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Abstract—Over the past few years, Federated Learning (FL)
has become a popular distributed machine learning paradigm.
FL involves a group of clients with decentralized data who
collaborate to learn a common model under the coordination of a
centralized server, with the goal of protecting clients’ privacy by
ensuring that local datasets never leave the clients and that the
server only performs model aggregation. However, in realistic
scenarios, the server may be able to collect a small amount
of data that approximately mimics the population distribution
and has stronger computational ability to perform the learning
process, resulting in the development of a hybrid FL framework.
While previous hybrid FL work has shown that the alternative
training of clients and server can increase convergence speed,
it has focused on the scenario where clients fully participate
and ignores the negative effect of partial participation. In this
paper, we provide theoretical analysis of hybrid FL under clients’
partial participation to validate that partial participation is the
key constraint on the convergence speed. We then propose a new
algorithm called FedCLG, which investigates the two-fold role of
the server in hybrid FL. Firstly, the server needs to process the
training steps using its small amount of local datasets. Secondly,
the server’s calculated gradient needs to guide the participating
clients’ training and the server’s aggregation. We validate our
theoretical findings through numerical experiments, which show
that FedCLG outperforms state-of-the-art methods.

Index Terms—Federated learning, convergence analysis,
server-clients collaboration.

I. INTRODUCTION

R
ECENT years have seen exponential growth in data col-

lection due to technological advancements, leading to the

development of stronger machine learning models [1]. How-

ever, traditional centralized machine learning algorithms strug-

gle with handling the distributed nature of this type of data,

which is often spread across multiple clients, such as mobile

devices [2]. To overcome this problem, Federated Learning (FL)
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[3] has emerged as an important paradigm in modern machine

learning. FL is a distributed machine learning approach where

clients with decentralized data collaborate to learn a common

model under the coordination of a parameter server. It has

several advantages, including enhanced user data privacy [4],

[5], scalability to new clients and datasets [6], and faster model

convergence rate [7], [8], [9]. Despite these benefits, current

FL systems typically assign the server to only simple compu-

tations, such as aggregating local models, wasting its powerful

computational resources. Moreover, traditional FL assumes that

datasets are exclusively available to the clients, either indepen-

dently and identically distributed (IID) or non-IID. However,

this is not always the case in real-world scenarios. In many

cases, the entity building the machine learning model operates

the server and possesses a small amount of data that approx-

imately mimics the overall population distribution. Although

a machine learning model can be trained based solely on the

server data, the model performance will be limited by the size

of the server dataset. Thus, a hybrid FL approach, which collab-

oratively utilizes the massive client data and a small amount of

server data in a decentralized and privacy-preserving manner is

of paramount practical importance to boost model performance.

Compared to traditional FL, which assumes that only clients

can access data while the server can only perform model aggre-

gation, the literature on hybrid FL is relatively scarce. Authors

in [10] make the assumption that the data collected by the server

is complementary to the data held by each client. However, this

assumption may only be applicable to specific scenarios, and in

most real-world cases, the entity operating the server is likely

to have access to a small amount of data that can approximate

the population data distribution. To address this issue, this paper

adopts a similar setting to [11], which proposes a hybrid model

training design called CLG-SGD (short for cascading local-

global SGD). In this design, the server performs aggregate-

then-advance training. The empirical findings presented in [11]

demonstrate that compared to client-only local data training

(e.g., Local-SGD), CLG-SGD enhances the convergence speed.

However, its theoretical analysis bounds server-side and client-

side updates separately, failing to comprehensively represent

the theoretical benefits of additional server training in non-

convex settings. Moreover, [11] mainly focuses on the IID and

fully-participated scenario, which may not be realistic in prac-

tical applications. In reality, clients may choose to participate

only when they have access to a reliable Wi-Fi connection and a
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Fig. 1. Illustration of a Communication Round in Hybrid FL with Non-IID
Client Data and Partial Participation.

power source [3]. Therefore, only a small percentage of clients

may participate in each round. Additionally, data is distributed

across multiple clients (e.g., mobile devices), each with its own

unique data distribution [12]. Thus, the investigation of hybrid

FL under non-IID and partial participation scenarios is crucial.

In this paper, we first revisit CLG-SGD [11] under non-

IID and partial participation setting, and introduce a novel

convergence analysis. This analysis improves the convergence

rate of CLG-SGD, demonstrating how additional server-side

training can expedite convergence. However, our findings also

indicate that partial participation errors can still impede CLG-

SGD’s convergence rate, even with augmented server training.

To mitigate this issue, we then introduce FedCLG (Federated

cascading local-global learning), a new algorithm for hybrid FL

that leverages server training to improve model convergence

speed and correct partial participation errors in non-IID and

partially participated scenarios (See Fig. 1). Specifically, Fed-

CLG has two main responsibilities for server training. First, the

server training starts with the latest aggregated global model and

advances it using its limited local dataset. This allows the server

to contribute to the global model with its advanced computation

capabilities. Second, the server conducts an additional one-

round training before broadcasting the new global model to

each participating client. The gradient computed during this ad-

ditional server training is utilized to correct partial participation

errors. We propose two versions of FedCLG based on where

partial participation errors are corrected. FedCLG-S corrects

partial participation errors during server model aggregation,

while FedCLG-C corrects them at each client’s side during

local training. Our proposed algorithm aims to maximize the

benefits of server training to improve model convergence speed

and correct partial participation errors in non-IID and partially

participated scenarios. We summarize our main contributions

below: 1. We provide a novel theoretical convergence analysis

of the state-of-the-art hybrid FL method, CLG-SGD, that vali-

dates the benefit of additional server training without requiring

the assumption of IID data or full client participation. Our

analysis highlights that, despite the additional server training,

convergence speed is still limited by partial participation errors.

2. We propose FedCLG, a new algorithm that maximizes the

potential benefits of server training in hybrid FL. We introduce

two versions of FedCLG, FedCLG-S and FedCLG-C, to ac-

count for different communication and computation scenarios.

We provide theoretical convergence analysis for both versions.

3. We conduct extensive experiments on three datasets, demon-

strating the superior performance of FedCLG over existing

state-of-the-art methods.

The remainder of this paper is organized as follows. Re-

lated works are surveyed in Section II. The system model and

extensive theoretical analysis of the state-of-the-art hybrid FL

method are presented in Section III. FedCLG is detailed in

Section IV and its two versions FedCLG-S and FedCLG-C

are analyzed in Section V. Experiment results are reported in

Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORKS

A. Federated Learning

With the growing demand for local data storage and on-

device model training, Federated Learning [13], [14], [15] has

attracted significant interest in recent years. FedAvg first pro-

posed by [3], operates by periodically averaging local Stochas-

tic Gradient Descent (SGD) updates. This work has inspired

numerous follow-up studies focusing on FL with IID client

datasets and full client participation [16], [17], [18], [19]. Un-

der the assumptions of complete participation and IID client

datasets, several theoretical works [16], [20] have emerged,

providing a linear speedup convergence guarantee, on par with

the rate of parallel SGD [21]. However, real-world scenarios

often present challenges in FL due to non-IID data and partial

client participation [22]. Recent works [8], [23], [24], [25], [26]

have addressed these issues by offering similar convergence

rates under non-IID and partial participation settings.

B. Hybrid Federated Learning

The majority of existing FL research focuses on the scenario

where data is exclusively stored on the client side, and the server

is only responsible for the aggregation step, ensuring clients’

privacy requirements are met. However, this approach could

potentially underutilize the server’s computational capabilities.

Compared to the clients, which are typically mobile devices in

FL settings, the server generally possesses significantly greater

computational power [27]. This has led to the emergence of a

new FL configuration, referred to as hybrid FL. Current hybrid

FL research can be divided into two categories, based on the

source of the server dataset.

The first category of hybrid FL assumes that the server

cannot collect data independently, while clients with limited

computational resources can upload less privacy-sensitive data

samples to the server to aid training [28], [29]. These studies

concentrate on optimizing the trade-off between data sample

communication costs and the benefits of model training.

The second line of hybrid FL, more closely related to this

paper, assumes that the server can collect a small portion of the

total data samples [10], [11]. While [10] posits that the server’s

data complements each client’s data, a more realistic assump-

tion is that the server is more likely to gather a small amount
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of data that approximates the population data distribution [30].

Our work adopts a similar setting to [11]. However, while [11]

focuses on IID data and full client participation, our research

investigates the more realistic scenario of non-IID client data

and partial client participation.

