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Abstract

The rapidly increasing and vast quantities of biomedical reports, each containing

numerous entities and rich information, represent a rich resource for biomedical text-

mining applications. These tools enable investigators to integrate, conceptualize,

and translate these discoveries to uncover new insights into disease pathology and

therapeutics. In this protocol, we present CaseOLAP LIFT, a new computational

pipeline to investigate cellular components and their disease associations by

extracting user-selected information from text datasets (e.g., biomedical literature).

The software identifies sub-cellular proteins and their functional partners within

disease-relevant documents. Additional disease-relevant documents are identified

via the software's label imputation method. To contextualize the resulting protein-

disease associations and to integrate information from multiple relevant biomedical

resources, a knowledge graph is automatically constructed for further analyses. We

present one use case with a corpus of ~34 million text documents downloaded

online to provide an example of elucidating the role of mitochondrial proteins in

distinct cardiovascular disease phenotypes using this method. Furthermore, a deep

learning model was applied to the resulting knowledge graph to predict previously

unreported relationships between proteins and disease, resulting in 1,583 associations

with predicted probabilities >0.90 and with an area under the receiver operating

characteristic curve (AUROC) of 0.91 on the test set. This software features a highly

customizable and automated workflow, with a broad scope of raw data available for

analysis; therefore, using this method, protein-disease associations can be identified

with enhanced reliability within a text corpus.
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Introduction

Studying disease-related proteins enhances the scientific

knowledge of pathogenesis and helps to identify potential

therapeutics. Several large text corpora of biomedical

publications, such as PubMed's 34 million articles containing

publication titles, abstracts, and full-text documents, report

novel findings that link proteins with diseases. However,

these findings are fragmented across various sources and

must be integrated to generate new biomedical insights.

Several biomedical resources exist to integrate protein-

disease associations1,2 ,3 ,4 ,5 ,6 ,7 . However, these curated

resources are often incomplete and may not encompass

the latest research findings. Text-mining approaches

are essential to extract and synthesize protein-disease

associations in large text corpora, which would result in

a more comprehensive understanding of these biomedical

concepts in the scientific literature.

Multiple biomedical text-mining approaches exist to uncover

protein-disease relationships8,9 ,10 ,11 ,12 ,13 ,14 , and others

contribute in part to determining these relationships by

identifying the proteins, diseases, or other biomedical entities

mentioned in text13,15 ,16 ,17 ,18 ,19 . However, many of these

tools lack access to the most up-to-date literature, with the

exception of a few that are periodically updated8,11 ,13 ,15 .

Similarly, many tools also have a limited scope of study,

as they are confined to broad predefined diseases or

proteins9,13 . Several approaches are also prone to the

identification of false positives within the text; others have

addressed these issues with an interpretable and global

blacklist of protein names9,11  or less interpretable name

entity recognition techniques15,20 . While most resources

present only pre-computed results, some tools offer

interactivity via web apps or accessible software code8,9 ,11 .

To address the above limitations, we present the following

protocol, CaseOLAP with label imputation and full text

(CaseOLAP LIFT), as a flexible and customizable platform

to investigate associations between proteins (e.g., proteins

associated with a cellular component) and diseases from

text datasets. This platform features automated curation of

gene ontology (GO) term-specific proteins (e.g., organelle-

specific proteins), imputation of missing document topic

labels, analysis of full-text documents, as well as analysis

tools and predictive tools (Figure 1, Figure 2, and Table

1). CaseOLAP LIFT curates organelle-specific proteins by

using user-provided GO terms (e.g., organelle compartment)

and functionally related proteins by using STRING21 ,

Reactome22 , and GRNdb23 . Disease-studying documents

are identified by their PubMed-annotated medical subject

header (MeSH) labels. For the ~15.1% of unlabeled

documents, labels are imputed if at least one MeSH term

synonym is found in the title or at least two are found in the

abstract. This enables previously uncategorized publications

to be considered in the text-mining analysis. CaseOLAP

LIFT also allows the user to select sections of publications

(e.g., titles and abstracts only, full text, or full text excluding

methods) within a specified timeframe (e.g., 2012-2022).

