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ABSTRACT: Computational cost limits the applicability of post-
Hartree—Fock methods such as coupled-cluster on larger
molecular systems. The data-driven coupled-cluster (DDCC)
method applies machine learning to predict the coupled-cluster
two-electron amplitudes (t,) using data from second-order
perturbation theory (MP2). One major limitation of the DDCC
models is the size of training sets that increases exponentially with
the system size. Effective sampling of the amplitude space can
resolve this issue. Five different amplitude selection techniques that
reduce the amount of data used for training were evaluated, an
approach that also prevents model overfitting and increases the
portability of data-driven coupled-cluster singles and doubles to
more complex molecules or larger basis sets. In combination with a localized orbital formalism to predict the CCSD t, amplitudes,
we have achieved a 10-fold error reduction for energy calculations.

1. INTRODUCTION the local environment of atoms in molecules and materials.*®”

The “Accurate NeurAl networK engINe for Molecular
Energies” (ANI) family of methods'®™' is a representative
example where a vector that contains specific radial and
angular chemical information on an individual atom environ-
ment is introduced as input. These models are trained with
density functional theory or, partially, with CC data and offer
significant speedup for the reliable calculation of energies and
forces.

The second group of methods utilizes a descriptor space that
is based on quantum chemical information obtained from a
low-level method such as HF or second-order perturbation
theory (MP2) and aims to predict results from a higher-level
method [e.g, CCSD or CCSD(T)]. This type of molecular
representation is indirectly correlated to the atomic positions,
and it can offer direct transferability within molecular
environments since they encode the underlying electronic
structure properties.”” " Along these lines, we have developed
a data-driven methodology for the prediction of CCSD two-

Electron correlation is the heart of molecular electronic
structure theory.' Hartree—Fock (HF) theory includes Fermi
correlation in an exact sense and electron repulsion in an
average, mean-field manner since it fails to describe the
instantaneous Coulombic repulsion between electron pairs.
Post-HF methods such as configuration interaction, many-
body perturbation theory, and coupled-cluster (CC) theory
introduce the missing electron correlation by considering a
systematic expansion of the N-electron basis formed from all
possible electronic configurations within a given orbital basis.”
Among post-HF methods, coupled-cluster singles and doubles
with perturbative triples [CCSD(T)]® provide a balance
between accuracy and efficiency for molecular systems without
degeneracies or near-degeneracies. A variety of different
approaches have been introduced that aim to accelerate the
convergence of the CCSD(T) and increase its applicability,
including explicitly correlated methods,”” linear scaling
methods,® pair-natural orbital expansions,’'' fragmentation
schemes,'>"? and high-performance computing."*

Machine learning (ML) has been recently proposed as an Received:  October 3, 2023
alternative to traditional methodologies for further acceleration Revised:  January 16, 2024
of CCSD(T). We can separate these methods into two groups Accepted: January 22, 2024
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based on the feature space (representation) used as input to
ML models.”” In the first group, the feature space depends on
atomic positions or atomic functions that are able to encode
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Figure 1. Optimized structures of five organic molecules considered in this study: (a) diethyl ether, (b) divinyl ether, (c) vinyl alcohol, (d) methyl
vinyl ether, and (e) allyl alcohol. Molecular conformers for training and testing of the DDCC models were generated by rotating the dihedral angle

indicated by curved arrows.

electron excitation (t,) amplitudes using MP2-level electronic
structure data.”>> The data-driven coupled-cluster singles-
and-doubles (DDCCSD) scheme has some attractive features,
such as transferability between systems of different sizes.
However, as the number of basis functions and the system size
increase, the number of ¢, amplitudes increases, which
eventually introduces a computational bottleneck.

In this work, we extended DDCCSD by introducing two
new key features that aim to expand the applicability of the
method to larger molecular systems. First, we have applied a
localized orbital formalism into the data-driven coupled cluster
(DDCC) methodology, and second, we have developed five
different approaches for the data-point selection from the
amplitude space [score to bins (SB), clustering to bins (CB),
large amplitudes (LA), electronic correlation (EC), and
probabilistic selection (PS)]. The amplitude selection schemes
reduce the computational burden of the training and testing
process and allow us to apply DDCC on larger molecules and
larger basis sets, which was previously unfeasible. Another
important aspect of the systematic selection of training data
points is the increased accuracy of the ML models by
preventing overfitting.