C. Variance Reduction

Variance reduction has been a widely studied concept across

various fields. Monte Carlo sampling methods employ the con-

trol variates technique to reduce variance [31], while in stochas-

tic gradient estimates for large-scale machine learning, SVRG

[32] and SAG [33] have been introduced to reduce the stochastic

sampling-variance. SAG was later simplified, leading to the

proposal of SAGA [34]. In Federated Learning (FL), the vari-

ance caused by randomly participating clients has a stronger

impact than the variance caused by stochastically selected data

samples. As a result, variance reduction methods in FL focus

more on reducing client-variance. SCAFFOLD [23], an exten-

sion of SAGA, was proposed as the first variance reduction

method in FL, which inspired subsequent works such as [35],

[36], [37], [38] that attempt to reduce client-variance to increase

convergence speed. However, none of these methods consider

the hybrid FL setting and can result in the misutilization of

stale information. In this work, we propose the first approach

to reducing client-variance in hybrid FL, which fully exploits

the benefits of server-side small datasets. A detailed compar-

ison between our method and existing variance-reduction FL

approaches is presented in Section IV.

III. PROBLEM FORMULATION AND CLG-SGD

A. Problem Formulation

In the hybrid federated learning setting, we aim to optimize

the model parameters x ∈Rd by minimizing the global ob-

jective function f(x), similar to traditional federated learning

frameworks. The global objective function is defined as:

min
x

f(x) =
1

N

N∑

i=1

fi(x), (1)

where fi(x) =
1
mi

∑

z∈Di
l(x, z) represents the local objective

of client i computed on their local dataset Di with mi data

points. The loss function is denoted by l(., .), and z represents

a data sample from the local dataset Di. The total data samples

in the FL system are represented as m, such that
∑N

i mi =m,

and the total number of clients is denoted as N . The underlying

data distribution of the total m data samples is denoted as V .

We assume, without loss of generality, that all N clients’ local

objectives have equal weight in the global objective function

(1). The algorithms and theoretical analysis can be easily ex-

tended to cases where client objectives are unequally weighted,

such as proportional to the local data size.

In contrast to traditional FL, the hybrid FL framework posits

that, in addition to the data available at each client, the server

can collect a small dataset Dt
s with a constant size of ms,

which is data homogeneous with the overall dataset. Although

the underlying data distribution of Dt
s remains consistent and

approximates the overall population distribution V , the dataset

itself changes with each global round t (while remaining fixed

within the global round). Consequently, the server’s optimiza-

tion problem becomes:

min
x

fs(x) =
1

ms

∑

z∈Dt
s

l(x, z). (2)

However, because the size of Dt
s is considerably smaller than

the overall dataset stored at each client (i.e., ms �m), relying

solely on Dt
s for model training could result in suboptimal

outcomes. Additionally, the server’s limited access to the fixed

dataset for local training during specific time periods in each

global round may significantly increase the training time.

Determining the best approach to utilize both server and

clients’ data for training and achieve optimal convergence per-

formance is a challenging problem. To address this, we revisit

the CLG-SGD algorithm in the hybrid FL setting. At each round

t, the server randomly selects a subset of M clients, denoted

as St, and sends the global model xt to these clients. Upon

receiving xt, each selected client i performs K rounds of local

updates as follows:

xi
t,0 = xt;

xi
t,k+1 = xi

t,k − ηgit,k, k = 0, . . . ,K − 1, (3)

where η is the client-side local learning rate, and git,k =
∇fi(x

i
t,k, ζi) is the stochastic gradient evaluated on a randomly

drawn mini-batch ζi at client i (git,k =∇fi(x
i
t,k) if a full gradi-

ent is used). After K steps of local training, client i sends back

its update Δi
t = xi

t,K − xt to the server, which aggregates the

updates to update the global model as follows:

xs
t+1 = xt + ηg

1

M

∑

i∈St

Δi
t, (4)

where ηg is the global (aggregation) learning rate, and xs
t+1

represents an intermediate stage between client local training

and server local training. In classic FL, the iteration ends at this

point. However, in hybrid FL, the server not only aggregates the

clients’ updates but also utilizes its own dataset Dt
s for server

training. Thus, after aggregating the model xs
t+1, the server also

performs E rounds of local updates as follows:

xs
t+1,0 = xs

t+1;

xs
t+1,e+1 = xs

t+1,e − γgst+1,e, e= 0, . . . , E − 1;

xt+1 = xs
t+1,E , (5)

where γ is the server learning rate, and gst,e =∇fs(x
s
t,e, ζs) is

the stochastic gradient evaluated on a randomly drawn mini-

batch ζs from the server dataset Dt
s (gst,e =∇fs(x

s
t,e) if a

full gradient is used). After the server-side training, the global

model advances from xs
t+1 to xt+1. Then the server broadcasts

the new global model xt+1 for the next round of iteration.

In the previous work [11], the authors focus on IID and fully

participating settings and fail to show how additional server

training accelerates the convergence speed in non-convex set-

tings. In this paper, we extend the analysis to non-IID and partial

participation settings in the following subsection. Our novel the-

oretical analysis demonstrates that, although additional server
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training can improve the convergence rate, convergence speed

is still dominated by partial participation error resulting from

data heterogeneity and randomly selected clients. Based on

this observation, we propose a new algorithm, FedCLG, in

Section IV.

B. Novel Convergence Analysis of CLG-SGD [11]

For the theoretical analysis in this paper, we make the fol-

lowing assumptions: in each round, the server selects a subset

of clients uniformly without replacement. In addition, our con-

vergence analysis will utilize the following standard technical

assumptions.

Assumption 1 (Lipschitz Smoothness): There exists a con-

stantL > 0 such that ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈
R

d and ∀i= 1, ..., N .

Assumption 2 (Bounded Variance): The dataset Dt
s at the

server approximates the overall population distribution V , so

the gradient calculated using Dt
s is an unbiased estimate of the

global objective, i.e., EDt
s
∼V [∇fs(x)] =∇f(x). Furthermore,

there exists a constant σ > 0 such that the variance of the

gradient estimator is bounded, i.e.,

EDt
s
∼V

[
‖∇fs(x)−∇f(x)‖2

]
≤ σ2

ms

, ∀x, ∀t. (6)

where ms is the size of server dataset Dt
s.

Assumption 3 (Unbiased Gradient Estimate and Bounded

Local Variance): The stochastic gradient estimate is unbiased,

i.e., Eζ [Fi(x, ζ)] =∇fi(x), ∀x and ∀i= 1, · · · , N and its vari-

ance is bounded E[‖∇Fi(x, ζi)−∇fi(x)‖2]≤ σ2
l , ∀x ∈ R

d

and ∀i= 1, ..., N .

Assumption 4 (Bounded Global Variance): There exists a

constant number σg > 0 such that the variance between the local

gradient of client i and the global gradient is bounded:

‖∇fi(x)−∇f(x)‖2 ≤ σ2
g , ∀i ∈ [N ], ∀x. (7)

Assumptions 1, 3 and 4 are commonly adopted in the conver-

gence analysis of FL under non-IID settings [7], [8], [9], [20].

Assumption 2 provides a bound on the variance introduced by

server local training, which is dependent on the size of Dt
s [39].

We here consider the size of Dt
s as a hyper-parameter.

Theorem 1: Suppose that client local learning rate η, global

learning rate ηg, and server local learning rate γ are chosen

such that η ≤ 1
3KL

, ηηg ≤ 1
27KL

, and γ ≤ 1
6EL

. Under Assump-

tions 1, 2, 3, 4, suppose that in each round t the server uniformly

selects M out of N clients without replacement, the sequence

of model vectors xt satisfies:

min
t∈[T ]

E‖∇f(xt)‖22 =O
(

(f0 − f∗)

T (γE + ηηgK)

)

+O
(
η3ηgL

2K3σ2
g

γE + ηηgK

)

+O
(

γ2ELσ2

ms(γE + ηηgK)

)

+O
(

(N −M)K2η2η2gLσ
2
g

M(N − 1)(γE + ηηgK)

)

+O
(
η3ηgL

2K2σ2
l

γE + ηηgK

)

+O
(

η2η2gLKσ2
l

M(γE + ηηgK)

)

, (8)

Proof: The proof is shown in Appendix [A].

Remark 1: The convergence bound presented above consists

of six terms, with the second term accounting for the effect of

client local training, the third term representing the impact of

limited data availability at the server, the fourth term reflecting

the influence of partial participation of clients, and the last two

terms representing the error caused stochastic client updates.

Remark 2: The third term is influenced by the number of

data points available at the server, denoted by ms. As ms

increases, the convergence bound tightens, which aligns with

the expectation that having more training data stored at the

server should result in better convergence performance.

Corollary 1: Let η =Θ( 1
K

√
T
), ηg =Θ(

√
MK) and γ =

Θ( 1√
ET

), the convergence rate of CLG-SGD becomes:

min
t∈[T ]

E‖∇f(xt)‖22 =O
( √

MK

(
√
MK +

√
E)T

)

+O
(

K

(
√
MK +

√
E)

√
T

)

(9)

Remark 3: Our convergence analysis of CLG-SGD is more

general than that of [11], as we consider non-IID data and partial

client participation. Additionally, our analysis demonstrates the

theoretical benefits of additional server training even in the

case of IID data and full participation, where [11] fails to do

so. Notably, in the case of IID data (σg = 0) or full participa-

tion (M =N ), our convergence rate is O
(

1
(
√
MK+

√
E)

√
T

)

+

O
( √

MK

(
√
MK+

√
E)T

)

, which converges faster than the rate of

O
(

1√
MKT

)

+O
(

1
T

)

found in [11].

