10668

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Accelerating Asynchronous Federated Learning
Convergence via Opportunistic Mobile Relaying

Jieming Bian

Abstract—This paper presents a study on asynchronous Feder-
ated Learning (FL) in a mobile network setting. The majority of
FL algorithms assume that communication between clients and the
server is always available, however, this is not the case in many real-
world systems. To address this issue, the paper explores the impact
of mobility on the convergence performance of asynchronous FL.
By exploiting mobility, the study shows that clients can indirectly
communicate with the server through another client serving as
a relay, creating additional communication opportunities. This
enables clients to upload local model updates sooner or receive
fresher global models. We propose a new FL algorithm, called
FedMobile, that incorporates opportunistic relaying and addresses
key questions such as when and how to relay. We prove that
FedMobile achieves a convergence rate O(ﬁ), where N is the
number of clients and 7" is the number of communication slots,
and show that the optimal design involves an interesting trade-off
on the best timing of relaying. The paper also presents an extension
that considers data manipulation before relaying to reduce the cost
and enhance privacy. Experiment results on a synthetic dataset and
two real-world datasets verify our theoretical findings.

Index Terms—Convergence analysis, federated learning, mobile
relaying.
1. INTRODUCTION

EDERATED learning (FL) is a distributed machine learn-
F ing approach in which numerous clients possessing de-
centralized data cooperate to develope a shared model, under
the guidance of a central server [1]. The majority of FL algo-
rithms [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] explore the
synchronous communication setting, where clients can periodi-
cally and concurrently synchronize and interact with the server.
In this context, communication frequency is a crucial aspect
of the FL algorithm design, as it assumes that the communi-
cation channel between clients and the server is consistently
and universally accessible. However, this assumption is often
unrealistic in real-world systems, where clients may only have
intermittent opportunities to communicate with the server and
display varying communication patterns. For instance, mobile
clients (such as mobile devices or vehicles) can only connect
with the server (e.g., base stations, sensing hubs, roadside units)
when they come within the server’s communication range [11].
Consequently, in such mobile systems, FL. must be conducted

Manuscript received 7 October 2023; revised 1 January 2024 and 22 February
2024; accepted 17 March 2024. Date of publication 1 April 2024; date of current
version 16 July 2024. This work was supported by NSF under Grant 2033681,
Grant 2006630, Grant 2044991, and Grant 2319780. The review of this article
was coordinated by Prof. Haejoon Jung. (Corresponding author: Jie Xu.)

The authors are with the Department of Electrical and Computer En-
gineering, University of Miami, Coral Gables, FL 33146 USA (e-mail:
jxb1974@miami.edu; jiexu@miami.edu).

Digital Object Identifier 10.1109/TVT.2024.3384061

, Graduate Student Member, IEEE, and Jie Xu

, Senior Member, IEEE

asynchronously, conforming to each client’s unique communi-
cation pattern with the server.

The asynchronous nature of these mobile systems renders the
methods developed for synchronous FL ineffective. As a result,
asynchronous FL methods are necessary to tackle such systems.
However, the body of literature on asynchronous FL is notably
smaller compared to its synchronous counterpart. Although
some insights have been gained (for example, [12] demonstrates
that the convergence rate of asynchronous FL can match that of
synchronous FL given the same communication interval), the
performance of asynchronous FL is significantly constrained
by the arbitrary communication patterns of individual clients,
which are not an algorithm parameter. With only sporadic client-
server interactions, asynchronous FL may converge slowly or
even fail to achieve convergence.

To tackle the problem arising from sporadic client-server
interactions, in this paper, we focus on exploiting the
communication opportunities among clients within the mobile
system, an aspect largely overlooked in previous works.
As devices in the mobile system continually move over
time, numerous client-client encounters are created. These
meetings allow a client to indirectly communicate with the
server by using another client as a relay, thereby generating
additional communication opportunities (both uploading and
downloading) with the server. Specifically, a client’s local
model updates can be uploaded to the server sooner if the relay
client connects with the server before the sending client does.
Similarly, the client can receive a more recent global model
from a relay client that has recently connected with the server.

However, the added benefits provided by the relay for either
uploading or downloading introduce new challenges. Firstly, de-
termining when to upload (download) via relaying and selecting
the appropriate relay is crucial. If a client uploads to a relay
too early, only minimal new information can be transmitted to
the server, as the client has completed just a few local steps.
Conversely, if the upload to the relay is delayed, the benefit of
utilizing the relay may be significantly diminished. Secondly,
determining how to relay the local model updates in a manner
that prevents duplication of updates received by the server and
maintains storage efficiency is also essential. To address these
challenges, we propose a novel asynchronous FL algorithm with
opportunistic relaying, called FedMobile. The main contribu-
tions of our work are as follows:

® Our work focuses on harnessing the benefits of utilizing

relaying resulting from client-client meetings, an aspect
not previously explored in mobile FL. We propose a new

0018-9545 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING

asynchronous FL algorithm, FedMobile, which accelerates
convergence while maintaining storage efficiency and pre-
venting duplicate update transmissions.

® We offer a theoretical convergence analysis of FedMobile

and unveil an intriguing trade-off regarding the optimal
timing of relaying, which can, in theory, enhance the con-
vergence speed.

® We introduce an extension of FedMobile where clients and

their relays transmit data with quantization/compression,
reducing the communication costs caused by additional
relaying.

® We perform extensive experiments on a synthetic dataset

and two real-world datasets to corroborate our theoretical
findings. The results confirm that our proposed method
outperforms the state-of-the-art asynchronous FL. method
by significantly reducing time consumption.

The rest of this paper is structured as follows. Section II
reviews related works. In Section III, we present the sys-
tem model and briefly revisit the state-of-the-art asynchronous
FL method [12]. FedMobile and its extension are detailed in
Section IV, while Section V provides the theoretical conver-
gence analysis. Section VI presents an extension for a more
general case. Experimental results are reported in Section VII.
Finally, Section VIII concludes the paper. All technical proofs
can be found at the Arxiv (i.e. https://arxiv.org/abs/2206.04742).

II. RELATED WORK
A. Federated Learning

FedAvg [1] uses local stochastic gradient descent (SGD) to
reduce the number of communications between the server and
clients. Convergence has been analyzed for FedAvg [2], [3], [4],
[5], [13] and its variants (e.g., momentum variants [14], [15]
and variance-reducing variants [16], [17]) in both iid and non-iid
data settings. However, the majority of works on FL study the
synchronous setting and treat the communication frequency as
a tunable parameter of the algorithm.

In recent years, asynchronous distributed optimization and
learning have been extensively studied. Works such as [18], [19],
[20], [21], [22] focus on single SGD steps by distributed nodes
with iid data distributions, which do not represent typical FL
settings. The literature on asynchronous FL is smaller and has
varied emphases. For instance, some existing works [23], [24],
[25] still assume universal communication at all times, with
asynchronicity resulting from an algorithmic decision rather
than a constraint. Other works [26], [27], [28], [29] employ
asynchronous model aggregation to tackle the “straggler” issue
in synchronous FL. The asynchronous setting most similar to
ours is examined in [12], [30], which consider arbitrary com-
munication patterns. However, these studies only focus on the
interaction between the server and the clients, overlooking the
interactions among clients themselves. In this work, we propose
FedMobile, an algorithm that leverages the benefits of relaying
through client interactions, and demonstrate its superior conver-
gence performance both theoretically and empirically compared
to state-of-the-art asynchronous method [12].

10669
TABLE I
KEY NOTATIONS
Symbol Semantics
t time slot which is measured by one local update
N the number of mobile clients
St the set of clients who meet the server
fi non-convex loss function for client ¢
F; estimated loss function based on mini-batch data sample
n the local learning rate
the stochastic gradient
Til”t the last time when client ¢ meets the server
‘ri"e“ the next time when client ¢ will meet the server
A the upper bound of times interval
0,0 the upload search interval parameters
w, the download search interval parameters
mt the CLU stored by client 7 at time ¢
Th% the manipulated CLU
nf the CLU only contains client 7’s own updates
Q) the quantization operator
ut the perturbation noise
ef the difference between ! and m!

Our work is remotely related to decentralized FL [31], [32],
[33] (and some hybrid FL works [34]) where clients can also
communicate among themselves during the training process,
typically by using a type of gossip algorithm to exchange lo-
cal model information. However, these works assume a fixed
topology of clients and the communication among the clients is
still synchronous and periodic.

