
10668 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Accelerating Asynchronous Federated Learning

Convergence via Opportunistic Mobile Relaying
Jieming Bian , Graduate Student Member, IEEE, and Jie Xu , Senior Member, IEEE

Abstract—This paper presents a study on asynchronous Feder-
ated Learning (FL) in a mobile network setting. The majority of
FL algorithms assume that communication between clients and the
server is always available, however, this is not the case in many real-
world systems. To address this issue, the paper explores the impact
of mobility on the convergence performance of asynchronous FL.
By exploiting mobility, the study shows that clients can indirectly
communicate with the server through another client serving as
a relay, creating additional communication opportunities. This
enables clients to upload local model updates sooner or receive
fresher global models. We propose a new FL algorithm, called
FedMobile, that incorporates opportunistic relaying and addresses
key questions such as when and how to relay. We prove that
FedMobile achieves a convergence rate O(1

√

NT
), where N is the

number of clients and T is the number of communication slots,
and show that the optimal design involves an interesting trade-off
on the best timing of relaying. The paper also presents an extension
that considers data manipulation before relaying to reduce the cost
and enhance privacy. Experiment results on a synthetic dataset and
two real-world datasets verify our theoretical findings.

Index Terms—Convergence analysis, federated learning, mobile
relaying.

I. INTRODUCTION

F
EDERATED learning (FL) is a distributed machine learn-

ing approach in which numerous clients possessing de-

centralized data cooperate to develope a shared model, under

the guidance of a central server [1]. The majority of FL algo-

rithms [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] explore the

synchronous communication setting, where clients can periodi-

cally and concurrently synchronize and interact with the server.

In this context, communication frequency is a crucial aspect

of the FL algorithm design, as it assumes that the communi-

cation channel between clients and the server is consistently

and universally accessible. However, this assumption is often

unrealistic in real-world systems, where clients may only have

intermittent opportunities to communicate with the server and

display varying communication patterns. For instance, mobile

clients (such as mobile devices or vehicles) can only connect

with the server (e.g., base stations, sensing hubs, roadside units)

when they come within the server’s communication range [11].

Consequently, in such mobile systems, FL must be conducted

Manuscript received 7 October 2023; revised 1 January 2024 and 22 February
2024; accepted 17 March 2024. Date of publication 1 April 2024; date of current
version 16 July 2024. This work was supported by NSF under Grant 2033681,
Grant 2006630, Grant 2044991, and Grant 2319780. The review of this article
was coordinated by Prof. Haejoon Jung. (Corresponding author: Jie Xu.)

The authors are with the Department of Electrical and Computer En-
gineering, University of Miami, Coral Gables, FL 33146 USA (e-mail:
jxb1974@miami.edu; jiexu@miami.edu).

Digital Object Identifier 10.1109/TVT.2024.3384061

asynchronously, conforming to each client’s unique communi-

cation pattern with the server.

The asynchronous nature of these mobile systems renders the

methods developed for synchronous FL ineffective. As a result,

asynchronous FL methods are necessary to tackle such systems.

However, the body of literature on asynchronous FL is notably

smaller compared to its synchronous counterpart. Although

some insights have been gained (for example, [12] demonstrates

that the convergence rate of asynchronous FL can match that of

synchronous FL given the same communication interval), the

performance of asynchronous FL is significantly constrained

by the arbitrary communication patterns of individual clients,

which are not an algorithm parameter. With only sporadic client-

server interactions, asynchronous FL may converge slowly or

even fail to achieve convergence.

To tackle the problem arising from sporadic client-server

interactions, in this paper, we focus on exploiting the

communication opportunities among clients within the mobile

system, an aspect largely overlooked in previous works.

As devices in the mobile system continually move over

time, numerous client-client encounters are created. These

meetings allow a client to indirectly communicate with the

server by using another client as a relay, thereby generating

additional communication opportunities (both uploading and

downloading) with the server. Specifically, a client’s local

model updates can be uploaded to the server sooner if the relay

client connects with the server before the sending client does.

Similarly, the client can receive a more recent global model

from a relay client that has recently connected with the server.

However, the added benefits provided by the relay for either

uploading or downloading introduce new challenges. Firstly, de-

termining when to upload (download) via relaying and selecting

the appropriate relay is crucial. If a client uploads to a relay

too early, only minimal new information can be transmitted to

the server, as the client has completed just a few local steps.

Conversely, if the upload to the relay is delayed, the benefit of

utilizing the relay may be significantly diminished. Secondly,

determining how to relay the local model updates in a manner

that prevents duplication of updates received by the server and

maintains storage efficiency is also essential. To address these

challenges, we propose a novel asynchronous FL algorithm with

opportunistic relaying, called FedMobile. The main contribu-

tions of our work are as follows:
� Our work focuses on harnessing the benefits of utilizing

relaying resulting from client-client meetings, an aspect

not previously explored in mobile FL. We propose a new

0018-9545 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING 10669

asynchronous FL algorithm, FedMobile, which accelerates

convergence while maintaining storage efficiency and pre-

venting duplicate update transmissions.
� We offer a theoretical convergence analysis of FedMobile

and unveil an intriguing trade-off regarding the optimal

timing of relaying, which can, in theory, enhance the con-

vergence speed.
� We introduce an extension of FedMobile where clients and

their relays transmit data with quantization/compression,

reducing the communication costs caused by additional

relaying.
� We perform extensive experiments on a synthetic dataset

and two real-world datasets to corroborate our theoretical

findings. The results confirm that our proposed method

outperforms the state-of-the-art asynchronous FL method

by significantly reducing time consumption.

The rest of this paper is structured as follows. Section II

reviews related works. In Section III, we present the sys-

tem model and briefly revisit the state-of-the-art asynchronous

FL method [12]. FedMobile and its extension are detailed in

Section IV, while Section V provides the theoretical conver-

gence analysis. Section VI presents an extension for a more

general case. Experimental results are reported in Section VII.

Finally, Section VIII concludes the paper. All technical proofs

can be found at the Arxiv (i.e. https://arxiv.org/abs/2206.04742).

II. RELATED WORK

A. Federated Learning

FedAvg [1] uses local stochastic gradient descent (SGD) to

reduce the number of communications between the server and

clients. Convergence has been analyzed for FedAvg [2], [3], [4],

[5], [13] and its variants (e.g., momentum variants [14], [15]

and variance-reducing variants [16], [17]) in both iid and non-iid

data settings. However, the majority of works on FL study the

synchronous setting and treat the communication frequency as

a tunable parameter of the algorithm.

In recent years, asynchronous distributed optimization and

learning have been extensively studied. Works such as [18], [19],

[20], [21], [22] focus on single SGD steps by distributed nodes

with iid data distributions, which do not represent typical FL

settings. The literature on asynchronous FL is smaller and has

varied emphases. For instance, some existing works [23], [24],

[25] still assume universal communication at all times, with

asynchronicity resulting from an algorithmic decision rather

than a constraint. Other works [26], [27], [28], [29] employ

asynchronous model aggregation to tackle the “straggler” issue

in synchronous FL. The asynchronous setting most similar to

ours is examined in [12], [30], which consider arbitrary com-

munication patterns. However, these studies only focus on the

interaction between the server and the clients, overlooking the

interactions among clients themselves. In this work, we propose

FedMobile, an algorithm that leverages the benefits of relaying

through client interactions, and demonstrate its superior conver-

gence performance both theoretically and empirically compared

to state-of-the-art asynchronous method [12].

TABLE I
KEY NOTATIONS

Our work is remotely related to decentralized FL [31], [32],

[33] (and some hybrid FL works [34]) where clients can also

communicate among themselves during the training process,

typically by using a type of gossip algorithm to exchange lo-

cal model information. However, these works assume a fixed

topology of clients and the communication among the clients is

still synchronous and periodic.

