
DS-GL: Advancing Graph Learning via Harnessing
Nature’s Power within Scalable Dynamical Systems

Ruibing Song†, Chunshu Wu†, Chuan Liu†, Ang Li‡, Michael Huang†, Tony (Tong) Geng†

† University of Rochester, Rochester, NY, USA

‡ Pacific Northwest National Laboratory, Richland, WA, USA

{ruibing.song, chunshu.wu, chuan.liu, michael.huang, tong.geng}@rochester.edu, ang.li@pnnl.gov

Abstract—With the rapid digitization of the world, an in-
creasing number of real-world applications are turning to non-
Euclidean data, modeled as graphs. Due to their intrinsic high
complexity and irregularity, learning from graph data demands
tremendous computational power. Recently, CMOS-compatible
Ising machines, i.e., dynamical systems fabricated with CMOS
technologies, have emerged as a new approach that harnesses the
inherent power of nature within dynamical systems to efficiently
resolve binary optimization problems and have been adopted for
traditional graph computation, such as max-cut. However, when
performing complex Graph Learning (GL) tasks, Ising machines
face significant hurdles: (i) they are binary and thus ill-suited
for real-valued problems; (ii) their expensive all-to-all coupling
network that guarantees generality for optimization problems
poses daunting scalability concerns.

To address these challenges, this paper proposes a nature-
powered graph learning framework dubbed DS-GL, which is
the first effort to transform the process of solving graph
learning problems into the natural annealing process within a
parameterized dynamical system embodied as a CMOS chip.
To tackle the two major hurdles, DS-GL first augments the
Ising machine architecture to modify the self-reaction term of its
Hamiltonian function from linear to quadratic, effectively serving
as an energy regulator. This adjustment maintains the system’s
original physical interpretation while enabling it to process
continuous, real-valued data. Second, to address the scaling issue,
DS-GL further upgrades the real-valued dense Ising machine by
decomposing it into a mesh-based multi-PE dynamical system
that supports efficient distributed spatial-temporal co-annealing
across different PEs through sparse interconnects. By exploiting
the inherent sparsity and community structures in real-world
graphs, DS-GL is able to map complex graph learning tasks onto
the scalable dynamical system while maintaining high accuracy.
Evaluations with four diverse GL applications across seven real-
world datasets, including traffic flow and COVID-19 prediction,
show that DS-GL can deliver from 103× to 105× speedups over
Graph Neural Networks on GPUs while operating at a power 2
orders of magnitude lower than GPUs, with 5%− 30% accuracy
enhancement.

Index Terms—Dynamical System, Graph Learning, Nature-
Powered Computing

I. INTRODUCTION

As the world experiences rapid informatization and digital-

ization, a growing number of applications are turning to non-

Euclidean data with high complexity and best represented as

Ruibing Song and Chunshu Wu contributed equally.

graphs. These applications span a broad spectrum of critical

areas, including power grid cascading failure prediction, traffic

flow management, and pandemic forecasting, among many

others. Most of these applications pose stringent demands on

real-time processing, low energy consumption, and simultane-

ously high accuracy. Meeting these demands presents substan-

tial challenges, primarily due to the intrinsic complexity and

irregularity of graph data [12].

Graph Neural Networks (GNNs), as the current State-Of-

The-Art (SOTA) Graph Learning (GL) approach, have recently

drawn tremendous attention due to their strong capability to

extract latent information from graph data. Following years

of advancements in algorithms [4], [8], [11] and the devel-

opment of specialized hardware accelerators [12], [30], [42],

[43], GNN research is transitioning into an era of practical

application. The pursuit of exceptional accuracy has spurred

the emergence of numerous application-specific GNNs [34],

[35], characterized by their rapidly escalating algorithmic com-

plexity and the consequent need for tremendous computational

power. Historically, the fast growth in computational power of

digital hardware, driven by Moore’s Law, has facilitated the

pursuit of enhanced accuracy through trading model complex-

ity while maintaining computational efficiency. Regrettably,

the approaching end of Moore’s Law has cast a shadow over

the future advancement and real-world adoption of GNNs.

While the optimization of digital processors remains a vital

area of exploration, it is equally imperative to investigate

alternative computational paradigms and assess their potential

in advancing the field of GL.

The recent development of CMOS-compatible Ising ma-

chines [2], coupled with their impressive efficacy in addressing

traditional graph problems (e.g., max-cut), suggests that the

intrinsic power of nature within dynamical systems can be

potentially exploited in GL. Specifically, an Ising machine is a

parameterized dynamical system governed by the Hamiltonian

of the Ising model1. As a dynamical system, the machine

naturally evolves towards fixed points. Combined with proper

annealing control, the machine has the effect of autonomously

seeking states of lowest energy — a phenomenon termed as

1Ising model: a binary statistical physics model widely used to represent
spin glasses; Hamiltonian: the energy function of dynamical systems.

45

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00014

20
24

 A
C

M
/IE

EE
 5

1s
t A

nn
ua

l I
nt

er
na

tio
na

l S
ym

po
si

um
 o

n
C

om
pu

te
r A

rc
hi

te
ct

ur
e

(I
SC

A
) |

 9
79

-8
-3

50
3-

26
58

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

C
A

59
07

7.
20

24
.0

00
14

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

natural annealing. When the parameters of the Ising machine

are properly configured, lowest energy states correspond to

the desired solutions of an optimization problem. Thus the

machine has the effect of “solving” these problems through

natural annealing with extraordinarily energy efficiency and

at “the speed of electrons”. Take graph cut as an example, a

∼200 mW Ising machine can perform high-quality max-cut

delivering orders of magnitude speedup over 200 W GPUs.

The remarkable capabilities of modern Ising machines

present a compelling question: Can we leverage the natural

computational power of such dynamical systems to advance

graph learning by simultaneously offering clearly lower la-

tency, better energy efficiency, and higher accuracy? Most

graph learning problems fundamentally target dynamical sys-

tems, e.g., power grid, traffic systems, and supply chain. It is

natural to wonder whether a programmable dynamical system

can better analyze the behaviors of these dynamical systems

than general-purpose processors. Intuitively, the answer is

affirmative. Specifically, we can construct a dynamical system

whose data distribution aligns with that of the target Graph

Learning (GL) problem by training the system’s parameters

with the problem’s training data. Accurate alignment ensures

that the system’s lowest energy states correspond to the desired

GL solutions with the highest probability. Consequently, the

dynamical system can swiftly conduct GL inference through

natural annealing at negligible cost. The statistical basis under-

pinning this method is analogous to that of modern generative

AIs, such as stable diffusion [21].

Unfortunately, in practice, the full potential of Ising ma-

chines in real-world GL cannot be realized until two major

challenges are addressed. (1) Binary Nature: Ising machines

focus only on binary values (Ising spins), limiting their ap-

plications in real-valued contexts. Efforts [15] to circumvent

this limitation by using multiple binary nodes to represent

high-precision values not only compromise solution quality but

also necessitate a substantial increase in the required number

of nodes of the machine, exacerbating the second problem –

scalability. (2) Poor Scalability: To enhance versatility and

solution quality, SOTA Ising machines use all-to-all connec-

tions with n2 couplers connecting n nodes through a huge

crossbar, ensuring direct and immediate interactions between

any two nodes during annealing. However, this design leads

to scalability issues. Attempts [31], [40] to improve scalability

using partially connected interconnects with uniform patterns,

such as King’s graph topology (where each physical node

connects with eight neighbors), fall short in handling high-

degree nodes, a common occurrence in real-world graphs.

In light of this, a new Dynamical-System-based Processing
Unit (DSPU) – capable of supporting real-valued natural

annealing and scalable for GL applications – is highly desired.

To this end, this paper proposes a novel Dynamical-System-

based Graph Learning framework, DS-GL, which incorporates

a real-valued and scalable DSPU coupled with a series of

training algorithms for constructing efficient and scalable

dynamical systems for GL problems. The overview of DS-GL

is illustrated in Fig. 1. Specifically, to enable stable real-valued

ac
cu

ra
cy

po
w

er
sp

ee
du

p

DS-GL
SOTA GNN on GPU

Fully connected

Sparse patterns

Graph Learning

Natural Annealing

(Sec.Ⅲ.B)

Binary

Real-value

Real-Valued DSPU

(Sec. .A)

(Sec.Ⅳ.D)

Coupling
Crossbar

Digital

Real-Valued &
Scalable DSPU

1/500

105×

Better

Single-core

Temporal
& Spatial

Co-annealing

Coupling
Crossbar
Coupling
Crossbar

WormholeWormhole
MappingMapping

(Sec.Ⅳ.C)

Fig. 1. Overview of DS-GL framework and its performance over GNNs.

natural annealing, DS-GL first upgrades the SOTA Ising

machine hardware with a circulative resistor ring and the self-

reaction term of its corresponding Hamiltonian (Sec.III.A);

then, a training algorithm (Sec.III.B) that accurately config-

ures the system is developed. The algorithm transforms the

process of solving GL problems into a process of natural

annealing. Coupled with this algorithm, the new “Real-Valued
DSPU” can perform real-valued GL with high performance

and accuracy. To enhance the scalability, DS-GL further up-

grades Real-Valued DSPU into a larger system, dubbed “Scal-
able DSPU”, with a mesh-based multi-PE architecture that

efficiently supports distributed spatial-temporal co-annealing

(Sec.IV.D); Coupled with a learning-based clustering algo-

rithm (Sec.IV.C) that can reconstruct dense dynamical systems

into the sparse ones with community structures while main-

taining high accuracy in natural annealing, Scalable DSPU can

solve over 4× larger real-valued GL problems than an Ising

machine with only a 30% increase in chip are.