The software also semi-automatically curates a use case-

specific blacklist of protein names, vitally reducing the

false-positive protein-disease associations present in other

approaches. Overall, these improvements enable greater

customizability and automation, expand the quantity of data
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available for analysis, and yield more confident protein-

disease associations from large biomedical text corpora.

CaseOLAP LIFT incorporates biomedical knowledge and

represents the relationship of various biomedical concepts

using a knowledge graph, which is leveraged to predict

hidden relationships in the graph. Recently, graph-based

computation methods have been applied to biological

settings, including integrating and organizing biomedical

concepts24,25 , drug repurposing and development26,27 ,28 ,

and for clinical decision-making from proteomics data29 .

To demonstrate the utilities of CaseOLAP LIFT in the setting

of constructing a knowledge graph, we highlight a use case on

the investigation of the associations between mitochondrial

proteins and eight categories of cardiovascular disease.

Evidence from ~362,000 disease-relevant documents was

analyzed to identify the top mitochondrial proteins and

pathways associated with the diseases. Next, these proteins,

their functionally related proteins, and their text-mining results

were incorporated into a knowledge graph. This graph was

leveraged in a deep learning-based link prediction analysis to

predict protein-disease associations so far unreported within

biomedical publications.

The introduction section describes the background

information and objectives of our protocol. The following

section describes the steps of the computational protocol.

Subsequently, the representative results of this protocol

are described. Finally, we briefly discuss the computational

protocol use cases, advantages, drawbacks, and future

applications.

Protocol

1. Running the docker container

1. Download the CaseOLAP LIFT docker container by using

the terminal window and typing in docker pull caseolap/

caseolap_lift:latest.

2. Create a directory that will store all the program data and

output (e.g. mkdir caseolap_lift_shared_folder).

3. Start the docker container with the command

docker run --name caseolap_lift -it -

v PATH_TO_FOLDER:/caseolap_lift_shared_folder

caseolap/caseolap_lift:latest bash with

PATH_TO_FOLDER as the full file path for the folder

(e.g., /Users/caseolap/caseolap_lift_shared_folder).

Future commands from section 2 will be issued on this

terminal window.

4. Start the elastic search within the container. In

a new terminal window, type docker exec -

it --user elastic caseolap_lift bash /workspace/

start_elastic_search.sh.

NOTE: In this protocol, CaseOLAP LIFT is run

interactively, with every step performed sequentially.

This analysis can also be executed end-to-end by

passing it in as a parameters.txt file. The parameters.txt

used in this study are in /workspace/caseolap_lift/

parameters.txt. To access more details on each

step, run the command with the --help flag, or visit

the documentation on the GitHub repository (https://

github.com/CaseOLAP/caseolap_lift).
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2. Preparing the diseases and proteins

1. Navigate to the caseolap_lift folder with cd /workspace/

caseolap_lift

2. Make sure that the download links in config/

knowledge_base_links.json are up-to-date and

accurate for the latest version of each knowledge base

resource. By default, the files are only downloaded

once; to update these files and re-download, run the

preprocessing step with -r in step 2.4.

3. Determine the GO term and disease categories to use

for this study. Find the identifiers for all GO terms and

MeSH identifiers at http://geneontology.org/ and https://

meshb.nlm.nih.gov/, respectively.

4. Execute the pre-processing module using command-line

options. This preprocessing step assembles specified

diseases, lists proteins to study, and gathers protein

synonyms for text-mining. Indicate the user-defined

studied GO terms using the -c flag and the disease MeSH

tree numbers using the -d flag, and specify abbreviations

with -a.

Example command:

python caseolap_lift.py preprocessing -a "CM

ARR CHD VD IHD CCD VOO OTH" -d

"C14.280.238,C14.280.434 C14.280.067,C23.550.073

C14.280.400 C14.280.484 C14.280.647 C14.280.123

C14.280.955

C14.280.195,C14.280.282,C14.280.383,C14.280.470,

C14.280.945,C14.280.459,C14.280.720" -c

"GO:0005739" --include-synonyms --include-ppi -k 1

-s 0.99 --include-pw -n 4 -r 0.5 --include-tfd

5. Examine the categories.txt, core_proteins.txt, and

proteins_of_interest.txt files from the previous step

in the output folder. Ensure that all the disease

categories in categories.txt are correct and that a

reasonable amount of proteins are identified within

core_proteins.txt and proteins_of_interest.txt. If

necessary, repeat step 2.4, and modify the parameters

to include a greater or fewer number of proteins.