This article is organized as follows: a brief theoretical
background of DDCCSD together with a new approach to the
calculation of the feature weights is presented in Section 2. The
computational details related to the data generation used in
this work are given in Section 3. Section 4 introduces the
definitions, rationale, and technical aspects of the five
amplitude selection schemes that are examined in this study.
The evaluation of the performance of different selection
schemes is discussed in Section 5, and finally, concluding
remarks are presented in Section 6.

2. THEORETICAL BACKGROUND

2.1. Data-Driven Coupled-Cluster Singles and Dou-
bles. In CC theory, the correlation energy (ESe:") is
computed by using the following equation.

EGEP = 3 Gllab)"+ Y, (Gjllab)(et) — %))
a<b a<b
i<j i<y W

The indices i and j correspond to occupied orbitals, a and b
to virtual orbitals, ¢/ and t:-‘jb are the one- and two-electron
amplitudes, respectively, and (ij|lab) is the two-electron
integral between orbitals i, j, a, and b. The variational
computation of the ¢ and tgh amplitudes is a nontrivial
process, and thus, the amplitudes are computed by solving the
projected CC equations iteratively
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(ulexp(—T)Hexp(T)I¥) = 0 (2)

In eq 2, y, is the HF reference wave function, T is the
cluster operator, and p the determinantal excitation manifold
(in CCSD, p are either the singly or doubly excited
determinants). Typically, the MP2 amplitudes tf;-l(’Mpz) are
used as an initial guess for CC t‘i‘jh amplitudes

o abl)

ij(MP2) =

jMP2) g+e—¢—g 3)
where ¢, is the energy of the orbital p. In the DDCCSD

approach, the initial CC tg-b amplitudes are predicted by ML
using 30 input features from MP2. Since MP2 amplitudes are
the initial guess for the iterative solution of the projected CC
equations, they are selected as one of the features used in the
DDCCSD method. Other features of the DDCCSD are the
numerator and denominator terms of the MP2 amplitude
equation (eq 3). The denominator is further broken into
individual terms, and the occupied and virtual orbital energies
are also introduced in the input vector. The individual orbital
energy is broken into the one-electron, Coulomb, and
exchange contributions. Another feature of the DDCCSD
method is whether the excited electrons are promoted to the
same virtual orbital (binary). For the full feature list, see
Supporting Information, Section S-L

The predicted amplitudes (tf}l(’DDCC)) are then introduced
into the singles (4 = ;") projected equations of eq 2 and a
single step is performed that updates the ¢, amplitudes (tf, or
t1(1))~ The DDCCSD energy is then computed as

. ab .. a b b a
= z (ifllab)tjppec) + z (ijllab)(ttiay = tinti))
a<b a<b
i<j i<j

CCSD
E%on

(4)

Note that in the next paragraphs, we will refer to a generic t‘;b
amplitude as t,. Alternatively, we can introduce the predicted ¢,
amplitudes to the solver of CCSD and iteratively obtain the
exact CCSD energies in less computational effort, as we have
shown previously.”" In this work, we solely consider the first
approach, where the predicted amplitudes from ML are used
for the computation of an approximate CCSD energy.

2.2. Feature Weights. In our previous work on the
DDCCSD method,”' a weight w; was assigned to each feature,
which was optimized via a grid search for a data set of water
molecules in different conformations close to the equilibrium
geometry. In order to extend the transferability of DDCC, we
have applied an alternative approach for weight assignment to
features. We have calculated the Pearson correlation coefficient
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(r) between each of the features with the CCSD ¢, amplitude
value for the training data

L 2 -%)0-7)
JZE-2 20 -7 )

Here, x; is the value of feature x, y; is the value of the ith ¢,
amplitude, % is the mean of feature x, and  is the mean of the
value of CCSD t, amplitudes. This correlation coefficient value
is used as the weight for each feature (see Supporting
Information, Section S-1T) and is used for the comparison of
canonical molecular orbitals (CMOs) and localized molecular
orbitals (LMOs) and for the comparison of different amplitude
selection schemes.

3. COMPUTATIONAL DETAILS

All quantum chemical calculations, feature extraction, and
output data collection (t, amplitudes) were performed using
the Psi4NumPy software”” as described previously.”’ For the
purposes of this study, we used five molecules for the
calibration and performance evaluation of the new models;
those are diethyl ether, divinyl ether, vinyl alcohol, methyl vinyl
ether, and allyl alcohol molecules (Figure 1). Initial ground-
state structures were optimized with the B3LYP**** density
functional and the 6-31G***7 basis set, with the Psi4>®
quantum chemical program package.