To the best of our knowledge, DS-GL is the first work that

uses physical dynamical systems and harnesses their intrin-

sic nature’s computational power to solve real-world graph

learning problems and outperforms SOTA GNN solutions. The

contributions are summarized below:

• We propose a novel nature-powered graph learning frame-

work, DS-GL, that unleashes the inherent computational

power of dynamical systems in graph learning.

• We propose learning-based algorithms that accurately

transform the process of solving graph learning problems

to the natural annealing process of sparse dynamical

systems with a hardware-friendly community structure.

• We propose a new dynamic-system-based processing unit,

Scalable DSPU, rooted in a CMOS-compatible Ising

machine. Scalable DSPU inherits the extraordinary com-

putational efficiency of the Ising machine and extends its

potential to real-valued and larger-scale GL problems.

• Experimental results across four real-world applications

and seven datasets show that DS-GL achieves from 103×
to 105× speedup and 5% − 30% higher accuracy over

GNNs on GPUs while operating at a power 2 orders of

magnitude lower than GPUs.

46

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

A. Ising Model

The Ising model [6] is a statistical model widely used in

the study of physics, chemistry, and biology. The Ising model

is defined by its energy function or Hamiltonian:

HIsing = −
N∑

i�=j

Jijσiσj −
N∑

i

hiσi (1)

where σi ∈ {−1,+1} represents the spins within the system.

Jij is the coupling parameter representing the correlation

between spin i and spin j, and hi refers to the self-reaction

strength to external influences.

B. BRIM: the Current SOTA Ising Machine

Ising machines are essentially physical embodiments of

the Ising model. Specifically, through their designed spin

dynamics, lower energy states of the Ising Hamiltonian are

automatically pursued. Besides many existing Ising machines

implemented with quantum or optical components, CMOS-

based Ising machines have recently emerged and drawn in-

creasing attention due to their low-barrier deployment. One

typical example is BRIM [2]. Furthermore, they typically

solve problems through the movement of electrons among

electronic components such as capacitors, therefore being able

to deliver solutions with the “speed of electrons”. Despite

the many advantages and potential of Ising machines, their

unique problem-solving power has only been demonstrated

for binary problems. Inspired by the superior performance of

BRIM in solving graph optimization problems, we develop

DS-GL, which takes the BRIM architecture reported in [2] as

a building block. Before delving into DS-GL design, we first

briefly introduce the BRIM architecture below.

Fig. 2 shows the overview of the BRIM architecture. The

values of nodes are represented by the voltages of capacitors in

each Ni block. To facilitate all-to-all connection among nodes,

BRIM is equipped with a fully-connected coupling network

(the network of Jij blocks) based on programmable resistors.

Therefore, the differences between the voltages of nodes

will naturally generate currents among the coupling network

to reduce the system energy and push the system towards

equilibrium. Programming Units are used to program BRIM

by configuring the coupling parameters of the network (i.e.,

the resistance of the programmable resistors). The couplers

are programmed column by column controlled by the Column

Select Unit. Node Control Unit is in charge of node value

initialization and flipping the binary values of nodes at runtime

for effective annealing. More details can be found in [2].

C. Graph Learning

In the context, GL refers to the acquisition of unknown

graph node features using observed node features. Taking

GNNs for example, node features are obtained by iteratively

aggregating features from neighboring nodes. During GL

training, the spatial and temporal relations among graph nodes

are distilled into a selected model (GNNs or DS-GL), which

processes observed node features as its input and generates

N
o
d
e

C
o
n
tr

o
l

U
n
it

Column Select Unit

...

...

...

P
ro

g
ra

m
m

in
g
 U

n
it

...

...

...

J1n

J2n

J13J12

Jn1 Jn2 Jn3

J23J21

J3nJ32J31 N3

N2

N1

Nn

Fig. 2. Overview of BRIM hardware architecture.

unknown node features as its output. The model’s parameters

are adjusted (through backward-propagation in GNNs) accord-

ing to the discrepancies between the generated outputs and

the ground truth. This refinement process allows the model

parameters to effectively capture the underlying distribution

of the data. During inference, the trained model consumes

the observed node features and generates the corresponding

unknown node features. Particularly, for temporal prediction

tasks, GL uses historical graph information to predict the

future states of the graph.

III. REAL-VALUED GL ON DENSE DYNAMICAL SYSTEMS

Despite the exceptional capability of CMOS-compatible

Ising machines in solving binary optimization problems like

max-cut, the binary limitation hinders the method’s further

deployment for real-world graph learning problems. However,

lifting the binary restriction is not a trivial task, as the

adjustment made to this model must be general enough to

accommodate real-world problems, and practical enough for

hardware implementation.

To enable real-value support, we introduce our modifications

applied to the model, together with Real-Valued DSPU, which

incorporates the hardware upgrade to the baseline BRIM to

establish the basic hardware components for this work.

A. The Binary Limitation and Hardware Upgrade

A naive approach to facilitate real-value support is to

directly extend the variables σ from binary to real-value.

However, σ do not converge to real values but are polarized

towards ±∞. This polarization can be justified by a stationary

point analysis on the Hamiltonian. The stationary points are

reached by solving for the following condition:

∂H
∂σ

= −(Jσ + h) = 0; diag(J) = 0 (2)

Spins and parameters are shown in their matrix form, with

linear substitutions (Jij + Jji) → Jij , and 2hi → hi. Next,

the Hessian matrix H is applied to analyze the properties of

stationary points.

H(HIsing) = −J = constant; diag(J) = 0 (3)

As J is a constant matrix, all stationary points share the

same property. If all the eigenvalues of H(H)|σ0 are positive,

47

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

Combined Current
From Other Nodes

C

Ivr

Iin

iNode

Nano-Scale
Capacitor

... ...

12Coupler

21Coupler

Input+ Output+

Output-Input-

Input+Output+

Output- Input-

N2N1

Programming

Column Select

Node Input

Node Output

Fig. 3. Real-Valued DSPU architecture. Left: the circulative resistor ring.
Right: the detailed node internals for real-value support.

the stationary points σ0 are local minima; if all negative,

local maxima; otherwise, σ0 are saddle points. Notice that

diag(J) = 0, based on the linear algebraic property tr(J) =∑N
i λi, where λi is the i’th eigenvalue of J, there is a mixture

of positive and negative eigenvalues, thus saddle points. In

practice, the saddle points are not stable as they have zero tol-

erance for fluctuation, leading to diverging spins. Essentially,

this divergence is due to diag(J) = 0. To compensate, pure

quadratic or higher-order terms of σ are necessary.

This can also be viewed in an intuitive way. According to the

Ising Hamiltonian (Eq. (1)), the lowest energy state approaches

−∞. Even if an upper bound and a lower bound are applied

to prevent σ from reaching infinity, the resulting variables are

polarized at their upper or lower bound, essentially reducing

a real-valued problem to binary.

Algorithm-wise, as a countermeasure to the polarized σ, we

modify the original Ising model as Equation 4 demonstrates:

HRV = −
N∑

i�=j

Jijσiσj −
N∑

i

hiσi
2 (4)

In the modified model, only the second term is different – now

we use a pure quadratic term to replace the original linear term.

In this way, the second term still represents the self-reaction

of a spin, preserving the physical interpretation. Meanwhile,

the pure quadratic term prevents the variables from diverging

given the negative and sufficiently large parameters h, as this

modified term contributes to a quadratic increase in energy.

With the model generalized to support real values, the

hardware needs enhancements satisfying the following criteria:

(1) variables (voltages) must be able to stabilize as real values.

(2) the spontaneous decrease in Hamiltonian must be satisfied.

The first criterion is satisfied through the implementation

of circulative resistor rings, as depicted in Fig. 3. This setup

incorporates the variable resistor RV within a node along with

the pairwise coupling mechanism between nodes to achieve

the desired functionality. To accommodate both positive and

negative values of J , each pair of nodes is equipped with two

circulative resistor rings.

In baseline BRIM, without the resistor regulating the volt-

age, σ continues to vary whenever there is an incoming current

 v0
 v1
 v2
 v3
 v4
 v5

1.1
0.9
0.7
0.5
0.3
0.1

-0.1
-0.3

-0.5
-0.7
-0.9
-1.1

V
 (V

)

DSPU BRIM
1.1
0.9
0.7
0.5
0.3
0.1

-0.1
-0.3

-0.5
-0.7
-0.9
-1.1

50403020100

time (ns)
50403020100

time (ns)

Fig. 4. Circuit-level validation with an example graph.

until the capacitor is fully charged, only to represent polarized

values. Now with the presence of the resistor, nonzero currents

are enabled to flow consistently through this node, allowing σ
to be stabilized at

σ = IvrRV = IinRV = −
∑

j �=i

Jijσj

hi
(5)

Similar to J , the parameters h also have the unit of Ω−1,

corresponding to the conductance of resistors embedded in

the nodes on hardware. Meanwhile, real-world graph nodes

are modeled as variables σ, physically implemented as the

voltages applied to the nano-scale capacitors.

