10808

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

On the Local Cache Update Rules in
Streaming Federated Learning

Heqgiang Wang™, Jieming Bian", and Jie Xu"™', Senior Member, IEEE

Abstract—In this study, we address the emerging field of
streaming federated learning (SFL) and propose local cache
update rules to manage dynamic data distributions and limited
cache capacity. Traditional federated learning (FL) relies on
fixed data sets, whereas in SFL, data is streamed, and its
distribution changes over time, leading to discrepancies between
the local training data set and long-term distribution. To mitigate
this problem, we propose three local cache update rules—first-
infirst-out (FIFO), static ratio selective replacement (SRSR),
and dynamic ratio selective replacement (DRSR)—that update
the local cache of each client while considering the limited
cache capacity. Furthermore, we derive a convergence bound for
our proposed SFL algorithm as a function of the distribution
discrepancy between the long-term data distribution and the
client’s local training data set. We then evaluate our proposed
algorithm on two data sets: 1) a network traffic classification
data set and 2) an image classification data set. Our experimental
results demonstrate that our proposed local cache update rules
significantly reduce the distribution discrepancy and outperform
the baseline methods. Our study advances the field of SFL and
provides practical cache management solutions in FL.

Index Terms—Cache update rules, federated learning (FL),
streaming data.

I. INTRODUCTION

EDERATED learning (FL) is a distributed machine

learning paradigm that enables a set of clients with
decentralized data to collaborate and learn a shared model
under the coordination of a centralized server. In FL, data
is stored on edge devices in a distributed manner, which
reduces the amount of data that needs to be uploaded and
decreases the risk of user privacy leakage. While FL has
gained popularity in the field of distributed deep learning, most
research on FL has been conducted under ideal conditions
and has not fully accounted for real-world constraints and
features. Given that the client in FL is typically an edge device,
we highlight two features that are more aligned with reality.
The first feature, called Streaming Data, acknowledges that
clients often consist of edge devices that continually receive
and record data samples on-the-fly. Therefore, FL. must operate

Manuscript received 29 August 2023; revised 29 September 2023; accepted
21 October 2023. Date of publication 25 October 2023; date of current version
7 March 2024. This work was supported in part by the National Science
Foundation under Grant 2006630, Grant 2033681, Grant 2029858, Grant
2044991, and Grant 2319780. (Corresponding author: Heqiang Wang.)

The authors are with the Department of Electrical and Computer
Engineering, University of Miami, Coral Gables, FL 33146 USA (e-mail:
hxw563 @miami.edu; jxb1974@miami.edu; jiexu@miami.edu).

Data is available on-line at https://github.com/ystex/SFL-Appendix.git.

Digital Object Identifier 10.1109/JI0T.2023.3327316

Distribution Space

Short-Term
Label Distribution

Long-Term
Label Distribution +

Fig. 1. Long-term label distribution and the trajectory of the short-term label
distribution.

on dynamic data sets that are built on incoming streaming
data, rather than static ones. The second feature, called Limited
Storage, recognizes that edge devices, such as network routers
and IoT devices have limited storage space allocated for each
service and application. As a result, only a restricted amount of
space can be reserved for FL training without compromising
the quality of other services. For instance, many smart home
routers possess a storage capacity of only 9-32 MB [1],
allowing them to store merely a few tens to hundreds of
training data samples. This article aims to address the lack of
consideration for these two real-world features in current FL
research.

To address the problem presented above, we investigate a
new FL problem, called streaming FL (SFL), where the local
models of clients are trained based on dynamic data sets rather
than static ones. In SFL, the relationship between the feature
and label is fixed, but the distribution of features may vary
across different rounds. SFL involves three different types of
data distributions. The first one is the long-term (underlying)
label distribution, which pertains to the data distribution of
the client following a prolonged period of streaming data
reception. This distribution cannot be anticipated during the
training process and, due to storage capacity constraints, it
is unfeasible to obtain an accurate long-term distribution by
recording the whole data stream. The second type is the short-
term (empirical) label distribution, which corresponds to the
distribution of the client’s currently received data. Short-term
distributions are noisy and may vary over time, and they
may not necessarily approximate the long-term distribution.
The discrepancy between the long-term distribution and short-
term distributions is illustrated in Fig. 1. The third type is
the cached label distribution, which is the distribution of
the data set currently stored in the client and is governed
by the local cache update rule. The aforementioned three

2327-4662 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-0328-7647
https://orcid.org/0000-0002-6372-6357
https://orcid.org/0000-0002-0515-1647

WANG et al.: ON THE LOCAL CACHE UPDATE RULES IN STREAMING FEDERATED LEARNING

distributions suggest that the primary challenge of SFL is the
discrepancy between a priori unknown long-term distribution
and the distribution of cached data for training, as the training
data is continually gathered from the stream. As a result, a
proper local data set update rule is essential to produce a
cached distribution based on the short-term distributions so
that it captures the long-term distribution as accurately as
possible, thereby enhancing the learning performance. Our
main contributions are summarized as follows.

1) We formulate the SFL problem and propose new FL
algorithms for SFL. Unlike conventional FL, training in
SFL must be conducted on a dynamic data set based on
streaming data rather than a static data set. Clients also
only have limited storage capacity, making storing all
incoming data impossible.

2) We propose and study three different local data set
update rules and theoretically analyze the discrepancy
between the cached distributions and the long-term
distribution. Based on this discrepancy analysis, we
further prove a convergence bound of our proposed SFL
algorithm.

3) We apply SFL to address a practical problem, namely
online training of network traffic classifiers. Our exper-
iments, which use both a network traffic classification
(NTC) data set, the FMNIST data set, demonstrate that
our proposed update rules outperform benchmarks in the
SFL framework.

