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Accelerating Hybrid Federated Learning
Convergence Under Partial Participation

Jieming Bian
Cong Shen

Abstract—Over the past few years, Federated Learning (FL)
has become a popular distributed machine learning paradigm.
FL involves a group of clients with decentralized data who
collaborate to learn a common model under the coordination of a
centralized server, with the goal of protecting clients’ privacy by
ensuring that local datasets never leave the clients and that the
server only performs model aggregation. However, in realistic
scenarios, the server may be able to collect a small amount
of data that approximately mimics the population distribution
and has stronger computational ability to perform the learning
process, resulting in the development of a hybrid FL framework.
While previous hybrid FL. work has shown that the alternative
training of clients and server can increase convergence speed,
it has focused on the scenario where clients fully participate
and ignores the negative effect of partial participation. In this
paper, we provide theoretical analysis of hybrid FL under clients’
partial participation to validate that partial participation is the
key constraint on the convergence speed. We then propose a new
algorithm called FedCLG, which investigates the two-fold role of
the server in hybrid FL. Firstly, the server needs to process the
training steps using its small amount of local datasets. Secondly,
the server’s calculated gradient needs to guide the participating
clients’ training and the server’s aggregation. We validate our
theoretical findings through numerical experiments, which show
that FedCLG outperforms state-of-the-art methods.

Index Terms—Federated
server-clients collaboration.

learning, convergence analysis,

1. INTRODUCTION

ECENT years have seen exponential growth in data col-

lection due to technological advancements, leading to the
development of stronger machine learning models [1]. How-
ever, traditional centralized machine learning algorithms strug-
gle with handling the distributed nature of this type of data,
which is often spread across multiple clients, such as mobile
devices [2]. To overcome this problem, Federated Learning (FL)
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[3] has emerged as an important paradigm in modern machine
learning. FL is a distributed machine learning approach where
clients with decentralized data collaborate to learn a common
model under the coordination of a parameter server. It has
several advantages, including enhanced user data privacy [4],
[5], scalability to new clients and datasets [6], and faster model
convergence rate [7], [8], [9]. Despite these benefits, current
FL systems typically assign the server to only simple compu-
tations, such as aggregating local models, wasting its powerful
computational resources. Moreover, traditional FL assumes that
datasets are exclusively available to the clients, either indepen-
dently and identically distributed (IID) or non-IID. However,
this is not always the case in real-world scenarios. In many
cases, the entity building the machine learning model operates
the server and possesses a small amount of data that approx-
imately mimics the overall population distribution. Although
a machine learning model can be trained based solely on the
server data, the model performance will be limited by the size
of the server dataset. Thus, a hybrid FL approach, which collab-
oratively utilizes the massive client data and a small amount of
server data in a decentralized and privacy-preserving manner is
of paramount practical importance to boost model performance.

Compared to traditional FL, which assumes that only clients
can access data while the server can only perform model aggre-
gation, the literature on hybrid FL is relatively scarce. Authors
in [10] make the assumption that the data collected by the server
is complementary to the data held by each client. However, this
assumption may only be applicable to specific scenarios, and in
most real-world cases, the entity operating the server is likely
to have access to a small amount of data that can approximate
the population data distribution. To address this issue, this paper
adopts a similar setting to [11], which proposes a hybrid model
training design called CLG-SGD (short for cascading local-
global SGD). In this design, the server performs aggregate-
then-advance training. The empirical findings presented in [11]
demonstrate that compared to client-only local data training
(e.g., Local-SGD), CLG-SGD enhances the convergence speed.
However, its theoretical analysis bounds server-side and client-
side updates separately, failing to comprehensively represent
the theoretical benefits of additional server training in non-
convex settings. Moreover, [11] mainly focuses on the IID and
fully-participated scenario, which may not be realistic in prac-
tical applications. In reality, clients may choose to participate
only when they have access to a reliable Wi-Fi connection and a
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Fig. 1. Tllustration of a Communication Round in Hybrid FL. with Non-IID
Client Data and Partial Participation.

power source [3]. Therefore, only a small percentage of clients
may participate in each round. Additionally, data is distributed
across multiple clients (e.g., mobile devices), each with its own
unique data distribution [12]. Thus, the investigation of hybrid
FL under non-IID and partial participation scenarios is crucial.

In this paper, we first revisit CLG-SGD [11] under non-
IID and partial participation setting, and introduce a novel
convergence analysis. This analysis improves the convergence
rate of CLG-SGD, demonstrating how additional server-side
training can expedite convergence. However, our findings also
indicate that partial participation errors can still impede CLG-
SGD’s convergence rate, even with augmented server training.
To mitigate this issue, we then introduce FedCLG (Federated
cascading local-global learning), a new algorithm for hybrid FL
that leverages server training to improve model convergence
speed and correct partial participation errors in non-IID and
partially participated scenarios (See Fig. 1). Specifically, Fed-
CLG has two main responsibilities for server training. First, the
server training starts with the latest aggregated global model and
advances it using its limited local dataset. This allows the server
to contribute to the global model with its advanced computation
capabilities. Second, the server conducts an additional one-
round training before broadcasting the new global model to
each participating client. The gradient computed during this ad-
ditional server training is utilized to correct partial participation
errors. We propose two versions of FedCLG based on where
partial participation errors are corrected. FedCLG-S corrects
partial participation errors during server model aggregation,
while FedCLG-C corrects them at each client’s side during
local training. Our proposed algorithm aims to maximize the
benefits of server training to improve model convergence speed
and correct partial participation errors in non-IID and partially
participated scenarios. We summarize our main contributions
below: 1. We provide a novel theoretical convergence analysis
of the state-of-the-art hybrid FL method, CLG-SGD, that vali-
dates the benefit of additional server training without requiring
the assumption of IID data or full client participation. Our
analysis highlights that, despite the additional server training,
convergence speed is still limited by partial participation errors.
2. We propose FedCLG, a new algorithm that maximizes the
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potential benefits of server training in hybrid FL. We introduce
two versions of FedCLG, FedCLG-S and FedCLG-C, to ac-
count for different communication and computation scenarios.
We provide theoretical convergence analysis for both versions.
3. We conduct extensive experiments on three datasets, demon-
strating the superior performance of FedCLG over existing
state-of-the-art methods.