The stabilization capability is further demonstrated by

circuit-level validation. For clarity, we consider an illustrative

graph consisting of 6 spins, labeled v0∼v5 in Fig. 4, which

are separately deployed on DSPU and BRIM platforms. In

this setup, v0, v2, and v4 are predetermined as inputs, leaving

the others free to evolve. With identical input and coupling

parameters, the DSPU yields real-valued outcomes between

the upper and lower bounds, whereas BRIM only produces

two polarized values.

To meet the second criterion, the dynamics of the variables

is designed through Lyapunov analysis, establishing a dynam-

ical system of electrons that can be deployed on hardware.

Accordingly, the following inequality needs to be satisfied:

dHRV

dt
=

∑

i

∂HRV

∂σi

dσi

dt
≤ 0 (6)

Obviously, the variable dynamics can be designed as:

dσi

dt
= − 1

C

∂HRV

∂σi
(7)

where C is a positive constant with the unit of capaci-

tance. Substituting this equation into Eq. (6), the quadratic

(∂HRV/∂σi)
2 appears, satisfying the target inequality above.

The following question is, how to map it on hardware?

In fact, the equation is automatically satisfied with the

resistors. Based on textbook capacitor knowledge, we have:

dσi

dt
=

1

C
(Iin − Ivr) = − 1

C

∑

j �=i

Jijσj − hiσi (8)

48

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

Step1

Sparsify

Fully connected

Sparse coupling

Redistribute

Clustering

Finetune

Algorithm Part Hardware Part

Interconnection
Patterns

PE & CU Array

Baseline

Multi-PE
Less

communication
Lower
latency

More
communication

Higher
accuracy

Step2 Step3
Coupling
Crossbar

D
igital

Coupling
Crossbar

D
igital

24 9 10 11 12

23 8 1 2 13

22 7 0 3 14

21 6 5 4 15

20 19 18 17 16

24 9 10 11 12

23 8 1 2 13

22 7 0 3 14

21 6 5 4 15

20 19 18 17 16

24 9 10 11 12

23 8 1 2 13

22 7 0 3 14

21 6 5 4 15

20 19 18 17 16

Coupling
Crossbar
Coupling
Crossbar

CU: Enable
Inter-PE
communication

Temporal
& Spatial

Co-Annealing

Temporal
& Spatial

Co-Annealing

Spatial
Co-Annealing

Spatial
Co-Annealing

Communication
Density

Mapping

CUCU

CUCU

PEPEPE

PEPEPE

PEPEPE

CUCU

CUCU

PEPE

PEPE

PEPE

CUCU

CUCU

PEPEPE

PEPEPE

CUCU

CUCU

PEPE

PEPE

CUCU

CUCU

PEPEPE

PEPEPE

PEPEPE

CUCU

CUCU

PEPE

PEPE

PEPE

CUCU

CUCU

PEPEPE

PEPEPE

CUCU

CUCU

PEPE

PEPE

E
xt

ra
ct

Communities

Fig. 5. Workflow of Scalable DS-GL. Blocks in green: algorithm for coupling matrix decomposition. Blocks in orange: the architecture of Scalable DSPU.

which agrees with the shape of ∂HRV/∂σi and effectively

facilitates the spontaneous energy decrease.

B. Model Training

To provide a complete view of our proposed work and

show how the dynamical system is tamed, we briefly introduce

the training algorithm here. The training process aims to

obtain a set of parameters J and h that map the desired real-

valued result to the lowest energy state, in other words, to

construct a data distribution described by a dynamical system.

During training, to guarantee the convexity of the Hamiltonian,

the parameters h are forced to be negative. Subsequently,

the lowest energy state can be obtained by letting the first

derivative of the Hamiltonian equal to zero:

∂HRV

∂σi
= −

N∑

i�=j

(Jij + Jji)σj − 2hiσi = 0 (9)

Without losing generality, we substitute (Jij + Jji) → Jij ,

and 2hi → hi. The regression formula for σ is then derived:

σi =
−∑N

i�=j Jijσj

hi
(10)

which is exactly the hardware stability criterion (Eq. (5)). That

is, given the current parameters J/h, and the values of all other

variables as conditions, the difference between the computed

variable σi and its ground truth is used as a loss function,

updating the parameters through back-propagation.

C. Inference on a Dynamical System

With the learned parameters, GL inference can be inter-

preted as the evolution of our dynamical system. The observed

graph nodes are considered as input, while the remaining

unknown nodes are taken as output. To initiate the inference

process, the input observed nodes are fixed to the observations,

as the capacitors are charged and maintained accordingly.

Meanwhile, the unknown nodes are randomly initialized. Next,

the natural annealing process starts and the system approaches

equilibrium, so as to locate a lowest energy state.

IV. SCALABLE GL ON SPARSE DYNAMICAL SYSTEMS

This section tackles the scalability hurdle by co-designing

the learning-based algorithm for decomposing dense dynami-

cal systems and the multi-PE dynamical system architecture.

A. Overview of Scalable DS-GL

Despite the communication effectiveness of all-to-all in-

teractions among nodes, the size of the coupling network

increases quadratically with the number of nodes. To address

the problem of scalability, our design strategy is to prune

links based on the strength of inter-node connections, which

refers to the magnitude of coupling parameters. Compared to

the weakly coupled nodes, we observe that, strongly coupled

nodes contribute predominantly to the quality of solution. Con-

sidering the fact that real-world graphs are typically extremely

sparse with communities composed of strongly-related nodes,

it is feasible to only preserve strong connections and relax

the weak links between the communities. To accomplish this,

as Fig. 5 illustrates, we train DS-GL as a dynamical system

with community structure through three steps: (i) prune the

fully connected coupling matrix to a sparse matrix depending

on the coupling strength; (ii) extract the communities indi-

cated within the sparse matrix, and group the communities

into “super-communities” to match per-DSPU capacity; (iii)

further reform the coupling matrix to fit the desired sparse

interconnection pattern. To alleviate communication pres-

sure, different super-communities are interconnected through a

sparse hierarchy, including Chain, Mesh, DMesh (Diagonally-

connected Mesh [18]), and Wormholes (for unavoidable global

communication outliers).

On the hardware side, to provide the foundation for scaling,

we design a mesh-based network “Scalable DSPU” as a grid

49

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

of small DSPUs comprised of Processing Elements (PEs) and

Coupling Units (CUs). In essence, each PE serves as a local

dynamical system, with neighboring PEs linked through a lim-

ited number of analog I/Os via CUs for instantaneous synchro-

nization. In the 2D mesh, communities of nodes are mapped

to different DSPUs with their interconnections sparsified into

patterns. The patterns are specially designed for efficient “co-

annealing” processes upgraded from the annealing concept in

Real-Valued DSPU. Furthermore, the co-annealing process is

categorized into Spatial co-annealing and Temporal & Spatial

co-annealing for different scenarios (detailed in Section IV. D).

Consequently, the scalability of Scalable DSPU is optimized

with balanced annealing quality and efficiency.

B. Training Algorithm for Decomposing Dynamical System

For our proposed dynamical system, the scalability issue

arising from the all-to-all connection can be decomposed into

three sub-problems. First, to reduce communication complex-

ity, how to decompose the dynamical system to sparsify the

coupling matrix? Second, assuming the coupling is sparse,

how to perform computing efficiently? Third, accuracy will

drop during the sparsification, how to restore the accuracy?

To answer these questions, our solution is also three-fold.

(1) Decomposition of the dynamical system. Communities

typically exist in real-world graphs as a valuable property.

Similar to cliques in graph theory, communities consist of

nodes with dense interconnects but with sparse connections

to the external nodes. It can be inferred that although more

information is embedded in the original all-to-all node in-

terconnection, the majority of the interconnects should be

redundant and removable with minimal consequences.

The key is to extract the communities in the target graphs,

which is a well-researched topic. In this work, the Louvain

algorithm [5] is adopted due to its high efficiency and scal-

ability. To start, we limit the number of non-zero elements

(defined as “communication demand density” and annotated

as “D” in this work) in the coupling matrix in order to attain

an initial sparse coupling matrix for communities extraction.

In the next steps, after communities are extracted, they are

further sparsified by eliminating weak couplings, drastically

reducing the demand for communication bandwidth.

(2) Community redistribution. The extracted communities

are grouped into super-communities, with each initially dis-

tributed to a PE. However, the size of a single community

occasionally exceeds the pre-defined hardware capacity of a

PE, causing the demand for the community to be further

decomposed into smaller sub-communities to fit on hardware.