B. Opportunistic Relaying

Opportunistic relaying is a wireless communication technique

where intermediate nodes in a wireless network temporarily

act as relay nodes to forward data packets to their intended

destination. The fundamental concept behind this technique is

to harness the unused resources in the network, such as energy,

idle time, and bandwidth, to enhance the network’s overall

performance. Although the idea of opportunistic relaying has

been well extended and studied in many fields (e.g. wireless

networks [35], UAV [36]), to our best knowledge, there is no

prior work on opportunistic relaying in FL. Additionally, pre-

vious studies concentrate on transmitting the unchanged value

in situations where no learning process is performed. Our work

offers the first principled investigation of the interplay between

opportunistic relaying via client-client communication and the

convergence of FL, and how to design the optimal relaying

strategy to maximize the convergence speed in the learning

process.

III. MODEL AND PRELIMINARIES

To clarify our problem, we begin by presenting essential

notations, as outlined in Table I. We consider a mobile FL

system with one server andN mobile clients. The mobile clients

work together to optimize the model parameters x ∈ R
d by

minimizing the global objective function f(x):

min
x

f(x) =
1

N

N∑

i=1

fi(x) =
1

N

N∑

i=1

Eζi [Fi(x, ζi)] (1)

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10670 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Fig. 1. Illustration of Mobile FL system in VANET.

where fi : R
d → R is a non-convex loss function for client i

and Fi is the estimated loss function based on a mini-batch data

sample ζi drawn from client i’s own dataset.

Mobility Model: We consider a discrete time system where

time is divided into slots of equal length. Clients move indepen-

dently in a network and make contact with the server only at

certain time slots. At each time t and for each client i, let τ last
i (t)

be the last time when client i meets the server by t (including t),
and τ next

i (t) be the next time when client i will meet the server

(excluding t). We assume that at any given time t, client i can es-

timate τ next
i (t). For the sake of proving theoretical convergence,

we will assume in the theoretical analysis section that at any

t, client i knows its exact τ next
i (t). However, in the experiment

section, we will compare performances under both the scenarios

where τ next
i (t) is exactly known by the client and where τ next

i (t) is

estimated by the client. The communication pattern is arbitrary

and different for different clients but we assume that the time

interval between any two consecutive server meetings for any

client is bounded by ∆, i.e., τ next
i (t)− τ last

i (t) ≤ ∆, ∀t,∀i.
Clients can also meet among themselves due to mobility.

When two clients meet, they can communicate with each other

via, e.g., device-to-device (D2D) communication protocols [37].

For ease of analysis, we assume that at each time t, a client can

meet at most one other client (the extension to multiple clients

is straightforward). Let ρ ∈ [0, 1] be the probability of a client

meeting another client at a time slot. When ρ = 0, clients do not

meet with each other, thus degenerating to the conventional case.

We assume that the client-server meetings remain unchanged

regardless of the value of ρ. In the following, we provide a

realistic example of a Vehicular Ad Hoc Network (VANET).

Fig. 1 is an illustration of Vehicular Ad Hoc Network

(VANET). Consider a road network where many vehicles (as

mobile clients) are moving and performing FL (e.g., for traffic

prediction) using on-board computing power. Some roadside

units (RSUs) are deployed in the road network which the ve-

hicles can connect to via wireless. All pertinent RSUs and the

server are interconnected through high-speed communication

technologies such as fiber optic networks [38]. This ensures that

the transmission latency between the server and the RSUs is

exceedingly low and can, therefore, be disregarded. In a typical

deployment, the RSUs are only deployed in certain parts of the

road network (e.g., some road intersections) and do not cover

the entire road network [11]. Therefore, the vehicles (clients)

can communicate with the server only when they enter the

communication range of a RSU. Because vehicles have different

speeds and routes, their meeting times with servers (via the

RSUs) are naturally asynchronous.

In the VANET use case, vehicles (clients) often have a pre-

determined route and move at a roughly constant speed. Thus, it

is easy to calculate the next server meeting given the next RSU

location and the vehicle trajectory. If a vehicle’s moving speed

is fixed, then the client-server meetings do not change (because

distances between RSUs cannot be changed). A client-client

meeting occurs if two clients enter the Vehicle-to-Vehicle (V2V)

communication (e.g., Wi-Fi Direct or LTE Direct) range of each

other. Thus, by increasing the communication range (e.g., by

using a larger transmission power), more client-client meetings

can occur while the client-server meetings stay the same. Thus,

ρ is a parameter that models the client-client meeting rates in

this case. A smaller client-client communication range results

in a smaller ρ while a larger client-client communication range

results in a larger ρ.

State-of-the-art Asynchronous FL method: Before we intro-

duce our proposed method, let’s briefly revisit the state-of-the-art

asynchronous FL method, ASYNC [12], which operates under

arbitrary communication patterns.

Local model update: For any client i, when it meets the server

at t, it downloads the current global model xt. The client then

uses xt
i = xt as the initial model to train a new local model using

its local dataset until it meets the server again. This is done by

using a mini-batch SGD method:

xs+1
i = xs

i − ·gsi , ∀s = t, . . ., τ next
i (t)− 1 (2)

wheregsi = ∇Fi(x
s
i , ζ

s
i) is the stochastic gradient on a randomly

drawn mini-batch ζsi and · is the learning rate. Here, we assume

that a client performs one step SGD at each time slot to keep the

notations simple. Let mt
i ∈ R

d be the cumulative local updates

(CLU) of client i at time t since its last meeting with the server,

which is updated recursively as follows:

mt
i = ·gt−1

i , if t = τ last
i (t) + 1;

mt
i = mt−1

i + ·gt−1
i , ∀t = τ last

i (t) + 2, . . ., τ next
i (t) (3)

Global model update: At any t, let St denote the set of clients

who meet the server (St may be empty). These clients upload

their CLUs to the server which then updates the global model as

xt = xt−1 − 1

N

∑

i∈St

mt
i (4)

The updated global model xt is then downloaded to each client

i in St, and the client starts its local training with a new initial

model xt
i = xt.

IV. FEDMOBILE

In the vanilla asynchronous FL described in the Section III,

a client can upload its CLU and download the global model

only when it meets the server. When the meeting intervals are

long, however, this information cannot be exchanged in a timely

manner, thus hindering the global training process. To overcome

this issue, we take advantage of mobility and propose FedMobile

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING 10671

Fig. 2. Upload/download search intervals.

that creates indirect client-server communication opportunities,

thereby improving the FL convergence speed. In a nutshell, a

client i can use another client j as a relay to upload its CLU

to the server (or download the global model from the server) if

client j’s next (or last) server meeting is earlier (or later) than

client i’s. Thus, the CLU can be passed to the server sooner (or

the client can train based on a fresher global model). We call

such client j an upload (or download) relay for client i.
For now, we assume that a client can only use at most one

upload relay and at most one download relay between any two

consecutive server meetings, considering the extra cost incurred

due to the client-client communication. However, FedMobile

can be easily extended (we discuss it in The General Case

section). Next, we describe separately how FedMobile handles

uploading and downloading, which are essentially the dual cases

to each other.

