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The rapidly increasing and vast quantities of biomedical reports, each containing
numerous entities and rich information, represent a rich resource for biomedical text-
mining applications. These tools enable investigators to integrate, conceptualize,
and translate these discoveries to uncover new insights into disease pathology and
therapeutics. In this protocol, we present CaseOLAP LIFT, a new computational
pipeline to investigate cellular components and their disease associations by
extracting user-selected information from text datasets (e.g., biomedical literature).
The software identifies sub-cellular proteins and their functional partners within
disease-relevant documents. Additional disease-relevant documents are identified
via the software's label imputation method. To contextualize the resulting protein-
disease associations and to integrate information from multiple relevant biomedical
resources, a knowledge graph is automatically constructed for further analyses. We
present one use case with a corpus of ~34 million text documents downloaded
online to provide an example of elucidating the role of mitochondrial proteins in
distinct cardiovascular disease phenotypes using this method. Furthermore, a deep
learning model was applied to the resulting knowledge graph to predict previously
unreported relationships between proteins and disease, resulting in 1,583 associations
with predicted probabilities >0.90 and with an area under the receiver operating
characteristic curve (AUROC) of 0.91 on the test set. This software features a highly
customizable and automated workflow, with a broad scope of raw data available for
analysis; therefore, using this method, protein-disease associations can be identified

with enhanced reliability within a text corpus.
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Introduction

Studying disease-related proteins enhances the scientific
knowledge of pathogenesis and helps to identify potential
therapeutics. Several large text corpora of biomedical
publications, such as PubMed's 34 million articles containing
publication titles, abstracts, and full-text documents, report
novel findings that link proteins with diseases. However,
these findings are fragmented across various sources and
must be integrated to generate new biomedical insights.
Several biomedical resources exist to integrate protein-
disease associations'+2:3:4:%.6.7 However, these curated
resources are often incomplete and may not encompass
the latest research findings. Text-mining approaches
are essential to extract and synthesize protein-disease
associations in large text corpora, which would result in

a more comprehensive understanding of these biomedical

concepts in the scientific literature.

Multiple biomedical text-mining approaches exist to uncover

8.9,10,11,12,13,14 " and others

protein-disease relationships
contribute in part to determining these relationships by
identifying the proteins, diseases, or other biomedical entities
mentioned in text!3:15.16,17,18,19 However, many of these
tools lack access to the most up-to-date literature, with the
exception of a few that are periodically updated8’11'13'15.
Similarly, many tools also have a limited scope of study,
as they are confined to broad predefined diseases or
protein39’13. Several approaches are also prone to the
identification of false positives within the text; others have
addressed these issues with an interpretable and global

9,11

blacklist of protein names or less interpretable name

entity recognition techniques'®-20. While most resources

some tools offer
8,9,11

present only pre-computed results,

interactivity via web apps or accessible software code

To address the above limitations, we present the following
protocol, CaseOLAP with label imputation and full text
(CaseOLAP LIFT), as a flexible and customizable platform
to investigate associations between proteins (e.g., proteins
associated with a cellular component) and diseases from
text datasets. This platform features automated curation of
gene ontology (GO) term-specific proteins (e.g., organelle-
specific proteins), imputation of missing document topic
labels, analysis of full-text documents, as well as analysis
tools and predictive tools (Figure 1, Figure 2, and Table
1). CaseOLAP LIFT curates organelle-specific proteins by
using user-provided GO terms (e.g., organelle compartment)
and functionally related proteins by using STRING?',
Reactome?2, and GRNdbZ3. Disease-studying documents
are identified by their PubMed-annotated medical subject
header (MeSH) labels. For the ~15.1% of unlabeled
documents, labels are imputed if at least one MeSH term
synonym is found in the title or at least two are found in the
abstract. This enables previously uncategorized publications
to be considered in the text-mining analysis. CaseOLAP
LIFT also allows the user to select sections of publications
(e.g., titles and abstracts only, full text, or full text excluding
methods) within a specified timeframe (e.g., 2012-2022).
The software also semi-automatically curates a use case-
specific blacklist of protein names, vitally reducing the
false-positive protein-disease associations present in other

approaches. Overall, these improvements enable greater

customizability and automation, expand the quantity of data
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available for analysis, and yield more confident protein-

disease associations from large biomedical text corpora.