Remark 4: If we consider full client participation and set the

server’s local training epoch E = 0, the hybrid FL approach

becomes equivalent to classic FL, and the convergence speed

degenerates to O
(

1√
MKT

)

+O
(

1
T

)

. This rate is the same

as the state-of-the-art rate found in classical FL [8], [23].

Remark 5: The corollary reveals that the dominating factor

in the convergence bound is O
(

K

(
√
MK+

√
E)

√
T

)

, which is

closely related to the global variance σ2
g . This suggests that

the global variance has a more significant effect on conver-

gence behavior in cases with partial participation, particularly

in highly non-IID scenarios where σg is substantial. Therefore,

developing a new hybrid FL approach to mitigate the negative

effects of partial participation is a challenging task.

Our novel theoretical analysis of CLG-SGD suggests that hy-

brid FL can achieve faster convergence by incorporating addi-

tional server local training after the aggregation step. However,

like classic FL, hybrid FL is still constrained by the convergence

limitations caused by partial client participation in non-IID

settings. Prior research, such as [23], [35], has used variance

reduction techniques in classic FL to mitigate the adverse ef-

fects of partial participation. Although these methods can be

adapted to hybrid FL, they do not fully leverage the potential

benefits of the small amount of server data. In the next sections,
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we introduce FedCLG, a novel algorithm that fully exploits the

server data.

IV. FEDCLG

In hybrid FL, a significant difference from the classical FL

setting is the server’s possession of its local training dataset Dt
s,

which is a small subset approximating the overall population

dataset. While using only the server dataset Dt
s to train a model

has drawbacks, such as slower training speed and higher risk

of reaching sub-optimal points, it can provide a more accurate

direction of the global objective compared to using the large

non-IID dataset stored at each client. The key innovation of Fed-

CLG is the utilization of the server gradient to produce variance

correction either at the server aggregation step (FedCLG-S) or

the client local training step (FedCLG-C). This correction helps

address the issue of non-IID data distribution across clients and

ultimately improves the FL model’s accuracy. In this section,

we provide further elaboration on the specific details of each

version of FedCLG.

A. FedCLG-C

In FedCLG-C, the server randomly selects a subset of M
clients out of N total clients, denoted as St, at each round t.
Prior to broadcasting the global model xt to the selected clients,

the server conducts an additional local training step using its

own local dataset Dt
s based on the global model xt, producing

a gradient denoted as gst , where gst =∇fs(xt) represents the

full batch gradient or gst =∇fs(xt, ζs) represents the stochastic

gradient evaluated on a randomly drawn mini-batch ζs from the

server dataset Dt
s. FedCLG-C requires the server to broadcast

both the global model xt and the gradient gst to each selected

client i ∈ St. Upon receiving the gradient gst and the model

xt, each client i performs K rounds of local epoch with the

correction term ci as follows:

ci = gst − git

xi
t,0 = xt;

xi
t,k+1 = xi

t,k − η(git,k + ci), k = 0, . . . ,K − 1, (10)

Here, git =∇fi(xt, ζi) is the stochastic gradient evaluated on a

randomly drawn mini-batch ζi at client i. (git =∇fi(xt) if a full

gradient is used). After completing K rounds of training, each

client i sends its update to the server. The server then carries

out the same aggregation and server’s local training steps as

described in Eqs. 4 and 5.

B. FedCLG-S

In FedCLG-S, similar to FedCLG-C, the server selects a

random subset of M clients at each round t and performs an

extra training step based on xt using its own local dataset Dt
s.

The resulting training gradient gst is held by the server, which

subsequently broadcasts the global model xt to the selected

clients. Upon receipt of the global model, each selected client

i ∈ St conducts K steps of local training as specified by Eq. 3

and calculates the client gradient git based on the received global

model. Each client sends back its cumulative local updates

Algorithm 1 FedCLG

1: Initial model x0, client local learning rate η, global learning

rate ηg , server local learning rate γ, number of client local

epochK, number of server local epochE, number of global

iterations T
2: for t= 0, 1, . . . , T − 1 do

3: Uniformly sample St clients without replacement

4: Compute a server gradient gst =∇fs(xt, ζs)
5: Client Side:

6: for each client i ∈ St in parallel do

7: if FedCLG-C then

8: Perform client local training as Eq. 10

9: else if FedCLG-S then

10: Perform client local training as Eq. 3

11: end if

12: end for

13: Server Side:

14: if FedCLG-C then

15: Aggregate the model xs
t+1 as Eq. 4

16: else if FedCLG-S then

17: Aggregate the model xs
t+1 as Eq. 11

18: end if

19: Perform server local training as Eq. 5

20: end for

Fig. 2. The key distinction between FedCLG-S and FedCLG-C lies in the
timing and location of the correction step. In FedCLG-S, the corrections occur
during the server aggregation step, whereas in FedCLG-C, they take place
during each client’s local training step.

and local gradient git to the server, which then aggregates the

updates using the following formula:

xs
t+1 = xt + ηg

1

M

∑

i∈St

(Δi
t −Kη(gst − git)), (11)

where ηg is the learning rate for the server’s local training. After

this aggregation, the server performs E epochs of local training

as described in Eq. 5. The steps involved in FedCLG-C and

FedCLG-S are summarized in Algorithm 1.

The primary difference between FedCLG-C and FedCLG-S,

which is shown in Fig. 2, lies in their methods for addressing

the variance issue. FedCLG-C addresses the problem of partial

participation during local training on the client side, while

FedCLG-S corrects the partial participation error at the server

side during the aggregation step. While FedCLG-C requires that

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:32:43 UTC from IEEE Xplore.  Restrictions apply. 



BIAN et al.: ACCELERATING HYBRID FEDERATED LEARNING CONVERGENCE 3263

the server broadcast an additional gradient gst during commu-

nication, FedCLG-S requires that each client upload an addi-

tional gradient git to the server per round. The choice between

using FedCLG-S or FedCLG-C should be based on the avail-

able bandwidth for uploading and downloading. Specifically,

if the download bandwidth is restricted, FedCLG-S should

be utilized. Conversely, if the upload bandwidth is restricted,

FedCLG-C should be used. To further address the communi-

cation efficiency concerns, our method can be integrated with

quantization or compression techniques, which have been ex-

tensively studied in the FL setting (e.g. [40], [41], [42], [43]).

These methods are capable of significantly reducing the com-

munication costs associated with additional transmissions.

C. Comparison With FL Variance Reduction Methods

Existing variance reduction methods in FL do not consider

the potential benefits of using the server dataset to reduce

variance. SCAFFOLD, proposed in [23], is the first work to

identify client drift error and utilize control variates to correct

it. However, SCAFFOLD requires additional gradient com-

munication during both the upload and download processes.

Alternatively, FedCLG-C or FedCLG-S can be chosen based on

different upload/download communication scenarios, reducing

the overall communication workload. Other variance reduction

methods, such as [35] and [36], require the server to maintain

O(Nd) memory, where N is the number of total clients and d is

the model size, which can be very expensive and unrealistic in

cross-device settings of FL. Others [37], [38] require additional

client computations. Moreover, all of the above methods use

stale information to build the correction term ci, which can neg-

atively affect performance. Furthermore, none of these methods

provide convergence guarantees under the hybrid FL setting.

In the experimental section, we demonstrate the superiority

of FedCLG.

V. CONVERGENCE ANALYSIS OF FEDCLG

In this section, we will provide a convergence analysis of both

versions of FedCLG in a non-convex setting. We will adopt the

same assumptions as in the previous section, which were used

for the convergence analysis of CLG-SGD.

Theorem 2: Suppose that client local learning rate η, global

learning rate ηg and server local learning rate γ are chosen

such that η ≤ 1
8KL

, ηηg ≤ 1
36KL

and γ ≤ 1
6EL

. Under Assump-

tions 1, 2, 3, suppose in each round t the server uniformly

selects M out of N clients without replacement, the sequence

of FedCLG-C model vectors xt satisfies:

min
t∈[T ]

E‖∇f(xt)‖22 =O
(

(f0 − f∗)

T (γE + ηηgK)

)

+O
(

η3ηgL
2K3σ2

ms(γE + ηηgK)

)

+O
(

γ2LEσ2

ms(γE + ηηgK)

)

+O
(

η2η2gKLσ2

Mms(γE + ηηgK)

)

+O
(
η3ηgL

2K2σ2
l

γE + ηηgK

)

+O
(

η2η2gLKσ2
l

M(γE + ηηgK)

)

, (12)

where f0 = f(x0), f∗ = f(x∗).
Proof: The proof is shown in the supplementary material.