A. Uploading CLU via Relaying

Upload Timing and Relay Selection: Since a client can use

the upload relay at most once between its two consecutive server

meetings, the timing of uploading via relaying is crucial. If client

i uploads too early (i.e., close to τ last
i), then the CLU has little

new information since the client has run just a few mini-batch

SGD steps. If client i uploads too late (i.e., close to τ next
i), then

the CLU will be uploaded to the server late even if a relay

is used. To make this balance, FedMobile introduces a notion

called upload search interval defined by two parameters ¸ and

Θ, where 0 ≤ ¸ ≤ Θ ≤ ∆ (See Fig. 2). Client i will upload its

CLU via a relay only during the interval [τ last
i + ¸, τ last

i +Θ].
In addition, not every other client that client i meets during the

search interval is qualified. We here define semi-qualified upload

relay and qualified upload relay as follows:

Definition 1: Client j is a semi-qualified upload relay if

τ next
j ≤ τ last

i +Θ, i.e., client j is able to relay client i’s CLU to

the server before the end of the search interval. Further, Client j
is a qualified upload relay if in addition τ next

j < τ next
i , i.e., client

j can indeed deliver the CLU earlier than client i’s own server

meeting.1

1It is possible that τ last
i

+Θ ≥ τ
next
i

due to the fixed value of Θ, so a semi-
qualified upload relay is not necessarily qualified.

FedMobile picks the first qualified upload relay during the

search interval. Note that it is possible that no qualified upload

relay is met, in which case no uploading via relaying is per-

formed. The determination of setting parameters ¸ and Θ will

be addressed in Section V, following the theoretical analysis of

their impact on convergence.

Upload Relay Mechanism: FedMobile implements a stream-

lined and storage-efficient mechanism to guarantee the delivery

of a specific piece of information to the server precisely once,

all while avoiding the need to retain client ID information.

When a CLU exchange event occurs at time t involving a

sender client i and a relay client j, the following steps are

employed:

RESET (by sender): After sending its current CLUmt
i, sender

client i resets its CLU to mt
i := 0

COMBINE (by relay): After receiving mt
i from client i, client

j updates it stored CLU mt
j by incorporating mt

i, i.e., mt
j :=

mt
j +mt

i.

In this way, FedMobile essentially offloads the uploading task

of mt
i from client i to client j, who, by our design, has a sooner

server meeting time than client i.
Remark: Upon transmission of the local update from the

sender (client i) to relay (client j), the local training processes

of both the sender and the relay remain unaffected. Specifically,

each continues to train locally based on their local models.

This process persists until each client reaches its next sched-

uled server communication, denoted as τ next
i (t) for client i and

τ next
j (t) for client j.

Remark: In FedMobile, a client has the capability to function

as both a sender and a relay between consecutive server meeting

times. When a client i transmits message mt
i to client j, it is

possible that client i has already received CLUs (Client Local

Updates) from other clients. Consequently, the message mt
i

may contain CLUs associated with those other clients. In our

relay mechanism, the relay client is not required to store the

ID information of the sender client. Even if the relay client

were to gain knowledge of the sender client’s ID information,

it would still face substantial difficulty in determining which

clients’ CLUs are included in the CLU sent by the sender client.

Due to the presence of CLUs mixed with unknown clients’ local

updates, the relay client faces significant difficulty in discerning

the personal privacy of the sender client.

Remark: For higher communication efficiency and/or better

privacy protection, the clients may send an altered CLU to the

relay for uploading. We discuss this extension and provide its

convergence analysis in the following subsection.

Upload Relay Protocol: In the upload relay process, the sender

client i identifies a potential upload relay client j within the

communication range. Client i initiates the process by sending

a ‘Beacon’ message to client j to inquire about its willingness

to serve as an upload relay. If client j agrees, it responds with

a ‘Willingness’ message, including its estimated next meeting

time with the server (τ next
j). Client i then decides whether to

select client j as its upload relay based on τ next
j and its own next

meeting time (τ next
i). If client j is not chosen, client i sends

an ‘Acknowledgement’ message to conclude the interaction.

Otherwise, client i transmits the CLU mt
i to client j, who

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10672 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Fig. 3. Upload relay protocol.

acknowledges receipt and concludes the process. This protocol

is depicted in Fig. 3.

B. Downloading Global Model Via Relaying

Download Timing and Relay Selection: Similar to the upload-

ing CLU case, when downloading a global model via relaying

also involves a trade-off. FedMobile introduces a download

search interval to make this balance, which is defined by two

parameters ω and Ω, where 0 ≤ ω ≤ Ω ≤ ∆ (see Fig. 2). Given

client i’s next server meeting time τ next
i , client i will only down-

load a new global model via relaying during the search interval

[τ next
i − Ω, τ next

i − ω]. Similarly, We here define semi-qualified

download relay and qualified download relay as follows:

Definition 2: Client j is a semi-qualified download relay

if τ last
j ≥ τ next

i − Ω, i.e., client j’s global model is less than

Ω time slots older than client i’s next global model directly

from the server. Further client j is a qualified download relay if

in addition τ last
j > τ last

i , i.e., client j’s global model is indeed

fresher than client i’s current global model that it received

directly from the server.

FedMobile picks the first qualified download relay during the

search interval. Again, it is possible that no qualified download

relay is met, in which case no downloading via relaying occurs.

The determination of setting parameters ω and Ω will be ad-

dressed in Section V, following the theoretical analysis of their

impact on convergence.

Download Relay Mechanism: To be able to relay a global

model to other clients, every client keeps a copy of the most

recent global model that it received (from either the server or

another client). We denote this copy for client j by xψj(t), where

ψj(t) is the time version (or timestamp) of the global model.

Upon a global model exchange at time t between a receiver

client i and a relay client j:

REPLACE (by receiver): After receiving xψj(t) from client j,

client i replaces its local model with xψi(t), i.e., xt
i := xψj(t),

and resumes the local training steps.

Remark: Client i also replaces its global model copy with

xψj(t) since it is a fresher version by our design. Thus, ψi(t) is

updated to ψj(t).
Remark: An alternative to the current downloading scheme

is that relay client j simply sends its current local model xt
j to

client i, who then replaces its current local model xt
i with xt

j ,

i.e., xt
i := xt

j . In this way, the clients do not have to keep a copy

of the most recent global model, thereby reducing the stored

data. The convergence analysis is not affected by this change

Fig. 4. Download relay protocol.

and the same convergence bound can be proved (see the proof

of Theorem 1).

Download Relay Protocol: In the download relay scenario,

the receiver (client i) similarly sends a ‘Beacon’ message to a

potential download relay (client j). Upon client j’s agreement,

indicated by a ‘Willingness’ message containing its last server

meeting time (τ last
j), client i compares this with its own last

meeting time (τ last
i). If client j is selected as the relay, client i

sends a ‘Confirmation’ message, prompting client j to transmit

its stored global model version xψj(t) to client i, who then

acknowledges receipt. If client j is not chosen, client i directly

sends an ‘Acknowledgement’ message to conclude. This proto-

col is illustrated in Fig. 4.

C. Relaying Manipulated CLU

We present an extension of FedMobile where clients upload

manipulated CLUs via relaying. Two kinds of manipulation

operations are considered. The first is quantization and compres-

sion, which aim to reduce the size of the data being transmitted.

The second type involves perturbation, implemented to enhance

privacy protection. To avoid confusion, we let nt
i denote the

cumulative gradient update of client i’s own, which is not

combined with any CLUs received from other clients. We call

nt
i the private-CLU of client i.
Quantization: The quantization process is denoted by Q(·),

signifying the quantizer operator. To ensure that each local

update undergoes quantization exactly once, a client i, upon

encountering a suitable relay client j, will quantize its private-

CLU nt
i instead of the already stored CLU mt

i. This approach is

taken becausemt
i may include CLUs from others who have used

client i as a relay, and these have been previously compressed.

Consequently, during the upload relay from client i to client

j, there is a quantization-related discrepancy represented as

Q(nt
i)− nt

i, in contrast to scenarios without quantization.

Perturbation: When client i uploads CLUs to a relay client j,

it may incorporate a noise term, such as Gaussian Noise μt
i, to

safeguard its privacy.