NOTE: The number of proteins included in the study

is determined by --include-ppi, --include-pw, and

--include-tfd flags to include protein-protein interactions,

proteins with shared reactome pathways, and proteins

with transcription factor dependence, respectively. Their

specific functionality is specified with additional flags

such as -k, -s, -n, and -r (see documentation).

3. Text-mining

1. Make sure the categories.txt, core_proteins.txt, and

proteins_of_interest.txt files from the previous step

are found in the output folder. Use these files as

the input for the text-mining. Optionally, adjust the

configurations pertaining to the document parsing and

indexing in the config folder. See a previous version of

the CaseOLAP protocol for more details on configuration

and troubleshooting8 .

2. Execute the text-mining module with python

caseolap_lift.py text_mining. Add the -l flag to impute

the topics of uncategorized documents and the -t flag

to download the full text of disease-relevant documents.

Other optional flags specify a date range of publications

to download (-d) and provide options to screen the

protein names (described in step 3.3). A sample of a

parsed document is shown in Figure 3.

Example command: python caseolap_lift.py

text_mining -d "2012-10-01,2022-10-01" -l -t
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NOTE: A bulk of the computational protocol time is spent

on step 3.2, which can potentially span over 24 h. The

runtime will depend on the size of the text corpus to be

downloaded, which will also depend on the date range

and whether label imputation and full-text functionality

are enabled.

3. (Recommended) Screen the protein names. The

protein names identified in disease-relevant publications

contribute to protein disease associations but are prone

to false positives (i.e., homonyms with other words).

To address this, enumerate possible homonyms in a

blacklist (config/remove_these_synonyms.txt) so that

they are excluded from the downstream steps.

1. Find names to inspect: Under the

result folder, find the protein names with

the highest frequency under all_proteins

or core_proteins (ranked_synonyms/

ranked_synonyms_TOTAL.txt) and protein

names with the highest scores under the folders

in ranked_proteins depending on the score(s) of

interest. If there are many names, prioritize the

inspection of the top-scoring names.

2. Inspect the names: Type python caseolap_lift.py

text_mining -c followed by a protein name to display

up to 10 name-containing publications. Then, for

each name, check if the name is protein-specific.

3. Recalculate the scores: Type python

caseolap_lift.py text_mining -s. Repeat step 3.1,

step 3.2, and step 3.3 until the names in step 3.1

appear correct.

4. Analyzing the results

1. Make sure the text-mining results are in the result folder

(e.g., result/all_proteins and result/core_proteins

directories and associated files), which will be used as

input for the analysis step. Specifically, a score indicating

the strength of each protein-disease association is

reported in the caseolap.csv results from the text-mining.

Indicate which set of text-mining results to use for the

analysis by specifying either --analyze_core_proteins

to include only the GO-term related proteins or

--analyze_all_proteins to include all the functionally

related proteins.

2. Identify the top proteins and pathways for each disease.

Significant protein-disease associations are defined as

those with scores exceeding a specified threshold. Z-

score transform the CaseOLAP scores within each

disease category, and consider the proteins with scores

above a specified threshold (indicated by the -z flag) as

significant.

NOTE: Biological pathways significant to each disease

are identified automatically using significant proteins

as input for the reactome pathway analysis. All such

proteins are reported in the resulting result_table.csv

in the analysis_results folder, and relevant figures and

pathway analysis results are automatically generated in

the analysis_results folder.

Example command: python caseolap_lift.py

analyze_results -z 3.0 --analyze_core_proteins

3. Review the analysis results, and adjust as necessary.

The number of proteins and, therefore, the enriched

reactome pathways significant to each disease category

depend on the z-score threshold used in the analysis.

A z-score table, generated at output/analysis_results/
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zscore_cutoff_table.csv, indicates the number of

proteins significant to each disease category to aid in

the selection of a z-score threshold as high as possible

while yielding several proteins significant to each disease

category.