Corollary 2: Let η =Θ( 1
K

√
T
), ηg =Θ(

√
MK) and γ =

Θ( 1√
ET

), the convergence rate of FedCLG-C becomes:

min
t∈[T ]

E‖∇f(xt)‖22 =O
(

1

(
√
MK +

√
E)

√
T

)

+O
( √

MK

(
√
MK +

√
E)T

)

(13)

Theorem 3: Suppose that client local learning rate η, global

learning rate ηg and server local learning rate γ are chosen

such that η ≤ 1
3KL

, ηηg ≤ 1
27KL

and γ ≤ 1
6EL

. Under Assump-

tions 1, 2, 3, 4, suppose that in each round t the sever uniformly

selects M out of N clients without replacement, the sequence

of FedCLG-S model vectors xt satisfies:

min
t∈[T ]

E‖∇f(xt)‖22 =O
(

(f0 − f∗)

T (γE + ηηgK)

)

+O
(
η3ηgL

2K3σ2
g

γE + ηηgK

)

+O
(

γ2LEσ2

ms(γE + ηηgK)

)

+O
(

η2η2gKLσ2

Mms(γE + ηηgK)

)

+O
(
η3ηgL

2K2σ2
l

γE + ηηgK

)

+O
(

η2η2gLKσ2
l

M(γE + ηηgK)

)

, (14)

where f0 = f(x0) and f∗ = f(x∗).
Proof: The proof is shown in the supplementary material.

Corollary 3: Let η =Θ( 1
K

√
T
), ηg =Θ(

√
MK) and γ =

Θ( 1√
ET

), the convergence rate of FedCLG-S becomes:

min
t∈[T ]

E‖∇f(xt)‖22 =O
(

1

(
√
MK +

√
E)

√
T

)

+O
( √

MK

(
√
MK +

√
E)T

)

(15)

Remark 6: Both FedCLG-C and FedCLG-S’s convergence

results contain six terms where the second term is client local

drift error, the third term is server training update error, the

fourth term captures the stochastic error due to the limited size

of the server’s subset data compared to the overall population

and the last two terms are stochastic client update error. Notably,

both FedCLG-S and FedCLG-C eliminate the partial partic-

ipation error. Additionally, the bound becomes increasingly

dependent on the size of the dataset stored at the server, which

is expected since we use the server gradient to guide client

updates. A larger server dataset can result in a more accurate

server gradient direction, leading to a tighter overall bound.

While a smaller ms may produce less accurate corrections

than a larger ms, our experiments demonstrate that even with

a small ms, our proposed method can significantly enhance

convergence speed under extremely non-IID settings.

Remark 7: The primary distinction between FedCLG-C and

FedCLG-S lies in the second term, which addresses client lo-

cal drift error. This is justifiable as FedCLG-C incorporates a
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correction term at each client’s local training step, making it

less dependent on global objective variance and more reliant

on the quality of the correction step. Conversely, FedCLG-S

applies the correction step during server aggregation, allowing

client local training to be influenced by the variance between

local and global objectives. This indicates that FedCLG-C may

yield marginally better results when server datasets are reliable

(i.e., low σ2

ms

) and client data heterogeneity is high. However,

FedCLG-S remains a robust choice, outperforming baseline

methods (as shown in the experiment section). Under less ex-

treme non-IID conditions, the choice between FedCLG-S and

FedCLG-C should be influenced by bandwidth considerations.

Remark 8: Under partial client participation setting, assume

the server’s local training epoch E = 0, which reduces hy-

brid FL setting to classic FL setting, the convergence rates of

FedCLG-C and FedCLG-S reduce to O
(

1√
MKT

)

+O
(

1
T

)

which match the convergence rate achieved by the SOTA vari-

ance reduction methods [23], [35] used in the classic FL setting

with partial client participation.

Remark 9: To prevent client local drift error from domi-

nating the convergence process, aiming for a convergence rate

of O
(

1
(
√
MK+

√
E)

√
T

)

, both FedCLG-S and FedCLG-C need

that the local epoch K should not surpass T/M .

Remark 10: Both FedCLG-C and FedCLG-S exhibit con-

vergence rates of O
(

1
(
√
MK+

√
E)

√
T

)

under non-IID and

partial participation settings, provided that there are enough

training rounds T (i.e. T ≥KM ). This rate is faster than

that of CLG-SGD, which converges with a rate dominated

by O
(

K

(
√
MK+

√
E)

√
T

)

. Interestingly, larger client-side local

training epochs K can actually hurt the convergence rate for

CLG-SGD due to the negative effects of partial participa-

tion. However, after eliminating these negative effects in both

FedCLG-S and FedCLG-C, the new convergence rates show

that larger client-side local training epochs K can actually

increase the convergence rate.

VI. EXPERIMENTS

A. Setup

We conducted all experiments using Federated Learning (FL)

simulation on the PyTorch framework and trained the models on

Geforce RTX 3080 GPUs. We performed five random repeats

and reported the averaged results. The detailed experimental

settings are presented below.

1) Dataset and Backbone Model: To verify our theoretical

findings, we evaluate the proposed methods on three datasets:

MNIST [44]: We utilize LeNet-5 [45] as the backbone

model. The default training hyperparameters are as follows:

server local learning rate tuning from γ = {0.01, 0.05, 0.25},

client local learning rate tuning from η = {0.01, 0.05, 0.25},

local learning rates’ decay factor equals to 0.99 until learning

rate reaches 0.001, global learning rate ηg = 1, and training

batch sizes at both the server and clients set to 64.

CIFAR-10 [46]: We also utilize LeNet-5 as the backbone

model. The default training hyperparameters are server local

learning rate tuning from γ = {0.01, 0.05, 0.25}, client local

learning rate tuning from η = {0.02, 0.08, 0.32}, local learning

rates’ decay factor equals to 0.99 until learning rate reaches

0.001, global learning rate ηg = 1, and training batch sizes at

both the server and clients set to 128.

CIFAR-100 [46]: For CIFAR-100 datasets, we use 20

superclasses to reclassify the data samples. We utilize Mo-

bileNetV2 [47] as the backbone model. The default training

hyperparameters are server local learning rate tuning from γ =
{0.005, 0.05, 0.5}, client local learning rate tuning from η =
{0.01, 0.1, 1}, local learning rates’ decay factor equals to 0.99

until learning rate reaches 0.001, global learning rate ηg = 1,

and training batch sizes at both the server and clients set to 128.

2) Client Setting: Our experimental evaluations cover both

IID and non-IID client datasets. Without loss of generality, we

assume that each client has an equal number of data samples.

Specifically, for MNIST, we simulate 200 clients with 150 data

samples each, for CIFAR-10 and CIFAR-100 we simulate 200

clients with 200 data samples each.

IID and Non-IID scenario. For IID datasets, we randomly

assign an equal-size local dataset from the total training set to

each client. For non-IID datasets, we apply the Dirichlet method

(α) to create the data distribution for each client. We use various

α values to demonstrate the convergence performance under

different degrees of non-IID.

Client participation. The primary objective of this paper

is to investigate how the server dataset can be leveraged to

eliminate the partial participation error in Federated Learn-

ing. Therefore, in the experiment section, we will focus on

the scenario where clients participate partially in the training

process. Specifically, in the main experiments, we uniformly

sample M = 4 clients without replacement in every round for

MNIST dataset, and M = 10 clients for CIFAR-10 and CIFAR-

100 dataset.

Number of Local Epoch K. To investigate the impact of

the client’s local training epoch, we vary the value of K to be

1, 3, or 5.

3) Server Setting: Compared to classical FL, Hybrid FL

introduces the novel setting where the server itself contains a

subset of the population dataset.

Size of server dataset ms. In the MNIST experiment, we

consider the server dataset to contain 1% of the total training

data samples, while in the CIFAR-10 and CIFAR-100 experi-

ments, we consider it to contain 5% of the total training data

samples. In the ablation studies, we change the size of the server

dataset to examine its impact on the hybrid FL approach.

Number of Local Epoch E. To investigate the impact of

the server’s local training epoch, we vary the value of E to be

1, 3, or 5.

4) Baselines: In our study, we evaluate the performance of

our approach against the following established methods: (1)

Server-only: This method involves training a model solely on

the server’s dataset, denoted as Dt
s, without using any client

data. (2) FedAvg: As a key baseline in traditional Federated

Learning (FL), FedAvg employs client-side data for distributed

learning. It is worth noting that the server’s dataset is not used

in this method. (3) CLG-SGD: This state-of-the-art hybrid FL
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Fig. 3. Convergence performances on MNIST.

technique, introduced in [11], alternates between server local

training and client local training. (4) SCAFFOLD+: SCAF-

FOLD [23] is a leading FL variance reduction method. To

enable a fair comparison that highlights the advantages of our

proposed approach, we have incorporated the alternating train-

ing concept from CLG-SGD into SCAFFOLD. Consequently,

SCAFFOLD+ is an improved version of SCAFFOLD that uti-

lizes the server’s local dataset for additional training.