CaseOLAP LIFT incorporates biomedical knowledge and
represents the relationship of various biomedical concepts
using a knowledge graph, which is leveraged to predict
hidden relationships in the graph. Recently, graph-based
computation methods have been applied to biological
settings, including integrating and organizing biomedical
concepts?4:25 | drug repurposing and developmentZ6:27.28

and for clinical decision-making from proteomics data?®.

To demonstrate the utilities of CaseOLAP LIFT in the setting
of constructing a knowledge graph, we highlight a use case on
the investigation of the associations between mitochondrial
proteins and eight categories of cardiovascular disease.
Evidence from ~362,000 disease-relevant documents was
analyzed to identify the top mitochondrial proteins and
pathways associated with the diseases. Next, these proteins,
their functionally related proteins, and their text-mining results
were incorporated into a knowledge graph. This graph was
leveraged in a deep learning-based link prediction analysis to
predict protein-disease associations so far unreported within

biomedical publications.

The introduction section describes the background
information and objectives of our protocol. The following
section describes the steps of the computational protocol.
Subsequently, the representative results of this protocol
are described. Finally, we briefly discuss the computational
protocol use cases, advantages, drawbacks, and future

applications.

3. Start

Protocol

1. Running the docker container

1. Download the CaseOLAP LIFT docker container by using
the terminal window and typing in docker pull caseolap/

caseolap_lift:latest.

2. Create a directory that will store all the program data and

output (e.g. mkdir caseolap_lift_shared_folder).

the docker container with the command

docker run --name caseolap_lift -it -
v PATH_TO_FOLDER:/caseolap_lift_shared_folder
caseolap/caseolap_lift:latest bash with
PATH_TO_FOLDER as the full file path for the folder
(e.g., /Users/caseolap/caseolap_lift_shared_folder).
Future commands from section 2 will be issued on this

terminal window.

4. Start the elastic search within the container. In

a new terminal window, type docker exec -
it --user elastic caseolap_lift bash /workspace/
start_elastic_search.sh.

NOTE: In this protocol, CaseOLAP LIFT is run
interactively, with every step performed sequentially.
This analysis can also be executed end-to-end by
passing it in as a parameters.ixt file. The parameters.ixt
used in this study are in /workspace/caseolap_lift/
parameters.txt. To access more details on each
step, run the command with the --help flag, or visit
the documentation on the GitHub repository (https://

github.com/CaseOLAP/caseolap_lift).
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2. Preparing the diseases and proteins

Navigate to the caseolap_lift folder with cd /workspace/

caseolap_lift

Make sure that the download links in config/

knowledge_base_links.json are up-to-date and
accurate for the latest version of each knowledge base
resource. By default, the files are only downloaded
once; to update these files and re-download, run the

preprocessing step with -r in step 2.4.

Determine the GO term and disease categories to use
for this study. Find the identifiers for all GO terms and
MeSH identifiers at http://geneontology.org/ and https://

meshb.nim.nih.gov/, respectively.

Execute the pre-processing module using command-line
options. This preprocessing step assembles specified
diseases, lists proteins to study, and gathers protein
synonyms for text-mining. Indicate the user-defined
studied GO terms using the -c flag and the disease MeSH
tree numbers using the -d flag, and specify abbreviations
with -a.

Example command:

python caseolap_lift.py preprocessing -a "CM
ARR CHD VD IHD CCD VOO OTH" -d
"C14.280.238,C14.280.434 C14.280.067,C23.550.073
C14.280.400 C14.280.484 C14.280.647 C14.280.123
C14.280.955
C14.280.195,C14.280.282,C14.280.383,C14.280.470,
C14.280.945,C14.280.459,C14.280.720" -c
"GO0:0005739" --include-synonyms --include-ppi -k 1
-s 0.99 --include-pw -n 4 -r 0.5 --include-tfd

Examine the categories.txt, core_proteins.txt, and

proteins_of_interest.txt files from the previous step

in the output folder. Ensure that all the disease
categories in categories.txt are correct and that a
reasonable amount of proteins are identified within
core_proteins.txt and proteins_of_interest.txt. |If
necessary, repeat step 2.4, and modify the parameters
to include a greater or fewer number of proteins.

NOTE: The number of proteins included in the study
is determined by --include-ppi, --include-pw, and
--include-tfd flags to include protein-protein interactions,
proteins with shared reactome pathways, and proteins
with transcription factor dependence, respectively. Their
specific functionality is specified with additional flags

such as -k, -s, -n, and -r (see documentation).