5. Predictive analysis

1. Construct a knowledge graph.

1. Ensure the required files are in the results

folder, including the kg folder generated from

preprocessing (step 2.4) and the caseolap.csv from

the text-mining results under the all_proteins or

core_proteins folders (step 3.2).

2. Design the knowledge graph. Depending on the

downstream task, include or exclude components

of the complete knowledge graph. The knowledge

graph consists of protein-disease scores from the

text-mining and connections to the knowledge base

resources used in step 2.4 (Figure 4). Include

the MeSH disease tree with the --include_mesh

flag, the protein-protein interactions from STRING

with --include_ppi, the shared reactome pathways

with --include_pw, and the transcription factor

dependence from GRNdb/GTEx with --include_tfd.

3. Run the knowledge graph construction module.

Indicate which set of text-mining results to use for

the analysis by specifying --analyze_core_proteins

to only include the GO-term related proteins or

--analyze_all_proteins to include all the functionally

related proteins. By default, raw CaseOLAP scores

are loaded as the edge weights between the protein

and disease nodes; to scale the edge weights,

indicate --use_z_score, or non-negative z-scores

with --scale_z_score.

Example command: python caseolap_lift.py

prepare_knowledge_graph --scale_z_score

2. Predict novel protein-disease associations.

1. Make sure the knowledge graph files,

merged_edges.tsv and merged_nodes.tsv, are

output from the previous step (step 5.1.3).

2. Run the knowledge graph prediction script

to predict protein-disease associations so far

unreported within the scientific literature by typing

python kg_analysis/run_kg_analysis.py. This is

implemented with GraPE30  and uses DistMult31

to produce knowledge graph embeddings, which a

multi-layer perceptron uses to predict the protein-

disease associations. In the output/kg_analysis

folder, predictions with a predicted probability >0.90

(predictions.csv) and model evaluation metrics

(eval_results.csv) are saved.

NOTE: In this work, the chosen model

parameters (e.g., embedding method, link prediction

model, hyperparameters) were tailored for the

representative study. This code serves as

an example and a starting point for other

analyses. To explore model parameters, refer

to GraPE's documentation (https://github.com/

AnacletoLAB/grape).

Representative Results

Representative results were produced following this protocol

to study the associations between mitochondrial proteins

(Table 2) and eight cardiovascular disease categories (Table

3). In these categories, we found 363,567 publications

published from 2012 to October 2022 (362,878 categorized

by MeSH metadata, 6,923 categorized by label imputation).

All the publications had titles, 276,524 had abstracts, and
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51,065 had the full text available. Overall, 584 of the 1,687

queried mitochondrial proteins were identified within the

publications, while 3,284 of their 8,026 queried functionally

related proteins were identified. In total, 14 unique proteins

were identified with significant scores across all the disease

categories, with a z-score threshold of 3.0 (Figure 5). The

Reactome pathway analysis of these proteins revealed 12

pathways significant to all the diseases (Figure 6). All the

proteins, pathways, diseases, and scores were integrated

into a knowledge graph (Table 4). This knowledge graph

was leveraged to predict 12,688 novel protein-disease

associations and filtered with a probability score of 0.90

to yield 1,583 high-confidence predictions. A highlighted

example of two protein-disease associations is shown in

Figure 7, illustrated in the context of other relevant biological

entities functionally related to the proteins. The model

evaluation metrics are reported in Table 5.

Figure 1: Dynamic view of the workflow. This figure represents the four major steps in this workflow. First, relevant

proteins are curated based on the user-provided GO terms (e.g., cellular components), and disease categories are prepared

based on the user-provided disease MeSH identifiers. Second, associations between proteins and diseases are calculated

in the text-mining step. Publications within a certain date range are downloaded and indexed. Disease-studying publications

are identified (via MeSH labels and optionally via imputed labels), and their full texts are downloaded and indexed. Protein

names are queried within the publications and used to calculate the protein-disease association scores. Next, following

text-mining, these scores help identify the top protein and pathway associations. Finally, a knowledge graph is constructed

encompassing these proteins, diseases, and their relationships within the biomedical knowledge base. Novel protein-disease

associations are predicted based on the constructed knowledge graph. These steps use the most recently available data

from the biomedical knowledge bases and PubMed. Please click here to view a larger version of this figure.
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Figure 2: Technical architecture of the workflow. The technical details of this workflow are illustrated in this figure. The

user provides the MeSH tree numbers of the disease categories and GO term(s). Text documents are downloaded from

PubMed, disease-relevant documents are identified based on the provided MeSH labels, and documents without topic-

indicating MeSH labels receive imputed category labels. The proteins associated with the provided GO term(s) are acquired.