The remainder of this article is organized as follows.
In Section II, we discuss related works on FL and NTC.
Section III presents the system model and formulates the
SFL problem. In Section IV, we introduce the SFL workflow,
propose three local data set update rules, and analyze discrep-
ancies. Section V presents the convergence analysis of SFL on
non-i.i.d. data. The experimental results of SFL are presented
in Section VI. Finally, Section VII concludes this article. All
proofs can be found in the online supplementary material.

II. RELATED WORK

In recent years, FL. has emerged as a promising frame-
work for decentralized deep learning. See [2], [3], [4] for
comprehensive surveys. Among the various challenges in FL,
the convergence analysis of FedAvg and its variants stands
out as particularly crucial. Early works focused on FL under
the assumptions of i.i.d. data sets and full client participa-
tion [5], [6], [7]. However, this assumption may not always
hold in real-world FL scenarios, leading to an increasing num-
ber of works [8], [9], [10], [11], [12] investigating convergence
proofs of FedAvg and its variants under non-i.i.d. data sets.
Although the proposed SFL differs from conventional FL,
our proof is primarily inspired by [12], which is based on
nonconvex functions and non-i.i.d. data sets.

Recently, there has been a growing interest in exploring
nonstationary and continually evolving data sets that are
known as concept drift problems [13], [14]. In traditional
streaming, the majority of works [15], [16], [17] employed
the window-based approach to deal with the data, which
essentially is the same as our first-in—first-out (FIFO) update

10809

rule. However, since the focus was mostly on dealing with
the concept drift issue [18], many studies [16], [17] adopted
the adaptive window approach where the window size can be
adjusted. In our problem, since the storage space is limited
and fixed, we consider only the fixed-window FIFO rule.
Besides FIFO, we propose two new cache update rules, namely
dynamic ratio selective replacement (DRSR) and static ratio
selective replacement (SRSR), to mitigate the discrepancy
between long-term and local cached distribution.

There have been some works under the FL setting to
address the concept drift problem, using techniques, such
as adjusting learning rates [19], incorporating regularization
terms [20], [21], or training multiple models separately [22].
However, although SFL considered in this article has some
connection to this literature, there is a fundamental differ-
ence. In the SFL problem, the global objective function
remains constant depending on the constant albeit unknown
long-term label distribution. However, in the concept drift
problem, the underlying distribution changes, leading to a
change in the global objective function. Apart from the
concept drift problems, two works [23] and [24] consider a
similar streaming data structure that is more relevant to our
proposed SFL. In [23], an online approach is proposed to
control local model updates on streaming data and global
model aggregations of FL, in order to prevent training load
congestion and spread the model training out with the arrival
of streaming data. In [24], an online data selection framework
is introduced for FL with streaming data, which regulates
the data distribution of all clients to approach an i.i.d.
distribution. Our study focuses on exploring the discrepancy
between long-term label distribution and cached label distri-
bution that arises from FL with streaming data and limited
storage.

In terms of application, we applied SFL to online training
of network traffic classifiers, which are used to categorize
network traffic data into different types or classes based on
certain characteristics of the network data. Such classifiers
can be built by using either the traditional methods [25]
or machine-learning-based methods [26], [27]. Nonetheless,
these approaches typically rely on centralized deep learning
models, which may not be the optimal choice for distributed
scenarios involving edge devices such as routers. Some recent
works [28], [29] used FL to address the issue of traffic
classification, but their solutions do not consider the gradual
arrival of network data or the limited storage capacity of edge
devices.

III. PROBLEM FORMULATION
A. System Model

Let us consider a network consisting of one server and K
clients. Unlike conventional FL frameworks that use static data
sets, every client in the considered system gradually acquires
data from its online data source, and each of these online
data sources has a long-term (underlying) label distribution.
To facilitate exposition, we discrete time into periods (each
of which corresponds to a learning round as we will define
shortly) and assume that each client k € {1, ..., K} receives a

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

10810

set Sk of By labeled data samples from its online data source
in each period 7. Each client has a finite cache £¥ of size B >
Bg. For analytical simplicity, we assume that B is a multiple
of By and denote M = (B/B;s) € Z . Because the client cache
is limited, not all labeled data samples can be stored and used
for learning at the same time.

Each client k has a long-term label distribution 7% =
[z&1 7k2 ... 7kR) where R is the total number of label
classes and %" represents the probability that class r appears
in client k, which is unknown by the client beforehand.
However, the short-term (empirical) label distribution can
be different from the long-term label distribution and non-
stationary over time as shown in Fig. 1. For example, in
NTC, productivity applications may take up a large portion of
network traffic in the daytime while entertainment applications
are more popular at night. As a result, the application label
distribution of Stk in one period is noisy and biased due to
not only the finite number of instances but also the nonsta-
tionary application usage patterns. Furthermore, the short-term
label distribution often does not change abruptly but exhibits
temporal correlations. In other words, the application label
distributions in the received labeled data set may be similar
in adjacent periods. Let nlf’r be the number of instances with
label 7 in S,k and we denote uf = [uf’1 uf’z uf’R] as the
short-term label distribution of SF where uf"" = ny"" /B;. We
make the following assumptions on uf .

Assumption 1 (Limited Temporal Correlation): There exists
an integer I' > 0 such that 1) for any v < I', we have 0 <
maxk,,,,E[(uf’r — zrk”)(uf’fr — k7)1 < 82 for some constant
82;2) for any v > T, E[(uf’r — nk")(uf’_rf — kN1 =0.

Assumption 1 states that the temporal correlation of the
label distribution is confined in a neighborhood of I' periods.
For analytical simplicity, we assume the same 8> for any 7 <
I but practically it makes sense that 82 is larger for smaller 7
since closer periods exhibit stronger correlation. Given that a
diminishing correlation over time is a typical occurrence, this
assumption is intuitive.