3. Text-mining

Make sure the categories.txt, core_proteins.txt, and
proteins_of_interest.txt files from the previous step
are found in the output folder. Use these files as
the input for the text-mining. Optionally, adjust the
configurations pertaining to the document parsing and
indexing in the config folder. See a previous version of

the CaseOLAP protocol for more details on configuration

and troubleshootings.

Execute the text-mining module with python
caseolap_lift.py text_mining. Add the -l flag to impute
the topics of uncategorized documents and the -t flag
to download the full text of disease-relevant documents.
Other optional flags specify a date range of publications
to download (-d) and provide options to screen the
protein names (described in step 3.3). A sample of a
parsed document is shown in Figure 3.

Example = command:

python caseolap_lift.py

text_mining -d "2012-10-01,2022-10-01" -I -t
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NOTE: A bulk of the computational protocol time is spent
on step 3.2, which can potentially span over 24 h. The
runtime will depend on the size of the text corpus to be
downloaded, which will also depend on the date range
and whether label imputation and full-text functionality

are enabled.

(Recommended) Screen the protein names. The
protein names identified in disease-relevant publications
contribute to protein disease associations but are prone
to false positives (i.e., homonyms with other words).
To address this, enumerate possible homonyms in a
blacklist (config/lremove_these_synonyms.txt) so that

they are excluded from the downstream steps.

1. Find names to inspect: Under the
result folder, find the protein names with
the highest frequency wunder all_proteins
or core_proteins (ranked_synonyms/

ranked_synonyms_TOTAL.txt) and protein
names with the highest scores under the folders
in ranked_proteins depending on the score(s) of
interest. If there are many names, prioritize the

inspection of the top-scoring names.

2. Inspect the names: Type python caseolap_lift.py
text_mining -c followed by a protein name to display
up to 10 name-containing publications. Then, for

each name, check if the name is protein-specific.

3. Recalculate the scores: Type python
caseolap_lift.py text_mining -s. Repeat step 3.1,
step 3.2, and step 3.3 until the names in step 3.1

appear correct.

4. Analyzing the results

Make sure the text-mining results are in the result folder
(e.g., result/all_proteins and result/core_proteins
directories and associated files), which will be used as
input for the analysis step. Specifically, a score indicating
the strength of each protein-disease association is
reported in the caseolap.csv results from the text-mining.
Indicate which set of text-mining results to use for the
analysis by specifying either --analyze_core_proteins
to include only the GO-term related proteins or
--analyze_all_proteins to include all the functionally

related proteins.

Identify the top proteins and pathways for each disease.
Significant protein-disease associations are defined as
those with scores exceeding a specified threshold. Z-
score transform the CaseOLAP scores within each
disease category, and consider the proteins with scores
above a specified threshold (indicated by the -z flag) as
significant.

NOTE: Biological pathways significant to each disease
are identified automatically using significant proteins
as input for the reactome pathway analysis. All such
proteins are reported in the resulting result_table.csv
in the analysis_results folder, and relevant figures and
pathway analysis results are automatically generated in
the analysis_results folder.

Example = command:

python caseolap_lift.py

analyze_results -z 3.0 --analyze_core_proteins

Review the analysis results, and adjust as necessary.
The number of proteins and, therefore, the enriched
reactome pathways significant to each disease category
depend on the z-score threshold used in the analysis.

A z-score table, generated at output/analysis_results/
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zscore_cutoff_table.csv, indicates the number of
proteins significant to each disease category to aid in
the selection of a z-score threshold as high as possible
while yielding several proteins significant to each disease

category.
5. Predictive analysis

1. Construct a knowledge graph.

1. Ensure the required files are in the results
folder, including the kg folder generated from
preprocessing (step 2.4) and the caseolap.csv from
the text-mining results under the all_proteins or

core_proteins folders (step 3.2).

2. Design the knowledge graph. Depending on the
downstream task, include or exclude components
of the complete knowledge graph. The knowledge
graph consists of protein-disease scores from the
text-mining and connections to the knowledge base
resources used in step 2.4 (Figure 4). Include
the MeSH disease tree with the --include_mesh
flag, the protein-protein interactions from STRING
with --include_ppi, the shared reactome pathways
with —include_pw, and the transcription factor

dependence from GRNdb/GTEXx with --include_tfd.