This protein set is expanded to include proteins that are functionally related via protein-protein interactions, shared biological

pathways, and transcription factor dependence. These proteins are queried within disease-relevant documents and scored

by CaseOLAP. Please click here to view a larger version of this figure.
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Figure 3: An example of a processed document. An example of a parsed, indexed text document is presented here. In

order, relevant fields indicate the index name (_index, _type), the PubMed ID (_id, pmid), the document subsections (title,

abstract, full_text, introduction, methods, results, discussion), and other metadata (year, MeSH, location, journal). For display

purposes only, the document subsections are truncated with ellipses. The MeSH field contains the document topics, which

may sometimes be provided by our label-imputation step. Please click here to view a larger version of this figure.
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Figure 4: Knowledge graph schema and biomedical resources. This figure depicts the knowledge graph schema.

Each node and edge represents a node or edge type, respectively. The edges between cardiovascular diseases (CVDs)

and proteins are weighted by CaseOLAP scores. The protein-protein interaction (PPI) edges are weighted by STRING

confidence scores. The GRNdb/GTEx-derived transcription factor dependence (TFD) edges, MeSH-derived disease tree

edges, and reactome-derived pathway edges are unweighted. Please click here to view a larger version of this figure.
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Figure 5: Top protein-disease associations. This figure presents mitochondrial proteins significant to each disease

category. Z-score transformation was applied to the CaseOLAP scores within each category to identify significant proteins

using a threshold of 3.0. (Top) Number of mitochondrial proteins significant to each disease: These violin plots depict the

distribution of z-scores for proteins in each disease category. The total number of proteins significant to each disease

category is shown above each violin plot. A total of 14 unique proteins were identified as significant across all the diseases,

and some proteins were significant to multiple diseases. (Bottom) Top-scoring proteins: The heatmap displays the top 10

proteins that obtained the highest average z-scores across all the diseases. The blank values represent no obtained score

between the protein and disease. Please click here to view a larger version of this figure.
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Figure 6: Top pathway-disease associations. This figure illustrates the top biological pathways associated with the studied

disease categories, as determined via reactome pathway analysis. All the pathway analyses were filtered with p < 0.05. The

heatmap values represent the average z-score of all the proteins within the pathway. (Top) Pathways conserved among all

the diseases: Overall, 14 proteins were identified with relevance to all the disease categories, and 12 conserved pathways

among all the disease categories were revealed. A dendrogram was constructed based on the pathway hierarchical structure

to link the pathways with similar biological functions. The dendrogram height represents the relative depth within the

pathway hierarchy; broad biological functions have longer limbs, and more specific pathways have shorter limbs. (Bottom)

Pathways distinct to a disease category: Pathway analysis was performed using proteins achieving a significant z-score in

each disease. The top three pathways with the lowest p-values associated with each disease are shown and indicated by
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asterisks. The pathways could be within the top three in multiple diseases. Please click here to view a larger version of this

figure.

Figure 7: Application of deep learning for knowledge graph completion. An example of applying deep learning

to a disease-specific knowledge graph is presented in this figure. Hidden relationships between proteins and disease

are predicted, and these are indicated in blue. Computed probabilities for both predictions are displayed, with values

ranging from 0.0 to 1.0 and with 1.0 indicating a strong prediction. Several proteins with known interactions are included,

representing protein-protein interactions, transcription factor dependence, and shared biological pathways. For visualization,

a subgraph of a few nodes with relevance to the highlighted example is shown. Key: IHD = ischemic heart disease; R-

HSA-1430728 = metabolism; O14949 = cytochrome b-c1 complex subunit 8; P17568 = NADH dehydrogenase (ubiquinone)

1 beta subcomplex subunit 7; Q9NYF8 Bcl-2-associated transcription factor 1, score: 7.24 x 10−7 ; P49821 = NADH

dehydrogenase (ubiquinone) flavoprotein 1, mitochondrial, score: 1.06 x 10−5 ; P31930 = cytochrome b-c1 complex subunit

1, mitochondrial, score: 4.98 x 10−5 ; P99999 = cytochrome c, score: 0.399. Please click here to view a larger version of this

figure.