The remainder of this paper is organized as follows. Re-
lated works are surveyed in Section II. The system model and
extensive theoretical analysis of the state-of-the-art hybrid FL
method are presented in Section III. FedCLG is detailed in
Section IV and its two versions FedCLG-S and FedCLG-C
are analyzed in Section V. Experiment results are reported in
Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORKS
A. Federated Learning

With the growing demand for local data storage and on-
device model training, Federated Learning [13], [14], [15] has
attracted significant interest in recent years. FedAvg first pro-
posed by [3], operates by periodically averaging local Stochas-
tic Gradient Descent (SGD) updates. This work has inspired
numerous follow-up studies focusing on FL with IID client
datasets and full client participation [16], [17], [18], [19]. Un-
der the assumptions of complete participation and IID client
datasets, several theoretical works [16], [20] have emerged,
providing a linear speedup convergence guarantee, on par with
the rate of parallel SGD [21]. However, real-world scenarios
often present challenges in FL due to non-IID data and partial
client participation [22]. Recent works [8], [23], [24], [25], [26]
have addressed these issues by offering similar convergence
rates under non-IID and partial participation settings.

B. Hybrid Federated Learning

The majority of existing FL research focuses on the scenario
where data is exclusively stored on the client side, and the server
is only responsible for the aggregation step, ensuring clients’
privacy requirements are met. However, this approach could
potentially underutilize the server’s computational capabilities.
Compared to the clients, which are typically mobile devices in
FL settings, the server generally possesses significantly greater
computational power [27]. This has led to the emergence of a
new FL configuration, referred to as hybrid FL. Current hybrid
FL research can be divided into two categories, based on the
source of the server dataset.

The first category of hybrid FL assumes that the server
cannot collect data independently, while clients with limited
computational resources can upload less privacy-sensitive data
samples to the server to aid training [28], [29]. These studies
concentrate on optimizing the trade-off between data sample
communication costs and the benefits of model training.

The second line of hybrid FL, more closely related to this
paper, assumes that the server can collect a small portion of the
total data samples [10], [11]. While [10] posits that the server’s
data complements each client’s data, a more realistic assump-
tion is that the server is more likely to gather a small amount
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of data that approximates the population data distribution [30].
Our work adopts a similar setting to [11]. However, while [11]
focuses on IID data and full client participation, our research
investigates the more realistic scenario of non-IID client data
and partial client participation.

C. Variance Reduction

Variance reduction has been a widely studied concept across
various fields. Monte Carlo sampling methods employ the con-
trol variates technique to reduce variance [31], while in stochas-
tic gradient estimates for large-scale machine learning, SVRG
[32] and SAG [33] have been introduced to reduce the stochastic
sampling-variance. SAG was later simplified, leading to the
proposal of SAGA [34]. In Federated Learning (FL), the vari-
ance caused by randomly participating clients has a stronger
impact than the variance caused by stochastically selected data
samples. As a result, variance reduction methods in FL focus
more on reducing client-variance. SCAFFOLD [23], an exten-
sion of SAGA, was proposed as the first variance reduction
method in FL, which inspired subsequent works such as [35],
[36], [37], [38] that attempt to reduce client-variance to increase
convergence speed. However, none of these methods consider
the hybrid FL setting and can result in the misutilization of
stale information. In this work, we propose the first approach
to reducing client-variance in hybrid FL, which fully exploits
the benefits of server-side small datasets. A detailed compar-
ison between our method and existing variance-reduction FL
approaches is presented in Section IV.

III. PROBLEM FORMULATION AND CLG-SGD
A. Problem Formulation

In the hybrid federated learning setting, we aim to optimize
the model parameters 2 € R% by minimizing the global ob-
jective function f(z), similar to traditional federated learning
frameworks. The global objective function is defined as:

N
min f(z) = - 3 (o), <1>
i=1

where f;(z) = mi > .ep, [, 2) represents the local objective
of client ¢ computed on their local dataset D; with m; data
points. The loss function is denoted by I(., .), and z represents
a data sample from the local dataset D;. The total data samples
in the FL system are represented as m, such that Zf\’ m; =m,
and the total number of clients is denoted as N. The underlying
data distribution of the total m data samples is denoted as V.
We assume, without loss of generality, that all N clients’ local
objectives have equal weight in the global objective function
(1). The algorithms and theoretical analysis can be easily ex-
tended to cases where client objectives are unequally weighted,
such as proportional to the local data size.