Because the client has a finite cache, we also define the
cached label distribution at client k in period ¢, denoted by
vf = [v/,"l vl,"2 vf’R], as the label distribution of data
currently in the cache. The cached label distribution is a joint
result of both the short-term distribution and the local cache
update rule.

To better understand these concepts, consider the NTC
problem. Each local-area network (LAN) k connects to the
network via a router/access point k, which monitors the
application usage in the LAN. Instead of having the router
directly upload raw data to the server for model training,
we employ the FL framework, and these routers act as the
clients in FL. Suppose there are a total number of R possible
applications and NTC aims to identify the application y €
{1, ..., R} based on the data packet feature x. In our problem,
we consider that labeled data packets continuously arrive at
the routers depending on the application usage pattern in the
LAN for training the DL-based network traffic classifier. The
labeled data packets may be manually labeled with delay and
the number is kept small relative to the total data traffic in

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

order to reduce the labeling overhead and complexity. It is
important to note that the network traffic classifier problem
represents only one instance of the broader SFL problem. In
utilizing the network traffic classifier problem to illustrate SFL,
our aim is simply to aid the reader’s comprehension of the
problem.

B. Learning Objective

Our goal is to train a machine learning model using the lim-
ited number of labeled data samples received by the different
clients. Without loss of generality, we assume that the data
arrival rate to all clients is the same. Therefore, the long-term
label distribution of the overall network is simply the average
of that of each client, i.e., 7 = (1/K) Zszl 7k, We define
the loss function as f(w) = EeonF(w; &) where F(w; §) is
the objective function with data sample/s &, & represents the
sample/s drawn from the long-term label distribution, and the
loss function can further be decomposed into a weighted sum
of local loss functions as follows:

1 & 1 &
fony =23 f = 23 B Fr o E) ()
k=1 k=1

where ffK(w) =]Egenka(Wl &) is the local loss function of
client k. Thus, training the machine learning model is equiva-
lent to solving for the optimal parameter w that minimizes the
loss function, i.e., min,, f(w).

Because of the distributed nature of the network, it is
impractical to send all the labeled data samples to a central
location to train the model. Privacy concerns can also be
another reason that forbids clients from directly exchanging
data with each other. In this article, we take the FL approach
to train the machine learning model in a distributed manner
assisted by a parameter server, where clients train local models
based on their local data and periodically exchange the local
models with a parameter server to derive the global model.
However, compared to conventional FL systems where local
models are trained on static local data sets, the online machine
learning model must be trained on time-varying dynamic data.
As the labeled data samples are received gradually over time at
the clients, the clients do not have access to the long-term label
distribution at the beginning but must continuously update
their finite local cache for the incoming training instances.
The cached label distribution in the local cache may diverge
from the long-term label distribution because of the short-term
nonstationarity, thereby degrading the FL performance.

In the next sections, we introduce the SFL architecture for
online machine learning model training and study how differ-
ent local cache updating rules affect learning performance.

IV. SFL AND LoCAL CACHE UPDATE RULES
A. SFL Architecture
In the proposed SFL system, learning is organized into a
series of iterative learning rounds. As previously mentioned,

one period corresponds to a learning round. Each learning
round ¢ comprises the following five steps.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE LOCAL CACHE UPDATE RULES IN STREAMING FEDERATED LEARNING

1) Global Model Download: Each client k downloads the
current global model w, from the parameter server. Local
Cache Update: Due to the unique characteristics of SFL,
specifically streaming data and limited storage, every
client is required to update its local cache Cf before
training the local model.

2) Local Model Update: Each client k uses w; as the initial
model to train a new local model wt 1 based on the
current training data samples in its local cache LK.
Because the local cache is finite and usually small, we
consider local training performs E steps of full-batch
gradient descent (GD). Specifically, the local model is

updated as
Wio = Wi @)
Wf,r+1=W” 77Lg” Vi=1,...,E 3)
Wit = WiE “)

where g’tf . = VFk(wﬁ .3 LK) is the gradient computed
on the local data set currently stored in the local cache
Ef, and ng is the local learning rate. Note that because
of the short-term nonstationarity and finite cache space,
VF*(w; £5) = EekF(w; £) does not hold.

3) Local Model Upload: Clients then upload their local
model updates to the server. Typically, instead of upload-
ing the local model wt +1, client k may upload only the
local model update At, which is defined as the total
model difference as follows:

1
af = (whe = who) = Zgn 5)
4) Global Model Update: The server updates the global

model by using the aggregated local model updates from
the clients

K
1
Wipt = Wi+ LA where A = — DA ()
k=1
where 7 is the global learning rate.
The above steps highlight that the key of SFL lies in the local
cache updating rules with limited storage space.

B. Local Cache Update

The key difference between conventional FL. and SFL is
how the local model update is performed, specifically, what
data the local model is trained on. In conventional FL, the
local model is trained on a static local data set (using either all
data or sampled data) whereas in SFL, the local data set must
be continuously updated as new data is received and old data
is removed. Therefore, the local cache update rule will affect
what data is used for training local models and consequently
the global learning performance.

We illustrate the streaming data arrival and local cache
updating in Fig. 2. Between two consecutive local model
updates, new labeled data is received by the clients. In
particular, client k receives a labeled data set S by the local
cache update step in round ¢. Then client k updates the local
cache £F using the new data S* and the existing data in the

10811
rLocz\l Cache Update
Short-Term (Empirical) | ﬂ I
Label Distribution |_Ad_d M Beﬂ(’EI
........... m Local
Client 1 %Model

r ——————
| L.oczl Cache Update | Core Network o
|_Add Remove|
______ Local Upload
Y R —— - B S,
—— Client N9 - & chal Model
. . . Broadcast
Fig. 2. SFL framework. There are three main stages in SFL: S| streaming

data arrival. Sy local cache updating. S3 local model updating.

local cache according to some update rule @ as follows: Ef <«
CD(LI > Stk). The updated local cache is then used for local
model training at client k. Next, we introduce several local
cache update rules.