Table 1: Workflow and rate-limiting steps. This table

presents rough estimates of the computational time for each

stage of the workflow. Options to include components of the

pipeline will change the total runtime needed to complete the

analysis. The total time estimate varies depending on the

computational resources available, including the hardware

specifications and software settings. As a rough estimate,

the protocol took 36 h of active runtime to execute on our

computational server, with six cores, 32 Gb of RAM, and 2 Tb

of storage, but this may be faster or slower on other devices.

Please click here to download this Table.

Table 2: Automatic assembly of the cellular component

proteins. This table shows the number of proteins associated
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with a given cellular component (i.e., GO term), proteins

functionally related to them via protein-protein interactions

(PPI), shared pathways (PW), and transcription factor

dependence (TFD). The number of total proteins is the

number of proteins from all the prior categories combined.

All the functionally related proteins were obtained using

CaseOLAP LIFT's default parameters. Please click here to

download this Table.

Table 3: MeSH label-imputation statistics. This table

displays the disease categories, the MeSH tree numbers

used as the parent term of all the diseases included in

the category, the number of PubMed articles found in each

category from 2012-2022, and the number of additional

articles included based on the label-imputation step. Please

click here to download this Table.

Table 4: Knowledge graph construction statistics. This

table describes the statistics for the size of the constructed

knowledge graph, including the various nodes and edge

types. The CaseOLAP scores represent the relationship

between a protein and a cardiovascular disease (CVD)

category. Please click here to download this Table.

Table 5: Knowledge graph prediction statistics and

validations. This table reports the evaluation metrics for

the knowledge graph link prediction of novel/hidden protein-

disease associations. The knowledge graph edges were

partitioned into 70/30 training and test datasets, and graph

connectivity of the edges was preserved in both datasets.

The accuracy indicates the proportion of predictions correctly

classified, while the balanced accuracy corrects for class

imbalance. The specificity indicates the proportion of negative

predictions correctly classified. The precision indicates the

proportion of correct positive predictions out of all the

positive predictions, while the recall indicates the proportion

of correct positive predictions out of all the positive edges

(i.e., protein-disease associations identified via text-mining).

The F1 score is the harmonic mean of the precision and

recall. The area under the receiver operating characteristic

curve (AUROC) describes how well the model distinguishes

between positive and negative predictions, with 1.0 indicating

a perfect classifier. The area under the precision-recall curve

(AUPRC) measures the trade-off between precision and

recall at varying probability thresholds, with higher values

indicating better performance. Please click here to download

this Table.

Discussion

CaseOLAP LIFT empowers researchers to investigate

associations between functional proteins (e.g., proteins

associated with a cellular component, biological process, or

molecular function) and biological categories (e.g., diseases).

The described protocol should be executed in the specified

sequence, with protocol section 2 and protocol section 3

being the most critical steps, as protocol section 4 and

protocol section 5 depend on their results. As an alternative to

protocol section 1, the CaseOLAP LIFT code can be cloned

and accessed from the GitHub repository (https://github.com/

CaseOLAP/caseolap_lift). It should be noted that despite

testing during the software development, bugs may occur. If

so, the failed step should be repeated. If the issue persists, it

is recommended to repeat protocol section 1 to ensure that

the latest version of the docker container is used. Further

assistance is available by creating an issue on the GitHub

repository for additional support.

This method supports hypothesis generation by enabling

investigators to identify entities of interest and reveal the

potential associations between them, which may not be

readily accessible in existing biomedical resources. The
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resulting protein-disease associations allow researchers to

gain new insights via the scores' interpretable metrics: the

popularity scores indicate the most studied proteins in relation

to a disease, the distinctiveness scores indicate diseases

most unique to a protein, and the combined CaseOLAP

score is a combination of the two. To prevent false-positive

identifications (e.g., due to homonyms), some text-mining

tools utilize a blacklist of terms to avoid9,11 . Likewise,

CaseOLAP LIFT also utilizes a blacklist but allows the user

to tailor the blacklist to their use case. For example, when

studying coronary artery disease (CAD), "CAD" should not

be considered a name for the protein "caspase-activated

deoxyribonuclease". However, when studying other topics,

"CAD" might usually refer to the protein.