B. Opportunistic Relaying

Opportunistic relaying is a wireless communication technique
where intermediate nodes in a wireless network temporarily
act as relay nodes to forward data packets to their intended
destination. The fundamental concept behind this technique is
to harness the unused resources in the network, such as energy,
idle time, and bandwidth, to enhance the network’s overall
performance. Although the idea of opportunistic relaying has
been well extended and studied in many fields (e.g. wireless
networks [35], UAV [36]), to our best knowledge, there is no
prior work on opportunistic relaying in FL. Additionally, pre-
vious studies concentrate on transmitting the unchanged value
in situations where no learning process is performed. Our work
offers the first principled investigation of the interplay between
opportunistic relaying via client-client communication and the
convergence of FL, and how to design the optimal relaying
strategy to maximize the convergence speed in the learning
process.

III. MODEL AND PRELIMINARIES

To clarify our problem, we begin by presenting essential
notations, as outlined in Table I. We consider a mobile FL
system with one server and N mobile clients. The mobile clients
work together to optimize the model parameters z € R? by
minimizing the global objective function f(z):

1 1 &

i=1 i=1

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10670

au:kﬁ-ul

" ‘e network,
qe“‘;\ @ B's [client-client
\“\?e“" ‘ \ Meeting | Larger V2V
o " Server.

range means
higher client-
client meeting
rate

'

g

Road-Side ™.

Server-Client Unit (RSU)
Meeting
via RSU
Fig. 1. TIllustration of Mobile FL system in VANET.
where f; : RY — R is a non-convex loss function for client i

and Fj is the estimated loss function based on a mini-batch data
sample ¢; drawn from client 7’s own dataset.

Mobility Model: We consider a discrete time system where
time is divided into slots of equal length. Clients move indepen-
dently in a network and make contact with the server only at
certain time slots. At each time ¢ and for each client 7, let 7/2!(¢)
be the last time when client ¢ meets the server by ¢ (including),
and 7°*'(¢) be the next time when client ¢ will meet the server
(excluding t). We assume that at any given time ¢, client ¢ can es-
timate 7/°*'(¢). For the sake of proving theoretical convergence,
we will assume in the theoretical analysis section that at any
t, client i knows its exact 7/*(¢). However, in the experiment
section, we will compare performances under both the scenarios
where 7/°*'(¢) is exactly known by the client and where 7/*'(¢) is
estimated by the client. The communication pattern is arbitrary
and different for different clients but we assume that the time
interval between any two consecutive server meetings for any
client is bounded by A, i.e., 7% (¢) — 713(¢) < A, V¢, Vi.

Clients can also meet among themselves due to mobility.
When two clients meet, they can communicate with each other
via, e.g., device-to-device (D2D) communication protocols [37].
For ease of analysis, we assume that at each time ¢, a client can
meet at most one other client (the extension to multiple clients
is straightforward). Let p € [0, 1] be the probability of a client
meeting another client at a time slot. When p = 0, clients do not
meet with each other, thus degenerating to the conventional case.
We assume that the client-server meetings remain unchanged
regardless of the value of p. In the following, we provide a
realistic example of a Vehicular Ad Hoc Network (VANET).

Fig. 1 is an illustration of Vehicular Ad Hoc Network
(VANET). Consider a road network where many vehicles (as
mobile clients) are moving and performing FL (e.g., for traffic
prediction) using on-board computing power. Some roadside
units (RSUs) are deployed in the road network which the ve-
hicles can connect to via wireless. All pertinent RSUs and the
server are interconnected through high-speed communication
technologies such as fiber optic networks [38]. This ensures that
the transmission latency between the server and the RSUs is
exceedingly low and can, therefore, be disregarded. In a typical
deployment, the RSUs are only deployed in certain parts of the
road network (e.g., some road intersections) and do not cover
the entire road network [11]. Therefore, the vehicles (clients)
can communicate with the server only when they enter the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

communication range of a RSU. Because vehicles have different
speeds and routes, their meeting times with servers (via the
RSUs) are naturally asynchronous.

In the VANET use case, vehicles (clients) often have a pre-
determined route and move at a roughly constant speed. Thus, it
is easy to calculate the next server meeting given the next RSU
location and the vehicle trajectory. If a vehicle’s moving speed
is fixed, then the client-server meetings do not change (because
distances between RSUs cannot be changed). A client-client
meeting occurs if two clients enter the Vehicle-to-Vehicle (V2V)
communication (e.g., Wi-Fi Direct or LTE Direct) range of each
other. Thus, by increasing the communication range (e.g., by
using a larger transmission power), more client-client meetings
can occur while the client-server meetings stay the same. Thus,
p is a parameter that models the client-client meeting rates in
this case. A smaller client-client communication range results
in a smaller p while a larger client-client communication range
results in a larger p.

State-of-the-art Asynchronous FL method: Before we intro-
duce our proposed method, let’s briefly revisit the state-of-the-art
asynchronous FL method, ASYNC [12], which operates under
arbitrary communication patterns.

Local model update: For any client ¢, when it meets the server
at ¢, it downloads the current global model xt. The client then
uses z¢ = ! as the initial model to train a new local model using
its local dataset until it meets the server again. This is done by
using a mini-batch SGD method:

s+1

;T =x] —ng;,Vs=1,.)

where g7 = VF;(«f, (7)is the stochastic gradient on arandomly
drawn mini-batch ¢ and 7 is the learning rate. Here, we assume
that a client performs one step SGD at each time slot to keep the
notations simple. Let m! € R< be the cumulative local updates
(CLU) of client 7 at time ¢ since its last meeting with the server,
which is updated recursively as follows:

next(t) -1

mi =ngt ! if t = 7(t) + 1

mt _ m + ngl I,Vt _ ,}_ilasl() + 2 next(t) (3)

Global model update: At any t, let St denote the set of clients
who meet the server (S may be empty). These clients upload
their CLUs to the server which then updates the global model as

i “)

The updated global model ' is then downloaded to each client
iin S*, and the client starts its local training with a new initial
model z! = z'.

IV. FEDMOBILE

In the vanilla asynchronous FL described in the Section III,
a client can upload its CLU and download the global model
only when it meets the server. When the meeting intervals are
long, however, this information cannot be exchanged in a timely
manner, thus hindering the global training process. To overcome
this issue, we take advantage of mobility and propose FedMobile

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING

,rilast Up|°ad T{zext
| | SearchInterval | |
| —

\ e ~~ J
0
rlast Download next
i L
| | Searchinterval | |
—
N w J

<

Fig. 2. Upload/download search intervals.

that creates indirect client-server communication opportunities,
thereby improving the FL convergence speed. In a nutshell, a
client 7 can use another client j as a relay to upload its CLU
to the server (or download the global model from the server) if
client j’s next (or last) server meeting is earlier (or later) than
client ¢’s. Thus, the CLU can be passed to the server sooner (or
the client can train based on a fresher global model). We call
such client j an upload (or download) relay for client 7.

For now, we assume that a client can only use at most one
upload relay and at most one download relay between any two
consecutive server meetings, considering the extra cost incurred
due to the client-client communication. However, FedMobile
can be easily extended (we discuss it in The General Case
section). Next, we describe separately how FedMobile handles
uploading and downloading, which are essentially the dual cases
to each other.

A. Uploading CLU via Relaying

Upload Timing and Relay Selection: Since a client can use
the upload relay at most once between its two consecutive server
meetings, the timing of uploading via relaying is crucial. If client
1 uploads too early (i.e., close to T}a“), then the CLU has little
new information since the client has run just a few mini-batch
SGD steps. If client 7 uploads too late (i.e., close to TiHCXt), then
the CLU will be uploaded to the server late even if a relay
is used. To make this balance, FedMobile introduces a notion
called upload search interval defined by two parameters 6 and
O, where 0 < 0 < © < A (See Fig. 2). Client 7 will upload its
CLU via a relay only during the interval [} + 6, 73t + Q).
In addition, not every other client that client ¢ meets during the
search interval is qualified. We here define semi-qualified upload
relay and qualified upload relay as follows:

Definition 1: Client j is a semi-qualified upload relay if
Tj‘?e’“ < 718t 1 @, i.e., client j is able to relay client i’s CLU to
the server before the end of the search interval. Further, Client j
is a qualified upload relay if in addition T;‘e’“ < 7% e, client
7 can indeed deliver the CLU earlier than client ¢’s own server
meeting.!