In contrast to traditional FL, the hybrid FL framework posits
that, in addition to the data available at each client, the server
can collect a small dataset D; with a constant size of mg,
which is data homogeneous with the overall dataset. Although
the underlying data distribution of D% remains consistent and
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approximates the overall population distribution ), the dataset
itself changes with each global round ¢ (while remaining fixed
within the global round). Consequently, the server’s optimiza-
tion problem becomes:

mgnfs(x) = mi Z l(x,2). (2)

s z€DY

However, because the size of Dg is considerably smaller than
the overall dataset stored at each client (i.e., ms < m), relying
solely on D! for model training could result in suboptimal
outcomes. Additionally, the server’s limited access to the fixed
dataset for local training during specific time periods in each
global round may significantly increase the training time.

Determining the best approach to utilize both server and
clients’ data for training and achieve optimal convergence per-
formance is a challenging problem. To address this, we revisit
the CLG-SGD algorithm in the hybrid FL setting. At each round
t, the server randomly selects a subset of M clients, denoted
as S, and sends the global model z; to these clients. Upon
receiving z,, each selected client ¢ performs K rounds of local
updates as follows:

[ 2
Lo = Tt;

T =T —ngi, k=0,...,K—1, 3)

where 7 is the client-side local learning rate, and g} , =
Vi (xé &> Ci) 1s the stochastic gradient evaluated on a randomly
drawn mini-batch ¢; at client i (g; , = V fi(«} ;) if a full gradi-
ent is used). After K steps of local training, client ¢ sends back
its update Af =z} ;- — x; to the server, which aggregates the
updates to update the global model as follows:

S =i+ D0 AL @
€Sy

where 7, is the global (aggregation) learning rate, and 7,
represents an intermediate stage between client local training
and server local training. In classic FL, the iteration ends at this
point. However, in hybrid FL, the server not only aggregates the
clients’” updates but also utilizes its own dataset D! for server
training. Thus, after aggregating the model '}, , the server also
performs E rounds of local updates as follows:

s .8 .
Li41,0 = L4153
e=0,....F—1;

Te41 =T{11 B )

s .8 s
Titte+1 = Title — V9t+1,e

where 7 is the server learning rate, and g; , = V fs (2} ., (s) is
the stochastic gradient evaluated on a randomly drawn mini-
batch ¢, from the server dataset D} (gi, =V f(z7,) if a
full gradient is used). After the server-side training, the global
model advances from z}, ; to 241 1. Then the server broadcasts
the new global model x4, for the next round of iteration.

In the previous work [11], the authors focus on IID and fully
participating settings and fail to show how additional server
training accelerates the convergence speed in non-convex set-
tings. In this paper, we extend the analysis to non-IID and partial
participation settings in the following subsection. Our novel the-
oretical analysis demonstrates that, although additional server
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training can improve the convergence rate, convergence speed
is still dominated by partial participation error resulting from
data heterogeneity and randomly selected clients. Based on
this observation, we propose a new algorithm, FedCLG, in
Section IV.

B. Novel Convergence Analysis of CLG-SGD [11]

For the theoretical analysis in this paper, we make the fol-
lowing assumptions: in each round, the server selects a subset
of clients uniformly without replacement. In addition, our con-
vergence analysis will utilize the following standard technical
assumptions.

Assumption 1 (Lipschitz Smoothness): There exists a con-
stant L > Osuchthat ||V f;(z) — Vfi(v)|| < L]z —y
R%and Vi=1,..., N.

Assumption 2 (Bounded Variance): The dataset DY at the
server approximates the overall population distribution V), so
the gradient calculated using D!, is an unbiased estimate of the
global objective, i.e., Ep: [V fs(2)] = V f(z). Furthermore,
there exists a constant o > 0 such that the variance of the
gradient estimator is bounded, i.e.,

V@))?] <

where m is the size of server dataset D%.
Assumption 3 (Unbiased Gradient Estimate and Bounded
Local Variance): The stochastic gradient estimate is unbiased,

2
Ep:y [[IVfs(x) - 2 vz, ¥t (6)

ie,E¢[Fi(z, ()] =Vfi(z),VrandVi=1,--- , N and its vari-
ance is bounded E[|VF;(z,¢) — Vfi(z)||?] <o?, Vo e R?
andVi=1,...,N.

Assumption 4 (Bounded Global Variance): There exists a
constant number o, > 0 such that the variance between the local
gradient of client 7 and the global gradient is bounded:

IV fi(z) = Vf(z)|* <02, Vi€ [N],Va. 7

Assumptions 1, 3 and 4 are commonly adopted in the conver-
gence analysis of FL under non-IID settings [7], [8], [9], [20].
Assumption 2 provides a bound on the variance introduced by
server local training, which is dependent on the size of Dﬁ [39].
We here consider the size of DY as a hyper-parameter.