Although quantization and perturbation effects differ, they

can both be conceptualized as introducing a variation term in

the original upload transmission. For simplicity and clarity, this

difference is denoted as εti. During the upload relay, if quantiza-

tion is employed to reduce data size, εti = Q(nt
i)− nt

i represents

the discrepancy introduced by quantization. In contrast, when

perturbation is used to increase privacy, εti = μt
i signifies the

added noise.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING 10673

Upload Timing and Relay Selection: This is the same as the

original FedMobile strategy.

Upload Relay Mechanism: Upon a CLU exchange event at

time t between a sender client i and a relay client j:

RESET (by sender): Before sending the CLU to the relay j,

the sender first records the noise εti. Then the manipulated CLU,

i.e., m̃t
i = mt

i + εti, is sent to the relay. The sender then resets

its CLU to mt
i := −εti and its private CLU to nt

i := 0.

COMBINE (by relay): After receiving m̃t
i from client i, client

j updates it stored CLU mt
j by incorporating m̃t

i, i.e., mt
j :=

mt
j + m̃t

i.

Remark: With the help of relay, the server could get the client

i’s manipulated CLU m̃t
i = mt

i + εti sooner. Note that in the case

of the manipulated CLU, the sender’s CLU is reset tomt
i := −εti

instead of mt
i := 0. This reset ensures that when client i itself

reaches the server, its uploaded CLU includes −εti, effectively

correcting the previously received manipulated CLU m̃t
i back

to mt
i.

V. CONVERGENCE ANALYSIS

A. FedMobile With CLU

Our analysis utilizes the following assumptions.

Assumption 1 (Lipschitz Smoothness): There exists a constant

L > 0 such that ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ R
d

and ∀i = 1, . . ., N .

Assumption 2 (Unbiased Local Gradient Estimate): The local

gradient estimate is unbiased, i.e.,EζFi(x, ζ) = ∇fi(x),∀x and

∀i = 1, . . . , N .

Assumption 3 (Bounded Variance): There exists a constant

σ > 0 such that E[‖∇Fi(x, ζi)−∇fi(x)‖2] ≤ σ2, ∀x ∈ R
d

and ∀i = 1, . . ., N .

Assumption 4 (Bounded Second Moment): There exists a

constant G > 0 such that E[‖∇Fi(x, ζi)‖2] ≤ G2, ∀x ∈ R
d and

∀i = 1, . . ., N .

The real sequence of the global model is calculated as

xt = x0 − 1

N

N∑

i=1

φi(t)∑

s=0

·gsi , ∀t (5)

where we define φi(t) to be the time slot up to when all corre-

sponding gradients of client i have been received at time t. In

the vanilla asynchronous FL case, φi(t) is simply τ last
i (t)− 1. In

FedMobile, φi(t) > τ last
i (t)− 1 because more information can

be uploaded earlier than t due to relaying.

We also define the virtual sequence of the global model, which

is achieved in the imaginary ideal case where all local gradients

are uploaded to the server instantly at every slot,

vt = x0 − 1

N

N∑

i=1

t−1∑

s=0

·gsi , ∀t (6)

First, we bound the difference (t− 1)− φi(t), which char-

acterizes how much CLU information of client i is missing

compared to the virtual sequence.

Lemma 1: Assuming at least one semi-qualified upload re-

lay client exists in every upload search interval, then we

have (t− 1)− φi(t) ≤ max{∆− ¸,Θ} � C(¸,Θ;∆), ∀i =
1, . . ., N,∀t.

Proof: It is obvious that if the server meeting time interval

τ next
i (t)− τ last

i (t) ≤ Θ, then (t− 1)− φi(t) = t− τ last
i (t) ≤ Θ

already holds. Otherwise, for all t ≤ τ last
i (t) + Θ, then (t−

1)− φi(t) = t− τ last
i (t) ≤ Θ also holds. Thus, we only need

to consider the case τ next
i (t)− τ last

i (t) > Θ and for time slot

t > τ last
i (t) + Θ. In this case, a semi-qualified relay client is

also a qualified relay client because

τ last
i (t) + Θ < τ next

i (t) (7)

By the assumption that at least one semi-qualified relay exists in

the search interval, at least one qualified relay must exist. This

further implies that the qualified relay client is able to upload a

CLU before t. Because this CLU contains gradients of client i for

at least ¸ steps since τ last
i (t), we have φi(t) ≥ τ last

i (t) + ¸ − 1.

Therefore,

(t− 1)− φi(t) =
(
t− τ last

i (t)
)
+
(
τ last
i (t)− φi(t)− 1

)

≤ ∆− ¸ (8)

To summarize the above cases, (t− 1)− φi(t) ≤ max{∆−
¸,Θ} is established. �

Next, we bound the difference t− ψi(t), which characterizes

the version difference between the current global model and

client i’s copy of the global model.

Lemma 2: Assuming at least one semi-qualified download

relay exists in every download search interval, we have t−
ψi(t) ≤ max{∆− ω,Ω} � D(ω,Ω;∆), ∀i = 1, . . ., N,∀t.

Proof: Let t′ be the meeting time between receiver client i and

relay client j. Clearly, τ next
i − Ω ≤ τ last

j (t) ≤ t′ ≤ τ next
i − ω by

the definition of the search interval.

For t ≤ t′, client i has not met client j yet, so ψi(t) = τ last
i (t).

Therefore,

t− ψi(t) = t− τ last
i (t) ≤ t′ − τ last

i (t)

≤ τ next
i (t)− ω − τ last

i (t) ≤ ∆− ω (9)

For t > t′, client i has met client j, so ψi(t) ≥ τ last
j (t). There-

fore,

t− ψi(t) ≤ t− τ last
j (t) ≤ t− (τ next

i (t)− Ω) ≤ Ω (10)

To sum up, t− ψi(t) ≤ max{∆− ω,Ω} �

The following lemma then bounds the model differences in

the real sequence and the virtual sequence.

Lemma 3: The difference of the real global model and the

virtual global model is bounded as follows

E
[
‖vt − xt‖2

]
≤ C2(¸,Θ;∆)·2G2 (11)

For each client i, the difference of its local model and the virtual

global model is bounded as follows

E
[
‖vt − xt

i‖2
]
≤ 3(2D2(ω,Ω;∆) + C2(¸,Θ;∆))·2G2

(12)

Proof: The proof is shown in the supplementary material. �

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10674 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Now, we are ready to bound the convergence of the real model

sequence achieved in FedMobile.

Theorem 1: Assuming at least one semi-qualified upload

(download) relay exists in every upload (download) search in-

terval, by setting · ≤ 1/L, after T time slots, we have

1

T

T−1∑

t=0

E
[
‖∇f(xt)‖2

]
≤ 4

·T

(
f(x0)− f ∗)+ 2L·σ2

N

+ 4(3D2(ω,Ω;∆) + 2C2(¸,Θ;∆))L2·2G2 (13)

Proof: The proof is shown in the supplementary material. �

Remark: The convergence bound established in Theorem 1

contains three parts. The first part diminishes as T approaches

infinity. Both the second and third terms are constants for a

constant ·, with the second term depending on our algorithm

parameters ¸, Θ, ω and Ω. For a given final step T , one can set

· =
√
N

L
√
T

so that the bound becomes

4L√
NT

(
f(x0)− f ∗)+ 2σ2

√
NT

+
4N

T
(3D2(ω,Ω;∆) + 2C2(¸,Θ;∆))G2 (14)

Furthermore, if T ≥ N 3, the above bound recovers the same

O(1√
NT

) convergence rate of the classic synchronous FL [5] .2

Next, we discuss the above convergence result in more detail

and investigate how the mobility affects the convergence. To

this end, we consider for now a fixed client-client meeting rate

ρ, and investigate how the convergence result depends on our

algorithm parameters.