1) FIFO: A straightforward local cache update rule is
FIFO, which is also used as a baseline for many other caching
systems. Specifically, the FIFO update rule uses queuing logic
to remove the oldest data so that a newly received data instance
can be added. In our problem, client k simply removes the By
oldest labeled data instances, denoted by ”Hl |» to make room
for the new B; labeled data instances in Sk Mathematically

£k ck \H* usk (7

The cached label distribution changes as a result of the updated
local cache as follows:

r (L)) = ne(Hy) + 1, (S)

vy = Vr

B
where n,(X) is the number of data instances with label r in
a set X'. We characterize the discrepancy between the cached
distribution and the following long-term distribution.
Proposition 1: The discrepancy between the cached label

distribution and the long-term label distribution by using FIFO
is bounded as follows:

=1,...,R (8

E[(vﬁ” - nk’r)2:| < Al/l(min{Zl"‘ F LMD ()

Proposition 1 shows that FIFO update rule can reduce the
distribution discrepancy in the local cache by a factor at most
min{([2I" 4+ 1]/M), 1} compared to the short-term label dis-
tribution depending on how the short-term label distributions
are temporally correlated (i.e., I') and the size of the cache
(i.e., M). In particular, if the short-term label distributions are
independent across time (i.e., I' = 0), then FIFO is able to
reduce distribution discrepancy by 1/M. Moreover, as the local
cache size increases to infinity, the discrepancy diminishes
asymptotically, i.e., limp/_, E[(vf’r — k2] = 0.

An obvious issue with the FIFO update rule is that the
cached distribution vf can still fluctuate significantly because
of the short-term nonstationarity and the finite cache size,
especially when the short-term label distribution is strongly
temporally correlated and the cache size is small. Next, we
propose two new cache update rules tailored to SFL.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

10812

2) Static Ratio Selective Replacement: The reason why
FIFO may result in a large fluctuation in the short-term label
distribution is that it is unable to use historical data instances
and their label distribution information. The goal of SRSR is
to smooth out the short-term label distribution and make it
approximate the long-term label distribution by using a moving
average type of update rule. Specifically, SRSR comprises two
steps.

Step 1: SRSR computes a weighted average of the number
of data instances with label r in the local cache and that of
the newly received data, i.e.,

iy = (1 - %e)nr(ﬁf_l) + 0ny(SF).

This will be the target number of data instances with the label
r in the updated local cache. Here, the scalar Bg/B ensures
that the size constraint of the local cache is always satisfied
since one can easily verify that for any 6 € [0, 1], we have

R

- By
Zn, - (1 — EQ)B—i—@BS = B.
r=1

Step 2: SRSR performs selective replacement to meet the
target label numbers while utilizing the new data as much as
possible. Specifically, there are two cases depending on the
values of 7, and nr(Slk).

1) Case 1: n, < nr(Stk). In this case, SRSR removes all
data with label r in Ef_ | and uniformly randomly selects
i1, data instances with label r from SF to insert into the
local cache.

2) Case 2: ii, > n,(S). In this case, SRSR uniformly
randomly removes nr(ﬁf_l) + nr(Stk) — n, existing data
instances with label r from the local cache and inserts
all data instances with label r from SF into the local
cache.

Since the target label numbers are met, the cached label
distribution by using SRSR is thus

4= 5((1-Fo) (et) +ondst))
=530 5) vl

The above equation shows that the cached label distribution
takes all historical data distribution into account but discounts
old information at a rate 1 — (B;/B)6.

Proposition 2: The discrepancy between the cached label
distribution and the long-term label distribution by using SRSR
is bounded as follows:

oty Tea(-5))

0 - . 6 r+1
M

Corollary 1: By choosing 6 sufficiently small, the bound

(10)

(1)

12)

on]E[(vf’r — %721 decreases over t. Moreover
-r +1
2 1-2 —(1- £
lim E[(V’f’r - nk’r>] < 2(i) (0) 2.
t—>00 2 — i

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

Proposition 2 and Corollary 1 imply that by choosing a
small 6 and with a large cache size M, SRSR can achieve
a small label distribution discrepancy after sufficiently many
rounds. On the other hand, the convergence to that small
discrepancy is slower with a smaller 6. Moreover, even in the
limit + — oo, the discrepancy bound does not vanish unless
M — o0, i.e., the local cache has an infinity capacity.

3) Dynamic Ratio Selective Replacement: Now, we pro-
pose the DRSR update rule that overcomes the drawbacks of
FIFO and SRSR. The goal of DRSR is to maintain the cached
label distribution in the cache as the time-average short-term
label distribution up to the current period. To this end, DRSR
first uses a dynamic weight to compute the target numbers of
data instances with different labels following a formula similar
to (10) in SRSR, i.e.,

i = (1= G0 (cl) +om ()

where 61, ...,0; is the sequence of dynamic weights. Once
n, Vr is computed, DRSR follows the exact same step 2 as
in SRSR to perform the selective replacement.

Proposition 3: The discrepancy between the cached label
distribution and the long-term label distribution by using
DRSR with 6; = (B/[Bst]) is bounded as follows:

2
S ()] < 2
t

(14)

15)

Proposition 3 shows that the discrepancy decreases over
time, and the cached label distribution converges to the long-
term label distribution at a rate of O(1/%).