As a consequence, this redistribution process potentially re-

duces connections within communities, causing accuracy to

drop. To make amends, the sub-communities are redistributed

onto neighboring super-communities for more communication

opportunities. In the meantime, larger communities are granted

higher priority to be redistributed. In Fig. 6(a), for example,

assuming that the largest community (or a sub-community of

the largest community when it exceeds hardware capacity)

Chain

Mesh
Super-

communities
Wormhole

DMesh

Chain

Mesh
Super-

communities
Wormhole

DMesh

(b)(a)

Chain Mesh
DMesh Wormhole

24 9 10 11 12

23 8 1 2 13

22 7 0 3 14

21 6 5 4 15

20 19 18 17 16

24 9 10 11 12

23 8 1 2 13

22 7 0 3 14

21 6 5 4 15

20 19 18 17 16

Fig. 6. Four types of communication patterns.

fits into super-community 0, it is centered to have more con-

nections with its neighbors. The second largest community is

then distributed to super-community 0 if allowed by capacity,

otherwise to super-community 1. Finally, for the sake of a

balanced workload, smaller communities or isolated nodes are

redistributed to fill the blanks left by larger communities on

super-communities. Through these redistribution approaches,

the locality of communities is exploited with the utilization of

a single super-community enhanced.

(3) Parameter fine-tune with patterns. With the communi-

ties extracted and redistributed, we aim to address the final

problem – to restore the lost accuracy in these processes. To

this end, a fine-tuning process is conducted with constraints

to develop a communication-friendly pattern.

To maintain the general coupling matrix pattern obtained

from the previous steps, we generate a controlling mask to

confine the regions in the coupling matrix where non-zero

elements can populate during the fine-tuning process, also

eliminating non-zeros outside the region due to the pre-set

communication demand density D.

Next, the interconnect pattern of the super-communities is

studied. In Fig. 6(a), four patterns are summarized, which

respectively correspond to four types of connections between

the super-communities on a 2-D array. Fig. 6(b) shows the

distribution of the patterns in the re-ordered coupling matrix.

The green links represent the “Chain” type of connections

between neighbor super-communities such as 0 and 1. The

“Mesh” type of patterns contains all the connections between

neighbor super-communities on the 2-D array as orange links

including the one between 0 and 3, as well as all of the “Chain”

type of patterns. The blue links show the additional connec-

tions in “DMesh” type of patterns based on “Mesh” which

refer to the diagonal connections between super-communities

such as 0 and 2. The “Wormhole” in Fig. 6 refers to super-

connections over the 2-D array, supporting rare connections

between any two super-communities, for example, 7 and 13.

C. Proposed Hardware Architecture

The structurally sparse coupling matrix with clustered non-

zeros obtained through the decomposition of the dynamical

system (introduced in Sec IV. B) brings opportunities to

achieve efficient and accurate natural annealing with highly

sparse dynamical systems.

50

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

8 1 2

7 0 3

6 5 4

8 1 2

7 0 3

6 5 4

CUCU

CUCU

PEPEPE

PEPEPE

PEPEPE

CUCU

CUCU

PEPEPE

PEPEPE

PEPEPE

Crossbar
4×L×3L
Crossbar
4×L×3L

BL&TR Router

To neighbor
CU

TL&BR Router

In-PE
Weight
Buffer

PE-CU
Map

Buffer

Temporal
Scheduler

Crossbar
K×K

K/2 nodes

Annealing
controller

DACs

Supper
connection

Supper
connection

PE Load & Store
Controller

Readout
Buffer

K/2 nodes

ADCs

In-CU
Weight
Buffer

Temporal
Map Buffer

DACs

Weight
Select

Spatial
Scheduler

Temporal co-annealing

Supper
connection

Supper
connection

From
neighbor

CU

To neighbor
CU

Supper
connection

Supper
connection

Supper
connection

Supper
connection

Controlled
by neighbor

PE

Controlled
by neighbor

PE

L ports for each PE
Analog I/O

Crossbar
4×L×3L

BL&TR Router

To neighbor
CU

TL&BR Router

In-PE
Weight
Buffer

PE-CU
Map

Buffer

Temporal
Scheduler

Crossbar
K×K

K/2 nodes

Annealing
controller

DACs

Supper
connection

PE Load & Store
Controller

Readout
Buffer

K/2 nodes

ADCs

In-CU
Weight
Buffer

Temporal
Map Buffer

DACs

Weight
Select

Spatial
Scheduler

Temporal co-annealing

Supper
connection

From
neighbor

CU

To neighbor
CU

Supper
connection

Supper
connection

Controlled
by neighbor

PE

Controlled
by neighbor

PE

L ports for each PE
Analog I/O

Mapping

Fig. 7. The hardware architecture of Scalable DSPU.

To this end, we propose Scalable DSPU, a new dynamical

system architecture based on Real-Valued DSPU proposed in

Section III. Fig. 7 shows the proposed hardware architecture.

Scalable DSPU is equipped with a 2D array of Processing Ele-

ments (PEs). Each PE is a small Real-Valued DSPU with addi-

tional buffers, routers, and digital controllers for the support of

co-annealing. The PEs are connected to a mesh-based network

through configurable Coupling Units (CUs) at the intersection

of the mesh. Each CU contains a mini coupling crossbar,

which can be reconfigured as different types of connections to

bridge nodes from the neighbor PEs. During natural annealing,

each PE is in charge of the local annealing of a single super-

community. Mesh-based interconnect network, together with

the configurable CUs, builds direct connections for nodes that

are from different PEs but with non-zero coupling parameters.

During annealing, voltage differences across node pairs drive

currents across different PEs, enabling “Spatial co-annealing”.

When the number of nodes in a PE that need to communicate

with external nodes exceeds the limited input/output capacity

of this PE, these nodes will occupy the I/O in a time division

multiplexing manner, which is scheduled collaboratively by

their PE and the corresponding CUs, enabling the Temporal

& Spatial co-annealing. In the following, we will elaborate

on the architecture design of each major super-community in

Scalable DSPU in detail.

PE architecture: As shown in Fig. 7, each PE contains

K nodes (blue and green blocks connected to Routers). All

nodes are fully connected through an internal K×K crossbar

coupling network, like in Real-Valued DSPU. Different from

Real-Valued DSPU, the nodes are divided into two partitions.

Each partition contains k/2 nodes and is connected to either

Bottom-Left (BL) & Top-Right (TR) routers or Top-Left (TL)

& Bottom-Right(BR) routers. Each router, jointly controlled

by Spatial and Temporal Schedulers, is able to route its own

share of nodes to its corresponding two neighboring CUs

through analog-based exporting portals at the four corners

of the PEs. The Spatial Scheduler selects the nodes that

need to be connected with external PEs and supervises the

Crossbar
K×K

BL&TR Router

PE-A

node i

en

Crossbar
K×K

TL&BR Router

PE-B

node j

Coupler
Jij

Coupler
Jji

AS

Analog Switch

AS AS

out+
out- in-in+

AS AS AS AS

out+ out- in-in+

CU between PE-A
and PE-B

Fig. 8. Detailed PE-to-CU connections via Analog I/O.

corresponding Router to allocate I/O resources at one of

the selected exporting portals for the nodes. This builds the

foundation of Spatial co-annealing. The Temporal Scheduler

is in charge of selecting nodes for temporal co-annealing

when the number of nodes that need to communicate with

external PEs exceeds the I/O resources (L lanes within each

portal) at the exporting portals. Each PE is also equipped

with several banks of buffers that cache the communication

mapping information generated during training.

CU architecture: CU is at the intersection of the mesh-

based network and is used to connect PEs to the network.

The coupling parameters in a CU are stored locally in the In-

CU Weight Buffer controlled by the Weight Select module.

Similarly to PEs, each CU has four exporting portals which

connect the CU with four PEs. To align the communication

bandwidths of CUs and PEs, each portal in a CU is also

equipped with L lanes of connection. Therefore, each CU

can be connected with 4L nodes in four neighboring PEs

simultaneously. Each CU is equipped with a 4L×3L crossbar

connecting all pairs of nodes in different PEs. Note that a

CU does not need a 4L × 4L full-size crossbar as the nodes

from the same PE are already fully connected locally. With

nodes from different PEs directly connected within CUs, their

Spatial co-annealing is enabled. Here, we define the number

of lanes in each portal of both CU and PE (L) as hardware
communication capability. In our evaluation, we set L as 30

for better performance and hardware tradeoff.

Interconnect Architecture: The interconnect architecture of

Scalable DS-GL is composed of two parts: (1) the connections

between exporting portals of CUs and PEs together compose

a tiled mesh-based interconnect (the green grid in Figure.

7); and (2) the super connections (orange lines) that connect

exporting portals of neighboring CUs compose another grid-

based interconnect (the orange grid). As aforementioned, the

green grid enables the Spatial co-annealing among nodes

from neighboring PEs. In contrast, the yellow grid enables

the co-annealing among nodes from remote PEs. From the

perspective of the coupling matrix, the scattered non-zeros

located in the blank space require remote communication

in pursuit of efficient and accurate annealing and therefore

require “Wormholes”. To open a Wormhole for two nodes from

remote PEs, the corresponding PEs first map both nodes to

their neighboring CUs and then enable the super connections

in the route between the two CUs.