In a previous study on machine-learned CCSD pair energies,
we demonstrated that models trained with LMOs are more
transferable than the CMOs and that the Foster—Boys (Boys)
localization scheme provided slightly better accuracy than the
Pipek—Mezey localization scheme.” In this work, the Boys
localization scheme is introduced in DDCC and its perform-
ance is compared with canonical orbitals. For the comparison
of the performance of the CMOs and LMOs, we used six
training sets. The first five training sets consisted of 30
conformers of an individual molecule, while the sixth training
set consisted of a mixture of six conformers from each
molecule. Similarly, five test sets, each consisting of S0
conformers of a molecule, were used for testing. Conformers
for training were generated by rotating the C—O bond of each
of the five molecules shown in Figure 1. Conformers for testing
were generated by rotating the same bond. For this analysis,
the STO-3G*>*" basis set was used to calculate the CCSD t,
amplitudes.

For the evaluation of the amplitude selection schemes, we
used the mixed training set since it better represents the
transferability of the DDCCSD models. For testing, we used
five conformers from each molecule. Initially, we used the
STO-3G basis set with both LMO and CMO formalisms and
then expanded our study to the cc-pVDZ and aug-cc-pVDZ
basis sets with LMOs. All the conformers used for training and
testing are included in the Supporting Information (SI_Con-
formers.txt document).

Three basis sets were considered in this study. Initially, we
used the STO-3G basis set for the comparison of the CMO
and LMO models and for determining the best set of
hyperparameters for each scheme for further studies. A set of
1,180,056 data points (amplitudes) was available in total for
training from the conformers when the STO-3G basis set was
used. In order to study the performance of the amplitude
selection schemes with increasing number of data points, we
further used cc-pVDZ" and aug-cc-pVDZ™* basis sets. A total
of 57,357,372 data points were available for training with the
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cc-pVDZ basis set and 197,707,512 data points were available
with the aug-cc-pVDZ basis set (see Supporting Information,
Section S-III, for the CCSD t, amplitude distribution for all
basis sets considered in this study). Figure 2 shows a log plot of
the distribution of CCSD t, amplitudes for the aug-cc-pVDZ
basis set.

10°

107 4
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103

Number of amplitudes (log scale)

101 4

—-0.06

—-0.04 —-0.02 0.00
CCSD t; amplitude value

0.02 0.04

Figure 2. Distribution of CCSD t, amplitudes (on a log scale)
computed with the aug-cc-pVDZ basis set.

All DDCCSD models were trained with the random forest
ML algorithm™ wusing the scikit-learn package.”” During
training, random forest models create a set of decision trees;
the number of decision trees is treated as a hyperparameter
that must be defined. The prediction for a new data point is
the mean of the output from each decision tree. The first step
of our study was a hyperparameter search with respect to the
number of estimators (decision trees), the choice of the loss
function, as well as the minimum number of data points. For
the hyperparameter optimization, models were trained with 30
different water conformers and tested with 100 different water
conformers with the STO-3G basis set. From this analysis, we
found that the optimum set of hyperparameters was 350
estimators with squared error loss function and a minimum
sample split of 2 (see Supporting Information, Section S-IV).
These hyperparameters were used throughout this study.

For the assessment of the DDCC models trained with
truncated amplitude spaces, the mean absolute error (MAE)
was calculated for each training and test set combination where
n is the number of test conformers

n
_ 2,‘:1 |ECCSD,i - EDDCCSD,i|

(6)

45

n

All the features were scaled using MinMaxScaler™ as

implemented in the scikit-learn package.*’

4. AMPLITUDE SELECTION SCHEMES

The main objective of this study is the development and
assessment of data selection techniques for the reduction of the
amplitude space needed for the DDCC model training. Two
aspects were considered for decreasing the number of training
data points. The first aspect is computational cost and time
reduction. For example, the random forest ML algorithm has a
training time complexity of O(n X log(n) X d X k) where n is
the number of training data points, d is the number of features,

https://doi.org/10.1021/acs.jpca.3c06600
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Figure 3. CCSD t, amplitude value vs MP2 amplitude value for all the amplitudes calculated with the STO-3G basis set and LMO formalism.