't is possible that 7-71:“‘“ + © > 77! due to the fixed value of ©, so a semi-
qualified upload relay is not necessarily qualified.

10671

FedMobile picks the first qualified upload relay during the
search interval. Note that it is possible that no qualified upload
relay is met, in which case no uploading via relaying is per-
formed. The determination of setting parameters 6 and © will
be addressed in Section V, following the theoretical analysis of
their impact on convergence.

Upload Relay Mechanism: FedMobile implements a stream-
lined and storage-efficient mechanism to guarantee the delivery
of a specific piece of information to the server precisely once,
all while avoiding the need to retain client ID information.
When a CLU exchange event occurs at time ¢ involving a
sender client ¢ and a relay client j, the following steps are
employed:

RESET (by sender): After sending its current CLU m, sender
client 7 resets its CLU to m! := 0

COMBINE (by relay): After receiving m! from client 4, client
J updates it stored CLU m/ by incorporating mf, i.e., m} :=

In this way, FedMobile essentially offloads the uploading task
of mﬁ from client 7 to client j, who, by our design, has a sooner
server meeting time than client 7.

Remark: Upon transmission of the local update from the
sender (client) to relay (client 7), the local training processes
of both the sender and the relay remain unaffected. Specifically,
each continues to train locally based on their local models.
This process persists until each client reaches its next sched-
uled server communication, denoted as 7/°*'(¢) for client ¢ and
7I(t) for client j.

Remark: In FedMobile, a client has the capability to function
as both a sender and a relay between consecutive server meeting
times. When a client ¢ transmits message m! to client j, it is
possible that client 7 has already received CLUs (Client Local
Updates) from other clients. Consequently, the message m!
may contain CLUs associated with those other clients. In our
relay mechanism, the relay client is not required to store the
ID information of the sender client. Even if the relay client
were to gain knowledge of the sender client’s ID information,
it would still face substantial difficulty in determining which
clients” CLUs are included in the CLU sent by the sender client.
Due to the presence of CLUs mixed with unknown clients’ local
updates, the relay client faces significant difficulty in discerning
the personal privacy of the sender client.

Remark: For higher communication efficiency and/or better
privacy protection, the clients may send an altered CLU to the
relay for uploading. We discuss this extension and provide its
convergence analysis in the following subsection.

Upload Relay Protocol: In the upload relay process, the sender
client ¢ identifies a potential upload relay client 7 within the
communication range. Client ¢ initiates the process by sending
a ‘Beacon’ message to client j to inquire about its willingness
to serve as an upload relay. If client j agrees, it responds with
a ‘Willingness’ message, including its estimated next meeting
time with the server (T;‘e’“). Client ¢ then decides whether to
select client j as its upload relay based on T;e’“ and its own next
meeting time (77°). If client j is not chosen, client ¢ sends
an ‘Acknowledgement’ message to conclude the interaction.
Otherwise, client 7 transmits the CLU mf to client j, who

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10672

Sender Upload Relay Sender Upload Relay
BeaCOn %‘
gnes

If Yes If No

A
CknOWledgme
nt

Fig. 3. Upload relay protocol.

acknowledges receipt and concludes the process. This protocol
is depicted in Fig. 3.

B. Downloading Global Model Via Relaying

Download Timing and Relay Selection: Similar to the upload-
ing CLU case, when downloading a global model via relaying
also involves a trade-off. FedMobile introduces a download
search interval to make this balance, which is defined by two
parameters w and €2, where 0 < w <) < A (see Fig. 2). Given
client ¢’s next server meeting time 7/'°*', client ¢ will only down-
load a new global model via relaying during the search interval
[rPext — Q, 72Xt — w]. Similarly, We here define semi-qualified
download relay and qualified download relay as follows:

Definition 2: Client j is a semi-qualified download relay
if 7-]1-*‘“ > 7t — Q) ie., client j’s global model is less than
Q) time slots older than client ¢’s next global model directly
from the server. Further client j is a qualified download relay if
in addition TJI»“S‘ > 718t je., client j’s global model is indeed
fresher than client ¢’s current global model that it received
directly from the server.

FedMobile picks the first qualified download relay during the
search interval. Again, it is possible that no qualified download
relay is met, in which case no downloading via relaying occurs.
The determination of setting parameters w and €2 will be ad-
dressed in Section V, following the theoretical analysis of their
impact on convergence.

Download Relay Mechanism: To be able to relay a global
model to other clients, every client keeps a copy of the most
recent global model that it received (from either the server or
another client). We denote this copy for client j by %3 () where
1;(t) is the time version (or timestamp) of the global model.
Upon a global model exchange at time ¢ between a receiver
client ¢ and a relay client j:

REPLACE (by receiver): After receiving %) from client j,
client 4 replaces its local model with 2%, i.e., zt := 2% (),
and resumes the local training steps.

Remark: Client 7 also replaces its global model copy with
x5 (1) since it is a fresher version by our design. Thus, 1; (t) is
updated to 1) (¢).

Remark: An alternative to the current downloading scheme
is that relay client 7 simply sends its current local model a:§ to
client 7, who then replaces its current local model a:ﬁ with zt,
ie.,zl = x§ In this way, the clients do not have to keep a copy
of the most recent global model, thereby reducing the stored
data. The convergence analysis is not affected by this change

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Receiver Download Relay Download Relay

Receiver

Willingnes

If Yes

Fig. 4. Download relay protocol.

and the same convergence bound can be proved (see the proof
of Theorem 1).

Download Relay Protocol: In the download relay scenario,
the receiver (client) similarly sends a ‘Beacon’ message to a
potential download relay (client 7). Upon client j’s agreement,
indicated by a ‘Willingness’ message containing its last server
meeting time (le.a“), client ¢ compares this with its own last
meeting time (7). If client j is selected as the relay, client i
sends a ‘Confirmation” message, prompting client j to transmit
its stored global model version z%i(!) to client i, who then
acknowledges receipt. If client j is not chosen, client 7 directly
sends an ‘Acknowledgement’ message to conclude. This proto-
col is illustrated in Fig. 4.

C. Relaying Manipulated CLU

We present an extension of FedMobile where clients upload
manipulated CLUs via relaying. Two kinds of manipulation
operations are considered. The first is quantization and compres-
sion, which aim to reduce the size of the data being transmitted.
The second type involves perturbation, implemented to enhance
privacy protection. To avoid confusion, we let n! denote the
cumulative gradient update of client i’s own, which is not
combined with any CLUs received from other clients. We call
n} the private-CLU of client i.

Quantization: The quantization process is denoted by Q(-),
signifying the quantizer operator. To ensure that each local
update undergoes quantization exactly once, a client ¢, upon
encountering a suitable relay client j, will quantize its private-
CLU n! instead of the already stored CLU m. This approach is
taken because m! may include CLUs from others who have used
client ¢ as a relay, and these have been previously compressed.
Consequently, during the upload relay from client ¢ to client
J, there is a quantization-related discrepancy represented as
Q(nt) — nt, in contrast to scenarios without quantization.

Perturbation: When client ¢ uploads CLUs to a relay client j,
it may incorporate a noise term, such as Gaussian Noise p!, to
safeguard its privacy.

Although quantization and perturbation effects differ, they
can both be conceptualized as introducing a variation term in
the original upload transmission. For simplicity and clarity, this
difference is denoted as €!. During the upload relay, if quantiza-
tion is employed to reduce data size, €, = Q(n!) — n! represents
the discrepancy introduced by quantization. In contrast, when
perturbation is used to increase privacy, e/ = ! signifies the
added noise.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING

Upload Timing and Relay Selection: This is the same as the
original FedMobile strategy.

Upload Relay Mechanism: Upon a CLU exchange event at
time ¢ between a sender client ¢ and a relay client j:

RESET (by sender): Before sending the CLU to the relay 7,
the sender first records the noise eﬁ. Then the manipulated CLU,
i.e., mi =m! + €, is sent to the relay. The sender then resets
its CLU to m! := —e! and its private CLU to n! := 0.