51

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

TR CU of PE1Temporal Scheduler Temporal Map Buffer
Temporal co-annealing

Spatial Scheduler
Overlapping detect

D<L?

PE-CU Map Buffer
TR: 1, 3, 5, 6, 7, 10...

BL: 1, 2, 4, 6, 8, 11...

TL: 0, 3, 5, 6, 9, 11...

BR: 1, 3, 7, 8, 9, 12... Super Connect

Node lists to
other CUs

Super connections between CUs

Node mappingNode mapping

Crossbar
K×K
Analog part

Crossbar
K×K
Analog part

TR

Spatial co-annealing L connections
to each CU

BL

TL

BR

BL&TR Router
2*(2L to L)

TL&BR Router
2*(2L to L)

YN

Divide into slices

Slice1 Slice2

Switch Controller

TR-slice1 TR-slice2

BL-slice1 BL-slice2

TL-slice1 TL-slice2

BR-slice1 BR-slice2

Slice1 Slice2
Switch-in-turn Coupling

Crossbar
In-CU
Weight
Buffer

Weight
Select

DACs

Coupling
Crossbar

In-CU
Weight
Buffer

Weight
Select

DACs

1, 3, 5, 6, 7, 10, 11, 13, 17, 18

0

1

3

6

7

9

10

11

16

18

Coupling matrix
between PE1 & PE2

List of Activated nodes
on PE1

List of A
ctivated nodes on PE

2

1, 3, 5, 6, 7, 10, 11, 13, 17, 18

0

1

3

6

7

9

10

11

16

18

Coupling matrix
between PE1 & PE2

List of Activated nodes
on PE1

List of A
ctivated nodes on PE

2

CU weight Switch control

Part view of PE1

Supper
connection

Supper
connection

Fig. 9. The hardware architecture for Spatial co-annealing and Spatial & Temporal co-annealing methods.

Analog I/O Details: Fig. 8 shows the signal channel be-

tween two nodes from different PEs containing two high-speed

analog switches and an analog resistive component, i.e., CU

coupling unit. In each PE, a router selects the corresponding

analog switches to establish analog connections between nodes

in the PEs and ports on the CU, thereby enabling the inter-PE

communication via the analog coupling crossbar in CUs. This

analog-fashioned connection avoids extra A/D or D/A conver-

sion and fully supports heterogeneous interconnect patterns in

Fig. 6, leveraging the flexibility of analog coupling crossbars

in CUs and routers in PEs. As shown in Fig. 7, each node

in a PE can be connected to up to 4 neighbor CUs. Within

each CU, a node is further connected to up to 90 nodes from

3 neighboring PEs through the coupling network.

Challenge in decomposing large-scale graphs: With DS-

GL, graphs can be decomposed more aggressively without

sacrificing accuracy than GNNs. The underlying reasons are

two-fold. First, as an electronic dynamical system, DS-GL

hardware constantly propagates node information to their di-

rectly connected neighbors through the movement of electrons

(flow of electric current) among capacitors, facilitating fast and

long-range cascading information propagation among remotely

connected nodes. Therefore, with DS-GL, information can be

seamlessly transmitted even among nodes that are not directly

connected. This feature is distinguished from GNNs, where

information is propagated from one node to its neighbors for

only once per layer. Second, for nodes in the clusters that are

not directly connected through CUs, if their connections are

critical for high accuracy, the Wormhole interconnection in-

troduced above will be enabled to establish direct connections

among them. It is worth highlighting that the “Wormholes”

require no extra hardware, but only share little resources from

CUs to enable direct connections among remote PEs with

considerable bandwidth.

D. Featuring Co-Annealing Methods

Since the proposed sparse dynamical system is no longer

fully connected, the natural annealing process in a Real-

Valued DSPU should be adjusted accordingly. In particular, we

confront two imperative problems. First, in contrast to the all-

to-all connections in a Real-Valued DSPU, what modifications

are required in the hardware to make the PEs collaboratively

anneal through the sparse connections? Second, how can the

hardware manage situations where its capacity is inadequate

to facilitate the concurrent annealing of all nodes? In response

to these problems, the co-annealing approaches are also cat-

egorized in a bipartite manner. (a) Spatial co-annealing is

the standard annealing process performed on the proposed

sparse dynamical system. Given the communication patterns

of the super-communities, natural annealing is collectively

performed in all super-communities leveraging the proposed

hierarchical interconnect architecture. (b) Temporal & Spatial
co-annealing is designed in the case of insufficient capacity

of the dynamical system. In this scenario, one Spatial co-

annealing is transformed into iterative partial annealing until

convergence is reached.

Spatial co-annealing method: Fig. 9 depicts the coupling

between two example PEs on the left, demonstrating the sparse

communication pattern between nodes. The blue squares de-

note the communication facilitated between the nodes depicted

as the green squares, aka “activated nodes”. Subsequently,

annealing is performed following the communication pattern

as Spatial co-annealing, featuring its real-time synchronization

capability through CUs. In the black-framed box centered

in Fig. 9, taking PE1 for example, the Spatial co-annealing

mechanism starts from a “PE-CU Map Buffer” which stores

all the lists of activated nodes to be deployed to neighbor CUs.

For a hardware configuration with specific L, the mapping

method is further selected depending on whether D is less

than L. If yes, the Spatial co-annealing method shown in

the box with green dotted frame is applied. In this situation,

the spatial scheduler directly fetches the node-to-CU mapping

information from “PE-CU Map Buffer”. It first detects the

overlapping between the nodes to different CUs, and then

generates the mapping signal to the routers. Meanwhile, the

“Super Connect” module sends a control signal to enable com-

munication between CUs for overlapped nodes or “Wormhole”

52

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

R
M

SE

Chain Mesh DMesh The best GNN result

3.4E-2

3.7E-2

4.0E-2

4.3E-2

4.6E-2

0 0.05 0.1 0.15 0.2

Density

NO2

1.10E-3

1.11E-3

1.11E-3

1.12E-3

1.12E-3

0 0.050.10.150.20.25

Density

Covid

1.6E-2

1.8E-2

2.0E-2

2.2E-2

2.4E-2

0 0.05 0.1 0.15 0.2

Density

O3

7.7E-2

7.9E-2

8.1E-2

8.3E-2

8.5E-2

0 0.05 0.1 0.15 0.2 0.25

Density

Traffic

1.9E-2

2.1E-2

2.3E-2

2.5E-2

2.7E-2

2.9E-2

0 0.05 0.1 0.15

Density

PM25

2.0E-2

2.2E-2

2.4E-2

2.6E-2

2.8E-2

0 0.05 0.1 0.15

Density

PM10

0.055

0.065

0.075

0.085

0 0.05 0.1 0.15 0.2

Density

Stock

Fig. 10. DS-GL accuracy (RMSE) vs the density of coupling matrix (proportion of nonzero elements; sparsity=1-density) with different communication
patterns. “Chain/Mesh/DMesh” refer to different communication patterns with Wormhole enabled.

Best RMSE v.s. Latency on Real-World Datasets

B
es

t R
M

SE

0.034

0.036

0.038

0.04

0.042

0 5 10 15 20

Latency (μs)

NO2

1.10E-03

1.11E-03

1.12E-03

0 5 10 15 20

Latency (μs)

Covid

0.016

0.018

0.02

0.022

0.024

0 5 10 15 20

Latency (μs)

O3

0.078

0.0785

0.079

0.0795

0.08

0.0805

0 5 10 15 20

Latency (μs)

Traffic

0.019

0.021

0.023

0.025

0 5 10 15 20

Latency (μs)

PM25

0.021

0.023

0.025

0.027

0 5 10 15 20

Latency (μs)

PM10

0.058

0.059

0.060

0.061

0 5 10 15 20

Latency (μs)

Stock

Fig. 11. DS-GL Accuracy vs inference latency (annealing time). Temporal & Spatial co-annealing is adopted for higher accuracy with longer annealing time.

patterns. Since the communication demand density is lower

than the hardware communication capability, all nodes can be

directly mapped to the corresponding CUs. The TR CU of PE1

is drawn in the figure as an example, where the weights (or the

coupling parameters) for the couplings in the CU are stored

locally in the “In-CU Weight Buffer” in each CU. For Spatial

co-annealing, the weights do not change and are programmed

to the coupling crossbar via DACs.

Temporal & Spatial co-annealing method: In the high

communication demand density scenario, when D is greater

than L, the CUs become saturated with some unaddressed

couplings, and the standard Spatial co-annealing no longer

applies. Under this circumstance, a Temporal & Spatial co-

annealing approach is adopted, with a single Spatial co-

annealing decomposed into iterations of partial annealing. In

Fig. 9, the box with orange dotted frame shows the hardware

for the Temporal co-annealing component, which functions

collectively with the Spatial co-annealing part as follows. First,

the node lists from the “PE-CU Map Buffer” are sent to the

temporal scheduler to divide the lists into smaller “slices”,

with each size not greater than L. The slices are then stored

in the “Temporal Map Buffer”, where the buffer sends only

one group of slices at a time to the spatial scheduler for further

spatial mapping. The “Switch Controller” generates the control

signals to inform the buffer to exchange the groups of slices

in turn, namely, a Switch-in-turn process. Since the weight pa-

rameters in a CU need to be exchanged within different slices,

the switch control signals are also connected to the “Weight

Select” module in the CU. In this way, high communication

demand is supported by the proposed hardware architecture,

even with limited capacity of CUs.