Theorem 1: Suppose that client local learning rate 7, global
learning rate ng, and server local 1earning rate y are chosen
such thatn < SKL, Mg < 27KL, andy < GEL Under Assump-
tions 1, 2, 3, 4, suppose that in each round ¢ the server uniformly
selects M out of N clients without replacement, the sequence
of model vectors x; satisfies:

( (fO - f*) )
T(vE +77779K)
(77 779L2K3 2)+ < "y2EL02 >
VE + 1y K ms(vE 4 g K)
N (9( (N — M)KQngngLog ) O(n?’ngLQKQU?)
M(N —1)(vE + nnyK) YE + g K
. ( 22 LK o? )
M(yE +mmyK)

E =
trg[l;l IV f(z)]3 =

®)
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Proof: The proof is shown in Appendix [A]. 0
Remark 1: The convergence bound presented above consists
of six terms, with the second term accounting for the effect of
client local training, the third term representing the impact of
limited data availability at the server, the fourth term reflecting
the influence of partial participation of clients, and the last two
terms representing the error caused stochastic client updates.
Remark 2: The third term is influenced by the number of
data points available at the server, denoted by m,. As mg
increases, the convergence bound tightens, which aligns with
the expectation that having more training data stored at the
server should result in better convergence performance.
Corollary 1: Let n=06(,- = ) Ny =0(VMK) and v =
O( the convergence rate of CLG-SGD becomes:

VMK
trénn]EHVf(xt)HQ = <(¢W+¢E)T>

VT )

+O<(\/Wf\/ﬁ)ﬁ> ©

Remark 3: Our convergence analysis of CLG-SGD is more
general than that of [11], as we consider non-IID data and partial
client participation. Additionally, our analysis demonstrates the
theoretical benefits of additional server training even in the
case of IID data and full participation, where [11] fails to do
so. Notably, in the case of IID data (o4 = 0) or full participa-

i = i 1
tion (M = N), our convergence rate is O TR T +

O(W %), which converges faster than the rate of

@ found in [11].

\/M— +0
Remark 4: If we consider full client participation and set the
server’s local training epoch E =0, the hybrid FL approach
becomes equivalent to classic FL, and the convergence speed

- ) +0
as the state-of-the-art rate found in classical FL [8], [23].
Remark 5: The corollary reveals that the dominating factor

degenerates to O . This rate is the same

in the convergence bound is O , which is

K
(VMK+VE)WT
closely related to the global variance 03. This suggests that
the global variance has a more significant effect on conver-
gence behavior in cases with partial participation, particularly
in highly non-IID scenarios where o is substantial. Therefore,
developing a new hybrid FL approach to mitigate the negative
effects of partial participation is a challenging task.

Our novel theoretical analysis of CLG-SGD suggests that hy-
brid FL can achieve faster convergence by incorporating addi-
tional server local training after the aggregation step. However,
like classic FL, hybrid FL is still constrained by the convergence
limitations caused by partial client participation in non-IID
settings. Prior research, such as [23], [35], has used variance
reduction techniques in classic FL to mitigate the adverse ef-
fects of partial participation. Although these methods can be
adapted to hybrid FL, they do not fully leverage the potential
benefits of the small amount of server data. In the next sections,
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we introduce FedCLG, a novel algorithm that fully exploits the
server data.

IV. FEDCLG

In hybrid FL, a significant difference from the classical FL
setting is the server’s possession of its local training dataset D%,
which is a small subset approximating the overall population
dataset. While using only the server dataset DY, to train a model
has drawbacks, such as slower training speed and higher risk
of reaching sub-optimal points, it can provide a more accurate
direction of the global objective compared to using the large
non-IID dataset stored at each client. The key innovation of Fed-
CLG is the utilization of the server gradient to produce variance
correction either at the server aggregation step (FedCLG-S) or
the client local training step (FedCLG-C). This correction helps
address the issue of non-IID data distribution across clients and
ultimately improves the FL. model’s accuracy. In this section,
we provide further elaboration on the specific details of each
version of FedCLG.

A. FedCLG-C

In FedCLG-C, the server randomly selects a subset of M
clients out of IV total clients, denoted as S;, at each round ¢.
Prior to broadcasting the global model x; to the selected clients,
the server conducts an additional local training step using its
own local dataset D! based on the global model z;, producing
a gradient denoted as g;, where g; = V fs(z,) represents the
full batch gradient or g§ = V f5(x+, () represents the stochastic
gradient evaluated on a randomly drawn mini-batch (s from the
server dataset DY. FedCLG-C requires the server to broadcast
both the global model x; and the gradient g; to each selected
client < € S;. Upon receiving the gradient ¢g; and the model
xy, each client ¢ performs K rounds of local epoch with the
correction term ¢; as follows:

_ s 7

Ci =0 — 9t
i .
-/Et)o_xh

Ty =Tip — (gl ), k=0,...,K—1,  (10)

Here, gi = V f;(z¢, (;) is the stochastic gradient evaluated on a
randomly drawn mini-batch ¢; at client 4. (gi = V fi () if a full
gradient is used). After completing K rounds of training, each
client 7 sends its update to the server. The server then carries
out the same aggregation and server’s local training steps as
described in Egs. 4 and 5.

B. FedCLG-S

In FedCLG-S, similar to FedCLG-C, the server selects a
random subset of M clients at each round ¢ and performs an
extra training step based on x; using its own local dataset DZ.
The resulting training gradient g; is held by the server, which
subsequently broadcasts the global model x; to the selected
clients. Upon receipt of the global model, each selected client
i € S; conducts K steps of local training as specified by Eq. 3
and calculates the client gradient g} based on the received global
model. Each client sends back its cumulative local updates
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Algorithm 1 FedCLG
1: Initial model x, client local learning rate 7, global learning
rate 7)4, server local learning rate +, number of client local
epoch K, number of server local epoch £/, number of global
iterations T'

2: fort=0,1,..., 7 —1do

3:  Uniformly sample S; clients without replacement
4:  Compute a server gradient g; = V fs(x, (5)

5. Client Side:

6:  for each client ¢ € S; in parallel do

7: if FedCLG-C then

8: Perform client local training as Eq. 10

9: else if FedCLG-S then

10: Perform client local training as Eq. 3

end if

12:  end for

13:  Server Side:

14:  if FedCLG-C then

—_
—_—

15: Aggregate the model 7}, ; as Eq. 4
16:  else if FedCLG-S then
17: Aggregate the model 7, as Eq. 11
18:  end if
19:  Perform server local training as Eq. 5
20: end for
Tii K )
FedCLG-S FedCLG-C Tii1x
Aggregation Client i

Client i

Aggregation

Tt

r=f

s
Ti41 Tyt
Y J o
Clientj Ty K Clientj .ng’K
| JL ] v J L J
T | T T
Client Server Client Server

Training Aggregation Training Aggregation

Fig. 2. The key distinction between FedCLG-S and FedCLG-C lies in the

timing and location of the correction step. In FedCLG-S, the corrections occur
during the server aggregation step, whereas in FedCLG-C, they take place
during each client’s local training step.

and local gradient g} to the server, which then aggregates the
updates using the following formula:

Tipg =T+ ng% Z(AZ — Kn(g; —g;)), (1D
€S,
where 1), is the learning rate for the server’s local training. After
this aggregation, the server performs E epochs of local training
as described in Eq. 5. The steps involved in FedCLG-C and
FedCLG-S are summarized in Algorithm 1.

The primary difference between FedCLG-C and FedCLG-S,
which is shown in Fig. 2, lies in their methods for addressing
the variance issue. FedCLG-C addresses the problem of partial
participation during local training on the client side, while
FedCLG-S corrects the partial participation error at the server
side during the aggregation step. While FedCLG-C requires that
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the server broadcast an additional gradient g; during commu-
nication, FedCLG-S requires that each client upload an addi-
tional gradient g! to the server per round. The choice between
using FedCLG-S or FedCLG-C should be based on the avail-
able bandwidth for uploading and downloading. Specifically,
if the download bandwidth is restricted, FedCLG-S should
be utilized. Conversely, if the upload bandwidth is restricted,
FedCLG-C should be used. To further address the communi-
cation efficiency concerns, our method can be integrated with
quantization or compression techniques, which have been ex-
tensively studied in the FL setting (e.g. [40], [41], [42], [43]).
These methods are capable of significantly reducing the com-
munication costs associated with additional transmissions.

C. Comparison With FL Variance Reduction Methods

Existing variance reduction methods in FL. do not consider
the potential benefits of using the server dataset to reduce
variance. SCAFFOLD, proposed in [23], is the first work to
identify client drift error and utilize control variates to correct
it. However, SCAFFOLD requires additional gradient com-
munication during both the upload and download processes.
Alternatively, FedCLG-C or FedCLG-S can be chosen based on
different upload/download communication scenarios, reducing
the overall communication workload. Other variance reduction
methods, such as [35] and [36], require the server to maintain
O(Nd) memory, where N is the number of total clients and d is
the model size, which can be very expensive and unrealistic in
cross-device settings of FL. Others [37], [38] require additional
client computations. Moreover, all of the above methods use
stale information to build the correction term ¢;, which can neg-
atively affect performance. Furthermore, none of these methods
provide convergence guarantees under the hybrid FL setting.
In the experimental section, we demonstrate the superiority
of FedCLG.

V. CONVERGENCE ANALYSIS OF FEDCLG

In this section, we will provide a convergence analysis of both
versions of FedCLG in a non-convex setting. We will adopt the
same assumptions as in the previous section, which were used
for the convergence analysis of CLG-SGD.

Theorem 2: Suppose that client local learning rate 7, global
learning rate nq and server local learning rate v are chosen
such that n < 8KL, Mg < 36KL and v < GEL Under Assump-
tions 1, 2, 3, suppose in each round ¢ the server uniformly
selects M out of N clients without replacement, the sequence
of FedCLG-C model vectors x; satisfies:

( (fo—fs) )
T(’YE + 7]779K)
( 7 T]gLQK3 2 ) N < v2LEo? >
ms(YE + g K) ms(YE + g K)
+(9( n*n; K Lo? ) 0(773779L2K2012>
Mms(VE + 1y K) YE + nng K
. ( 22LKo? )
M(vE +mngK)

min E||Vf(zo)ll3 =

te(T)

12)
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where fo = f (o), f« = f(2).
Proof: The proof is shown in the supplementary material.
O

Corollary 2: Let = 0O(= ) ng=0O(WMK) and =
1

@(\/?) the convergence rate of FedCLG-C becomes:

E
trngn] va(xt)”2

1

<(\/MK + \/E)\/T)

Lo ( VMK )
(VMK +VE)T

Theorem 3: Suppose that client local learning rate 7, global
learning rate 7, and server local learning rate -y are chosen
such that n < 31(% g < 27% and v < w%. Under Assump-
tions 1, 2, 3, 4, suppose that in each round ¢ the sever uniformly
selects M out of N clients without replacement, the sequence
of FedCLG-S model vectors x; satisfies:

T(VE +1mgK)
0 <W> Lo (MEU)
VE + g K ms(YE + g K)
N ( n*n; K Lo? > O(nS’nngKzaf)
Mmy(VE +1my K) VE + g K
2 2LK(72
+0 (779 : )
M(yE +nnyK)
where fo = f(x0) and f, = f(x.).
Proof: The proof is shown in the supplementary material.
[

Corollary 3: Let n=0(= ) ng=0O(WMK) and =
@(\/?) the convergence rate of FedCLG-S becomes:

13)

trgljr}] E(|V f(z:)]|3 =

(14)

. B 1
min BNV S @)l = O<<¢W+ \/E)\/T)

+o(m%)

Remark 6: Both FedCLG-C and FedCLG-S’s convergence
results contain six terms where the second term is client local
drift error, the third term is server training update error, the
fourth term captures the stochastic error due to the limited size
of the server’s subset data compared to the overall population
and the last two terms are stochastic client update error. Notably,
both FedCLG-S and FedCLG-C eliminate the partial partic-
ipation error. Additionally, the bound becomes increasingly
dependent on the size of the dataset stored at the server, which
is expected since we use the server gradient to guide client
updates. A larger server dataset can result in a more accurate
server gradient direction, leading to a tighter overall bound.
While a smaller my may produce less accurate corrections
than a larger m,, our experiments demonstrate that even with
a small mg, our proposed method can significantly enhance
convergence speed under extremely non-IID settings.

Remark 7: The primary distinction between FedCLG-C and
FedCLG-S lies in the second term, which addresses client lo-
cal drift error. This is justifiable as FedCLG-C incorporates a

5)
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correction term at each client’s local training step, making it
less dependent on global objective variance and more reliant
on the quality of the correction step. Conversely, FedCLG-S
applies the correction step during server aggregation, allowing
client local training to be influenced by the variance between
local and global objectives. This indicates that FedCLG-C may
yield margir;ally better results when server datasets are reliable
(i.e., low %) and client data heterogeneity is high. However,
FedCLG-S remains a robust choice, outperforming baseline
methods (as shown in the experiment section). Under less ex-
treme non-IID conditions, the choice between FedCLG-S and
FedCLG-C should be influenced by bandwidth considerations.

Remark 8: Under partial client participation setting, assume
the server’s local training epoch E =0, which reduces hy-
brid FL setting to classic FL setting, the convergence rates of

1 1
FedCLG-C and FedCLG-S reduce to O TART +O0| 7

which match the convergence rate achieved by the SOTA vari-
ance reduction methods [23], [35] used in the classic FL setting
with partial client participation.

Remark 9: To prevent client local drift error from domi-
nating the convergence process, aiming for a convergence rate
of O (ire/g 7 ) both FedCLG-S and FedCLG-C need

that the local epoch K should not surpass 7'/M.
Remark 10: Both FedCLG-C and FedCLG-S exhibit con-

vergence rates of O

m under non-1ID and

partial participation settings, provided that there are enough
training rounds 7' (i.e. T'> KM). This rate is faster than
that of CLG-SGD, which converges with a rate dominated

K . . .
by O AREVT ) Interestingly, larger client-side local

training epochs K can actually hurt the convergence rate for
CLG-SGD due to the negative effects of partial participa-
tion. However, after eliminating these negative effects in both
FedCLG-S and FedCLG-C, the new convergence rates show
that larger client-side local training epochs K can actually
increase the convergence rate.

VI. EXPERIMENTS
A. Setup

We conducted all experiments using Federated Learning (FL)
simulation on the PyTorch framework and trained the models on
Geforce RTX 3080 GPUs. We performed five random repeats
and reported the averaged results. The detailed experimental
settings are presented below.

1) Dataset and Backbone Model: To verify our theoretical
findings, we evaluate the proposed methods on three datasets:

MNIST [44]: We utilize LeNet-5 [45] as the backbone
model. The default training hyperparameters are as follows:
server local learning rate tuning from ~ = {0.01,0.05,0.25},
client local learning rate tuning from n = {0.01,0.05,0.25},
local learning rates’ decay factor equals to 0.99 until learning
rate reaches 0.001, global learning rate 7, =1, and training
batch sizes at both the server and clients set to 64.

CIFAR-10 [46]: We also utilize LeNet-5 as the backbone
model. The default training hyperparameters are server local
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learning rate tuning from v = {0.01,0.05,0.25}, client local
learning rate tuning from n = {0.02,0.08, 0.32}, local learning
rates’ decay factor equals to 0.99 until learning rate reaches
0.001, global learning rate 1y = 1, and training batch sizes at
both the server and clients set to 128.

CIFAR-100 [46]: For CIFAR-100 datasets, we use 20
superclasses to reclassify the data samples. We utilize Mo-
bileNetV2 [47] as the backbone model. The default training
hyperparameters are server local learning rate tuning from v =
{0.005, 0.05,0.5}, client local learning rate tuning from 1 =
{0.01,0.1, 1}, local learning rates’ decay factor equals to 0.99
until learning rate reaches 0.001, global learning rate 7, = 1,
and training batch sizes at both the server and clients set to 128.

2) Client Setting: Our experimental evaluations cover both
IID and non-IID client datasets. Without loss of generality, we
assume that each client has an equal number of data samples.
Specifically, for MNIST, we simulate 200 clients with 150 data
samples each, for CIFAR-10 and CIFAR-100 we simulate 200
clients with 200 data samples each.

IID and Non-IID scenario. For IID datasets, we randomly
assign an equal-size local dataset from the total training set to
each client. For non-IID datasets, we apply the Dirichlet method
() to create the data distribution for each client. We use various
« values to demonstrate the convergence performance under
different degrees of non-IID.

Client participation. The primary objective of this paper
is to investigate how the server dataset can be leveraged to
eliminate the partial participation error in Federated Learn-
ing. Therefore, in the experiment section, we will focus on
the scenario where clients participate partially in the training
process. Specifically, in the main experiments, we uniformly
sample M = 4 clients without replacement in every round for
MNIST dataset, and M = 10 clients for CIFAR-10 and CIFAR-
100 dataset.