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of SFL. Because
of the mismatch between the long-term label distribution 7*
and the cached label distribution v¥ of the local cache £¥, the
gradient gf, = VF*(w;;; L) computed in the local model
update steps differs from the desired gradient on the long-term
label distribution, i.e., Vf*(wX). Thanks to the full batch GD,
we are able to characterize the difference between g’tf . and
ka(wﬁ ;) through an intermediate variable, which we name
the virtual local gradient and denote as §ﬁ .- Specifically, gﬁ .
is defined as follows:

R
~k k, k(, k . pkr
8t = Z” "VF, (Wt,r’ L)

r=1

(16)

where VF’,‘(wﬁ o Lf’r) is the gradient computed on only the
subset of data instances with label r, denoted by L’f’r, in the
current local cache Lf. We note that g’; . 1s only imaginary
since neither it is actually computed nor it can be realistically
computed. This is because our algorithm does not actually
divide Ef into R subsets £51, ..., £kR and compute the
gradients on each of these sets. Instead, only a single local
gradient VF k (wﬂf S /.Zf) is computed. More critically, even with
VF’,‘(wﬁ,; Ef’r) Vr = 1,...,R, computing g’;, requires the
knowledge of the long-term label distribution m*, which is
unknown by the algorithm.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE LOCAL CACHE UPDATE RULES IN STREAMING FEDERATED LEARNING

Before we move on to establish the connection between gﬁ :
and Vf* (wﬁf) and prove the convergence of the proposed SFL
algorithm under different local cache update rules, we make
the following standard assumptions.

Assumption 2 (Lipschitz Smoothness): The local objective
function is Lipschitz smooth, i.e., 3L > 0, such that || Vik(x) —
VAW < Lilx =yl Vx,y € R? and Vk.

Assumption 3 (Unbiased Gradient Estimator): For each
client k, the label-wise local gradient is unbiased,
ie., Ep, VF*(x; £67) = V5" (x) & Eer VF(x; £7) where ¢"
is a instance with label r.

Assumption 4 (Bounded Dissimilarity): There exists con-
stants oG > 0and A > 0 so that [[f*(0) |2 < A2+ DIF @) 1>+
ch Vx Vk. When the local loss functions are identical, A> = 0
and oG =0.

Assumption 5 (Gradient Bound): The label-wise local gra-
dient is bounded, E[|VF*(x; £K7)|2] < 03 Vk ¥r VLK.

Assumption 2 ensures that the gradient of the local objective
function does not change too abruptly between any two points
in its domain. Assumption 3 states that for each client and for
each label, the expected value of the local gradient estimator
is equal to the true gradient. Assumption 4 ensures that while
individual clients’ loss functions can differ from a global
function, the extent of this difference is bounded. Finally,
Assumption 5 states that the expected squared magnitude of
the gradient of the local loss function for each label remains
bounded. Similar assumptions are commonly used in both the
nonconvex optimization and FL literature [10], [11], [12], [30].
It is worth noting that all assumptions are primarily introduced
to facilitate the convergence analysis of SFL. The proposed
solutions can be applied in practice without these assumptions.

In the previous section, we established the upper bound
on the cached label distribution and the long-term label
distribution for different local update rules. To facilitate the
exposition, we introduce a unified notation A; to represent the
upper bounds. Specifically

2
E[(vfr —nk”) i| <12

The specific forms of A; can be found in Propositions 1-3 for
FIFO, SRSR, and DRSR, respectively.

We begin by introducing some necessary lemmas to help us
with the theorem that follows.

Lemma 1: The expectations of the difference between the
real local gradient gﬂf . and virtual local gradient gﬂ‘ £ 1S upper
bounded as: E[|gf, — &f,1*] < R®AJoj;. The difference
between the virtual local gradient gﬁ . and expected gradient
Vf (wk) is upper bounded as: E[|gf, — Vf*(wf)I?] <
2R2n20 where 7 = maxy, , 75"

The followmg result is on the upper bound for the 7-step
SGD in the full participation case with Lemma 1.

Lemma 2: For any step-size satisfying n; < (1/8LE), we
have: VT =0,...,E—1

a7)

[||w, r— w[||2] < SEniR*)}ol + 60E* 2 R°TT 20

+30E2n202 + 30E2nL<A2 + 1) IVF@I2. (18)

10813

By deﬁmng A, = A/ + ¢, where A, =
—(1/K) Ykt Yoo 8t and Ar = —(1/K) 3y D r2g 8t s
we can obtain the convergence bound of SFL with full client
participation as follows.

Theorem 1: Let constant local and global learn-
ing rates nr and n be chosen as such that 5, <
min([1/4/60(A2 + 1)EL], [1/8LE]) and nn;, < [l1/4EL].
Under Assumptions 2-5 with full client participation, the
sequence of model w; in the real sequence satisfies
Jozhe +¢G+<DM+¢L (19)
cnnLE

in E|V 2 <
_min IVl

where c is a constant, fj £ fwo), f« £ f(wy), wy is the optimal

model, and
30E2n?L?
G="—_"0 (20)
60 2E2L2R2—2
by = nL—T[UAZ/[1)
(Sn2EL? 4 3nn,LE + 1)R2 0% "2
d; = Ar. 22
L o Z (22)

The above convergence bound contains four parts: a vanish-
ing term ([fo — fxl/[cnnET]) as T increases, a constant term
@ whose size depends on the problem instance parameters
and is independent of 7, a third term &, is affected by the
number of classes R and maximum ratio 77, and a final term
®; that depends on the cumulative gap between the real and
virtual sequences. The key insight derived by Theorem 1 is
that the SFL convergence bound depends on two additional
terms ®j7 and ®; when compared to the conventional FL. For
each client, if we could use the long-term label distribution, the
cumulative ratio gap (1/7) ZT IAZ = 0. Consequently, the
convergence bound is simply ([fy — f*] /lennET) 4+ $g+ Py
However, this gap cannot be eliminated since the client cannot
directly use the long-term label distribution in the local model
updating. By applying the specific learning rate, with 7 — oo,
we can get the following corollary for the general convergence
rate.