3. Run the knowledge graph construction module.
Indicate which set of text-mining results to use for
the analysis by specifying --analyze_core_proteins
to only include the GO-term related proteins or
--analyze_all_proteins to include all the functionally
related proteins. By default, raw CaseOLAP scores
are loaded as the edge weights between the protein
and disease nodes; to scale the edge weights,
indicate --use_z_score, or non-negative z-scores

with --scale_z_score.

Example command: python caseolap_lift.py

prepare_knowledge_graph --scale_z_score

2. Predict novel protein-disease associations.

1.

Make sure the knowledge graph files,
merged_edges.tsv and merged_nodes.tsv, are

output from the previous step (step 5.1.3).

Run the knowledge graph prediction script
to predict protein-disease associations so far
unreported within the scientific literature by typing

python kg_analysis/run_kg_analysis.py. This is

implemented with GraPE3® and uses DistMult®’
to produce knowledge graph embeddings, which a
multi-layer perceptron uses to predict the protein-
disease associations. In the output/kg_analysis
folder, predictions with a predicted probability >0.90
(predictions.csv) and model evaluation metrics
(eval_results.csv) are saved.

NOTE: In this work, the chosen model
parameters (e.g., embedding method, link prediction
model, hyperparameters) were tailored for the
representative study. This code serves as
an example and a starting point for other
analyses. To explore model parameters, refer
to GraPE's documentation (https://github.com/
AnacletoLAB/grape).

Representative Results

Representative results were produced following this protocol

to study the associations between mitochondrial proteins

(Table 2) and eight cardiovascular disease categories (Table

3). In these categories, we found 363,567 publications

published from 2012 to October 2022 (362,878 categorized

by MeSH metadata, 6,923 categorized by label imputation).

All the publications had titles, 276,524 had abstracts, and
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51,065 had the full text available. Overall, 584 of the 1,687
queried mitochondrial proteins were identified within the
publications, while 3,284 of their 8,026 queried functionally
related proteins were identified. In total, 14 unique proteins
were identified with significant scores across all the disease
categories, with a z-score threshold of 3.0 (Figure 5). The
Reactome pathway analysis of these proteins revealed 12
pathways significant to all the diseases (Figure 6). All the

proteins, pathways, diseases, and scores were integrated

1. Prepare Diseases & Proteins
+Download knowledge base
«Curate GO term-related proteins

4, Predictive Analysis
«Construct knowledge graph
«Predict novel protein-disease

associations

into a knowledge graph (Table 4). This knowledge graph
was leveraged to predict 12,688 novel protein-disease
associations and filtered with a probability score of 0.90
to yield 1,583 high-confidence predictions. A highlighted
example of two protein-disease associations is shown in
Figure 7, illustrated in the context of other relevant biological
entities functionally related to the proteins. The model

evaluation metrics are reported in Table 5.

2. Text-mining
sDownload & index publications
sldentify relevant publications
«Download publication full text
s5creen protein synonyms
«Score protein-disease associations

3. Analyze Results
«Determine top proteins per disease
«Determine top pathways

Figure 1: Dynamic view of the workflow. This figure represents the four major steps in this workflow. First, relevant

proteins are curated based on the user-provided GO terms (e.g., cellular components), and disease categories are prepared

based on the user-provided disease MeSH identifiers. Second, associations between proteins and diseases are calculated

in the text-mining step. Publications within a certain date range are downloaded and indexed. Disease-studying publications

are identified (via MeSH labels and optionally via imputed labels), and their full texts are downloaded and indexed. Protein

names are queried within the publications and used to calculate the protein-disease association scores. Next, following

text-mining, these scores help identify the top protein and pathway associations. Finally, a knowledge graph is constructed

encompassing these proteins, diseases, and their relationships within the biomedical knowledge base. Novel protein-disease

associations are predicted based on the constructed knowledge graph. These steps use the most recently available data

from the biomedical knowledge bases and PubMed. Please click here to view a larger version of this figure.
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Figure 2: Technical architecture of the workflow. The technical details of this workflow are illustrated in this figure. The
user provides the MeSH tree numbers of the disease categories and GO term(s). Text documents are downloaded from
PubMed, disease-relevant documents are identified based on the provided MeSH labels, and documents without topic-
indicating MeSH labels receive imputed category labels. The proteins associated with the provided GO term(s) are acquired.
This protein set is expanded to include proteins that are functionally related via protein-protein interactions, shared biological
pathways, and transcription factor dependence. These proteins are queried within disease-relevant documents and scored

by CaseOLAP. Please click here to view a larger version of this figure.
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: 'pubmed lift',
: 'pubmed meta lift',
'31713652",
s 2,