Bound optimization: Since the convergence bound can be

improved by lowering C(¸,Θ;∆) and D(ω,Ω;∆), we first

investigate them as functions of the algorithm parameters.

Proposition 1: (1) C(¸,Θ;∆) is non-decreasing in Θ and

non-increasing in ¸. Moreover, ∀¸,Θ, C(¸,Θ;∆) ≥ ∆
2

, and

the lower bound is attained by choosing ¸ = Θ = ∆
2

. (2)

D(ω,Ω;∆) is non-decreasing in Ω and non-increasing in ω.

Moreover, ∀ω,Ω, D(ω,Ω;∆) ≥ ∆
2

, and the lower bound is

attained by choosing ω = Ω = ∆
2

.

Proposition 1 implies that one should use shorter search

intervals, namely Θ− ¸ and Ω− ω, to lower C(¸,Θ;∆) and

D(ω,Ω;∆). However, the best C and D are no smaller than ∆
2

,

which are achieved by choosing ¸ = Θ = ∆
2

and ω = Ω = ∆
2

.

In other words, a short upload search interval around the time

τ last
i + ∆

2
and a short download search interval around the time

τ next
i − ∆

2
improve the FL convergence. This suggests that the

best timing for uploading is at exactly τ last
i + ∆

2
and the best

timing for downloading is at exactly τ next
i − ∆

2
, which are neither

too early nor too late in both cases.

Probability of meeting a semi-qualified relay: The conver-

gence bound in Theorem 1, however, is obtained under the

assumption that a client can meet at least one semi-qualified

upload (download) relay client in each upload (download) search

2There is a subtle difference because T in the asynchronous setting is the
number of time slots while in the synchronous settingT is the number of rounds.
However, they differ by at most a factor of ∆.

interval, which may not always hold. How easily a client can

find a semi-qualified relay client depends on the client-client

meeting rate. In the VANET example, this rate depends on the

D2D communication range.

Let Qu(¸,Θ) (and Qd(ω,Ω)) be the probability that at least

one semi-qualified uploading (download) relay is met in an

uploading (download) search interval with length Θ− ¸ (and

Ω− ω). They are characterized as follows

Proposition 2: Assuming sufficiently many clients in the

system and that clients meet each other uniformly randomly.

Let Pint(·) be the distribution of server meeting intervals. Then

Qu(¸,Θ) = 1 −∏Θ−θ
t=0 (1 − ρqu(Θ− ¸ − t)) and Qd(ω,Ω) =

1 −∏Ω−ω
t=0 (1 − ρqd(t)), where qu(·) and qd(·) are distributions

computed based on Pint(·).
Proof: The proof is shown in the supplementary material. �

Proposition 2 states an intuitive result that one should use a

larger search interval to increase the probability of meeting a

semi-qualified relay. This, however, is not desirable for lower-

ing the convergence bound according to Proposition 1. This is

exactly where mobility can help improving the FL convergence:

by increasing the client-client meeting rate ρ, a shorter search

interval Θ− ¸ (or Ω− ω) can be used to achieve the same Qu

(or Qd), but a smaller C (or D) is obtained. In fact, by relaxing

the constraint that a client can only meet one other client at a

time slot, with sufficiently many clients in the system, both Qu

andQd can approach 1 even if the search interval is just one slot.

B. FedMobile With Manipulated CLU

Then we validate the convergence of FedMobile with manip-

ulated CLU uploading. We first state an additional assumption

on the noise term εti.
Assumption 5 (Bounded Error): The noise term εi is bounded,

i.e., E[‖εti‖2] ≤ qE[‖nt
i‖2], ∀i = 1, . . ., N , ∀t for some positive

real constant q.

The corrupted real sequence can be written as

x̃t = xt +
1

N

∑

i∈Ut

εi, ∀t (15)

where we defineUt as the set of clients for whom only corrupted

CLUs have been received by the server via the relay, and |Ut|
is the size of Ut. The real sequence xt is the imaginary real

sequence where the noise is not added.

Lemma 4: The difference of the corrupted real global model

and the virtual global model is bounded as follows

E
[
‖vt − x̃t‖2

]
≤ 2C2(¸,Θ;∆)·2G2 + 2qΘ2·2G2 (16)

For each client i, the difference of its local model and the

virtual global model is bounded as follows

E
[
‖vt − xt

i‖2
]
≤ 6(D2(ω,Ω;∆) + C2(¸,Θ;∆) + qΘ2)·2G2

(17)

Proof: The proof is shown in the supplementary material. �

Theorem 2: With manipulated CLU uploading, assuming at

least one semi-qualified upload (download) relay client exists

in every upload (download) search interval, by setting · ≤ 1/L,

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING 10675

Fig. 5. Uploading.

Fig. 6. Downloading.

after T time slots, we have

1

T

T−1∑

t=0

E
[
‖∇f(xt)‖2

]
≤ 4

·T

(
f(x0)− f ∗)+ 2L·σ2

N

+ 4(3D2(ω,Ω;∆) + 4C2(¸,Θ;∆) + 4qΘ2)L2·2G2 (18)

Proof: The proof of Theorem 2 follows the proof of Theo-

rem 1 by replacing Lemma 3 with Lemma 4. �

Remark: With setting · =
√
N

L
√
T

, the convergence bound es-

tablished in Theorem 2 becomes

4L√
NT

(
f(x0)− f ∗)+ 2σ2

√
NT

+
4N

T
(3D2(ω,Ω;∆) + 4C2(¸,Θ;∆) + 4qΘ2)G2 (19)

Furthermore, if T ≥ N 3, the above bound recovers the same

O(1√
NT

) convergence rate of the classic synchronous FL [5].

VI. THE GENERAL CASE

FedMobile can be easily extended to allow multiple upload

(download) relay communications between any two consecutive

server meetings. We will still have the upload (download) search

interval, and FedMobile will simply pick the first K qualified

upload (download) relays to perform the upload (download)

relay communications. The exact mechanisms of how uploading

(downloading) is performed will be slightly changed to handle

out-of-order information and avoid redundant information. Our

convergence analysis still holds correctly for this generalized

case, although the bound may become looser compared to the

actual performance.

Figs. 5, 6 illustrate the key ideas behind FedMobile. Fig. 5

plots hypothetical sequences of CLUs received by the server

from a representative client between two consecutive server

meetings. The virtual sequence is the ideal case where each local

stochastic gradient gti is uploaded to the server instantly after

it is computed. Therefore, the received CLU curve is a steady

staircase. In the vanilla asynchronous FL, the client uploads the

CLU only when it meets the server. Therefore there is a big jump

at the next server meeting time but it is all 0 before. FedMobile

with at most one upload relaying allows some local stochastic

gradient information to be received by the server earlier. The

generalized FedMobile allows more CLUs to be relayed and

received by the server at earlier time slots. One can imagine that

when ρ is large enough, it becomes much easier for the client to

find qualified relays that can quickly upload CLUs to the server at

every time slot. Therefore, the received CLU curve approaches

that in the ideal case. Similarly, Fig. 6 plots the hypothetical

sequence of the global models received by the client.

VII. EXPERIMENTS

A. Setup

We implement FL simulation on the Pytorch framework and

perform the model training on one Geforce RTX 3080 GPU.

All experiment results are averaged over 3 repeats. To simulate

communications among the clients, at each time slot, we uni-

formly sample ρN clients over total N clients and randomly

construct ρN
2

client pairs. Any two clients in the same pair

are simulated to communicate. We conduct experiments on a

synthetic dataset and two real-world datasets, i.e., FMNIST [39]

and CIFAR10 [40].