B. Experiments Results

The primary objective of the experiments is to showcase the

differences in the number of global training rounds required by

different methods to achieve a specific test accuracy, thereby

highlighting the differences in their convergence speeds.

Performances Comparison. We first compare the conver-

gence performance of our proposed methods and baselines on

the MNIST dataset. We consider both IID and non-IID set-

tings. As shown in Fig. 3(a), for the IID setting, FedCLG-S

and FedCLG-C outperform FedAvg and Server-Only, but only

achieve comparable performance with CLG-SGD (FedCLG-

S even performs slightly worse). This is expected, as there

is no variance reduction needed in the IID setting, i.e., σg =
0. Introducing the correction step can bring additional errors

caused by the variance of server gradient, resulting in a marginal

benefit (or slight weakness) in the IID setting. However, in most

realistic scenarios, non-IID data distribution is more common.

As seen in Fig. 3(b), under the non-IID setting (α= 0.2), even

for the MNIST dataset, both FedCLG-S and FedCLG-C outper-

form the other baselines. Moreover, we observe that in the IID

setting, FedAvg converges faster than Server-Only, but in the

non-IID setting, the convergence speed of FedAvg decreases

significantly. In contrast, for the methods applying additional

server training, the convergence speed does not decrease signif-

icantly even under the non-IID case. This further validates the

necessity of additional server local training, which is consistent

with findings in [11].

We evaluate the proposed methods on CIFAR-10 and CIFAR-

100 under non-IID settings. As shown in Figs. 4 and 5,

FedCLG-S and FedCLG-C outperform CLG-SGD by a sig-

nificant margin. Specifically, in Fig. 4(a), setting the target

test accuracy to 0.5, FedCLG-C requires 134 global rounds,

and FedCLG-S requires 144 global rounds. In contrast, CLG-

SGD requires 246 global rounds, which is 1.83 (and 1.70)

Fig. 4. Convergence performances on CIFAR-10.

Fig. 5. Convergence performances on CIFAR-100.

times more than FedCLG-C and FedCLG-S. Furthermore, un-

der high non-IID conditions, FedCLG-C slightly outperforms

FedCLG-S, aligning with our theoretical predictions. Despite

this, FedCLG-S still significantly surpasses the existing base-

line. In scenarios with lower non-IID conditions, both versions

of FedCLG exhibit comparable performance. Consequently, the

choice between FedCLG-C and FedCLG-S should be based

on the conditions of upload/download communication band-

width. Moreover, although SCAFFOLD+ also applies variance

reduction methods, it can only achieve comparable performance

with CLG-SGD, indicating that such variance reduction fails

to work. We attribute this failure to the use of stale estimated

global and local gradients as the guideline to correct the vari-

ance, which introduces additional error. The inability to directly

apply SCAFFOLD-related methods, which use stale informa-

tion, further underscores the importance of reasonable exploita-

tion of the server’s local data and the necessity of our proposed

method, FedCLG.

Impact of number of participated clients M . In this

series of experiments, we investigate the impact of the num-

ber of participated clients M on the convergence speed of

our proposed methods and the baseline method, CLG-SGD.

We test the experiments on the MNIST dataset while holding

all other parameters constant and only varying the number of

participated clients M . The third column of Table I reports

the number of global rounds required by each experiment,

with the target test accuracy set to 97%. The results show

that, for both the baseline and our proposed methods, increas-

ing the number of participated clients leads to a decrease in

the required number of global rounds and a higher conver-

gence speed. Moreover, under different numbers of participated

clients (i.e., 4, 6, 24), the convergence speeds of FedCLG-S

and FedCLG-C outperform CLG-SGD. However, with a larger
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TABLE I
IMPACT OF PARTICIPATED CLIENTS M

METHODS PARTICIPATED CLIENTS NUMBERS OF ROUND

CLG-SGD

4 68 (1.0×)

6 59 (1.0×)

24 39 (1.0×)

FedCLG-S

4 42 (1.61×)

6 35 (1.68×)

24 28 (1.39×)

FedCLG-C

4 39 (1.74×)

6 32 (1.84×)

24 25 (1.56×)

Fig. 6. Impact of server dataset size ms.

increase in the number of participated clients, the benefit of

our proposed methods slightly decreases. For example, with

M = 4, FedCLG-C achieves a 1.74× speed-up compared to

CLG-SGD, while with a larger number of clients (M = 24),

the speed-up decreases to 1.56×. This observation is consistent

with our theoretical analysis, which suggests that increasing the

number of participated clients in CLG-SGD reduces the error

caused by partial participation, thus leading to a smaller benefit

from the correction step.

Impact of server dataset size. To investigate the impact of

the server dataset, we first conduct an experiment on MNIST

with different levels of ms. In our initial setting, we assume

that the server contained 1% of the total training samples each

global round. We then extend this value to be 4% and 10%.

The results, shown in Fig. 6, indicate that increasing the size of

the server dataset can improve the overall convergence speeds

of both FedCLG-C and FedCLG-S, as a larger server dataset

provides a two-fold improvement. Firstly, more data can be

acquired each round, leading to improved server local training.

Secondly, the larger server dataset helps us to achieve a more

reliable correction step with gs approaching closer to the actual

global optimal direction.

We then include experiments when the server dataset has a

slight distribution shift. This shift is quantified using cosine sim-

ilarity between the server and overall distributions, specifically

targeting scenarios where the shift is small (cosine similarity

is approximately 0.95). The results, illustrated in Fig. 7 for

both MNIST and CIFAR-10 datasets, reveal that even with

this slight distribution shift, our proposed method consistently

outperforms baseline approaches. It is important to note that

Fig. 7. ms Distribution Shift.

Fig. 8. Impact of client epochs K.

Fig. 9. Impact of server epochs E.

we do not explore scenarios involving significant distribution

shifts, as such conditions would effectively reduce the server

to another client role, a situation outside the scope of our study

in hybrid federated learning.

Impact of client epochs K and server epochs E. In

this subsection, we investigate the impact of the number of

client epochs K and server epochs E. We keep other parameters

fixed and only vary the number of client local epochs in Fig. 8.

The convergence results shown in Fig. 8 are consistent with our

theoretical analysis, as a larger number of client local epochs

K results in increased convergence speed for both FedCLG-

C and FedCLG-S. Similarly, in Fig. 9, we fix all parameters

and only change the number of server local epochs. It can be

observed that, for both FedCLG-C and FedCLG-S, the largest

local epoch (E = 5) achieves the best convergence performance

in both Fig. 9(a) and 9(b).

VII. CONCLUSION

In this paper, we address the hybrid Federated Learning (FL)

setting, where the server has access to a small portion of the

total training samples. We consider a more realistic scenario
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where clients with non-IID data can only partially participate in

each server aggregation. Firstly, we provide a novel theoretical

analysis for CLG-SGD, the state-of-the-art hybrid FL method.

Our analysis reveals the drawbacks of the current method due to

clients’ partial participation. Motivated by these observations,

we propose a novel method called FedCLG, which fully ex-

ploits the benefits of a small server dataset. We further study

two versions of FedCLG based on different server-client com-

munication scenarios. We provide thorough theoretical anal-

ysis and experimental comparisons to validate the proposed

methods. Future research will focus on developing a theoret-

ically guaranteed method under an unbounded client-server

communication pattern.

APPENDIX A

PROOF OF THEOREM 1

Note that in the following proof, we utilize git,k to represent

∇Fi(x
i
t,k, ζi). For each global round t, we have the intermediate

model after client local training as:

xs
t+1 = xt + ηg

1

M

∑

i∈St

Δi
t, (16)

where Δi
t =−∑K−1

k=0 ηgit,k. The final model after server local

training is as:

xt+1 = xs
t+1 −

E−1∑

e=0

γgst+1,e

= xt − ηηg
1

M

∑

i∈St

K−1∑

k=0

git,k − γ

E−1∑

e=0

∇fs(x
s
t+1,e).