: True,

"31713652°',
: 'Does Repeated Measurement of a 6-Min Walk Test Contribute...',
: 'A single 6-min walk test (6MWT) can be used to...,
" ==== Front Pediatr Cardiol Pediatr Cardiel...",
: 'the 6-min walk test (6mwt) is a safe, simple...',

: 'data were collected in a multicenter, prospective study...',

: 'eighty-five patients met the inclusion criteria, of...°'
"in this study, we confirm the usefulness of the...",
'2020°,

['Adolescent', 'Cardiomyopathy, Dilated', 'mortality’', 'Child',

'Female', 'Heart Transplantation',6 'statistics & numerical data’,

"Humans', 'Male', 'Prospective Studies', 'Risk Assessment',

"Time Factors', 'Walk Test', 'statistics & numerical data'],
: 'United States’',
: 'Pediatric cardioclogy'

Figure 3: An example of a processed document. An example of a parsed, indexed text document is presented here. In

order, relevant fields indicate the index name (_index, _type), the PubMed ID (_id, pmid), the document subsections (title,

abstract, full_text, introduction, methods, results, discussion), and other metadata (year, MeSH, location, journal). For display

purposes only, the document subsections are truncated with ellipses. The MeSH field contains the document topics, which

may sometimes be provided by our label-imputation step. Please click here to view a larger version of this figure.
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UniProt, STRING DB
GRNdb, GTEx

CaseOLAP
Scores

PubMed

participating_in

MeSH Biological
NIH/NCBI Pathways

Figure 4: Knowledge graph schema and biomedical resources. This figure depicts the knowledge graph schema.

Each node and edge represents a node or edge type, respectively. The edges between cardiovascular diseases (CVDs)

and proteins are weighted by CaseOLAP scores. The protein-protein interaction (PPI) edges are weighted by STRING

confidence scores. The GRNdb/GTEx-derived transcription factor dependence (TFD) edges, MeSH-derived disease tree

edges, and reactome-derived pathway edges are unweighted. Please click here to view a larger version of this figure.
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Figure 5: Top protein-disease associations. This figure presents mitochondrial proteins significant to each disease

category. Z-score transformation was applied to the CaseOLAP scores within each category to identify significant proteins

using a threshold of 3.0. (Top) Number of mitochondrial proteins significant to each disease: These violin plots depict the

distribution of z-scores for proteins in each disease category. The total number of proteins significant to each disease

category is shown above each violin plot. A total of 14 unique proteins were identified as significant across all the diseases,

and some proteins were significant to multiple diseases. (Bottom) Top-scoring proteins: The heatmap displays the top 10

proteins that obtained the highest average z-scores across all the diseases. The blank values represent no obtained score

between the protein and disease. Please click here to view a larger version of this figure.
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Figure 6: Top pathway-disease associations. This figure illustrates the top biological pathways associated with the studied

disease categories, as determined via reactome pathway analysis. All the pathway analyses were filtered with p < 0.05. The

heatmap values represent the average z-score of all the proteins within the pathway. (Top) Pathways conserved among all

the diseases: Overall, 14 proteins were identified with relevance to all the disease categories, and 12 conserved pathways

among all the disease categories were revealed. A dendrogram was constructed based on the pathway hierarchical structure

to link the pathways with similar biological functions. The dendrogram height represents the relative depth within the

pathway hierarchy; broad biological functions have longer limbs, and more specific pathways have shorter limbs. (Bottom)

Pathways distinct to a disease category: Pathway analysis was performed using proteins achieving a significant z-score in

each disease. The top three pathways with the lowest p-values associated with each disease are shown and indicated by
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asterisks. The pathways could be within the top three in multiple

figure.

s 0D

diseases. Please click here to view a larger version of this

R-HSA-1430728

"w_»,f.c»-_"-.