Corollary 2: With learning rates n; = (1/+/TE) and n =
VEK, the convergence rate of the general case under full client
participation is

1 o2 R’T?o
Of —)+0o| £)+o0l—H
(«/EKT) (T) (T)
N — N — e’
[ofe] Dy

+O<GMZT lkz).

dp

Based on the corollary 2 above, ®; is the major factor that
determines whether the results converge to a stationary point
without any constant terms. By substituting the values of A,z
for the three update rules mentioned earlier, we can derive
the corresponding final convergence rates. Furthermore, it is
shown that under the DRSR update rule the SFL can eventually
converge to a stationary point.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

10814

VI. EXPERIMENTS

Setup: Our experiments are based on two data sets:
1) FMNIST and 2) the NTC data set extracted from
ISCXVPN2016 as in [27]. FMNIST is a commonly used data
set for image classification tasks, while NTC is a specialized
data set for NTC. It contains 45000 network packets that
are divided into ten classes, each representing a different
application, such as YouTube or Skype, which are encrypted
traffic samples using various methods. The packet vectors can
be reshaped to 39x39 bytes gray images. Further details and
hyperparameters for the experiment are provided in the online
supplementary materials [31], [32]. All experiment results
reported are the average of 10 independent runs.

Data Stream Generation: The SFL system consists of
10 clients and every client receives training data samples
from C classes in the long-term distribution, which is non-
ii.d between clients. The distribution of each class within
every client is determined by random values ranging between
[0.05, 0.95] and the sum of these values for C classes equals
1. It is crucial to note that the value of parameter C can
effectively adjust the degree of noniidness. A lower C value
typically results in a higher degree of noniidness, as it
might lead to each client having a distinct class of data
samples. Conversely, a larger C value implies a lower degree
of noniidness, and if C is equal to the total number of
classes (e.g., C = 10), the scenario approximates an i.i.d
case. To simulate the time-varying short-term distributions,
we generate ten possible distributions for each client. In each
time slot, the client receives one distribution as the short-term
distribution. To capture the temporal correlation of the short-
term distribution, the transition between any two short-term
distributions is governed by a probability determined by the
Kullback-Leibler (K-L) divergence [33] between these two
label distributions. The probability of distribution transition
between two distributions is higher when the K-L divergence
between them is lower. The long-term distribution is obtained
as the stationary distribution of these short-term distributions,
based on the transition matrix, which is unknown to the
client in advance. The test data set is established prior to
training through sampling that corresponds to the long-term
distribution and remains consistent throughout the FL rounds.

Benchmarks: In the experiment, the following two bench-
marks are used for performance comparison.

1) Full Information (FULL): In this ideal scenario, each
client has a local training data set with a distribution the
same as the long-term distribution.

2) Lazy Updates (LAZY): In this scenario, the client keeps
the initial training data set in the cache and does
not update its data set. The client then conducts local
training by utilizing this static local data set.

As we have analyzed in Section IV, both FIFO and SRSR
update rules can converge to a stationary point with infinite
cache capacity. However, since infinite cache capacity is
impractical in real-world scenarios, we will only conduct
experiments under finite cache capacity.

Label Distribution: We begin our analysis by examining
the label distribution across clients, specifically in the context

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

1 2 3 45 6 7
Clients

Fig. 3. Underlying Label Distribution on Clients (C = 3).

o
©

—— SRSR
—— DRSR
— FIFO

LAZY
— FULL

Test Accuracy
o
~

o
o

Test Accuracy
o
~

o
wn

o
EN

"0 100 200 300 400 500 600 o 50
Number of Rounds

100 150 200 250 300
Number of Rounds

(@) (b)

Fig. 4. Performance comparison of the proposed update rules and benchmarks
with full participation. (a) NTC Non-iid (C = 3). (b) FMNIST Non-iid
(C=3).

where C = 3. Fig. 3 illustrates the long-term label distribution
on clients. The figure presents the fact that the label distribu-
tion is non-i.i.d among the clients.

Performance Comparison: We first compare the conver-
gence performance between our proposed update rules and
benchmarks with parameters {B = 300, By = 150,C = 3,0 =
(2/3)}. Fig. 4(a) and (b) plots the convergence curves on
the NTC data set and the FMNIST data set with full client
participation, respectively. Several observations are made as
follows. First, DRSR, SRSR, and FIFO outperform LAZY in
terms of test accuracy and convergence speed, particularly in
the later stages. DRSR and SRSR achieve performance close
to FULL on the NTC data set due to their ability to gradually
approximate the long-term label distribution. Second, DRSR
and SRSR outperform FIFO in the entire learning process,
mainly attributed to their ability to retain the knowledge of
past data streams. Third, the learning performance of DRSR,
SRSR, and FIFO is significantly better than LAZY on the NTC
data set, while the performance gain is less significant on the
FMNIST data set. Overall, DRSR and SRSR are better than
FIFO on both data sets. More comparisons between DRSR
and SRSR will be given later.