COMBINE (by relay): After receiving m! from client 4, client
J updates it stored CLU m/ by incorporating 7}, i.e., m} :=
mé- + mk.

Remark: With the help of relay, the server could get the client
i’s manipulated CLU 7} = m! + ¢! sooner. Note that in the case
of the manipulated CLU, the sender’s CLU is reset to m! := —¢!
instead of m} := 0. This reset ensures that when client i itself
reaches the server, its uploaded CLU includes ,eg, effectively
correcting the previously received manipulated CLU ! back

to m!.

V. CONVERGENCE ANALYSIS
A. FedMobile With CLU

Our analysis utilizes the following assumptions.

Assumption I (Lipschitz Smoothness): There exists a constant
L > 0 such that |V f;(z) — Vfi(y)|| < L|z —yl|, Va,y € R?
andVi=1,...,N.

Assumption 2 (Unbiased Local Gradient Estimate): Thelocal
gradient estimate is unbiased, i.e., Ec F;(z, () = V f;(z), YV and
Vi=1,...,N.

Assumption 3 (Bounded Variance): There exists a constant
o >0 such that E[|VF;(x,() — Vfi(2)|?] < o2, Vo e RY
andVi=1,...,N.

Assumption 4 (Bounded Second Moment): There exists a
constant G > 0 such that E[| VF;(z, ¢;)||*] < G2, ¥z € R? and
Vi=1,...,N.

The real sequence of the global model is calculated as

N
1)
at =20 — N g ng;, Vvt 5)

where we define ¢;(¢) to be the time slot up to when all corre-
sponding gradients of client ¢ have been received at time ¢. In
the vanilla asynchronous FL case, ¢;(t) is simply 7/2(¢) — 1.In
FedMobile, ¢;(t) > 7/3(t) — 1 because more information can
be uploaded earlier than ¢ due to relaying.

We also define the virtual sequence of the global model, which
is achieved in the imaginary ideal case where all local gradients
are uploaded to the server instantly at every slot,

N t—1

W=w“—%§:§:wiw (6)

i=1 s=0

First, we bound the difference (¢ — 1) — ¢;(t), which char-
acterizes how much CLU information of client ¢ is missing
compared to the virtual sequence.

Lemma 1: Assuming at least one semi-qualified upload re-
lay client exists in every upload search interval, then we

10673

have (t—1)— ¢;(t) < max{A — 0,0} £ C(0,0;A),Vi =
1,...,N,Vt.

Proof: 1t is obvious that if the server meeting time interval
TXU(E) — rlast(3) < O, then (t — 1) — ¢ (t) =t — 784(t) < ©
already holds. Otherwise, for all ¢ < 7/%(¢) + ©, then (t —
1) — ¢;(t) =t — 713(¢) < © also holds. Thus, we only need
to consider the case 7/(t) — 7/%(¢) > © and for time slot
t > 7I84(¢) + ©. In this case, a semi-qualified relay client is
also a qualified relay client because

T (E) + O < TN (t) %

By the assumption that at least one semi-qualified relay exists in
the search interval, at least one qualified relay must exist. This
further implies that the qualified relay client is able to upload a
CLU before t. Because this CLU contains gradients of client i for
at least 6 steps since 7/%(t), we have ¢;(t) > 71%(¢t) + 6 — 1.
Therefore,

(t=1) = ¢u(t) = (t = 7™(1) + (™(8) — &u(t) — 1)
<A @®)

To summarize the above cases, (t — 1) — ¢;(t) < max{A —
0,0} is established. O

Next, we bound the difference ¢ — v;(t), which characterizes
the version difference between the current global model and
client ¢’s copy of the global model.

Lemma 2: Assuming at least one semi-qualified download
relay exists in every download search interval, we have t —
¥i(t) < max{A —w,Q} £ D(w, % A),Vi=1,...,N,Vt.

Proof: Lett’ be the meeting time between receiver client ¢ and
relay client j. Clearly, 7/ — Q) < T}“S‘(t) <t <7 —w by
the definition of the search interval.

Fort < ¢, client i has not met client j yet, so 1; (t) = 7184(¢).
Therefore,

t— ¢z(t) =t — T;aSt(t) < t’ _ T}ast(t)

< TN —w— T <A —w ©)

For¢ > t/, client ¢ has met client j, so ; (t) > 7/*(t). There-
fore,

t—api(t) <t —T(t) <t — (PN(t) —

i Q)< (10

To sum up, t — v;(t) < max{A —w, Q} O
The following lemma then bounds the model differences in
the real sequence and the virtual sequence.
Lemma 3: The difference of the real global model and the
virtual global model is bounded as follows
E [[Jo* —2'|*] < C*(9,0; A)n*G? (11)

For each client 7, the difference of its local model and the virtual
global model is bounded as follows

E [lv" — z]”] <3(2D*(w, 2 A) + C*(8,0; A))P’G?
(12)

Proof: The proof is shown in the supplementary material. [J

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10674

Now, we are ready to bound the convergence of the real model
sequence achieved in FedMobile.

Theorem 1: Assuming at least one semi-qualified upload
(download) relay exists in every upload (download) search in-
terval, by setting n < 1/L, after T time slots, we have

T-1

1 s 4 o ey 2Lmo?
ftZOE[HWMé;T(f(x)—fH i
+4(3D*(w, Q; A) +2C2(6,0; A)) L0 G? (13)

Proof: The proof is shown in the supplementary material. []
Remark: The convergence bound established in Theorem 1
contains three parts. The first part diminishes as 7" approaches
infinity. Both the second and third terms are constants for a
constant 7, with the second term depending on our algorithm
parameters 6, O, w and). For a given final step T, one can set

n= % so that the bound becomes
4L 0 202
— (f(2”) =)+
= (fe) = 1) + =
4N

+ T(31)2(w, Q; A) +20%(0,0; A))G? (14)
Furthermore, if T > N3, the above bound recovers the same
O(\/ﬁ) convergence rate of the classic synchronous FL [5] .2
Next, we discuss the above convergence result in more detail
and investigate how the mobility affects the convergence. To
this end, we consider for now a fixed client-client meeting rate
p, and investigate how the convergence result depends on our
algorithm parameters.

Bound optimization: Since the convergence bound can be
improved by lowering C'(0,0;A) and D(w,$; A), we first
investigate them as functions of the algorithm parameters.

Proposition 1: (1) C(0,0;A) is non-decreasing in © and
non-increasing in 6. Moreover, V0,0, C(6,0;A) > %, and
the lower bound is attained by choosing 6 = O = %. 2)
D(w, 2; A) is non-decreasing in {2 and non-increasing in w.
Moreover, Yw,), D(w,Q; A) > %, and the lower bound is
attained by choosing w = {2} %.

Proposition 1 implies that one should use shorter search
intervals, namely © — 6 and 2 — w, to lower C'(0,©; A) and
D(w, 2; A). However, the best C' and D are no smaller than %,
which are achieved by choosing § = © = % andw = = %.
In other words, a short upload search interval around the time
st 4 % and a short download search interval around the time
TPext — % improve the FL convergence. This suggests that the
best timing for uploading is at exactly 7/ 4+ % and the best
timing for downloading is at exactly 77 — %, which are neither
too early nor too late in both cases.

Probability of meeting a semi-qualified relay: The conver-
gence bound in Theorem 1, however, is obtained under the
assumption that a client can meet at least one semi-qualified
upload (download) relay client in each upload (download) search

There is a subtle difference because 7" in the asynchronous setting is the

number of time slots while in the synchronous setting 7" is the number of rounds.
However, they differ by at most a factor of A.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

interval, which may not always hold. How easily a client can
find a semi-qualified relay client depends on the client-client
meeting rate. In the VANET example, this rate depends on the
D2D communication range.

Let @, (0, 0) (and Qq4(w, 2)) be the probability that at least
one semi-qualified uploading (download) relay is met in an
uploading (download) search interval with length © — 6 (and
Q) — w). They are characterized as follows

Proposition 2: Assuming sufficiently many clients in the
system and that clients meet each other uniformly randomly.
Let P (+) be the distribution of server meeting intervals. Then
Qu(0,0) =1 -TI7 (1 — pgu(© — 0 — t)) and Qq(w, Q) =
1= TT58 (1 = pga(t)), where g, (+) and gg(-) are distributions
computed based on Py (-).