V. EVALUATION

In this section, the tradeoff between communication density

and accuracy, and that between inference latency and accuracy

are evaluated. In addition, DS-GL is compared with various

SOTA GNNs across different hardware platforms on the fol-

lowing metrics: accuracy, latency, energy, and hardware costs.

A. Experimental Setup

Applications and Datasets. We evaluate the proposed

framework on seven real-world datasets from four application

scenarios. (1) Traffic flow prediction: traffic [20] contains the

traffic flow data in Japan. (2) Air quality prediction: PM25,

PM10, NO2 and O3, containing PM2.5, PM10, NO2, and O3

data from 2019.5 to 2019.12 in Chinese Air Quality Reanalysis

database [22]. (3) Pandemic progression prediction: Covid [7]

contains 2020-2023 daily case increments of COVID-19 in

US. (4) Stock price prediction: predicting the daily prices

of stocks. Stock [28] contains prices for tickers trading on

NASDAQ up to 2020.4.

Algorithm Baselines. For fair evaluation, three SOTA

spatial-temporal GNNs are selected as the baselines, including

GWN [36], MTGNN [35], and DDGCRN [34]. Their hyper-

parameters are set according to their released codes.

Platforms. NVIDIA A100 40GB SXM GPUs are used to

measure the training time, inference latency, and accuracy

of the SOTA GNNs. For DS-GL, the accuracy and latency

are measured using a CUDA-based Finite Element Analysis

(FEA) software simulator implemented on top of the one of

BRIM [2]. Cadence Mix-signal Design Environment (with 45-

nm technology node) is used to evalaute the power and area

of DSPU and DS-GL.

B. Tradeoff among Accuracy, Latency, and Graph Sparsity

Fig. 10 shows the accuracy (in Root Mean Square Error,

RMSE) of DS-GL with different levels of post-decomposition

graph sparsity (= 1−Density) and various decomposition

patterns across seven real-world graph learning problems. The

decomposition patterns include Chain, Mesh, and DMesh, each

with Wormhole enabled. The red dotted lines represent the best

accuracy of our selected SOTA GNNs. Results show that the

accuracy of DS-GL increases with higher graph density (or

lower graph sparsity). Moreover, more complex communica-

tion patterns enable higher flexibility in graph decomposition,

therefore resulting in higher accuracy.

53

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I
HARDWARE COMPARISON WITH BRIM, A SOTA ISING MACHINE.

Effective spins Power Area Scalable Data type
BRIM [2] 2000 250 mW 5 mm2 No Binary

DSPU-2000 2000 260 mW 5.1 mm2 No Real-Value

DS-GL 8000 550 mW 6.5 mm2 Yes Real-Value

TABLE II
RMSE COMPARISON BETWEEN DS-GL AND SOTA GNNS.

Dataset NO2 Covid O3 Traffic PM25 PM10 Stock
GWN [36] 5.52e-2 1.75e-3 2.40e-2 1.27e-1 3.20e-2 2.74e-2 8.44e-2

MTGNN [35] 4.51e-2 1.85e-3 2.23e-2 1.14e-1 2.83e-2 2.73e-2 8.39e-2
DDGCRN [34] 5.17e-2 1.16e-3 2.21e-2 8.43e-2 2.77e-2 2.78e-2 8.42e-2
DS-GL-Spatial 3.94e-2 1.11e-3 2.21e-2 7.97e-2 2.37e-2 2.53e-2 6.06e-2
DS-GL-Chain 3.60e-2 1.11e-3 1.89e-2 7.89e-2 2.08e-2 2.30e-2 5.92e-2
DS-GL-Mesh 3.48e-2 1.11e-3 1.78e-2 7.86e-2 1.97e-2 2.22e-2 5.86e-2

DS-GL-DMesh 3.41e-2 1.11e-3 1.70e-2 7.83e-2 1.93e-2 2.19e-2 5.82e-2

Fig. 11 shows the best accuracy obtainable with different

inference latency. Recall that while a high density of the

coupling matrix enhances accuracy, it often exceeds hard-

ware capacity. Therefore, Temporal & Spatial co-annealing

is adopted to support higher density at the cost of increased

annealing time (i.e., inference latency), leading to a tradeoff

between accuracy and latency. For most datasets, the RMSE

decreases sharply with increasing latency until an inflection

point (∼5 μs), after which the decline is more gradual.

C. Evaluation of DS-GL Hardware Costs

The hardware costs of BRIM, DSPU, and DS-GL are listed

in Table I, where DSPU-2000 refers to a DSPU consisting of

2000 spins for a fair comparison with BRIM [2]. It shows

that the Real-Valued DSPU can support real-world problems

with minor extra costs compared to the binary machine.

Furthermore, DS-GL scales the number of spins by 4× at

the cost of 2× higher power.

D. Evaluation of Inter-tile Synchronization

Although DS-GL does not need synchronization among tiles

within the same mapping, synchronization is necessary among

multiple mappings. Specifically, the synchronization frequency

(1/500ns) required for high accuracy is much lower than that

supported by the DS-GL hardware (1/200ns). To demonstrate

the efficacy of synchronization, Fig. 12 uses Stock, NO2, and

Traffic datasets to evaluate the variation in accuracy (RMSE)

over the synchronization interval from 1 ns to 5 μs. Fig. 12

shows that the accuracy generally decreases with the increase

of synchronization interval. However, the accuracy drop is

negligible when synchronization interval is less than 500 ns,

which is easily achievable on the DS-GL hardware.

E. Accuracy Comparison with SOTA GNN

Table II compares the accuracy among four DS-GL design

choices and three SOTA GNNs including GWN [36], MT-

GNN [35], and DDGCRN [34]. The accuracy is evaluated in

terms of RMSE. The four design choices include “DS-GL-

Spatial”, “DS-GL-Chain”, “DS-GL-Mesh”, “DS-GL-DMesh”.

Particularly, DS-GL-Spatial refers to the design with only

spatial co-annealing (temporal co-annealing disabled) which

trades accuracy for low inference latency. In contrast, “DS-

GL-Chain”, “DS-GL-Mesh”, and “DS-GL-DMesh” represent

the designs with different decomposition patterns, each with

R
M

SE

1ns,0.03411

200ns, 0.03414

500ns, 0.03424
0.03

0.035

0.04

0.045

0.05

0.055

0 1 2 3 4 5

Syncronization Interval (us)

NO2

1ns,0.05817

200ns, 0.05822

500ns, 0.05831
0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5

Syncronization Interval (us)

Stock

1ns,0.07823

200ns, 0.07827

500ns, 0.07831

0.07

0.08

0.09

0.1

0.11

0 1 2 3 4 5
Syncronization Interval (us)

Traffic

Fig. 12. RMSE vs Synchronization Interval, with 200 ns used in DS-GL.

5.5E-2

6.5E-2

7.5E-2

8.5E-2

0 0.05 0.1 0.15 0.2
Density

Stock

3.0E-2

3.5E-2

4.0E-2

4.5E-2

5.0E-2

5.5E-2

0 0.05 0.1 0.15 0.2
Density

NO2

7.6E-2

7.8E-2

8.0E-2

8.2E-2

8.4E-2

8.6E-2

0 0.05 0.1 0.15 0.2 0.25
Density

Traffic

R
M

SE

n = 0% n = 5% n = 10% n = 15%

Fig. 13. RMSE vs matrix density under noise percentage n.

both spatial and temporal co-annealing enabled, therefore,

delivering slower inference but higher accuracy. As the table

shows, DS-GL outperforms SOTA GNNs on all datasets.

Taking the air-quality-NO2 dataset as an example, DS-GL-

Spatial achieves 12.6%-28.6% reduced RMSE compared to

SOTA GNNs while DS-GL-DMesh achieves 22.4%-38.2%

RMSE reduction.

F. Latency & Energy Comparison with Accelerators & GPU

In Table. II, DS-GL exhibits substantial accuracy improve-

ments over SOTA GNNs. To further evaluate the latency and

energy efficiency, we present a comparison with several SOTA

hardware accelerators, including AWB-GCN [12], I-GCN [13],

NTGAT [17], GraphAGILE [42], and RACE [41]. Since GNN

models are often specifically designed for these applications,

while accelerators are not designed for these models - for

a fair comparison, we assume these accelerators are of full

utilization, achieving peak TFLOPs with typical power. Even

with this assumption, DS-GL still consistently outperforms

all SOTA accelerators and modern GPU on both latency and

energy consumption, as summarized in Table. III.

G. Evaluation of System robustness

To estimate the impact of noise on the system, we inject

dynamic noises at both nodes and coupling units. The noise is

generated by the Gaussian distribution with standard deviation

values of 5%, 10%, and 15% each. The results of three

representative datasets with ‘DMesh’ pattern are shown in Fig.