(17)

Due to the smoothness in Assumption 1, taking expectation

of f(xt+1) over the randomness at communication round t,
we have:

Et[f(xt+1)]≤ f(xt) +

〈

∇f(xt),Et[xt+1 − xt]

〉

︸ ︷︷ ︸

T1

+
L

2
Et[‖xt+1 − xt‖2]

︸ ︷︷ ︸

T2

. (18)

We first bound T1 as follows:

T1 =

〈

∇f(xt),Et[xt+1 − xt]

〉

=−ηηg

〈

∇f(xt),Et

[
1

M

∑

i∈St

K−1∑

k=0

git,k

]〉

− γ

〈

∇f(xt),Et

[E−1∑

e=0

∇fs(x
s
t+1,e)

]〉

=−ηηg

〈

∇f(xt),Et

[
1

M

∑

i∈St

K−1∑

k=0

∇fi(x
i
t,k)

]〉

︸ ︷︷ ︸

T3

−γ

〈

∇f(xt),Et

[E−1∑

e=0

∇fs(x
s
t+1,e)

]〉

︸ ︷︷ ︸

T4

, (19)

There the second equality is due to the assumption of an un-

biased local gradient estimate. The term T3 can be bounded

as follows:

T3 =−ηηg

〈

∇f(xt),Et

[
1

M

∑

i∈St

K−1∑

k=0

∇fi(x
i
t,k)

]〉

=−
ηηg

K

〈

K∇f(xt),Et

[
1

N

∑

i∈[N ]

K−1∑

k=0

∇fi(x
i
t,k)

]〉

=
ηηg

2K
Et

[

‖
1

N

∑

i∈[N ]

K−1∑

k=0

∇fi(x
i
t,k)−K∇f(xt)‖

2

]

︸ ︷︷ ︸

T5

−
ηηgK

2
‖∇f(xt)‖

2 −
ηηg

2K
Et

[

‖
1

N

∑

i∈[N ]

K−1∑

k=0

∇fi(x
i
t,k)‖

2

]

.

(20)

The last equality is due to the fact that < x, y >= 1
2 [‖x‖2 +

‖y‖2 − ‖x− y‖2]. Then we can bound T5 as:

T5 =
ηηg
2K

Et

[

‖ 1

N

∑

i∈[N ]

K−1∑

k=0

∇fi(x
i
t,k)−K∇f(xt)‖2

]

=
ηηg
2K

Et

[

‖ 1

N

∑

i∈[N ]

K−1∑

k=0

[∇fi(x
i
t,k)−∇fi(xt)]‖2

]

≤ ηηg
2N

∑

i∈[N ]

K−1∑

k=0

Et[‖[∇fi(x
i
t,k)−∇fi(xt)]‖2]

≤ ηηgL
2

2N

∑

i∈[N ]

K−1∑

k=0

Et[‖xi
t,k − xt‖2]

︸ ︷︷ ︸

T6

(21)

The first inequality is based on Cauchy-Schwarz inequality.

Then we have T6 be bounded as:

T6 =
ηηgL

2

2N

∑

i∈[N ]

K−1∑

k=0

Et

[

‖η
k∑

τ=0

git,τ‖2
]

=
ηηgL

2

2N

∑

i∈[N ]

K−1∑

k=0

Et

[

‖η
k∑

τ=0

(git,τ −∇fi(x
i
t,k))‖2

]

+
ηηgL

2

2N

∑

i∈[N ]

K−1∑

k=0

Et

[

‖η
k∑

τ=0

∇fi(x
i
t,k)‖2

]

=
ηηgL

2

2N

∑

i∈[N ]

K−1∑

k=0

Et

[

‖η
k∑

τ=0

(git,τ −∇fi(x
i
t,k))‖2

]

+
ηηgL

2K

2N

∑

i∈[N ]

K−1∑

k=0

Et

[ k∑

τ=0

‖η∇fi(x
i
t,k)‖2

]
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≤ η3ηgL
2K2

2

K−1∑

k=0

1

N

∑

i∈[N ]

Et[‖∇fi(x
i
t,k)‖2]

︸ ︷︷ ︸

T7

+
η3ηgL

2K2σ2
l

2
, (22)

where the second equality is based on the assumption 4.

To further bound T7, we have:

T7 ≤
3

N

∑

i∈[N ]

Et[‖∇fi(x
i
t,k)−∇fi(xt)‖2]

+
3

N

∑

i∈[N ]

Et[‖∇fi(xt)−∇f(xt)‖2]

+
3

N

∑

i∈[N ]

Et[‖∇f(xt)‖2]

≤ 3L2

N

∑

i∈[N ]

Et[‖xt − xi
t,k‖2] + 3σ2

g + 3Et[‖∇f(xt)‖2],

(23)

where the last inequality is due to the assumptions 1, 4. Sub-

stituting T7 to (22), we have:

T6 ≤
η3ηgL

2K2

2N

∑

i∈[N ]

K−1∑

k=0

(3L2
Et[‖xt − xi

t,k‖2]

+ 3σ2
g + 3Et[‖∇f(xt)‖2]) +

η3ηgL
2K2σ2

l

2

≤ 3η3ηgL
2K3

2(1− B) σ2
g +

η3ηgL
2K2σ2

l

2(1− B)

+
3η3ηgL

2K3

2(1− B) Et[‖∇f(xt)‖2]

≤
3η3ηgL

2K2(σ2
l + 3Kσ2

g)

4
+

ηηgK

4
Et[‖∇f(xt)‖2]

(24)

where B = 3η2L2K2 and let η ≤ 1
3LK

such that B ≤ 1
3 , 1

1−B ≤
3
2 and B

1−B ≤ 1
2 . Then we substitute it to (20), we can get:

T3 ≤
3η3ηgL

2K2(σ2
l + 3Kσ2

g)

4
− ηηgK

4
‖∇f(xt)‖2

− ηηg
2K

Et

[

‖ 1

N

∑

i∈[N ]

K−1∑

k=0

∇fi(x
i
t,k)‖2

]

. (25)

Next, the term T4 can be bounded as

T4 =− γ

E

〈

E∇f(xt),Et

[E−1∑

e=0

∇f(xs
t+1,e)

]〉

=
γ

2E
Et

[

‖
E−1∑

e=0

∇f(xs
t+1,e)− E∇f(xt)‖2

]

︸ ︷︷ ︸

T8

− γE

2
‖∇f(xt)‖2 −

γ

2E
Et

[

‖
E−1∑

e=0

∇f(xs
t+1,e)‖2

]

.

(26)

The last equality is due to the fact that < x, y >= 1
2 [‖x‖2 +

‖y‖2 − ‖x− y‖2]. Then the term T8 can be bounded as follows:

T8 =
γ

2E
Et

[

‖

E−1∑

e=0

∇f(xs
t+1,e)− E∇f(xt)‖

2

]

≤
γ

2

E−1∑

e=0

Et[‖∇f(xs
t+1,e)−∇f(xt)‖

2]

≤
γL2

2

E−1∑

e=0

Et[‖x
s
t+1,e − xt‖

2]

︸ ︷︷ ︸

T9

≤ γL
2
E−1∑

e=0

Et[‖x
s
t+1,e − x

s
t+1‖

2] + γL
2
E−1∑

e=0

Et[‖x
s
t+1 − xt‖

2]

≤ γL
2
E−1∑

e=0

Et[‖x
s
t+1,e − x

s
t+1‖

2]

︸ ︷︷ ︸

T10

+
η2η2

gγEL2Kσ2
l

M

+ η
2
η
2
gγEL

2
Et

[

‖
1

M

∑

i∈St

K−1∑

k=0

∇fi(x
i
t,k)‖

2

]

︸ ︷︷ ︸

T11

. (27)

Then bounding T10, we have:

T10 = γL2
E−1∑

e=0

Et

[

‖
e−1∑

τe=0

γ∇fs(x
s
t+1,τe)‖

2

]

≤ γL2
E−1∑

e=0

γ2
Et

[

‖
e−1∑

τe=0

∇fs(x
s
t+1,e)‖2

]

≤ 3γ3L2
E−1∑

e=0

Et

[

‖
e−1∑

τe=0

(∇fs(x
s
t+1,e)−∇f(xs

t+1,e))‖2
]

+ 3γ3L2
E−1∑

e=0

Et

[

‖
e−1∑

τe=0

(∇f(xs
t+1,e)−∇f(xt))‖2

]

+ 3γ3L2
E−1∑

e=0

Et

[

‖
e−1∑

τe=0

∇f(xt)‖2
]

≤ 3γ3E2L2σ2

ms

+ 3γ3E2L4
E−1∑

e=0

Et[‖xs
t+1,e − xt‖2]

+ 3γ3E2L2
E−1∑

e=0

Et[‖∇f(xt)‖2], (28)

where the first term in the third inequality is due to the fact that

E[‖x1 + · · ·+ xn‖2] = E[‖x1‖2 + · · ·+ ‖xn‖2] if xi is inde-

pendent with zero mean and assumption 4,

Then to bound the term T11, we have:

T11 ≤ 3Et

[

‖ 1

M

∑

i∈St

K−1∑

k=0

[∇fi(x
i
t,k)−∇fi(xt)]‖2

]

+ 3Et

[

‖ 1

M

∑

i∈St

K−1∑

k=0

[∇fi(xt)−∇f(xt)]‖2
]
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+ 3Et

[

‖ 1

M

∑

i∈St

K−1∑

k=0

∇f(xt)‖2
]

≤ 3Et

[
1

M

∑

i∈St

‖
K−1∑

k=0

[∇fi(x
i
t,k)−∇fi(xt)]‖2

]

+ 3Et

[

‖ 1

M

∑

i∈St

K−1∑

k=0

[∇fi(xt)−∇f(xt)]‖2
]

+ 3K2
Et[‖∇f(xt)‖2]

≤ 3

N

∑

i∈[N ]

Et

[

‖
K−1∑

k=0

[∇fi(x
i
t,k)−∇fi(xt)]‖2

]

+ 3Et

[

‖ 1

M

∑

i∈St

K−1∑

k=0

[∇fi(xt)−∇f(xt)]‖2
]

︸ ︷︷ ︸

T12

+ 3K2
Et[‖∇f(xt)‖2], (29)

where the last inequality is due to the server’s uniformly

selection without replacement. Next we need to bound T12.