Proof: The proof is shown in the supplementary material. [

Proposition 2 states an intuitive result that one should use a
larger search interval to increase the probability of meeting a
semi-qualified relay. This, however, is not desirable for lower-
ing the convergence bound according to Proposition 1. This is
exactly where mobility can help improving the FL convergence:
by increasing the client-client meeting rate p, a shorter search
interval © — 6 (or 2 — w) can be used to achieve the same Q,,
(or Qg), but a smaller C' (or D) is obtained. In fact, by relaxing
the constraint that a client can only meet one other client at a
time slot, with sufficiently many clients in the system, both @,
and)4 can approach 1 even if the search interval is just one slot.

B. FedMobile With Manipulated CLU

Then we validate the convergence of FedMobile with manip-
ulated CLU uploading. We first state an additional assumption
on the noise term €.

Assumption 5 (Bounded Error): The noise term ¢; is bounded,
ie., E[|[ef|?] < qE[||nt]|?], Vi = 1,..., N, Vt for some positive
real constant q.

The corrupted real sequence can be written as

Z ei7Vt

€Uy

1
Nt_t
rer +N

15)
where we define U, as the set of clients for whom only corrupted
CLUs have been received by the server via the relay, and |Uy]|
is the size of U;. The real sequence ! is the imaginary real
sequence where the noise is not added.

Lemma 4: The difference of the corrupted real global model
and the virtual global model is bounded as follows

E [[Jo — 2'|*] <2C*(0,0; A)*G* +2¢0°°G* (16)

For each client 7, the difference of its local model and the
virtual global model is bounded as follows

E [[lv* = 2i]*] < 6(D*(w, 2 4) + C*(0,0;A) + ¢0%)n*G?
(17)

Proof: The proof is shown in the supplementary material. [J
Theorem 2: With manipulated CLU uploading, assuming at
least one semi-qualified upload (download) relay client exists
in every upload (download) search interval, by settingn < 1/L,

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING

Virtual Sequence (Ideal)
j— FedMobile (Upload multiple times)
— — —FedMobile (Upload once)
o Vanilla Asynchronous FL

® ©

<

CLU received (by the server)

o kN oW & v oo

'

0 1 2 3 4
last next

rlas T

Fig. 5. Uploading.

Virtual Sequence (Ideal)

..... FedMobile (Download multiple times)
— — - FedMobile (Download once)
o e Vanilla Asynchronous FL

® o

<

o kN oW A G oo

001 2 3 4 5
last next
i i

Version of the GM received (by the client)
~
=

Fig. 6. Downloading.

after 7" time slots, we have

2Lno?

TZE IVFEOIF) < o7 (P = £) + =

+4(3D*(w, Q; A) +4C2(0,0; A) + 4g0*) L*1*G* (18)
Proof: The proof of Theorem 2 follows the proof of Theo-

rem 1 by replacing Lemma 3 with Lemma 4. (]

Remark: With setting n = L\\ﬁﬁ’

tablished in Theorem 2 becomes

the convergence bound es-

4L 0 g 202
I =10
+%(3D2(L A) +4C%(0,0; A) +4¢0°)G* (19)

Furthermore, if 7 > N3, the above bound recovers the same
O(ﬁ) convergence rate of the classic synchronous FL [5].

VI. THE GENERAL CASE

FedMobile can be easily extended to allow multiple upload
(download) relay communications between any two consecutive
server meetings. We will still have the upload (download) search
interval, and FedMobile will simply pick the first K qualified
upload (download) relays to perform the upload (download)
relay communications. The exact mechanisms of how uploading
(downloading) is performed will be slightly changed to handle
out-of-order information and avoid redundant information. Our
convergence analysis still holds correctly for this generalized
case, although the bound may become looser compared to the
actual performance.

Figs. 5, 6 illustrate the key ideas behind FedMobile. Fig. 5
plots hypothetical sequences of CLUs received by the server
from a representative client between two consecutive server
meetings. The virtual sequence is the ideal case where each local
stochastic gradient g! is uploaded to the server instantly after

10675

it is computed. Therefore, the received CLU curve is a steady
staircase. In the vanilla asynchronous FL, the client uploads the
CLU only when it meets the server. Therefore there is a big jump
at the next server meeting time but it is all O before. FedMobile
with at most one upload relaying allows some local stochastic
gradient information to be received by the server earlier. The
generalized FedMobile allows more CLUs to be relayed and
received by the server at earlier time slots. One can imagine that
when p is large enough, it becomes much easier for the client to
find qualified relays that can quickly upload CLUs to the server at
every time slot. Therefore, the received CLU curve approaches
that in the ideal case. Similarly, Fig. 6 plots the hypothetical
sequence of the global models received by the client.

VII. EXPERIMENTS
A. Setup

We implement FL simulation on the Pytorch framework and
perform the model training on one Geforce RTX 3080 GPU.
All experiment results are averaged over 3 repeats. To simulate
communications among the clients, at each time slot, we uni-
formly sample pN clients over total N clients and randomly
construct % client pairs. Any two clients in the same pair
are simulated to communicate. We conduct experiments on a
synthetic dataset and two real-world datasets, i.e., FMNIST [39]
and CIFAR10 [40].

Synthetic dataset: The synthetic dataset is generated on a
least-squares linear regression problem. Each data sample has
a 200-dimensional feature vector and its real-valued target is
calculated as the vector product of the feature and an underlying
linear weight plus a 0-mean Gaussian noise. The FL system has
50 clients with each client having 40 data samples. The default
training hyper-parameters are: learning rate equals 0.01, learning
rate decay factor equals 0.99 until learning rate reaches 0.0001,
training batch size equals 128, the total number of training time
slots equals 150, default upload parameters § = 10, © = 40 and
default download parameters w = 5, 2 = 25.

FMNIST: The FL system has 50 clients with each client having
400 data samples. We utilize the Dirichlet function (o = 0.3)
which is typically utilized to simulate the level of non-IID in FL.
We use LeNet [41] as the backbone model. The default hyper-
parameters are: learning rate equal to 0.1, learning rate decay
factor equals to 0.99 until learning rate reaches 0.001, training
batch size equals 128, the total training time slots equals 250,
defaultupload parameters § = 10, © = 40 and default download
parameters w = 5, {2 = 25.

CIFARIO: The FL system has 50 clients with each client
having 600 data samples. The data allocation method is the same
as that used for FMNIST. We use ResNet-9 [42] as the back-
bone model. The training configuration details are as follows:
learning rate equals 0.01, training batch size equals 128, the
total number of training time slots equals 500, default upload
parameters 6 = 10, © = 40 and default download parameters
w=235,0=25.

Benchmarks: The following benchmarks are considered in
our experiments. (1) ASYNC: This is the state-of-the-art asyn-
chronous FL method proposed in [12] to handle arbitrary com-
munication patterns. (2) Virtual-U: This method assumes that

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10676

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

—— FedMobile
FedMobile-U

—— FedMobile-D

—— ASYNC

1250 1250

—— FedMobile 8 =0, © = 25
\ FedMobile 6 =12, © = 37
= FedMobile 8 = 25,0 = 50
=~ ASYNC

1000 \

-
1<
=3
=3

~
a
o
~
a
1=

Test Loss

Test Loss
3
o

%]
S
o

N
o
=]
N
I
o

1250 ~—— FedMobile w=0,0Q = 25
FedMobile w =12, 0= 37
~— FedMobile w = 25, Q= 50

— ASYNC

N

1250 —— FedMobile p=0.8
FedMobile p=0.2

1000 —— ASYNC

-
1<
=3
=3

750

Test Loss
>
o

Test Loss
g
o

500

250

N
a
o

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Time Slot Time Slot Time Slot Time Slot
(a) (b) (© (d
1250 —— FedMobile 1250 —— FedMobile 1250 —— Virtual-U 1250 — Virtual-D
Multiple Upload Relays Multiple Download Relays ASYNC ASYNC
» 1000 == ASTNC » 1000 L ASYNC » 1000 & 1000
v v v [
o o o o
=750 = 750 3 750 3 750
@ @ @ B
4 4 4 o 500
500 = 500 500 =
250
250
250 250
0
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Time Slot Time Slot Time Slot Time Slot
(e) ® (@ (h)

Fig. 7.
Multiple Downloads. (g) Virtual Upload. (h) Virtual Downloads.

each client can upload its local updates immediately to the server
atevery slot via an imaginary channel but can only download the
global model at their actual communication slots. (3) Virtual-D:
This method assumes that each client can download the global
model from the server at every slot via an imaginary channel
but can only upload their CLUs at their actual communication
slots. We also consider several variations of FedMobile. (1)
FedMobile: This is the proposed algorithm combining both
upload and download relay communications. (2) FedMobile-U:
This is the proposed algorithm with only upload relaying. (3)
FedMobile-D: This is the proposed algorithm with only down-
load relaying.