Synthetic dataset: The synthetic dataset is generated on a

least-squares linear regression problem. Each data sample has

a 200-dimensional feature vector and its real-valued target is

calculated as the vector product of the feature and an underlying

linear weight plus a 0-mean Gaussian noise. The FL system has

50 clients with each client having 40 data samples. The default

training hyper-parameters are: learning rate equals 0.01, learning

rate decay factor equals 0.99 until learning rate reaches 0.0001,

training batch size equals 128, the total number of training time

slots equals 150, default upload parameters ¸ = 10, Θ = 40 and

default download parameters ω = 5, Ω = 25.

FMNIST: The FL system has 50 clients with each client having

400 data samples. We utilize the Dirichlet function (α = 0.3)

which is typically utilized to simulate the level of non-IID in FL.

We use LeNet [41] as the backbone model. The default hyper-

parameters are: learning rate equal to 0.1, learning rate decay

factor equals to 0.99 until learning rate reaches 0.001, training

batch size equals 128, the total training time slots equals 250,

default upload parameters ¸ = 10,Θ = 40 and default download

parameters ω = 5, Ω = 25.

CIFAR10: The FL system has 50 clients with each client

having 600 data samples. The data allocation method is the same

as that used for FMNIST. We use ResNet-9 [42] as the back-

bone model. The training configuration details are as follows:

learning rate equals 0.01, training batch size equals 128, the

total number of training time slots equals 500, default upload

parameters ¸ = 10, Θ = 40 and default download parameters

ω = 5, Ω = 25.

Benchmarks: The following benchmarks are considered in

our experiments. (1) ASYNC: This is the state-of-the-art asyn-

chronous FL method proposed in [12] to handle arbitrary com-

munication patterns. (2) Virtual-U: This method assumes that

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10676 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Fig. 7. Results on the synthetic data. (a) Performance. (b) Upload Search Inter. (c) Download Search Inter. (d) Client Meeting rate. (e) Multiple Uploads. (f)
Multiple Downloads. (g) Virtual Upload. (h) Virtual Downloads.

each client can upload its local updates immediately to the server

at every slot via an imaginary channel but can only download the

global model at their actual communication slots. (3) Virtual-D:

This method assumes that each client can download the global

model from the server at every slot via an imaginary channel

but can only upload their CLUs at their actual communication

slots. We also consider several variations of FedMobile. (1)

FedMobile: This is the proposed algorithm combining both

upload and download relay communications. (2) FedMobile-U:

This is the proposed algorithm with only upload relaying. (3)

FedMobile-D: This is the proposed algorithm with only down-

load relaying.

Communication Patterns: We consider four distinct commu-

nication patterns in total. Three of these patterns simulate asyn-

chronous communication with the server. The Fixed-Interval

pattern involves each client i ∈ {1, . . ., 50} communicating

with the server at intervals defined by the slots i+ 50n, ∀n =
0, 1, 2,

For Random-Interval, each client i first communicates with

the server at slot i, and then continues to communicate at random

intervals ranging between 30 and 50 slots.

The Random-Interval (Exponential) pattern is similar, with

the first communication of each client i ∈ {1, . . ., 50} occurring

at slot i. However, subsequent communications with the server

follow an exponentially distributed pattern with a mean of 30-

time slots. The distribution is truncated (with a maximum of

80-time slots) to ensure that the intervals between consecutive

server meetings remain bounded.

Lastly, we simulate a Smart Public Transportation commu-

nication pattern, aiming to mimic a real-world public transporta-

tion system. This pattern reflects communication structures in

four actual bus routes used in Miami, where we envision RSUs

being installed.

Our main objective is to enhance the convergence speed in

the asynchronous FL setting. It is important to mention that

in the experimental results presented below, both FedMobile

and the baselines eventually achieve convergence. However, to

better highlight the difference in convergence speed between

FedMobile and the baselines, we have chosen not to plot the

final convergence stage due to the space limitation. We intend

to demonstrate that when targeting a specific test accuracy, the

utilization of FedMobile leads to a reduction in the required

number of time slots.

B. Results on Synthetic Data

Fig. 7 reports the results (averaged over three repeats) on

the synthetic data with a fixed-interval communication pattern.

Fig. 7(a) compares FedMobile and its variations with ASYNC

in terms of the test loss. As can been seen, incorporating either

upload or download relaying into asynchronous FL improves

the FL performance, and a further improvement can be achieved

when uploading and downloading are combined. Fig. 7(b) and

(c) illustrates the impact of upload/download search interval on

the FL convergence. In both cases, the best search timing is

around the middle point of the two consecutive server meeting

times, confirming our theoretical analysis in Theorem 1 and

Proposition 1. Fig. 7(d) shows the impact of ρ on the FL con-

vergence. As predicted by our analysis, a higher ρ in the system

improves FL convergence since more timely relay communica-

tion opportunities are created. In Fig. 7(e) and (f), we allow

clients to use multiple relays to create more communication

opportunities with the server whenever possible. The results

show that further improvement can indeed be achieved. We also

conduct experiments on the ideal relaying scenarios, namely

Virtual-U and Virtual-D, to illustrate what can be achieved in

the ideal case. The results verify our hypothesis that more com-

munication opportunities with the server benefit convergence. It

is also interesting to note that virtual uploading/downloading has

a more significant impact on the early/late FL slots, suggesting

that an adaptive design may better balance the FL performance

and the resource cost.

C. Results on CIFAR10

We now report the results (averaged over three repeats) on

CIFAR10. We validate that our proposed method, FedMobile

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING 10677

Fig. 8. Performance comparison on CIFAR10. (a) CIFAR10 (fixed). (b) CI-
FAR10 (random).

Fig. 9. Performance comparison on FMNIST. (a) FMNIST (fixed). (b) FM-
NIST (random).

can achieve a better convergence speed than ASYNC on

CIFAR10 under both Fixed-Interval and Random-Interval

settings in Fig. 8. Note that the main point of our paper is utilizing

relays to improve the convergence speed. Hence, by setting a

target accuracy level and comparing the required number of

time slots to reach it, the notable advancements of FedMobile

are evident. For a specific example, to achieve 60% accuracy

under fixed-interval setting, ASYNC needs about 384 slots

while FedMobile only needs 477 slots. The required time slot

decreases by 19.5%.

D. Results on FMNIST

Then we report the results (averaged over three repeats)

on FMNIST. Fig. 9 shows that FedMobile achieves a better

convergence speed than ASYNC on FMNIST under both the

Fixed-Interval and Random-Interval settings.

Scalability Analysis: To validate the scalability of our pro-

posed FedMobile method, we conduct supplementary experi-

ments under a Fixed-Interval setting. Initially, we set the in-

terval at 50-time slots, aiming to evaluate whether FedMobile

maintains its superiority over the baseline method as the interval

increases. With a constant number of clients, we extend the

interval to 70-time slots and adjust the upload/download search

intervals accordingly (i.e., ¸ = 20,Θ = 60, ω = 10,Ω = 30).

The outcomes, depicted in Fig. 10(a), affirm that FedMobile

surpasses the baseline method.

Furthermore, we validate FedMobile’s performance with an

increased client count. Maintaining the fixed interval at 50-time

slots, we augment the client number from 50 to 100, with each

client possessing 400 data samples exhibiting a non-IID degree

of α = 0.3. The findings, showcased in Fig. 10(b), reveal that

FedMobile consistently exceeds the baseline method. Notably,

the inclusion of more clients accelerates the training process

for both FedMobile and the baseline method, with FedMobile

Fig. 10. Performance comparisons under various configs. (a) Larger commu-
nication intervals. (b) Larger amount of clients.

Fig. 11. Effect of upload/download relay. (a) Upload/download (fixed). (b)
Upload/download (random).