CaseOLAP LIFT adapts to the quantity of data available

for text mining. The date range functionality alleviates the

computational burden and creates flexibility for hypothesis

generation (e.g., studying how the scientific knowledge

on a protein-disease association has changed over time).

Meanwhile, the label imputation and full-text components

enhance the scope of data available for text-mining.

Both components are disabled by default to reduce the

computational costs, but the user may decide to include

either component. The label imputation is conservative, and

it categorizes most publications correctly (87% precision)

but misses other category labels (2% recall). This method

currently relies on a rule-based heuristic that matches

disease keywords, and there are plans to enhance the

performance through the use of document topic modeling

techniques. Since many uncategorized reports tend to be

recent publications, studies investigating a recent date range

(e.g., all publications within the last 3 years) are better

served by disabling label imputation. The full-text component

increases the runtime and storage requirements. Notably,

only a minority of documents have the full text available

(~14% of documents in our study). Assuming that the protein

names mentioned within the publications' methods section

are less likely to be related to the disease topics, querying full-

text articles excluding the methods section is recommended.

The resulting protein-disease association scores are useful

for traditional analyses such as clustering, dimensionality

reduction, or enrichment analyses (e.g., GO, pathways), with

some implementation included in this software package.

To contextualize these scores within existing biomedical

knowledge, a knowledge graph is automatically constructed

and can be explored using graph visualization tools (e.g.,

Neo4j32 , Cytoscape33 ). The knowledge graph can also

be used for predictive analyses (e.g., link prediction

of unreported protein-disease relationships, community

detection of protein networks, prize-collecting path-walking

methods).

We have examined the model evaluation metrics for

the predicted protein-disease associations (Table 5). The

model assigns a probability score between 0.0 and 1.0 to

each protein-disease association, with scores closer to 1.0

indicating a higher level of confidence in the prediction. The

internal evaluation of the model performance, which was

based on various metrics including the AUROC, accuracy,

balanced accuracy, specificity, and recall, indicated excellent

overall performance int his work. However, the evaluation

also highlighted a rather poor score for the precision (0.15)

of the model, resulting in both a lower AUPRC and F1 score.

Future studies to improve this metric will help to elevate the

overall performance of the model. We envision this could

be achieved by implementing more sophisticated knowledge

graph embedding and graph prediction models. Based on

the model's precision of 0.15, investigators should anticipate
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approximately 15% positive identifications; in particular, out

of all the 12,688 protein-disease associations predicted by

the model, approximately 15% are true-positive associations.

This can be mitigated by considering only protein-disease

associations with a high probability score (e.g., >0.90); in

our use case, filtering with a probability threshold of 0.90

led to high-confidence predictions of 1,583 associations.

Investigators may find it helpful to also manually inspect

these predictions to ensure high validity (see Figure 7

as an example). An external evaluation of our predictions

determined that of the 310 protein-disease associations

from an extensive curated database DisGeNet19 , 103

were identified in our text-mining study, and 88 additional

associations were predicted by our knowledge graph analysis

with a probability score >0.90.

Overall, CaseOLAP LIFT features improved flexibility and

usability in designing custom analyses of the associations

between functional protein groups and multiple categories of

disease in large text corpora. This package is streamlined

in a new user-friendly command line interface and is

released as a docker container, thus reducing the issues

associated with configuring the programming environments

and software dependencies. The CaseOLAP LIFT pipeline

to study mitochondrial proteins in cardiovascular diseases

can be easily adapted; for example, future applications of

this technique could involve investigating the associations

between any proteins associated with any GO terms and

any biomedical category. Furthermore, the ranked protein-

disease associations identified by this text-mining platform

are important in the preparation of the dataset for the use

of advanced natural language techniques. The resulting

knowledge graph enables investigators to convert these

findings into biologically informative knowledge and lays the

foundation for follow-up graph-based analyses.
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