Communication Patterns: We consider four distinct commu-
nication patterns in total. Three of these patterns simulate asyn-
chronous communication with the server. The Fixed-Interval
pattern involves each client 7 € {1,...,50} communicating
with the server at intervals defined by the slots i + 50n, Vn =
0,1,2,....

For Random-Interval, each client 7 first communicates with
the server at slot 7, and then continues to communicate at random
intervals ranging between 30 and 50 slots.

The Random-Interval (Exponential) pattern is similar, with
the first communication of each client ¢ € {1, ..., 50} occurring
at slot 7. However, subsequent communications with the server
follow an exponentially distributed pattern with a mean of 30-
time slots. The distribution is truncated (with a maximum of
80-time slots) to ensure that the intervals between consecutive
server meetings remain bounded.

Lastly, we simulate a Smart Public Transportation commu-
nication pattern, aiming to mimic a real-world public transporta-
tion system. This pattern reflects communication structures in
four actual bus routes used in Miami, where we envision RSUs
being installed.

Our main objective is to enhance the convergence speed in
the asynchronous FL setting. It is important to mention that
in the experimental results presented below, both FedMobile
and the baselines eventually achieve convergence. However, to
better highlight the difference in convergence speed between

Results on the synthetic data. (a) Performance. (b) Upload Search Inter. (¢) Download Search Inter. (d) Client Meeting rate. (¢) Multiple Uploads. (f)

FedMobile and the baselines, we have chosen not to plot the
final convergence stage due to the space limitation. We intend
to demonstrate that when targeting a specific test accuracy, the
utilization of FedMobile leads to a reduction in the required
number of time slots.

B. Results on Synthetic Data

Fig. 7 reports the results (averaged over three repeats) on
the synthetic data with a fixed-interval communication pattern.
Fig. 7(a) compares FedMobile and its variations with ASYNC
in terms of the test loss. As can been seen, incorporating either
upload or download relaying into asynchronous FL improves
the FL performance, and a further improvement can be achieved
when uploading and downloading are combined. Fig. 7(b) and
(c) illustrates the impact of upload/download search interval on
the FL convergence. In both cases, the best search timing is
around the middle point of the two consecutive server meeting
times, confirming our theoretical analysis in Theorem 1 and
Proposition 1. Fig. 7(d) shows the impact of p on the FL con-
vergence. As predicted by our analysis, a higher p in the system
improves FL convergence since more timely relay communica-
tion opportunities are created. In Fig. 7(e) and (f), we allow
clients to use multiple relays to create more communication
opportunities with the server whenever possible. The results
show that further improvement can indeed be achieved. We also
conduct experiments on the ideal relaying scenarios, namely
Virtual-U and Virtual-D, to illustrate what can be achieved in
the ideal case. The results verify our hypothesis that more com-
munication opportunities with the server benefit convergence. It
is also interesting to note that virtual uploading/downloading has
a more significant impact on the early/late FL slots, suggesting
that an adaptive design may better balance the FL performance
and the resource cost.

C. Results on CIFARIO

We now report the results (averaged over three repeats) on
CIFAR10. We validate that our proposed method, FedMobile

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING

06
477 °°
0s 05
9 9
< 04 < 04
2 2 17.5%
Qo3 o3 7
Reduced by: 18.1% Reduced by: 22.5%
0.2 02
~—— FedMobile ~—— FedMobile
01 ASYNC 01 ASYNC
0 100 200 300 400 500 o 100 200 300 400 500

Time Slot Time Slot

(@) (b)

Fig. 8. Performance comparison on CIFAR10. (a) CIFARI1O0 (fixed). (b) CI-
FARI10 (random).

31.8%
35.4%
27.4%
35.1% 03

06 82
5 63

Test Acc

“ Reduced by: Reduced by:

—— FedMobile
ASYNC

~— FedMobile
ASYNC 01

o 0 100 150 200 250 0 50 100 150 200 250
Time Slot Time Slot

(a) (b)

Fig. 9. Performance comparison on FMNIST. (a) FMNIST (fixed). (b) FM-
NIST (random).

can achieve a better convergence speed than ASYNC on
CIFAR10 under both Fixed-Interval and Random-Interval
settings in Fig. 8. Note that the main point of our paper is utilizing
relays to improve the convergence speed. Hence, by setting a
target accuracy level and comparing the required number of
time slots to reach it, the notable advancements of FedMobile
are evident. For a specific example, to achieve 60% accuracy
under fixed-interval setting, ASYNC needs about 384 slots
while FedMobile only needs 477 slots. The required time slot
decreases by 19.5%.

D. Results on FMNIST

Then we report the results (averaged over three repeats)
on FMNIST. Fig. 9 shows that FedMobile achieves a better
convergence speed than ASYNC on FMNIST under both the
Fixed-Interval and Random-Interval settings.

Scalability Analysis: To validate the scalability of our pro-
posed FedMobile method, we conduct supplementary experi-
ments under a Fixed-Interval setting. Initially, we set the in-
terval at 50-time slots, aiming to evaluate whether FedMobile
maintains its superiority over the baseline method as the interval
increases. With a constant number of clients, we extend the
interval to 70-time slots and adjust the upload/download search
intervals accordingly (i.e., # = 20,0 = 60,w = 10, = 30).
The outcomes, depicted in Fig. 10(a), affirm that FedMobile
surpasses the baseline method.

Furthermore, we validate FedMobile’s performance with an
increased client count. Maintaining the fixed interval at 50-time
slots, we augment the client number from 50 to 100, with each
client possessing 400 data samples exhibiting a non-IID degree
of o = 0.3. The findings, showcased in Fig. 10(b), reveal that
FedMobile consistently exceeds the baseline method. Notably,
the inclusion of more clients accelerates the training process
for both FedMobile and the baseline method, with FedMobile

10677

—— FedMobile
ASYNC

—— FedMobile (N=50)
ASYNC (N=50)
—— FedMobile (N=100)

o —— ASYNC (N=100)

0 5 100 150 200 250 300 0 50 100 150 200 250
Time Slot Time Slot

(a) (b)

Fig. 10. Performance comparisons under various configs. (a) Larger commu-
nication intervals. (b) Larger amount of clients.

Test Acc
o
s
Test Acc

—— FedMobile
FedMobile-U

—— FedMobile-D

—— ASYNC

—— FedMobile

FedMobile-U
—— FedMobile-D 02
— ASYNC 01

0 50 100 150 200 250 0 50 100 150 200 250
Time Slot Time Slot

(@ (b)

Fig. 11. Effect of upload/download relay. (a) Upload/download (fixed). (b)
Upload/download (random).

—— FedMobile
Multiple Upload Relays 0.2
—— ASYNC 01

—— FedMobile
Multiple Upload Relays
—— ASYNC

0 50 100 150 200 250 0 50 100 150 200 250
Time Slot Time Slot

(a) (b)

Fig. 12. Effect of multiple upload relays. (a) Multiple upload (fixed). (b)
Multiple upload (random).

continually demonstrating superior performance. These experi-
ments collectively attest to the scalability of FedMobile across
diverse configurations.

Effect of Upload/Download: Under both communication pat-
terns, Fig. 11(a) and (b) demonstrate that while upload and
download relay communications individually can improve the
FL convergence performance, combining them results in an
additional benefit.

Multiple Relays: In the previous result of the synthetic dataset,
we find that both multiple uploads relays and multiple down-
loads relays can improve FedMobile’s convergence speed. In
the real-world dataset experiments, Fig. 12(a) and (b) show that
using multiple upload relay communications further improves
the FL convergence performance. However, we observed in our
experiments that this is not the case with using multiple down-
load relay communications. This is likely due to the complexity
of real-world datasets, which causes the assumptions for our
theoretical analysis to be violated. This represents a limitation
of our current analysis and requires further investigation.