Distribution Discrepancy: The learning performance of SFL
depends on how well it can approximate the long-term label
distribution. In this part, we examine how the distribution
discrepancy changes during the training process for different
local data set update rules. The per-slot discrepancy is defined
as Yy = Y ek ZreR(Vf’r — 7%7)2 and the accumulated
discrepancy is defined as = Y ", .7 > ick ZreR(vf’r—JTk”)2.
Fig. 5 shows the per-slot discrepancy and the accumulated
discrepancy for the different update rules. From Fig. 5(a), we

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE LOCAL CACHE UPDATE RULES IN STREAMING FEDERATED LEARNING

I
]
o

—— SRSR
—— DRSR
— FIFO

—— SRSR
—— DRSR
— FIFO

w
o
o

[

Discrepancy
N
Accumulated Discrepancy
N B
o o

N

gOO 320 340 360 380 400 O0
Number of Rounds

(a) (b)

100 200 300 400 500 600
Number of Rounds

Fig. 5. Discrepancy between the cached label distribution v];’r and the long-
term label distribution ratio %" (a) Per-slot discrepancy ;. (b) Accumulated
discrepancy Y.

Test Accuracy
o
©

Test Accuracy
o
0

—— SRSR
—— DRSR

—— SRSR
—— DRSR

100 200 300 400 500 600
Number of Rounds

0 100 200 300 400 500 600 o
Number of Rounds

(a) (b)

Fig. 6. Performance comparison of SRSR and DRSR with different Bj.
(a) NTC Non-iid (Bs = 30). (b) NTC Non-iid (Bs = 150).

can see that DRSR and SRSR exhibit lower discrepancy and
fewer fluctuations compared to FIFO, and the discrepancy of
DRSR decreases over time. Fig. 5(b) demonstrates that DRSR
has the lowest cumulative discrepancy throughout the learning
process and performs better than both SRSR and FIFO.

Impact of Streaming Data Size B;: The proposed update
rules, DRSR and SRSR were examined for their learning
performance when trained with different values of By and a
constant B = 300. A larger value of By corresponds to a
larger streaming packet per round. The NTC data set was
used with two different streaming data sizes, By € {30, 150},
to investigate the effects of varying B;. The results, shown
in Fig. 6, indicate that both DRSR and SRSR are capable
of achieving the desired level of test accuracy. The variance
of DRSR decreases with training, particularly in the later
stages, where it is significantly smaller than the variance
of SRSR.

Impact of Cache Capacity B: In this set of experiments,
we investigate the impact of varying the cache capacity,
represented by B, on the learning performance while keeping
the ratio (Bs/B) constant at 0.1. We use the NTC data set and
tested two different values of B € {100, 300}. Our results, as
shown in Fig. 7, suggest that increasing B leads to higher test
accuracy and faster training rates. For example, at 200 rounds,
the test accuracy is 0.72 for B = 100 and 0.83 for B = 300.
However, in practical situations, the cache capacity of a client
is often limited, despite the potential for better performance
with larger values of B.

Impact of Parameter 0: In this section, we examine the
impact of 8, which tunes the amount of incoming data to put
in the cache, on the learning performance of SRSR. A higher

10815

o
©

Test Accuracy
o
ee]
o

Test Accuracy
o
[ee]

0.75
0.7
0.70 —— SRSR
8 —— DRSR
065 0.6 100 200 300 400 500 600

0 100 200 300 400 500 600 o

Number of Rounds Number of Rounds

(@) (b)

Fig. 7. Performance comparison of SRSR and DRSR with different B.
(a) NTC Non-iid (B = 100). (b) NTC Non-iid (B = 300).

1.0 1.0
0.9 0.9
> >
g g
Sos8 Sos
v [v]
g g
— 0.7 — 0.7
wn wn
b bt
0.6 — 6=05 0.6 — 0=05
— 6=0.9 — 6=09
0.5 0.5

0 100 200 300 400 500 600 0
Number of Rounds

100 200 300 400 500 600
Number of Rounds

(@) (b)

Fig. 8. Performance comparison of SRSR with different 6. (a) NTC Non-iid
(Bs = 30). (b) NTC Non-iid (Bs = 150).

0 indicates that a greater portion of the current streaming data
is chosen and incorporated into the local cache. If 6 = 1,
every new data sample is incorporated into the local cache.
Conversely, if & = 0, none of the new data samples are
added to the local cache. The rest parameters are {B =
300, By, = [30,150],C = 3}. The experiment results are
shown in Fig. 8. When By is large, a smaller 6 leads to better
learning performance. This occurs because larger 6 can cause
a substantial shift in the cached label distribution, leading to
an increase in variation [as seen in Fig. 8(b)]. However, when
By is small, choosing a small value for 6 leads to a degradation
of learning performance. The reason for this is that the ratio
in the cached label distribution changes at a slow pace at the
beginning [as seen in Fig. 8§(a)]. Consequently, determining
the appropriate 6 beforehand is a challenging task. However,
this issue can be resolved using the DRSR update rule, which
reduces 6 gradually over time.

VII. CONCLUSION

This article presents a novel FL framework named SFL,
which differs from traditional FL by operating on a dynamic
data set. This dynamic nature of the data, coupled with the
limited cache capacity on clients, results in discrepancies
between the local training data set and the long-term data
distribution. We propose three update rules for the local
cache update process in the SFL problem and provide a
thorough theoretical analysis and experimental comparison to
support our work. Future research will focus on developing
more effective update rules for SFL to accelerate the training
convergence speed and explore the potential of applying SFL
to other practical scenarios.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

10816

[1]
[2]

[3]

[4]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

S. Warner, “Buffer.” 2021. [Online]. Available: https://people.ucsc.edu/
warner/buffer.html

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50-60, May 2020.

W. Y. B. Lim et al., “Federated learning in mobile edge networks: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031-2063, 3rd Quart., 2020.

O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” I[EEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1342-1397, 2nd Quart., 2021.

S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. Int. Conf. Learn. Rep., 2018, pp. 1-17.

H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 5693-5700.