Fig. 12. Effect of multiple upload relays. (a) Multiple upload (fixed). (b)
Multiple upload (random).

continually demonstrating superior performance. These experi-

ments collectively attest to the scalability of FedMobile across

diverse configurations.

Effect of Upload/Download: Under both communication pat-

terns, Fig. 11(a) and (b) demonstrate that while upload and

download relay communications individually can improve the

FL convergence performance, combining them results in an

additional benefit.

Multiple Relays: In the previous result of the synthetic dataset,

we find that both multiple uploads relays and multiple down-

loads relays can improve FedMobile’s convergence speed. In

the real-world dataset experiments, Fig. 12(a) and (b) show that

using multiple upload relay communications further improves

the FL convergence performance. However, we observed in our

experiments that this is not the case with using multiple down-

load relay communications. This is likely due to the complexity

of real-world datasets, which causes the assumptions for our

theoretical analysis to be violated. This represents a limitation

of our current analysis and requires further investigation.

Virtual-U and Virtual-D: To further present the different

effects between multiple uploads and multiple downloads, we

consider two ideal cases. Virtual-U and Virtual-D work as the

ideal cases for upload relaying and download relaying and hence

we conduct experiments to investigate their performance on

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10678 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Fig. 13. Virtual-U on FMNIST. (a) Virtual-U (fixed). (b) Virtual-U (random).

Fig. 14. Virtual-D on FMNIST. (a) Virtual-D (fixed). (b) Virtual-D (random).

Fig. 15. Effect of upload/download Interval. (a) Upload Search Inter.
(b) Download Search Inter.

the real-world dataset. Figs. 13 and 14 report the performance

of Virtual-U and Virtual-D on FMNIST with both fixed and

random interval communication patterns. Similar to Fig. 7(g)

for the synthetic data, Fig. 13(a) and (b) show that Virtual-U

can greatly improve the convergence performance. However,

different from Fig. 7(h) for the synthetic data, Fig. 14(a) and (b)

show that Virtual-D fail to converge on the real-world dataset.

We conjecture that this is likely due to the complexity of the

real-world dataset where some of the assumptions needed for

our theoretical analysis do not strictly hold. However, as Fig. 11

shows, using one-time download relaying still has benefits on

the convergence even in the real-world dataset.

Setting of upload/download interval: Our theoretical anal-

ysis emphasizes the importance of precise timing in both the

upload and download relay mechanisms. To achieve optimal

performance and avoid relay operations that occur too early

or too late, it is crucial to carefully set the parameters for the

upload/download search interval. These parameters should be

around the median value of the maximum time interval (denoted

as∆) between consecutive server communications. This concept

is demonstrated in Fig. 15, where adjusting the upload/download

parameters around the midpoint of ∆ yields relay timings that

result in the best convergence speed.

However, it’s worth noting the marginal variability among the

three download search intervals depicted in Fig. 15(b). To better

comprehend the impact of download relay timing, we devised

a hypothetical scenario wherein each client could download the

Fig. 16. Download time.

Fig. 17. Unknown next meeting time under the Random-Interval (Exponen-

tial).

Fig. 18. Client meeting rate effect. (a) Client meeting rate (fixed). (b) Client
meeting rate (random).

global model 1/30/49 time slot(s) after their last server inter-

action. The outcome, as illustrated in Fig. 16, unambiguously

demonstrates that the optimal download relay timing should

steer clear of being too early or too late.

Unknown Next meeting time: We further evaluate our pro-

posed method using the Random-Interval (Exponential) pat-

tern. We here analyze two distinct scenarios: one in which clients

are informed of their next meeting time with the server, and

another where this time is not known. In the latter case, the

expected value of the exponential distribution is used to predict

the timing of the next server interaction. As illustrated in Fig. 17,

our findings reveal that FedMobile consistently outperforms the

baseline, regardless of whether it employs precise next meeting

time data or estimates based on the expected value of the

exponential distribution.

Client-Client Meeting Rate: We further investigate the effect

of client-client meeting rate under the fixed and random-interval

communication pattern. Fig. 18(a) and (b) shows that the higher

client-client meeting rate improves convergence speed.

Relaying Manipulated CLU: We test two types of manip-

ulation. In the first type, we directly add Gaussian noises to

the relayed CLU. Fig. 19 shows the convergence curves under

different amount of noises. (e.g. Gaussian NoiseN1(0, 0.01) and

Gaussian Noise N2(0, 0.001)). In the second type, we utilize the

low precision quantizer in [43] to quantize the CLU before relay-

ing. Here the quantization level is defined as s. Fig. 20 shows the

convergence curves under different quantization levels. In both

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

BIAN AND XU: ACCELERATING ASYNCHRONOUS FEDERATED LEARNING CONVERGENCE VIA OPPORTUNISTIC MOBILE RELAYING 10679

Fig. 19. Noise level.

Fig. 20. Quantization.

Fig. 21. Storage efficient.

cases, FedMobile still outperforms the baseline method provided

that the added noise is small or the adopted quantization level is

low.

Storage Efficient In FedMobile, we employ the RESET

and COMBINE actions to establish a streamlined and storage-

efficient method that ensures precise, one-time delivery of spe-

cific information to the server, without retaining client ID infor-

mation. Compared to the approach of recording each received

client ID and storing each local update separately at the relay

client, FedMobile’s storage mechanism exhibits significantly

higher efficiency, as illustrated in Fig. 21.

FedMobile in Smart Publication Transportation: We here

contemplate implementing our suggested method, FedMobile,

in a more real-world communication pattern scenario, such as

smart public transportation. This pattern embodies communi-

cation structures seen in four actual bus routes operating in

Miami between West Kendall (WK) and Dadeland South (DS),

assuming the installation of RSUs. For simplicity, and without

losing generality, we posit that two RSUs are positioned at

the two destinations (West Kendall and Dadeland South). We

hypothesize that on each bus line, there are 12/13 buses (totaling

50 buses for all 4 lines) that begin from different starting points at

the commencement of the training process. On each line, 5 buses

initiate their route from West Kendall to Dadeland South, while

the remaining 5 start from Dadeland South heading towards

West Kendall. Each bus will switch its direction upon reaching

the terminal (either Dadeland South or West Kendall) and will

continue operating on its route throughout the entire training

process. This arrangement is visually represented in Fig. 23.

Aligning with the real-world settings, we consider the buses

to travel at a speed between 0.4 to 0.6 miles per minute. The

Fig. 22. Performances (smart publication transportation).

Fig. 23. An illustration of smart public transportation is provided, using four
real bus lines in Miami.

time slot, defined as the duration required for one round of local

training, is set to 30 seconds. The V2V communication range is

fixed at 0.6 miles. To simulate the training, we employ the local

client data distribution as described by FMNIST in the setup

section. The outcomes presented in Fig. 22 confirm that our

recommended method, FedMobile, surpasses the performance

of the state-of-the-art Asynchronous FL method, ASYNC.

VIII. CONCLUSION

This paper focuses on the design of asynchronous Federated

Learning (FL) algorithms for practical systems where contin-

uous client-server communication is not always available. We

emphasize the importance of client mobility and the resulting

random client-client communication opportunities in facilitating

timely information exchange for model training in asynchronous

FL. To harness the advantages of additional client-client com-

munication, we propose a new FL algorithm called FedMobile.

FedMobile not only accelerates convergence but also maintains

storage efficiency and prevents duplicate update transmission.

We provide a detailed convergence analysis and conduct exten-

sive experiments to validate our proposed method. The results

demonstrate that FedMobile significantly improves convergence

speed. We believe that FedMobile has the potential to advance

distributed machine learning, especially FL, in various real-

world systems such as mobile gaming, mobile sensing, and smart

vehicular networks.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Statist., 2017, pp. 1273–1282.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

10680 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

[2] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” in Proc. Int. Conf. Learn. Representations,
2019.