Virtual-U and Virtual-D: To further present the different
effects between multiple uploads and multiple downloads, we
consider two ideal cases. Virtual-U and Virtual-D work as the
ideal cases for upload relaying and download relaying and hence
we conduct experiments to investigate their performance on

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10678
081
071
061
"
gos
g oay
R
037
021 v = Virtual-u
014 A ASYNC
o 50 100 150 200 250 o 50 100 150 200 250
Time Slot Time Slot
(a) (b)
Fig. 13. Virtual-U on FMNIST. (a) Virtual-U (fixed). (b) Virtual-U (random).
08
—— Wirtual-D —— Virtual-D
a7y ASYNC 2 07 ASYNC
061 06
gosy g os
< <
3041 04
g p 3
F o3 " o3
017 LT o011 =
0o 50 100 150 200 250 o 50 100 150 200 250
Time Slot Time Slot
(a) (b)
Fig. 14. Virtual-D on FMNIST. (a) Virtual-D (fixed). (b) Virtual-D (random).
081 08
077 07
06 06
"
Gos{ ;.;' 0s
B 0a % 04
F o — FedMobile 8=0,6=25 | - o, — FedMobile w=0,0=25
FedMobile 8=12,0=37 FedMobile w=12,0= 37
02 —— FedMobile 6= 25,0=50 0z —— FedMobile w=25,0=50
01 — ASYNC 01 — ASYNC
0 50 100 150 200 250 0 50 100 150 200 250
Time Slot Time Slot
(a) (b)
Fig. 15. Effect of upload/download Interval. (a) Upload Search Inter.

(b) Download Search Inter.

the real-world dataset. Figs. 13 and 14 report the performance
of Virtual-U and Virtual-D on FMNIST with both fixed and
random interval communication patterns. Similar to Fig. 7(g)
for the synthetic data, Fig. 13(a) and (b) show that Virtual-U
can greatly improve the convergence performance. However,
different from Fig. 7(h) for the synthetic data, Fig. 14(a) and (b)
show that Virtual-D fail to converge on the real-world dataset.
We conjecture that this is likely due to the complexity of the
real-world dataset where some of the assumptions needed for
our theoretical analysis do not strictly hold. However, as Fig. 11
shows, using one-time download relaying still has benefits on
the convergence even in the real-world dataset.

Setting of upload/download interval: Our theoretical anal-
ysis emphasizes the importance of precise timing in both the
upload and download relay mechanisms. To achieve optimal
performance and avoid relay operations that occur too early
or too late, it is crucial to carefully set the parameters for the
upload/download search interval. These parameters should be
around the median value of the maximum time interval (denoted
as A) between consecutive server communications. This concept
is demonstrated in Fig. 15, where adjusting the upload/download
parameters around the midpoint of A yields relay timings that
result in the best convergence speed.

However, it’s worth noting the marginal variability among the
three download search intervals depicted in Fig. 15(b). To better
comprehend the impact of download relay timing, we devised
a hypothetical scenario wherein each client could download the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Test Acc

—— After 30 rounds
After 49 rounds
—— After 1 round
75 100 125 150 175 200
Time Slot

Fig. 16. Download time.
o7
06
3 0s
<
£ 4 04
.E' 03
—— FedMobile
02 FedMobile (W/O T"*)
o1 ~— ASYNC
o 50 100 150 200 250
Time Slot
Fig. 17. Unknown next meeting time under the Random-Interval (Exponen-
tial).
081 [X:]
07 ‘ 07
06] 06
S os ‘ Jos
; 04 ‘ ; 04
&% &
°3" —— FedMobile p=08 03 —— FedMobile p=08 |
02 “ FedMobile p=02 02 FedMobile p=02 |
01 1 ! 7. ASYNC 01 = ASYNC]
o 52] ID.O 150 21;0 2;0 6 S'O 160 1;0 21;0 2;0
Time Slot Time Slot
(a) (b)
Fig. 18. Client meeting rate effect. (a) Client meeting rate (fixed). (b) Client

meeting rate (random).

global model 1/30/49 time slot(s) after their last server inter-
action. The outcome, as illustrated in Fig. 16, unambiguously
demonstrates that the optimal download relay timing should
steer clear of being too early or too late.

Unknown Next meeting time: We further evaluate our pro-
posed method using the Random-Interval (Exponential) pat-
tern. We here analyze two distinct scenarios: one in which clients
are informed of their next meeting time with the server, and
another where this time is not known. In the latter case, the
expected value of the exponential distribution is used to predict
the timing of the next server interaction. As illustrated in Fig. 17,
our findings reveal that FedMobile consistently outperforms the
baseline, regardless of whether it employs precise next meeting
time data or estimates based on the expected value of the
exponential distribution.

Client-Client Meeting Rate: We further investigate the effect
of client-client meeting rate under the fixed and random-interval
communication pattern. Fig. 18(a) and (b) shows that the higher
client-client meeting rate improves convergence speed.

Relaying Manipulated CLU: We test two types of manip-
ulation. In the first type, we directly add Gaussian noises to
the relayed CLU. Fig. 19 shows the convergence curves under
different amount of noises. (e.g. Gaussian Noise AV, (0, 0.01) and
Gaussian Noise A2(0,0.001)). In the second type, we utilize the
low precision quantizer in [43] to quantize the CLU before relay-
ing. Here the quantization level is defined as s. Fig. 20 shows the
convergence curves under different quantization levels. In both

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING

<
ﬁ 04
= 03
02 ~— FedMobile-Noise 0.01
FedMobile-Noise 0.001
(5% — ASYNC
o 50 100 150 200 250
Time Slot
Fig. 19. Noise level.
o8
07
06
S os
<
% 04
= 03
~— FedMobile(s=3)
02 FedMobile(s=1)
01 ~— ASYNC
0 50 100 150 200 250
Time Slot
Fig. 20. Quantization.
w0 1 Storoge (verage
a0e 1z
oy reawae
.
3
3
.
2
s % N
Time Slot:
Fig. 21. Storage efficient.

cases, FedMobile still outperforms the baseline method provided
that the added noise is small or the adopted quantization level is
low.

Storage Efficient In FedMobile, we employ the RESET
and COMBINE actions to establish a streamlined and storage-
efficient method that ensures precise, one-time delivery of spe-
cific information to the server, without retaining client ID infor-
mation. Compared to the approach of recording each received
client ID and storing each local update separately at the relay
client, FedMobile’s storage mechanism exhibits significantly
higher efficiency, as illustrated in Fig. 21.

FedMobile in Smart Publication Transportation: We here
contemplate implementing our suggested method, FedMobile,
in a more real-world communication pattern scenario, such as
smart public transportation. This pattern embodies communi-
cation structures seen in four actual bus routes operating in
Miami between West Kendall (WK) and Dadeland South (DS),
assuming the installation of RSUs. For simplicity, and without
losing generality, we posit that two RSUs are positioned at
the two destinations (West Kendall and Dadeland South). We
hypothesize that on each bus line, there are 12/13 buses (totaling
50 buses for all 4 lines) that begin from different starting points at
the commencement of the training process. On each line, 5 buses
initiate their route from West Kendall to Dadeland South, while
the remaining 5 start from Dadeland South heading towards
West Kendall. Each bus will switch its direction upon reaching
the terminal (either Dadeland South or West Kendall) and will
continue operating on its route throughout the entire training
process. This arrangement is visually represented in Fig. 23.
Aligning with the real-world settings, we consider the buses
to travel at a speed between 0.4 to 0.6 miles per minute. The

10679

~— FedMobile
ASYNC

0 50 100 150 200 250
Time Slot

Fig. 22. Performances (smart publication transportation).
Bus Lines
125
1.00
075
— 050 S=—=-=c=2
[
£
E o025 ’ lDS
>
0001 W
=== Bus Line 272
~0.25 m— Bus Line 288
. * = Bus Line 88
[] Bus Line 204
-0.50 % Bus moves from WK to DS
* L * * * ° @ Bus moves from DS to WK
0 2 a4 6 8

X (miles)

Fig. 23. An illustration of smart public transportation is provided, using four
real bus lines in Miami.

time slot, defined as the duration required for one round of local
training, is set to 30 seconds. The V2V communication range is
fixed at 0.6 miles. To simulate the training, we employ the local
client data distribution as described by FMNIST in the setup
section. The outcomes presented in Fig. 22 confirm that our
recommended method, FedMobile, surpasses the performance
of the state-of-the-art Asynchronous FL. method, ASYNC.