J. Wang and G. Joshi, “Cooperative SGD: A unified framework for
the design and analysis of communication-efficient SGD algorithms,” in
Proc. ICML Workshop Coding Theory Mach. Learn., 2019, pp. 1-50.
S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging for feder-
ated learning,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5132-5143.
X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-IID data,” 2020, arXiv:1907.02189.

H. Yang, X. Zhang, P. Khanduri, and J. Liu, “Anarchic federated
learning,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 25331-25363.
D. Jhunjhunwala, P. Sharma, A. Nagarkatti, and G. Joshi, “FedVARP:
Tackling the variance due to partial client participation in federated
learning,” in Proc. Uncertainty Artif. Intell., 2022, pp. 906-916.

H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial
worker participation in non-1ID federated learning,” in Proc. Int. Conf.
Learn. Rep., 2020, pp. 1-23.

J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 12,
pp. 2346-2363, Dec. 2018.

T. R. Hoens, R. Polikar, and N. V. Chawla, “Learning from streaming
data with concept drift and imbalance: An overview,” Prog. Artif. Intell.,
vol. 1, no. 1, pp. 89-101, 2012.

G. Widmer and M. Kubat, “Effective learning in dynamic environments
by explicit context tracking,” in Proc. Mach. Learn. ECML-93 Eur. Conf.
Mach. Learn., 1993, pp. 227-243.

T. Kanade and M. Okutomi, “A stereo matching algorithm with an
adaptive window: Theory and experiment,” IEEE Trans. pattern Anal.
Mach. Intell., vol. 16, no. 9, pp. 920-932, Sep. 1994.

A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in Proc. SIAM Int. Conf. Data Mining. 2007,
pp. 443-448.

J. Gama, L.vZliobaité, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surveys (CSUR),
vol. 46, no. 4, pp. 1-37, 2014.

G. Canonaco, A. Bergamasco, A. Mongelluzzo, and M. Roveri,
“Adaptive federated learning in presence of concept drift,” in Proc. IEEE
Int. Joint Conf. Neural Netw. (IJCNN), 2021, pp. 1-7.

Y. Chen, Z. Chai, Y. Cheng, and H. Rangwala, “Asynchronous federated
learning for sensor data with concept drift,” in Proc. IEEE Int. Conf.
Big Data (Big Data), 2021, pp. 4822-4831.

F. E. Casado, D. Lema, M. F. Criado, R. Iglesias, C. V. Regueiro, and
S. Barro, “Concept drift detection and adaptation for federated and con-
tinual learning,” Multimedia Tools Appl., vol. 81, no. 3, pp. 3397-3419,
2022.

E. Jothimurugesan, K. Hsieh, J. Wang, G. Joshi, and P. B. Gibbons,
“Federated learning under distributed concept drift,” 2022,
arXiv:2206.00799.

Y. Jin, L. Jiao, Z. Qian, S. Zhang, and S. Lu, “Budget-aware Online
control of edge federated learning on streaming data with stochastic
inputs,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3704-3722,
Dec. 2021.

C. Gong, Z. Zheng, F. Wu, B. Li, Y. Shao, and G. Chen, “ODE: A data
sampling method for practical federated learning with streaming data
and limited buffer,” 2022, arXiv:2209.00195.

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,” IEEE
Commun. Surveys Tuts., vol. 16, no. 2, pp. 1135-1156, 2nd Quart., 2013.
C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “FS-Net: A flow sequence
network for encrypted traffic classification,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., 2019, pp. 1171-1179.

J. Zhang, F. Li, F. Ye, and H. Wu, “Autonomous unknown-application
filtering and labeling for DL-based traffic classifier update,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., 2020, pp. 397-405.

H. Mun and Y. Lee, “Internet traffic classification with federated
learning,” Electronics, vol. 10, no. 1, p. 27, 2020.

Y. Peng, M. He, and Y. Wang, “A federated semi-supervised learning
approach for network traffic classification,” 2021, arXiv:2107.03933.
H. Wang and J. Xu, “Friends to help: Saving federated learning from
client dropout,” 2022, arXiv:2205.13222.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp- 2278-2324, Nov. 1998.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobilenetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510-4520.

J. M. Joyce, “Kullback-leibler divergence,” International Encyclopedia
of Statistical Science. Heidelberg, Germany: Springer, 2011,
pp- 720-722.

Heqiang Wang received the B.S. degree in electrical
and computer engineering from the University of
Kentucky, Lexington, KY, USA, in 2016, and the
M.S. degree in electrical and computer engineering
from the University of Connecticut, Storrs, CT,
USA, in 2019. He is currently pursuing the Ph.D.
degree with the Electrical and Computer Engineering
Department, University of Miami, Coral Gables, FL,
USA.

His research interests include resource allocation
and bias mitigation federated learning problems.

Jieming Bian received the B.A. degree in eco-
nomics from the University of Colorado Denver,
Denver, CO, USA, in 2019, and the M.S. degree in
operations research from Columbia University, New
York, NY, USA, in 2021. He is pursuing the Ph.D.
degree with the Electrical and Computer Engineering
Department, University of Miami, Coral Gables, FL,
USA.

His research interests include communication effi-
ciency and client scheduling federated learning
problems.

Jie Xu (Senior Member, IEEE) received the B.S.
and M.S. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 2008 and
2010, respectively, and the Ph.D. degree in electrical
engineering from the University of California at Los
Angeles, Los Angeles, CA, USA, in 2015.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Miami, Coral Gables, FL, USA.
His research interests include mobile-edge comput-
ing/intelligence, machine learning for networks, and

network security.
Dr. Xu received the NSF CAREER Award in 2021.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 17:57:19 UTC from IEEE Xplore. Restrictions apply.