13, where n in the legend represents the standard deviation of

noise. We observe that the impact of dynamic noise is not

significant, showing the natural good tolerance of physical

dynamical systems to noise. As a result, in practical situations,

DS-GL still achieves better accuracy over the GNNs.

H. Multi-Dimensional Applications

To further demonstrate the wide applicability of DS-GL,

two datasets (house prices in California [26] and global

climate [10], denoted separately as CA housing and climate)

including multiple features for a node are evaluated, with

results shown in Table IV. For example, climate contains

54

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

TABLE III
COMPARISON OF INFERENCE LATENCY AND ENERGY COST PER INFERENCE AMONG DS-GL, SOTA GNNS ON GNN ACCELERATORS, AND GPUS.

Hardware Platforms Stratix 10 SX Xilinx Alveo U200 Xilinx Alveo U250 Xilinx Alveo U280 NVIDIA A100 SXM
Related Works† AWB [12], IGCN [13] NTGAT [17] GraphAGILE [42] RACE [41]
Peak TFLOPS 2.7 1.4 2.8 2.1 156

Max Power (W) 215 225 225 225 400
Typical Power (W) 137 100 110 100 250

Application covid air traffic stock covid air traffic stock covid air traffic stock covid air traffic stock covid air traffic stock
GNNs

Latency
(μs)

GWN 1141 1335 985 1751 2203 2578 1902 3382 1101 1289 951 1691 1469 1719 1268 2255 2757 4601 4176 5333
MTGNN 516 604 446 792 996 1166 860 1530 498 583 430 765 664 777 574 1021 9319 1.6e4 1.2e4 2.3e4

DDGCRN 690 847 443 1063 1333 1636 855 2051 667 818 427 1018 889 1090 570 1364 3.7e4 6.0e4 2.6e4 1.2e5

DS-GL Latency (μs) 0.15 1.1 0.65 1.0 0.15 1.1 0.65 1.0 0.15 1.1 0.65 1.0 0.15 1.1 0.65 1.0 0.15 1.1 0.65 1.0

GNNs
Energy

(mJ)

GWN 156 183 135 240 220 258 190 338 121 142 105 186 147 172 127 225 674 1138 984 1298
MTGNN 70.7 82.7 61.0 109 100 118 85.1 152 54.9 64.1 46.9 84.2 66.5 78.0 57.5 101 2241 4164 2973 5419

DDGCRN 94.6 116 60.6 145 134 165 85.4 205 73.2 89.9 47.1 113 89.1 110 56.8 136 9457 1.5e4 6392 3.0e4

DS-GL Energy (mJ) 9e-5 6e-4 4e-4 6e-4 9e-5 6e-4 4e-4 6e-4 9e-5 6e-4 4e-4 6e-4 9e-5 6e-4 4e-4 6e-4 9e-5 6e-4 4e-4 6e-4

† The latency of GNN accelerators is reported based on their theoretical peak performance with full utilization.

TABLE IV
RMSE & LATENCY COMPARISON ON MULTI-DIMENSIONAL DATASETS.

Multi-Dimensional Dataset CA housing climate
Comparison Metric RMSE latency (μs) RMSE latency (μs)

GWN [36] 1.89e-2 6.40e+3 4.32e-1 1.37e+4
MTGNN [35] 2.10e-2 2.08e+4 4.33e-1 1.87e+4

DDGCRN [34] 1.86e-2 5.03e+4 4.03e-1 3.54e+4
DS-GL 1.62e-2 1.08 3.89e-1 0.97

12 features per node, including humidity, temperature, wind

speed, etc. Latency is evaluated on an A100-40G SXM GPU.

VI. RELATED WORKS

Variances of Ising Machines: In addition to BRIM, there

are many other Ising machine concepts and prototypes includ-

ing D-Wave’s quantum annealers that have been put into com-

mercial use [1]. As a quantum Ising machine, a D-Wave an-

nealer [14] takes advantage of the quantum effects introduced

by its superconducting qubits to achieve extraordinary speed.

However, quantum Ising machines require a cryogenic system

for extremely low temperatures as the operating environment.

This cryogenic system is also the main reason for its high

energy consumption (∼25KW), which significantly limits its

practical use at the current stage. In Coherent Ising machines

(CIM) [19], [25], [38], optical parametric oscillators are used

to represent spins, while the coupling is currently emulated

through digital computation. Consequently, the efficiency of

current CIMs is rather limited. In contrast, Ising machines

based on electric oscillators are closer to real-life deployment,

but may require hard-to-integrate inductors for high-quality

oscillations. However, a 48-oscillator Ising machine [24] us-

ing ring oscillators has recently emerged, demonstrating the

potential in this approach.

Among the choices of Ising machines, BRIM is uniquely fit-

ted to our purpose in this work in contrast to two other groups

of Ising machines designs: � Oscillator-based Ising machines

use oscillator phase (φi) as the spin [3], [9], [16], [19], [27],

[33]. These spins are not Ising spins (1 degree of freedom: ±1)

but XY model spins (2 degrees of freedom) with the following

Lyapunov function: H = −∑
i,j Jij · cos(φi − φj). Hence

they do not lend to real-value quadratic objective function as

naturally as BRIM does. � Digital annealers/accelerators are

hardwired annealing algorithms [37], [39]. They are certainly

more efficient than general-purpose processors, but do not yet

rival SOTA dynamical systems in efficiency. Besides, almost

all such designs in the literature acquire extra efficiency by

using local coupling and/or single-bit coupling, making them

impractical for real-world problems.
Existing works on Ising Machines for ML: The potential

of Ising machines in solving ML problems has only been re-

cently recognized. Recent works have attempted to use BRIM

to solve or partially solve simple learning problems including

predicting traffic congestion [29], collaborative filtering [23],

and supporting energy-based models [32]. However, those

works only support binary problems (e.g., “congested (0)”

or “non-congested (1)”) in congestion prediction and “like”

or “dislike” in binary collaborative filtering). Moreover, the

congestion prediction work [29] uses BRIM to impute invisible

congestion data within the same timestamp, while the temporal

prediction is performed on digital processors. In [23], BRIM

is used to determine whether a user will “like” or “dislike”

an item determined by the similarity between items. Like

congestion prediction, no temporal evaluation is performed

by the Ising machine in [23]. Furthermore, both works offer

solutions tailored to specific applications, whereas DS-GL

accommodates a broader range of real-valued applications that

necessitate intricate analysis of temporal information.

VII. CONCLUSIONS

This paper proposes a nature-powered graph learning frame-

work dubbed DS-GL. Rooted in a CMOS-compatible Ising

machine, DS-GL inherits the extraordinary computational ef-

ficiency of the Ising machine and extends its potential to real-

valued and larger-scale GL problems. Evaluations with four

diverse GL applications across seven datasets show that DS-

GL can deliver speedups ranging from 103× to 105× over

Graph Neural Networks on GPUs while operating at a power

2 orders of magnitude lower than GPUs, with 5% − 30%
accuracy enhancement.

ACKNOWLEDGEMENTS

This work was supported in part by NSF under Awards

CCF-2326494, No. 2231036, and No. 2233378; by NYS

Center of Excellence under Awards No.2089C001; by DARPA

under contract No. FA8650-23-C-7312; and by META Re-

ality Lab. This research was also partially supported by the

U.S. DOE Office of Science, Office of Advanced Scientific

Computing Research, under award No.66150: “CENATE -

Center for Advanced Architecture Evaluation” and No.78284:

“ComPort: Rigorous Testing Methods to Safeguard Software

Porting”.

55

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “The D-Wave 2000Q quantum computer.” [Online]. Avail-
able: https://www.dwavesys.com/sites/default/files/D-Wave%202000Q%
20Tech%20Collateral 0117F.pdf

[2] R. Afoakwa, Y. Zhang, U. K. R. Vengalam, Z. Ignjatovic, and M. Huang,
“BRIM: Bistable resistively-coupled Ising machine,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 749–760.

[3] I. Ahmed, P.-W. Chiu, and C. H. Kim, “A probabilistic self-annealing
compute fabric based on 560 hexagonally coupled ring oscillators for
solving combinatorial optimization problems,” in 2020 IEEE Symposium
on VLSI Circuits, 2020, pp. 1–2.

[4] J. Baek, M. Kang, and S. J. Hwang, “Accurate learning of graph repre-
sentations with graph multiset pooling,” in International Conference on
Learning Representations, 2020.

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, oct
2008.

[6] S. G. Brush, “History of the Lenz-Ising model,” Reviews of modern
physics, vol. 39, no. 4, p. 883, 1967.

[7] Centers for Disease Control and Prevention, “COVID data tracker,”
Atlanta, GA: U.S. Department of Health and Human Services, CDC,
November 22 2023, https://covid.cdc.gov/covid-data-tracker.

[8] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, 2019,
pp. 257–266.