VIII. CONCLUSION

This paper focuses on the design of asynchronous Federated
Learning (FL) algorithms for practical systems where contin-
uous client-server communication is not always available. We
emphasize the importance of client mobility and the resulting
random client-client communication opportunities in facilitating
timely information exchange for model training in asynchronous
FL. To harness the advantages of additional client-client com-
munication, we propose a new FL algorithm called FedMobile.
FedMobile not only accelerates convergence but also maintains
storage efficiency and prevents duplicate update transmission.
We provide a detailed convergence analysis and conduct exten-
sive experiments to validate our proposed method. The results
demonstrate that FedMobile significantly improves convergence
speed. We believe that FedMobile has the potential to advance
distributed machine learning, especially FL, in various real-
world systems such as mobile gaming, mobile sensing, and smart
vehicular networks.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Statist., 2017, pp. 1273-1282.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10680

[2]

[3]

[4]

(5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-1ID data,” in Proc. Int. Conf. Learn. Representations,
2019.

A. Khaled, K. Mishchenko, and P. Richtérik, “Tighter theory for local
SGD on identical and heterogeneous data,” in Proc. Int. Conf. Artif. Intell.
Statist., 2020, pp. 4519-4529.

H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial
worker participation in non-IID federated learning,” in Proc. Int. Conf.
Learn. Representations, 2020.

H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averag-
ing works for deep learning,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 5693-5700.

M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications for
collaborative federated learning,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 48-54, Dec. 2020.

Y. Li, D. Yuan, A. S. Sani, and W. Bao, “Enhancing federated learning ro-
bustness in adversarial environment through clustering non-IID features,”
Comput. Secur., vol. 132, 2023, Art. no. 103319.

Y. Li, L. Zhong, D. Yuan, H. Chen, and W. Bao, “ICB FL: Implicit
class balancing towards fairness in federated learning,” in Proc. Australas.
Comput. Sci. Week, 2023, pp. 135-142.

Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving
traffic flow prediction: A federated learning approach,” IEEE Internet
Things J., vol. 7, no. 8, pp. 7751-7763, Aug. 2020.

Y. Zheng, S. Lai, Y. Liu, X. Yuan, X. Yi, and C. Wang, “Aggregation service
for federated learning: An efficient, secure, and more resilient realization,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 2, pp. 9881001,
Mar./Apr. 2023.

A. Guerna, S. Bitam, and C. T. Calafate, “Roadside unit deployment in
internet of vehicles systems: A survey,” Sensors, vol. 22, no. 9, 2022,
Art. no. 3190.

D. Avdiukhin and S. Kasiviswanathan, “Federated learning under arbi-
trary communication patterns,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 425-435.

Y. Liu, L. Xu, X. Yuan, C. Wang, and B. Li, “The right to be forgotten in
federated learning: An efficient realization with rapid retraining,” in Proc.
IEEE Conf. Comput. Commun., 2022, pp. 1749-1758.

J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “SlowMo: Improving
communication-efficient distributed SGD with slow momentum,” in Proc.
Int. Conf. Learn. Representations, 2019.

W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learning
via momentum gradient descent,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 8, pp. 1754-1766, Aug. 2020.

J. Kone¢ny, H. B. McMahan, D. Ramage, and P. Richtdrik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
2016, arXiv:1610.02527.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,
“SCAFFOLD: Stochastic controlled averaging for federated learning,” in
Proc. Int. Conf. Mach. Learn., 2020, pp. 5132-5143.

1. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré, “Asynchrony begets mo-
mentum, with an application to deep learning,” in Proc. IEEE 54th Annu.
Allerton Conf. Commun. Control Comput., 2016, pp. 997-1004.

S. Hadjis, C. Zhang, 1. Mitliagkas, D. Iter, and C. Ré, “Omnivore: An
optimizer for multi-device deep learning on CPUs and GPUs,” 2016,
arXiv:1606.04487.

J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous SGD,” 2016, arXiv.:1604.00981.

S. Zheng et al., “Asynchronous stochastic gradient descent with delay
compensation,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 4120-4129.
W. Dai, Y. Zhou, N. Dong, H. Zhang, and E. Xing, “Toward understanding
the impact of staleness in distributed machine learning,” in Proc. Int. Conf.
Learn. Representations, 2018.

T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 5055-5065.

V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4427-4437.

T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf. Com-
mun., 2019, pp. 1-7.

M. van Dijk, N. V. Nguyen, T. N. Nguyen, L. M. Nguyen, Q. Tran-Dinh,
and P. H. Nguyen, “Asynchronous federated learning with reduced number
of rounds and with differential privacy from less aggregated Gaussian
noise,” 2020, arXiv:2007.09208.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[39]

[40]

[41]

[42]

[43]

Z.Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala, “FedAT:
A high-performance and communication-efficient federated learning sys-
tem with asynchronous tiers,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2021, pp. 1-16.

Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-IID data,” in Proc. IEEE Int.
Conf. Big Data, 2020, pp. 15-24.

X. Li, Z. Qu, B. Tang, and Z. Lu, “Stragglers are not disaster: A
hybrid federated learning algorithm with delayed gradients,” 2021,
arXiv:2102.06329.

D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-SGD:
Distributed SGD with quantization, sparsification and local computations,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, Art. no. 1316.

A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” 2019, arXiv:1901.11173.

X.Zhang, Y. Liu, J. Liu, A. Argyriou, and Y. Han, “D2D-assisted federated
learning in mobile edge computing networks,” in Proc. IEEE Wireless
Commun. Netw. Conf., 2021, pp. 1-7.

H. Xing, O. Simeone, and S. Bi, “Decentralized federated learning via
SGD over wireless D2D networks,” in Proc. IEEE 21st Int. Workshop
Signal Process. Adv. Wireless Commun., 2020, pp. 1-5.

Y. Guo, Y. Sun, R. Hu, and Y. Gong, “Hybrid local SGD for federated
learning with heterogeneous communications,” in Proc. Int. Conf. Learn.
Representations, 2021.

S. Cui, A. M. Haimovich, O. Somekh, and H. V. Poor, “Opportunistic
relaying in wireless networks,” IEEE Trans. Inf. Theory, vol. 55, no. 11,
pp. 5121-5137, Nov. 2009.

D. Liuetal., “Opportunistic UAV utilization in wireless networks: Motiva-
tions, applications, and challenges,” IEEE Commun. Mag., vol. 58, no. 5,
pp. 62-68, May 2020.

A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device com-
munication in cellular networks,” IEEE Commun. Surveys Tuts., vol. 16,
no. 4, pp. 1801-1819, Fourth Quarter 2014.

A.B.Reis, S. Sargento, F. Neves, and O. K. Tonguz, “Deploying roadside
units in sparse vehicular networks: What really works and what does not,”
IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2794-2806, Jul. 2014.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel im-
age dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

A. Krizhevsky et al., “Learning multiple layers of features from
tiny images,” 2009. [Online]. Available: https://api.semanticscholar.org/
CorpusID:18268744

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1707-1718.

Jieming Bian (Graduate Student Member, IEEE)
received the B.A. degree in economics from the Uni-
versity of Colorado Denver, Denver, CO, USA, in
2019, and the M.S. degree in operations research
from Columbia University, New York, NY, USA,
in 2021. He is currently working toward the Ph.D.
degree with the Electrical and Computer Engineering
Department, University of Miami, Coral Gables, FL,
USA. His research interests include communication
efficiency and client scheduling federated learning
problems.

Jie Xu (Senior Member, IEEE) received the B.S. and
M.S. degrees in electronic engineering from Tsinghua
University, Beijing, China, in 2008 and 2010, respec-
tively, and the Ph.D. degree in electrical engineering
from University of California, Los Angeles, Los An-
geles, CA, USA, in 2015. He is currently an Asso-
ciate Professor with the Department of Electrical and
Computer Engineering, University of Miami, Coral
Gables, FL, USA. His research interests include mo-
bile edge computing/intelligence, machine learning
for networks, and network security. He was the recip-

ient of the NSF CAREER Award in 2021.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