Number of Local Epoch K. To investigate the impact of
the client’s local training epoch, we vary the value of K to be
1, 3, or 5.

3) Server Setting: Compared to classical FL, Hybrid FL
introduces the novel setting where the server itself contains a
subset of the population dataset.

Size of server dataset m . In the MNIST experiment, we
consider the server dataset to contain 1% of the total training
data samples, while in the CIFAR-10 and CIFAR-100 experi-
ments, we consider it to contain 5% of the total training data
samples. In the ablation studies, we change the size of the server
dataset to examine its impact on the hybrid FL approach.

Number of Local Epoch E. To investigate the impact of
the server’s local training epoch, we vary the value of F to be
1, 3, or 5.

4) Baselines: In our study, we evaluate the performance of
our approach against the following established methods: (1)
Server-only: This method involves training a model solely on
the server’s dataset, denoted as Dﬁ, without using any client
data. (2) FedAvg: As a key baseline in traditional Federated
Learning (FL), FedAvg employs client-side data for distributed
learning. It is worth noting that the server’s dataset is not used
in this method. (3) CLG-SGD: This state-of-the-art hybrid FL
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Fig. 3. Convergence performances on MNIST.

technique, introduced in [11], alternates between server local
training and client local training. (4) SCAFFOLD+: SCAF-
FOLD [23] is a leading FL variance reduction method. To
enable a fair comparison that highlights the advantages of our
proposed approach, we have incorporated the alternating train-
ing concept from CLG-SGD into SCAFFOLD. Consequently,
SCAFFOLD+ is an improved version of SCAFFOLD that uti-
lizes the server’s local dataset for additional training.

B. Experiments Results

The primary objective of the experiments is to showcase the
differences in the number of global training rounds required by
different methods to achieve a specific test accuracy, thereby
highlighting the differences in their convergence speeds.

Performances Comparison. We first compare the conver-
gence performance of our proposed methods and baselines on
the MNIST dataset. We consider both IID and non-IID set-
tings. As shown in Fig. 3(a), for the IID setting, FedCLG-S
and FedCLG-C outperform FedAvg and Server-Only, but only
achieve comparable performance with CLG-SGD (FedCLG-
S even performs slightly worse). This is expected, as there
is no variance reduction needed in the IID setting, i.e., 04 =
0. Introducing the correction step can bring additional errors
caused by the variance of server gradient, resulting in a marginal
benefit (or slight weakness) in the IID setting. However, in most
realistic scenarios, non-IID data distribution is more common.
As seen in Fig. 3(b), under the non-IID setting (o« = 0.2), even
for the MNIST dataset, both FedCLG-S and FedCLG-C outper-
form the other baselines. Moreover, we observe that in the IID
setting, FedAvg converges faster than Server-Only, but in the
non-IID setting, the convergence speed of FedAvg decreases
significantly. In contrast, for the methods applying additional
server training, the convergence speed does not decrease signif-
icantly even under the non-IID case. This further validates the
necessity of additional server local training, which is consistent
with findings in [11].

We evaluate the proposed methods on CIFAR-10 and CIFAR-
100 under non-IID settings. As shown in Figs. 4 and 5,
FedCLG-S and FedCLG-C outperform CLG-SGD by a sig-
nificant margin. Specifically, in Fig. 4(a), setting the target
test accuracy to 0.5, FedCLG-C requires 134 global rounds,
and FedCLG-S requires 144 global rounds. In contrast, CLG-
SGD requires 246 global rounds, which is 1.83 (and 1.70)

() CIFAR-10 Non-IID (a = 0.3)

(b) CIFAR-10 Non-IID (a = 0.8)

Fig. 4. Convergence performances on CIFAR-10.
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Fig. 5. Convergence performances on CIFAR-100.

times more than FedCLG-C and FedCLG-S. Furthermore, un-
der high non-IID conditions, FedCLG-C slightly outperforms
FedCLG-S, aligning with our theoretical predictions. Despite
this, FedCLG-S still significantly surpasses the existing base-
line. In scenarios with lower non-I1ID conditions, both versions
of FedCLG exhibit comparable performance. Consequently, the
choice between FedCLG-C and FedCLG-S should be based
on the conditions of upload/download communication band-
width. Moreover, although SCAFFOLD+ also applies variance
reduction methods, it can only achieve comparable performance
with CLG-SGD, indicating that such variance reduction fails
to work. We attribute this failure to the use of stale estimated
global and local gradients as the guideline to correct the vari-
ance, which introduces additional error. The inability to directly
apply SCAFFOLD-related methods, which use stale informa-
tion, further underscores the importance of reasonable exploita-
tion of the server’s local data and the necessity of our proposed
method, FedCLG.

