines
based on electric oscillators are closer to real-life deployment,
but may require hard-to-integrate inductors for high-quality
oscillations. However, a 48-oscillator Ising machine [24] us-
ing ring oscillators has recently emerged, demonstrating the
potential in this approach.

Among the choices of Ising machines, BRIM is uniquely fit-
ted to our purpose in this work in contrast to two other groups
of Ising machines designs: @ Oscillator-based Ising machines
use oscillator phase (¢;) as the spin [3], [9], [16], [19], [27],
[33]. These spins are not Ising spins (1 degree of freedom: +1)
but XY model spins (2 degrees of freedom) with the following
Lyapunov function: H = —3_, . Ji; - cos(¢; — ¢;). Hence
they do not lend to real-value quadratic objective function as
naturally as BRIM does. @ Digital annealers/accelerators are
hardwired annealing algorithms [37], [39]. They are certainly
more efficient than general-purpose processors, but do not yet
rival SOTA dynamical systems in efficiency. Besides, almost
all such designs in the literature acquire extra efficiency by
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using local coupling and/or single-bit coupling, making them
impractical for real-world problems.

Existing works on Ising Machines for ML: The potential
of Ising machines in solving ML problems has only been re-
cently recognized. Recent works have attempted to use BRIM
to solve or partially solve simple learning problems including
predicting traffic congestion [29], collaborative filtering [23],
and supporting energy-based models [32]. However, those
works only support binary problems (e.g., “congested (0)”
or “non-congested (1)”) in congestion prediction and “like”
or “dislike” in binary collaborative filtering). Moreover, the
congestion prediction work [29] uses BRIM to impute invisible
congestion data within the same timestamp, while the temporal
prediction is performed on digital processors. In [23], BRIM
is used to determine whether a user will “like” or “dislike”
an item determined by the similarity between items. Like
congestion prediction, no temporal evaluation is performed
by the Ising machine in [23]. Furthermore, both works offer
solutions tailored to specific applications, whereas DS-GL
accommodates a broader range of real-valued applications that
necessitate intricate analysis of temporal information.

VII. CONCLUSIONS

This paper proposes a nature-powered graph learning frame-
work dubbed DS-GL. Rooted in a CMOS-compatible Ising
machine, DS-GL inherits the extraordinary computational ef-
ficiency of the Ising machine and extends its potential to real-
valued and larger-scale GL problems. Evaluations with four
diverse GL applications across seven datasets show that DS-
GL can deliver speedups ranging from 103x to 10°x over
Graph Neural Networks on GPUs while operating at a power
2 orders of magnitude lower than GPUs, with 5% — 30%
accuracy enhancement.
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