For convenience, we utilize δit =
∑K−1

k=0 ∇fi(xt) and δt =
∑K−1

k=0 ∇f(xt) in the following step.

T12 = Et

[

‖
1

M

∑

i∈St

δit − δt‖
2

]

=
1

M2
Et

[

‖
∑

i∈[N ]

(I(i ∈ St))(δ
i
t − δt)‖

2

]

=
1

M2
Et

[

∑

i∈[N ]

(I(i ∈ St))
2‖δit − δt‖

2

]

+
1

M2
Et

[

∑

i∈[N ]

∑

j �=i∈[N ]

I(i ∈ St)I(j ∈ St)

〈

δit − δt, δ
j
t − δt

〉]

=
1

M2

M

N
Et

[

∑

i∈[N ]

‖δit − δt‖
2

]

+
M(M − 1)

N(N − 1)

1

M2
Et

[

‖
∑

i∈[N ]

(δit − δt)‖
2

]

−
M(M − 1)

N(N − 1)

1

M2
Et

[

∑

i∈[N ]

‖δit − δt‖
2

]

=
N −M

MN(N − 1)

∑

i∈[N ]

Et[‖δ
i
t − δt‖

2]

≤
(N −M)K

MN(N − 1)

∑

i∈[N ]

K−1
∑

k=0

Et[‖∇fi(xt)−∇f(xt)‖
2]

≤
(N −M)K2

M(N − 1)
σ2
g , (30)

where the second equality is due to the server’s uniform se-

lection without replacement and the third equality is due to
∑

i∈[N ](δ
i
t − δt) = 0. Then substituting the result to (29):

T11 ≤
3

N

∑

i∈[N ]

Et

[

‖
K−1∑

k=0

[∇fi(x
i
t,k)−∇fi(xt)]‖2

]

+ 3
(N −M)K2

M(N − 1)
σ2
g + 3K2

Et[‖∇f(xt)‖2]

≤
9η2L2K3(σ2

l + 3Kσ2
g)

2
+

3K2

2
Et[‖∇f(xt)‖2]

+ 3
(N −M)K2

M(N − 1)
σ2
g + 3K2

Et[‖∇f(xt)‖2]

=
9η2L2K3(σ2

l + 3Kσ2
g)

2

+
9K2

2
Et[‖∇f(xt)‖2] + 3

(N −M)K2

M(N − 1)
σ2
g . (31)

Substituting the results of T10 and T11, we have:

T9 ≤
3γ3E2L2σ2

ms

+ 3γ3
E

2
L

4
E−1∑

e=0

Et[‖x
s
t+1,e − xt‖

2]

+ 3γ3
E

3
L

2
Et[‖∇f(xt)‖

2]

+ η
2
η
2
gγEL

2 9η
2L2K3(σ2

l + 3Kσ2
g)

2

+ (η2
η
2
gγEL

2)
9K2

2
Et[‖∇f(xt)‖

2]

+ 3(η2
η
2
gγEL

2)
(N −M)K2

M(N − 1)
σ
2
g

+
η2η2

gγEL2Kσ2
l

M

≤
3γ3E2L2σ2

ms

+ 3γ3
E

2
L

4
E−1∑

e=0

Et[‖x
s
t+1,e − xt‖

2]

+
η2η2

gγEL2Kσ2
l

M

+ 3γ3
E

3
L

2
Et[‖∇f(xt)‖

2] +
3η4η2

gL
3K3(σ2

l + 3Kσ2
g)

4

+
3η2η2

gLK
2

4
Et[‖∇f(xt)‖

2] +
η2η2

gL(N −M)K2

2M(N − 1)
σ
2
g

≤
3γ3E2L2σ2

(1−A)ms

+
AγE

2(1−A)
Et[‖∇f(xt)‖

2]

+
3η4η2

gL
3K3(σ2

l + 3Kσ2
g)

4(1−A)
+

η2η2
gγEL2Kσ2

l

M(1−A)

+
3η2η2

gLK
2

4(1−A)
Et[‖∇f(xt)‖

2] +
η2η2

gL(N −M)K2

2M(N − 1)(1−A)
σ
2
g

≤
18γ3E2L2σ2

5ms

+
γE

10
Et[‖∇f(xt)‖

2]

+
9η4η2

gL
3K3(σ2

l +3Kσ2
g)

10
+
9η2η2

gLK
2

10
Et[‖∇f(xt)‖

2]

+
3η2η2

gL(N −M)K2

5M(N − 1)
σ
2
g +

η2η2
gLKσ2

l

5M
, (32)

whereA= 6γ2L2E2 and let γ ≤ 1
6LE

such thatA≤ 1
6 , 1

1−A ≤
6
5 and A

1−A ≤ 1
5 . Substituting the above result to (26), we have:

T4 ≤
18γ3E2L2σ2

5ms

−
2γE

5
Et[‖∇f(xt)‖

2]

+
9η4η2

gL
3K3(σ2

l +3Kσ2
g)

10
+
9η2η2

gLK
2

10
Et[‖∇f(xt)‖

2]
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+
3η2η2

gL(N−M)K2

5M(N − 1)
σ
2
g−

γ

2E
Et

[

‖

E−1∑

e=0

∇f(xs
t+1,e)‖

2

]

+
η2η2

gLKσ2
l

5M
. (33)

Combing the inequalities of T3 and T4, we can bound T1:

T1 ≤
3η3ηgL

2K2(σ2
l + 3Kσ2

g)

4
−

(
2γE

5
+

ηηgK

4

)

‖∇f(xt)‖
2

−
ηηg

2K
Et

[

‖
1

N

∑

i∈[N ]

K−1∑

k=0

∇fi(x
i
t,k)‖

2

]

+
18γ3E2L2σ2

5ms

+
9η4η2

gL
3K3(σ2

l +3Kσ2
g)

10
+
9η2η2

gLK
2

10
Et[‖∇f(xt)‖

2]

+
3η2η2

gL(N−M)K2

5M(N − 1)
σ
2
g−

γ

2E
Et

[

‖

E−1∑

e=0

∇f(xs
t+1,e)‖

2

]

+
η2η2

gLKσ2
l

5M
. (34)

The rest term T2 can be bounded as:

T2 ≤ η2η2gLEt

[

‖ 1

M

∑

i∈St

K−1∑

k=0

∇fi(x
i
t,k)‖2

]

︸ ︷︷ ︸

T11

+
η2η2gLKσ2

l

M

+ γ2LEt

[

‖
E−1∑

e=0

∇fs(x
s
t+1,e)‖2

]

︸ ︷︷ ︸

T13

. (35)

The only rest term is T13, which can be bounded as:

T13 = Et

[

‖

E−1∑

e=0

(∇fs(x
s
t+1,e)−∇f(xs

t+1,e) +∇f(xs
t+1,e))‖

2

]

= Et

[

‖

E−1∑

e=0

(∇fs(x
s
t+1,e)−∇f(xs

t+1,e))‖
2

]

+ Et

[

‖

E−1∑

e=0

∇f(xs
t+1,e)‖

2

]

≤
Eσ2

ms

+ Et

[

‖

E−1∑

e=0

∇f(xs
t+1,e)‖

2

]

, (36)

where the third equality is due to the fact that E[‖x‖2] =
E[‖x− E[x]‖2] + ‖E[x]‖2 and the last inequality is due to

assumption 2 and E[‖x1 + · · ·+ xn‖2]≤ nE[‖x1‖2 + · · ·+
‖xn‖2]. Substituting the result of T11 and T13, we can finally

bound T2 as:

T2 ≤
9η4η2gL

3K3(σ2
l + 3Kσ2

g)

2
+

9K2η2η2gL

2
Et[‖∇f(xt)‖2]

+ 3
(N −M)K2η2η2gL

M(N − 1)
σ2
g +

γ2LEσ2

ms

+ γ2LEt

[

‖
E−1∑

e=0

∇f(xs
t+1,e)‖2

]

+
η2η2gLKσ2

l

M
. (37)

With both T1 and T2 bounded, we finally have:

Et[f(xt+1)]≤ f(xt)−
(
2γE

5
+

ηηgK

20

)