P31830

Figure 7: Application of deep learning for knowledge graph completion. An example of applying deep learning

to a disease-specific knowledge graph is presented in this figure

. Hidden relationships between proteins and disease

are predicted, and these are indicated in blue. Computed probabilities for both predictions are displayed, with values

ranging from 0.0 to 1.0 and with 1.0 indicating a strong prediction. Several proteins with known interactions are included,

representing protein-protein interactions, transcription factor dependence, and shared biological pathways. For visualization,

a subgraph of a few nodes with relevance to the highlighted example is shown. Key: IHD = ischemic heart disease; R-

HSA-1430728 = metabolism; 014949 = cytochrome b-c1 complex subunit 8; P17568 = NADH dehydrogenase (ubiquinone)

1 beta subcomplex subunit 7; QONYF8 Bcl-2-associated transcription factor 1, score: 7.24 x 1077; P49821 = NADH

dehydrogenase (ubiquinone) flavoprotein 1, mitochondrial, score: 1.06 x 1075; P31930 = cytochrome b-c1 complex subunit

1, mitochondrial, score: 4.98 x 10'5; P99999 = cytochrome c, score: 0.399. Please click here to view a larger version of this

figure.

Table 1: Workflow and rate-limiting steps. This table
presents rough estimates of the computational time for each
stage of the workflow. Options to include components of the
pipeline will change the total runtime needed to complete the
analysis. The total time estimate varies depending on the
computational resources available, including the hardware

specifications and software settings. As a rough estimate,

the protocol took 36 h of active runtime to execute on our
computational server, with six cores, 32 Gb of RAM, and 2 Tb
of storage, but this may be faster or slower on other devices.

Please click here to download this Table.

Table 2: Automatic assembly of the cellular component

proteins. This table shows the number of proteins associated
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with a given cellular component (i.e., GO term), proteins
functionally related to them via protein-protein interactions
(PPI), shared pathways (PW), and transcription factor
dependence (TFD). The number of total proteins is the
number of proteins from all the prior categories combined.
All the functionally related proteins were obtained using
CaseOLAP LIFT's default parameters. Please click here to

download this Table.

Table 3: MeSH label-imputation statistics. This table
displays the disease categories, the MeSH tree numbers
used as the parent term of all the diseases included in
the category, the number of PubMed articles found in each
category from 2012-2022, and the number of additional
articles included based on the label-imputation step. Please

click here to download this Table.

Table 4: Knowledge graph construction statistics. This
table describes the statistics for the size of the constructed
knowledge graph, including the various nodes and edge
types. The CaseOLAP scores represent the relationship
between a protein and a cardiovascular disease (CVD)

category. Please click here to download this Table.

Table 5: Knowledge graph prediction statistics and
validations. This table reports the evaluation metrics for
the knowledge graph link prediction of novel/hidden protein-
disease associations. The knowledge graph edges were
partitioned into 70/30 training and test datasets, and graph
connectivity of the edges was preserved in both datasets.
The accuracy indicates the proportion of predictions correctly
classified, while the balanced accuracy corrects for class
imbalance. The specificity indicates the proportion of negative
predictions correctly classified. The precision indicates the
proportion of correct positive predictions out of all the

positive predictions, while the recall indicates the proportion

of correct positive predictions out of all the positive edges
(i.e., protein-disease associations identified via text-mining).
The F1 score is the harmonic mean of the precision and
recall. The area under the receiver operating characteristic
curve (AUROC) describes how well the model distinguishes
between positive and negative predictions, with 1.0 indicating
a perfect classifier. The area under the precision-recall curve
(AUPRC) measures the trade-off between precision and
recall at varying probability thresholds, with higher values
indicating better performance. Please click here to download

this Table.

Discussion

CaseOLAP LIFT empowers researchers to investigate
associations between functional proteins (e.g., proteins
associated with a cellular component, biological process, or
molecular function) and biological categories (e.g., diseases).
The described protocol should be executed in the specified
sequence, with protocol section 2 and protocol section 3
being the most critical steps, as protocol section 4 and
protocol section 5 depend on their results. As an alternative to
protocol section 1, the CaseOLAP LIFT code can be cloned
and accessed from the GitHub repository (https://github.com/
CaseOLAP/caseolap_lift). It should be noted that despite
testing during the software development, bugs may occur. If
so, the failed step should be repeated. If the issue persists, it
is recommended to repeat protocol section 1 to ensure that
the latest version of the docker container is used. Further
assistance is available by creating an issue on the GitHub

repository for additional support.