and k is the number of decision trees. Thus, it becomes evident
that the number of input data directly affects the training time.
The second consideration is the prevention of model
overfitting since a significant number of amplitudes for a
given molecule have values close to zero. The number of
amplitudes with values closer to zero is also size-dependent. As
a solution, we propose the selection of an amplitude subspace
that is used for DDCC training without affecting the model
accuracy. In this study, we discuss five selection approaches.
The first method is SB, where a value (score) is assigned to
each amplitude based on their scaled feature scores. The
second method involves ML clustering for sorting data into
bins (CB). The work of Maitra et al.**~*’ formed the basis for
the LA scheme. In their study, they used a set of amplitudes
that are greater than a cutoff value to train models that would
predict amplitudes that are less than the cutoff value. Here, we
are selecting only the amplitudes that are larger than a
particular cutoff value for training and testing, and we will refer
to it as a LA scheme. The fourth method considers the MP2
correlation energy of two-electron excitations ij — ab for
selecting amplitudes for training and testing (EC scheme), and
the fifth method involves a probabilistic selection (PS scheme)
of the initial amplitude space based on feature values. These
five schemes are presented in detail in the following
paragraphs.

4.1. Score to Bins. In the SB approach, a score §; is
assigned to each amplitude based on the values of the scaled
features

)

Here, w, is the weight of feature n, and f} is the value of the
nth feature of the ith amplitude. The score S; represents the
distance from the origin of the feature space to each data point.
Then, the amplitude space is clustered into m X m bins, where
m is the number of sections that the data set is partitioned
along feature score and CCSD t, axes. The initial choice of m
was 100. Therefore, the amplitude space was divided into
10,000 bins. Each amplitude is assigned to a bin according to
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its feature score S; and the value of the CCSD ¢, amplitude.
Next, a common cutoff will be set to all the bins, such that the
defined percentage of amplitudes will be selected when it is
applied. If a bin has less or equal number of amplitudes than
the cutoff, all the amplitudes are used for training. If a bin has
amplitudes more than the cutoff, then the number of
amplitudes that are equal to the cutoff will be randomly
selected for training. Overall, ten models were trained with S,
10, 20, 30, 40, 50, 60, 70, 80, and 90% of the total number of
amplitudes. Figure S4 in the Supporting Information Section S-
V shows a heatmap of the amplitude grouping to bins.

4.2. Clustering to Bins. The CB approach is similar to SB,
but instead of assigning a score, k-means clustering50 is used
for assigning amplitudes to bins. k-means clustering is an
unsupervised learning algorithm whose goal is to assign the
data points to k number of clusters by minimizing the
difference between the data point and the centroid (mean) of
the cluster that has been assigned to. The algorithm starts by
assigning centroids to the clusters. The number of clusters k is
treated as a model hyperparameter that should be defined
(vide infra). After the initial assessment of CB where a value of
100 clusters was selected for k, a hyperparameter optimization
was performed to determine the best number of k clusters. For
that purpose, the k-means cluster algorithm was executed 10
times for each clustering with different centroid seeds, and the
best clustering was selected each time. To assess the
performance, ten models were trained that contained 5, 10,
20, 30, 40, 50, 60, 70, 80, and 90% of the total amplitudes
using the CB scheme.

We used the 30 scaled features multiplied by the weight for
each feature and the CCSD t, amplitude value for clustering
into k bins. Then, amplitudes were selected for training from
each bin using a similar approach to the SB method by setting
a common cutoff value. Both SB and CB approaches attempt
to select an amplitude subspace that uniformly represents the
full amplitude space, which can reduce the amplitudes with
values closer to zero but can also avoid model overfitting.

After the optimum percent of amplitudes was determined
using the above-mentioned procedure, the effect of the number
of bins was assessed by creating models with different numbers

https://doi.org/10.1021/acs.jpca.3c06600
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of bins and calculating their accuracy. For the SB approach, six
models were trained by selecting 20% of the total amplitudes
from 50 X 50, 100 X 100, 150 X 150, 200 X 200, 250 X 250,
and 300 X 300 bins. For the CB approach, six models were
trained with 5% amplitudes chosen from 50, 100, 150, 200,
250, and 300 bins (see Supporting Information, Section S-
VIII).