‖∇f(xt)‖2

+
8γ2ELσ2

5ms

+
57η3ηgL

2K3σ2
g

20
+

18η2η2gL(N −M)K2

5M(N − 1)
σ2
g

+
19η3ηgL

2K2σ2
l

20
+

6η2η2gLKσ2
l

5M
, (38)

where γ ≤ 1
6EL

, η ≤ 1
3KL

and ηηg ≤ 1
27KL

. Rearranging and

summing from t= 0, . . . , T − 1, we have the convergence as:

min
t∈[T ]

E‖∇f(xt)‖22

=O
(

(f0 − f∗)

T (γE + ηηgK)

)

+O
(
η3ηgL

2K3σ2
g

γE + ηηgK

)

+O
(

γ2ELσ2

ms(γE+ηηgK)

)

+O
(

(N −M)K2η2η2gLσ
2
g

M(N−1)(γE+ηηgK)

)

+O
(
η3ηgL

2K2σ2
l

γE + ηηgK

)

+O
(

η2η2gLKσ2
l

M(γE + ηηgK)

)

︸ ︷︷ ︸

stochastic gradient error

, (39)

where f0 = f(x0), f∗ = f(x∗).
Now we finish the proof of theorem 1.
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[13] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[14] Y. Liu et al., “Deep anomaly detection for time-series data in industrial
IoT: A communication-efficient on-device federated learning approach,”
IEEE Internet Things J., vol. 8, no. 8, pp. 6348–6358, Apr. 2021.

[15] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, “Feder-
ated learning for 6G communications: Challenges, methods, and future
directions,” China Commun., vol. 17, no. 9, pp. 105–118, 2020.

[16] S. U. Stich, “Local SGD converges fast and communicates little,” 2018,
arXiv:1805.09767.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:32:43 UTC from IEEE Xplore.  Restrictions apply. 



BIAN et al.: ACCELERATING HYBRID FEDERATED LEARNING CONVERGENCE 3271

[17] S. U. Stich and S. P. Karimireddy, “The error-feedback framework:
Better rates for SGD with delayed gradients and compressed communi-
cation,” 2019, arXiv:1909.05350.

[18] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of local-update SGD algorithms,” J. Mach. Learn.

Res., vol. 22, no. 1, pp. 9709–9758, 2021.
[19] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “FLTrust: Byzantine-

robust federated learning via trust bootstrapping,” 2020,
arXiv:2012.13995.

[20] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proc. AAAI Conf. Artif. Intell., 2018,
pp. 5693–5700.

[21] J. Zhang, C. De Sa, I. Mitliagkas, and C. Ré, “Parallel SGD: When does
averaging help?” 2016, arXiv:1606.07365.

[22] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-IID data:
A survey,” Neurocomputing, vol. 465, pp. 371–390, Nov. 2021.

[23] S. P. Karimireddy et al., “SCAFFOLD: Stochastic controlled averaging
for federated learning,” in Int. Conf. Mach. Learn., PMLR, 2020,
pp. 5132–5143.

[24] S. Wang and M. Ji, “A unified analysis of federated learning with
arbitrary client participation,” 2022, arXiv:2205.13648.

[25] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-IID
data silos: An experimental study,” in Proc. IEEE 38th Int. Conf. Data

Eng. (ICDE), Piscataway, NJ, USA: IEEE Press, 2022, pp. 965–978.
[26] Y. Li, H. Chen, W. Bao, Z. Xu, and D. Yuan, “Honest score client

selection scheme: Preventing federated learning label flipping attacks in
non-IID scenarios,” 2023, arXiv:2311.05826.

[27] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing the
state of mobile cloud computing,” in Proc. 3rd ACM Workshop Mobile

Cloud Comput. Serv., 2012, pp. 21–28.
[28] A. M. Elbir, S. Coleri, A. K. Papazafeiropoulos, P. Kourtessis, and

S. Chatzinotas, “A hybrid architecture for federated and centralized
learning,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 3, pp. 1529–
1542, Sep. 2022.

[29] N. Huang, M. Dai, Y. Wu, T. Q. Quek, and X. Shen, “Wireless
federated learning with hybrid local and centralized training: A latency
minimization design,” IEEE J. Sel. Topics in Signal Process., vol. 17,
no. 1, pp. 248–263, Jan. 2023.

[30] W. Jeong, J. Yoon, E. Yang, and S. J. Hwang, “Federated semi-
supervised learning with inter-client consistency & disjoint learning,”
2020, arXiv:2006.12097.

[31] P. Glasserman, Monte Carlo Methods in Financial Engineering, vol. 53.
New York, USA: Springer, 2004.

[32] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using
predictive variance reduction,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 26, 2013.

[33] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic
variance reduction for nonconvex optimization,” in Proc. Int. Conf.

Mach. Learn., PMLR, 2016, pp. 314–323.
[34] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental

gradient method with support for non-strongly convex composite objec-
tives,” in Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014.

[35] D. Jhunjhunwala, P. Sharma, A. Nagarkatti, and G. Joshi, “Fedvarp:
Tackling the variance due to partial client participation in federated
learning,” in Proc. Uncertainty Artif. Intell., PMLR, 2022, pp. 906–916.

[36] X. Gu, K. Huang, J. Zhang, and L. Huang, “Fast federated learning in
the presence of arbitrary device unavailability,” in Proc. Adv. Neural Inf.

Process. Syst., vol. 34, 2021, pp. 12052–12064.
[37] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough,

and V. Saligrama, “Federated learning based on dynamic regularization,”
2021, arXiv:2111.04263.

[38] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “FedPD: A federated
learning framework with adaptivity to non-IID data,” IEEE Trans. Signal

Process., vol. 69, pp. 6055–6070, 2021.
[39] P. Prakash, J. Ding, M. Wu, M. Shu, R. Yu, and M. Pan, “To talk or

to work: Delay efficient federated learning over mobile edge devices,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Piscataway, NJ,
USA: IEEE Press, 2021, pp. 1–6.

[40] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“FedPAQ: A communication-efficient federated learning method with
periodic averaging and quantization,” in Int. Conf. Artif. Intell. Statist.,

PMLR, 2020, pp. 2021–2031.
[41] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “UVeQFed:

Universal vector quantization for federated learning,” IEEE Trans. Signal

Process., vol. 69, pp. 500–514, 2020.
[42] D. Jhunjhunwala, A. Gadhikar, G. Joshi, and Y. C. Eldar, “Adaptive

quantization of model updates for communication-efficient federated

learning,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Piscataway, NJ, USA: IEEE Press, 2021, pp. 3110–3114.

[43] Y. Mao et al., “Communication-efficient federated learning with adaptive
quantization,” ACM Trans. Intell. Syst. Technol. (TIST), vol. 13, no. 4,
pp. 1–26, 2022.

[44] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 141–
142, Nov. 2012.

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[46] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” May 2012.

[47] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

Jieming Bian received the B.A. degree in eco-
nomics from the University of Colorado Denver,
in 2019, and the M.S. degree in operations re-
search from Columbia University, in 2021. He is
currently working toward the Ph.D. degree in elec-
trical and computer engineering department with the
University of Miami. His research interests include
communication efficiency and client scheduling fed-
erated learning problems.

Lei Wang received the B.A. degree in electronic
information engineering from the University of
Electronic Science and Technology of China, in
2020, and the M.S. degree in electrical and com-
puter engineering from the University of California,
Los Angeles, in 2022. He is currently working
toward the Ph.D. degree in electrical and computer
engineering department, University of Miami. His
research interests include heterogeneous data feder-
ated learning problems and quantum networks.

Kun Yang received the B.E. degree in electronic in-
formation science and technology department from
Tsinghua University, in 2017, and the M.S. degree
in electrical engineering department from Texas
A&M University, in 2019. He is currently work-
ing toward the Ph.D. degree with the Charles
L. Brown Department of Electrical and Computer
Engineering, University of Virginia. His research
interests include on reinforcement learning for wire-
less communication, federated learning, and prompt
engineering.

Cong Shen (Senior Member, IEEE) received the
B.E. and M.E. degrees from the Department of
Electronic Engineering, Tsinghua University, China,
and the Ph.D. degree in electrical engineering from
the University of California, Los Angeles. He is
currently an Assistant Professor with Charles L.
Brown Department of Electrical and Computer En-
gineering, University of Virginia. His research in-
terests include area of communications, wireless
networks, and machine learning. He received the
National Science Foundation CAREER Award in

2022, and the Best Paper Award in 2021 IEEE International Conference on
Communications (ICC).

Jie Xu (Senior Member, IEEE) received the B.S.
and M.S. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 2008 and
2010, respectively, and the Ph.D. degree in electrical
engineering from UCLA, in 2015. He is currently
an Associate Professor with the Department of
Electrical and Computer Engineering, University
of Miami. His research interests include mobile
edge computing/intelligence, machine learning for
networks, and network security. He received the
NSF CAREER Award in 2021.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:32:43 UTC from IEEE Xplore.  Restrictions apply. 