Impact of number of participated clients M. In this
series of experiments, we investigate the impact of the num-
ber of participated clients M on the convergence speed of
our proposed methods and the baseline method, CLG-SGD.
We test the experiments on the MNIST dataset while holding
all other parameters constant and only varying the number of
participated clients M. The third column of Table I reports
the number of global rounds required by each experiment,
with the target test accuracy set to 97%. The results show
that, for both the baseline and our proposed methods, increas-
ing the number of participated clients leads to a decrease in
the required number of global rounds and a higher conver-
gence speed. Moreover, under different numbers of participated
clients (i.e., 4, 6, 24), the convergence speeds of FedCLG-S
and FedCLG-C outperform CLG-SGD. However, with a larger
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TABLE I
IMPACT OF PARTICIPATED CLIENTS M
METHODS PARTICIPATED CLIENTS | NUMBERS OF ROUND \
4 68 (1.0><)
CLG-SGD 6 59 (1.0><)
24 39 (1.0><)
4 42 (1.61 ><)
FedCLG-S 6 35 (1.68><)
24 28 (1.39><)
4 39 (1.74><)
FedCLG-C 6 32 (1.84><)
24 25 (1.56><)
g 06

— FedCLG-C1
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FedCLG-54
—— FedCLG-510
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Time Slot Time Slot

(a) FedCLG-C with different mg (b) FedCLG-S with different m

Fig. 6. Impact of server dataset size ms.

increase in the number of participated clients, the benefit of
our proposed methods slightly decreases. For example, with
M =4, FedCLG-C achieves a 1.74x speed-up compared to
CLG-SGD, while with a larger number of clients (M = 24),
the speed-up decreases to 1.56 x. This observation is consistent
with our theoretical analysis, which suggests that increasing the
number of participated clients in CLG-SGD reduces the error
caused by partial participation, thus leading to a smaller benefit
from the correction step.

Impact of server dataset size. To investigate the impact of
the server dataset, we first conduct an experiment on MNIST
with different levels of mg. In our initial setting, we assume
that the server contained 1% of the total training samples each
global round. We then extend this value to be 4% and 10%.
The results, shown in Fig. 6, indicate that increasing the size of
the server dataset can improve the overall convergence speeds
of both FedCLG-C and FedCLG-S, as a larger server dataset
provides a two-fold improvement. Firstly, more data can be
acquired each round, leading to improved server local training.
Secondly, the larger server dataset helps us to achieve a more
reliable correction step with g, approaching closer to the actual
global optimal direction.

We then include experiments when the server dataset has a
slight distribution shift. This shift is quantified using cosine sim-
ilarity between the server and overall distributions, specifically
targeting scenarios where the shift is small (cosine similarity
is approximately 0.95). The results, illustrated in Fig. 7 for
both MNIST and CIFAR-10 datasets, reveal that even with
this slight distribution shift, our proposed method consistently
outperforms baseline approaches. It is important to note that
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Fig. 9. Impact of server epochs E.

we do not explore scenarios involving significant distribution
shifts, as such conditions would effectively reduce the server
to another client role, a situation outside the scope of our study
in hybrid federated learning.

Impact of client epochs K and server epochs F. In
this subsection, we investigate the impact of the number of
client epochs K and server epochs E. We keep other parameters
fixed and only vary the number of client local epochs in Fig. 8.
The convergence results shown in Fig. 8 are consistent with our
theoretical analysis, as a larger number of client local epochs
K results in increased convergence speed for both FedCLG-
C and FedCLG-S. Similarly, in Fig. 9, we fix all parameters
and only change the number of server local epochs. It can be
observed that, for both FedCLG-C and FedCLG-S, the largest
local epoch (F = 5) achieves the best convergence performance
in both Fig. 9(a) and 9(b).

VII. CONCLUSION

In this paper, we address the hybrid Federated Learning (FL)
setting, where the server has access to a small portion of the
total training samples. We consider a more realistic scenario
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where clients with non-IID data can only partially participate in
each server aggregation. Firstly, we provide a novel theoretical
analysis for CLG-SGD, the state-of-the-art hybrid FL. method.
Our analysis reveals the drawbacks of the current method due to
clients’ partial participation. Motivated by these observations,
we propose a novel method called FedCLG, which fully ex-
ploits the benefits of a small server dataset. We further study
two versions of FedCLG based on different server-client com-
munication scenarios. We provide thorough theoretical anal-
ysis and experimental comparisons to validate the proposed
methods. Future research will focus on developing a theoret-
ically guaranteed method under an unbounded client-server
communication pattern.

APPENDIX A
PROOF OF THEOREM 1

Note that in the following proof, we utilize gi, ;, to represent
V F;(2] , i) For each global round ¢, we have the intermediate
model after client local training as:

s 1 %
Tip1 = T T g 37 Z At
€S

(16)

where Al =
training is as:

. Pl 0 ngt - The final model after server local

.8
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Z 79ts+1,e
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Due to the smoothness in Assumption 1, taking expectation
of f(x441) over the randomness at communication round ¢,
we have:

Ee[f (ze41)] < fae) + <Vf($t),Et[$t+1 - xt]>

T
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We first bound 77 as follows:

T, = <Vf(xt),Et[$t+1 - xt]>
3 S

€Sy k=0

—7<Vf 1), [Z V@, )]>
53 Vi

€Sy k=0

= —nng<Vf ), [

w))

= —nng<Vf () ]Et[

Ts

3267

19)

<Vf ), [Zws e ]>
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There the second equality is due to the assumption of an un-
biased local gradient estimate. The term 75 can be bounded
as follows:
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The last equality is due to the fact that < z,y >= 1[||z||* +

lylI* = ||z — y||*]. Then we can bound T as:
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The first inequality is based on Cauchy-Schwarz inequality.
Then we have Tg be bounded as:
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The rest term 75 can be bounded as: vE + K M(vE +nnyK)
9 9 9 stochastic gradient error
5 5 77 ngLK oj
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- i€Sy k=0 Now we finish the proof of theorem 1.
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