[9] J. Chou, S. Bramhavar, S. Ghosh, and W. Herzog, “Analog coupled
oscillator based weighted Ising machine,” Scientific Reports, vol. 9,
no. 1, p. 14786, 2019. [Online]. Available: https://doi.org/10.1038/
s41598-019-49699-5

[10] N. Elgiriyewithana, “World weather repository (daily updating)[dataset].
kaggle. com,” 2023.

[11] F. Frasca, B. Bevilacqua, M. Bronstein, and H. Maron, “Understanding
and extending subgraph GNNs by rethinking their symmetries,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 31 376–
31 390, 2022.

[12] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt, and M. C. Herbordt, “AWB-GCN: A graph
convolutional network accelerator with runtime workload rebalancing,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2020, pp. 922–936.

[13] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt,
Y. Lin, and A. Li, “I-GCN: A graph convolutional network accelerator
with runtime locality enhancement through islandization,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1051–1063.

[14] R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley, J. Johansson,
P. Bunyk, E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata,
I. Perminov, P. Spear, C. Enderud, C. Rich, S. Uchaikin, M. C. Thom,
E. M. Chapple, J. Wang, B. Wilson, M. H. S. Amin, N. Dickson,
K. Karimi, B. Macready, C. J. S. Truncik, and G. Rose, “Experimental
investigation of an eight-qubit unit cell in a superconducting optimiza-
tion processor,” Phys. Rev. B, vol. 82, p. 024511, Jul 2010.

[15] G. E. Hinton, “A practical guide to training restricted Boltzmann
machines,” in Neural Networks: Tricks of the Trade: Second Edition.
Springer, 2012, pp. 599–619.

[16] T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada,
T. Kazama, K. Enbutsu, T. Umeki, R. Kasahara, K. ichi Kawarabayashi,
and H. Takesue, “100,000-spin coherent Ising machine,” Science
Advances, vol. 7, no. 40, p. eabh0952, 2021. [Online]. Available:
https://www.science.org/doi/abs/10.1126/sciadv.abh0952

[17] W. Hou, K. Zhong, S. Zeng, G. Dai, H. Yang, and Y. Wang, “NTGAT:
A graph attention network accelerator with runtime node tailoring,”
in Proceedings of the 28th Asia and South Pacific Design Automation
Conference, ser. ASPDAC ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 645–650.

[18] W.-H. Hu, S. E. Lee, and N. Bagherzadeh, “DMesh: a diagonally-linked
mesh network-on-chip architecture,” Network on Chip Architectures,
vol. 14, 2008.

[19] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo,
A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga,
H. Takenouchi, K. Aihara, K.-i. Kawarabayashi, K. Inoue, S. Ut-
sunomiya, and H. Takesue, “A coherent Ising machine for 2000-node
optimization problems,” Science, vol. 354, no. 6312, pp. 603–606, 2016.

[20] R. Jiang, Z. Wang, J. Yong, P. Jeph, Q. Chen, Y. Kobayashi, X. Song,
S. Fukushima, and T. Suzumura, “Spatio-temporal meta-graph learning
for traffic forecasting,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, no. 7, 2023, pp. 8078–8086.

[21] J. Karras, A. Holynski, T.-C. Wang, and I. Kemelmacher-Shlizerman,
“DreamPose: Fashion video synthesis with stable diffusion,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2023, pp. 22 680–22 690.

[22] L. Kong, X. Tang, J. Zhu, Z. Wang, J. Li, H. Wu, Q. Wu, H. Chen,
L. Zhu, W. Wang, B. Liu, Q. Wang, D. Chen, Y. Pan, T. Song, F. Li,
H. Zheng, G. Jia, M. Lu, L. Wu, and G. R. Carmichael, “A 6-year-
long (2013–2018) high-resolution air quality reanalysis dataset in China
based on the assimilation of surface observations from CNEMC,” Earth
System Science Data, vol. 13, no. 2, pp. 529–570, 2021.

[23] Z. Liu, Y. Yang, Z. Pan, A. Sharma, A. Hasan, C. Ding, A. Li, M. Huang,
and T. Geng, “Ising-CF: A pathbreaking collaborative filtering method
through efficient Ising machine learning,” in Proceedings of the 60th
ACM/IEEE Design Automation Conference. of DAC, 2023.

[24] H. Lo, W. Moy, H. Yu, S. Sapatnekar, and C. H. Kim, “An Ising solver
chip based on coupled ring oscillators with a 48-node all-to-all connected
array architecture,” Nature Electronics, vol. 6, no. 10, pp. 771–778, 2023.

[25] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock,
S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer,
M. M. Fejer, H. Mabuchi, and Y. Yamamoto, “A fully programmable
100-spin coherent Ising machine with all-to-all connections,” Science,
vol. 354, no. 6312, pp. 614–617, 2016.

[26] P. Mooney, “Zillow house price data[dataset]. kaggle. com,” 2021.

[27] W. Moy, I. Elshazly, P.-w. Chiu, J. Moy, S. Sapatnekar, and C. Kim, “A
1,968-node coupled ring oscillator circuit for combinatorial optimization
problem solving,” Nature Electronics, vol. 5, 05 2022.

[28] O. Onyshchak, “Stock market dataset,” 2020. [Online]. Available:
https://www.kaggle.com/dsv/1054465

[29] Z. Pan, A. Sharma, J. Y.-C. Hu, Z. Liu, A. Li, H. Liu, M. Huang, and
T. Geng, “Ising-Traffic: Using Ising machine learning to predict traffic
congestion under uncertainty,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, no. 8, pp. 9354–9363, Jun. 2023. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/26121

[30] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “FlowGNN:
A dataflow architecture for real-time workload-agnostic graph neural
network inference,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), mar 2023, pp. 1099–1112.

[31] T. Takemoto, M. Hayashi, C. Yoshimura, and M. Yamaoka, “2.6 a 2×
30k-spin multichip scalable annealing processor based on a processing-
in-memory approach for solving large-scale combinatorial optimization
problems,” in 2019 IEEE International Solid-State Circuits Conference-
(ISSCC). IEEE, 2019, pp. 52–54.

[32] U. Vengalam, Y. Liu, T. Geng, H. Wu, and M. Huang, “Supporting
energy-based learning with an Ising machine substrate: A case study on
RBM,” in Proceedings of the International Symposium on Microarchi-
tecture, 2023.

[33] T. Wang and J. Roychowdhury, “OIM: Oscillator-based Ising machines
for solving combinatorial optimisation problems,” in Unconventional
Computation and Natural Computation, I. McQuillan and S. Seki, Eds.
Cham: Springer International Publishing, 2019, pp. 232–256.

[34] W. Weng, J. Fan, H. Wu, Y. Hu, H. Tian, F. Zhu, and J. Wu, “A
decomposition dynamic graph convolutional recurrent network for traffic
forecasting,” Pattern Recognition, vol. 142, p. 109670, 2023.

[35] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Con-
necting the dots: Multivariate time series forecasting with graph neural
networks,” in Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, 2020, pp. 753–763.

[36] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph WaveNet for
deep spatial-temporal graph modeling,” 2019.

[37] S. Xie, S. R. S. Raman, C. Ni, M. Wang, M. Yang, and J. P. Kulkarni,
“Ising-CIM: A reconfigurable and scalable compute within memory ana-
log Ising accelerator for solving combinatorial optimization problems,”
IEEE Journal of Solid-State Circuits, vol. 57, no. 11, pp. 3453–3465,
2022.

56

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

[38] Y. Yamamoto, K. Aihara, T. Leleu, K.-i. Kawarabayashi, S. Kako, M. Fe-
jer, K. Inoue, and H. Takesue, “Coherent Ising machines—optical neural
networks operating at the quantum limit,” npj Quantum Information,
vol. 3, no. 1, p. 49, 2017.

[39] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and
H. Mizuno, “A 20k-spin Ising chip to solve combinatorial optimization
problems with CMOS annealing,” IEEE Journal of Solid-State Circuits,
vol. 51, no. 1, pp. 303–309, 2015.

[40] ——, “24.3 20k-spin Ising chip for combinational optimization problem
with CMOS annealing,” in 2015 IEEE International Solid-State Circuits
Conference-(ISSCC) Digest of Technical Papers. IEEE, 2015, pp. 1–3.

[41] H. Yu, Y. Zhang, J. Zhao, Y. Liao, Z. Huang, D. He, L. Gu, H. Jin,
X. Liao, H. Liu, B. He, and J. Yue, “RACE: An efficient redundancy-
aware accelerator for dynamic graph neural network,” ACM Trans.
Archit. Code Optim., aug 2023, just Accepted.

[42] B. Zhang, H. Zeng, and V. K. Prasanna, “GraphAGILE: An fpga-based
overlay accelerator for low-latency GNN inference,” IEEE Transactions
on Parallel and Distributed Systems, vol. 34, no. 9, pp. 2580–2597,
2023.

[43] Y. Zhang, H. You, Y. Fu, T. Geng, A. Li, and Y. Lin, “G-CoS:
Gnn-accelerator co-search towards both better accuracy and efficiency,”
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pp. 1–9, 2021.

57

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 16,2024 at 18:09:41 UTC from IEEE Xplore. Restrictions apply.