[3] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
SGD on identical and heterogeneous data,” in Proc. Int. Conf. Artif. Intell.

Statist., 2020, pp. 4519–4529.
[4] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial

worker participation in non-IID federated learning,” in Proc. Int. Conf.

Learn. Representations, 2020.
[5] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-

vergence and less communication: Demystifying why model averag-
ing works for deep learning,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 5693–5700.

[6] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications for
collaborative federated learning,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 48–54, Dec. 2020.

[7] Y. Li, D. Yuan, A. S. Sani, and W. Bao, “Enhancing federated learning ro-
bustness in adversarial environment through clustering non-IID features,”
Comput. Secur., vol. 132, 2023, Art. no. 103319.

[8] Y. Li, L. Zhong, D. Yuan, H. Chen, and W. Bao, “ICB FL: Implicit
class balancing towards fairness in federated learning,” in Proc. Australas.

Comput. Sci. Week, 2023, pp. 135–142.
[9] Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving

traffic flow prediction: A federated learning approach,” IEEE Internet

Things J., vol. 7, no. 8, pp. 7751–7763, Aug. 2020.
[10] Y. Zheng, S. Lai, Y. Liu, X. Yuan, X. Yi, and C. Wang, “Aggregation service

for federated learning: An efficient, secure, and more resilient realization,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 2, pp. 988–1001,
Mar./Apr. 2023.

[11] A. Guerna, S. Bitam, and C. T. Calafate, “Roadside unit deployment in
internet of vehicles systems: A survey,” Sensors, vol. 22, no. 9, 2022,
Art. no. 3190.

[12] D. Avdiukhin and S. Kasiviswanathan, “Federated learning under arbi-
trary communication patterns,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 425–435.

[13] Y. Liu, L. Xu, X. Yuan, C. Wang, and B. Li, “The right to be forgotten in
federated learning: An efficient realization with rapid retraining,” in Proc.

IEEE Conf. Comput. Commun., 2022, pp. 1749–1758.
[14] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “SlowMo: Improving

communication-efficient distributed SGD with slow momentum,” in Proc.

Int. Conf. Learn. Representations, 2019.
[15] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learning

via momentum gradient descent,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 8, pp. 1754–1766, Aug. 2020.

[16] J. Konečny, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
2016, arXiv:1610.02527.

[17] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,
“SCAFFOLD: Stochastic controlled averaging for federated learning,” in
Proc. Int. Conf. Mach. Learn., 2020, pp. 5132–5143.

[18] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré, “Asynchrony begets mo-
mentum, with an application to deep learning,” in Proc. IEEE 54th Annu.

Allerton Conf. Commun. Control Comput., 2016, pp. 997–1004.
[19] S. Hadjis, C. Zhang, I. Mitliagkas, D. Iter, and C. Ré, “Omnivore: An

optimizer for multi-device deep learning on CPUs and GPUs,” 2016,
arXiv:1606.04487.

[20] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous SGD,” 2016, arXiv:1604.00981.

[21] S. Zheng et al., “Asynchronous stochastic gradient descent with delay
compensation,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 4120–4129.

[22] W. Dai, Y. Zhou, N. Dong, H. Zhang, and E. Xing, “Toward understanding
the impact of staleness in distributed machine learning,” in Proc. Int. Conf.

Learn. Representations, 2018.
[23] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated

gradient for communication-efficient distributed learning,” in Proc. Adv.

Neural Inf. Process. Syst., 2018, pp. 5055–5065.
[24] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated

multi-task learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4427–4437.

[25] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf. Com-

mun., 2019, pp. 1–7.
[26] M. van Dijk, N. V. Nguyen, T. N. Nguyen, L. M. Nguyen, Q. Tran-Dinh,

and P. H. Nguyen, “Asynchronous federated learning with reduced number
of rounds and with differential privacy from less aggregated Gaussian
noise,” 2020, arXiv:2007.09208.

[27] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala, “FedAT:
A high-performance and communication-efficient federated learning sys-
tem with asynchronous tiers,” in Proc. Int. Conf. High Perform. Comput.

Netw. Storage Anal., 2021, pp. 1–16.
[28] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online

federated learning for edge devices with non-IID data,” in Proc. IEEE Int.

Conf. Big Data, 2020, pp. 15–24.
[29] X. Li, Z. Qu, B. Tang, and Z. Lu, “Stragglers are not disaster: A

hybrid federated learning algorithm with delayed gradients,” 2021,
arXiv:2102.06329.

[30] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-SGD:
Distributed SGD with quantization, sparsification and local computations,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, Art. no. 1316.

[31] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” 2019, arXiv:1901.11173.

[32] X. Zhang, Y. Liu, J. Liu, A. Argyriou, and Y. Han, “D2D-assisted federated
learning in mobile edge computing networks,” in Proc. IEEE Wireless

Commun. Netw. Conf., 2021, pp. 1–7.
[33] H. Xing, O. Simeone, and S. Bi, “Decentralized federated learning via

SGD over wireless D2D networks,” in Proc. IEEE 21st Int. Workshop

Signal Process. Adv. Wireless Commun., 2020, pp. 1–5.
[34] Y. Guo, Y. Sun, R. Hu, and Y. Gong, “Hybrid local SGD for federated

learning with heterogeneous communications,” in Proc. Int. Conf. Learn.

Representations, 2021.
[35] S. Cui, A. M. Haimovich, O. Somekh, and H. V. Poor, “Opportunistic

relaying in wireless networks,” IEEE Trans. Inf. Theory, vol. 55, no. 11,
pp. 5121–5137, Nov. 2009.

[36] D. Liu et al., “Opportunistic UAV utilization in wireless networks: Motiva-
tions, applications, and challenges,” IEEE Commun. Mag., vol. 58, no. 5,
pp. 62–68, May 2020.

[37] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device com-
munication in cellular networks,” IEEE Commun. Surveys Tuts., vol. 16,
no. 4, pp. 1801–1819, Fourth Quarter 2014.

[38] A. B. Reis, S. Sargento, F. Neves, and O. K. Tonguz, “Deploying roadside
units in sparse vehicular networks: What really works and what does not,”
IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2794–2806, Jul. 2014.

[39] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel im-
age dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

[40] A. Krizhevsky et al., “Learning multiple layers of features from
tiny images,” 2009. [Online]. Available: https://api.semanticscholar.org/
CorpusID:18268744

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[43] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1707–1718.

Jieming Bian (Graduate Student Member, IEEE)
received the B.A. degree in economics from the Uni-
versity of Colorado Denver, Denver, CO, USA, in
2019, and the M.S. degree in operations research
from Columbia University, New York, NY, USA,
in 2021. He is currently working toward the Ph.D.
degree with the Electrical and Computer Engineering
Department, University of Miami, Coral Gables, FL,
USA. His research interests include communication
efficiency and client scheduling federated learning
problems.

Jie Xu (Senior Member, IEEE) received the B.S. and
M.S. degrees in electronic engineering from Tsinghua
University, Beijing, China, in 2008 and 2010, respec-
tively, and the Ph.D. degree in electrical engineering
from University of California, Los Angeles, Los An-
geles, CA, USA, in 2015. He is currently an Asso-
ciate Professor with the Department of Electrical and
Computer Engineering, University of Miami, Coral
Gables, FL, USA. His research interests include mo-
bile edge computing/intelligence, machine learning
for networks, and network security. He was the recip-

ient of the NSF CAREER Award in 2021.

Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 18:41:19 UTC from IEEE Xplore. Restrictions apply.