This method supports hypothesis generation by enabling
investigators to identify entities of interest and reveal the
potential associations between them, which may not be

readily accessible in existing biomedical resources. The
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resulting protein-disease associations allow researchers to
gain new insights via the scores' interpretable metrics: the
popularity scores indicate the most studied proteins in relation
to a disease, the distinctiveness scores indicate diseases
most unique to a protein, and the combined CaseOLAP
score is a combination of the two. To prevent false-positive
identifications (e.g., due to homonyms), some text-mining

d® 1. Likewise,

tools utilize a blacklist of terms to avoi
CaseOLAP LIFT also utilizes a blacklist but allows the user
to tailor the blacklist to their use case. For example, when
studying coronary artery disease (CAD), "CAD" should not
be considered a name for the protein "caspase-activated

deoxyribonuclease". However, when studying other topics,

"CAD" might usually refer to the protein.

CaseOLAP LIFT adapts to the quantity of data available
for text mining. The date range functionality alleviates the
computational burden and creates flexibility for hypothesis
generation (e.g., studying how the scientific knowledge
on a protein-disease association has changed over time).
Meanwhile, the label imputation and full-text components
enhance the scope of data available for text-mining.
Both components are disabled by default to reduce the
computational costs, but the user may decide to include
either component. The label imputation is conservative, and
it categorizes most publications correctly (87% precision)
but misses other category labels (2% recall). This method
currently relies on a rule-based heuristic that matches
disease keywords, and there are plans to enhance the
performance through the use of document topic modeling
techniques. Since many uncategorized reports tend to be
recent publications, studies investigating a recent date range
(e.g., all publications within the last 3 years) are better
served by disabling label imputation. The full-text component

increases the runtime and storage requirements. Notably,

only a minority of documents have the full text available
(~14% of documents in our study). Assuming that the protein
names mentioned within the publications' methods section
are less likely to be related to the disease topics, querying full-

text articles excluding the methods section is recommended.

The resulting protein-disease association scores are useful
for traditional analyses such as clustering, dimensionality
reduction, or enrichment analyses (e.g., GO, pathways), with
some implementation included in this software package.
To contextualize these scores within existing biomedical
knowledge, a knowledge graph is automatically constructed
and can be explored using graph visualization tools (e.g.,
Neo4j32, Cytoscape33). The knowledge graph can also
be used for predictive analyses (e.g., link prediction
of unreported protein-disease relationships, community
detection of protein networks, prize-collecting path-walking

methods).

We have examined the model evaluation metrics for
the predicted protein-disease associations (Table 5). The
model assigns a probability score between 0.0 and 1.0 to
each protein-disease association, with scores closer to 1.0
indicating a higher level of confidence in the prediction. The
internal evaluation of the model performance, which was
based on various metrics including the AUROC, accuracy,
balanced accuracy, specificity, and recall, indicated excellent
overall performance int his work. However, the evaluation
also highlighted a rather poor score for the precision (0.15)
of the model, resulting in both a lower AUPRC and F1 score.
Future studies to improve this metric will help to elevate the
overall performance of the model. We envision this could
be achieved by implementing more sophisticated knowledge
graph embedding and graph prediction models. Based on

the model's precision of 0.15, investigators should anticipate
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approximately 15% positive identifications; in particular, out
of all the 12,688 protein-disease associations predicted by
the model, approximately 15% are true-positive associations.
This can be mitigated by considering only protein-disease
associations with a high probability score (e.g., >0.90); in
our use case, filtering with a probability threshold of 0.90
led to high-confidence predictions of 1,583 associations.
Investigators may find it helpful to also manually inspect
these predictions to ensure high validity (see Figure 7
as an example). An external evaluation of our predictions
determined that of the 310 protein-disease associations
from an extensive curated database DisGeNet'?, 103
were identified in our text-mining study, and 88 additional
associations were predicted by our knowledge graph analysis

with a probability score >0.90.

Overall, CaseOLAP LIFT features improved flexibility and
usability in designing custom analyses of the associations
between functional protein groups and multiple categories of
disease in large text corpora. This package is streamlined
in a new user-friendly command line interface and is
released as a docker container, thus reducing the issues
associated with configuring the programming environments
and software dependencies. The CaseOLAP LIFT pipeline
to study mitochondrial proteins in cardiovascular diseases
can be easily adapted; for example, future applications of
this technique could involve investigating the associations
between any proteins associated with any GO terms and
any biomedical category. Furthermore, the ranked protein-
disease associations identified by this text-mining platform
are important in the preparation of the dataset for the use
of advanced natural language techniques. The resulting

knowledge graph enables investigators to convert these

findings into biologically informative knowledge and lays the

foundation for follow-up graph-based analyses.
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