4.3. Large Amplitudes. The LA approach is different from
the SB and CB approaches since it uses only data points with
MP2 amplitude magnitude greater than a defined cutoff value.
All amplitudes below this value are set to zero, while the rest
are predicted by DDCC. To further validate this notion, we
calculated the correlation coefficient between the MP2
amplitudes and the CCSD t, amplitudes (STO-3G basis set,
LMOs). A correlation coefficient of 0.9330 was obtained when
all amplitudes were taken into account (Figure 3), but when
amplitudes with magnitudes greater than 0.01 were considered,
the correlation coefficient increased to 0.9943. For the LA
approach, 11 models were trained with data points
corresponding to MP2 amplitudes within the 107>—~10"" range.

4.4. EC Scheme. The EC scheme shares similarities with
the LA scheme since both approaches use a cutoff value for
selecting training data points. There are two main differences
between LA and EC. First, EC uses the MP2 correlation
energy ef]-?Mpz) as a cutoff criterion, instead of the amplitude
value as in LA. For a two-electron excitation ij — ab, the MP2
correlation energy e;lEMPZ) is given as

ei‘jl(bMPZ) = <ij”ab>ti‘jl(hMP2)

©)

Optimum performance was found when a cutoff of 1 X 1077 E,,
(14.3% of the total amplitudes) was used for the STO-3G basis
set, 1 X 1077° E;, (5.76% of the total amplitudes) for models
trained with data from the cc-pVDZ basis set, and 1 X 107° E,
(4.47% of the total amplitudes) for models with data from aug-
cc-pVDZ. All amplitudes with MP2 correlation energy greater
than the cutoff value were selected for training. The second
difference is related to the selection of the amplitudes that are
“predicted” by the DDCC scheme. Specifically, after careful
inspection of the opposite-spin (OS) MP2 correlation energy
captured by an amplitude subspace (see Supporting
Information, Section S-VI), we set a cutoff threshold based
on the OS MP2 correlation energy percentage (poyo)- All ij —
ab correlation energies eg?Mpz) of test molecules are arranged in
ascending order, and CCSD ¢, predictions are made for the
amplitudes with the largest magnitude for 531(71\/11’2) that capture a
Peutos PeTCent of the total MP2 OS correlation energy. In
Section S, we discuss the effect of different p g values on the
model accuracy.

4.5. Probabilistic Selection. The PS approach uses a
weighting mechanism where each amplitude from the initial
amplitude space is assigned a weight W, defined as

W, = ti?(bMPZ) X (¢ +¢) )
where ¢ is the energy of occupied orbital k.

Once each amplitude has been assigned a weight, the
probability p, is computed as

A
2. W, (10)

In eq 9, p, is the probability assigned to the nth amplitude.
Once the weights are converted to probabilities, a certain
percentage of the initial amplitudes are selected in accordance

pn=
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with the assigned probabilities. For the PS approach, the MP2
amplitude was used as an initial weight, as it is the feature most
highly correlated to the CCSD amplitude, and the percentage
of amplitudes selected from the initial amplitude space was
treated as a hyperparameter to be optimized to reduce the
error of the model.

5. RESULTS AND DISCUSSION

5.1. Comparison of CMO and LMO Models. Table 1
shows the MAE for models trained with CMOs and LMOs.

Table 1. Average MAE (in mE;) of DDCC Models Trained
with Canonical or Localized Orbitals and with Data from
the Same Molecule (Individual Model) or with Data from
All Five Molecules (Mixed Model)”

localized orbitals

canonical orbitals

individual individual
model mixed model model mixed model
diethyl 11.90 (2.26) 1241 (2.83)  0.67 (0.09)  0.77 (0.15)
ether
divinyl 11.86 (2.25)  11.80 (3.72)  1.08 (0.17)  1.98 (0.44)
ether
vinyl 422 (1.04) 7.17 (2.04) 034 (0.13)  0.46 (0.47)
alcohol
methyl 8.36 (1.89)  10.34 (2.50)  0.76 (0.44)  1.29 (0.47)
vinyl
ether
propenol 7.77 (1.27) 9.34 (1.73)  0.60 (0.05)  0.69 (0.13)
average 8.82 10.21 0.69 1.04

“Standard deviation for each MAE calculation is given in parentheses.

These DDCC models are grouped as “individual models” (i.e.,
models that are trained with data from a specific molecule and
tested on conformers of the same molecule) and as “mixed
models”, where heterogeneous data from all five molecules are
used for training. These MAEs show that there is a clear gain in
both accuracy and transferability from the use of localized
orbitals. All individual and mixed models showed an increase in
accuracy by an order of magnitude when LMOs were
introduced in DDCC. For example, the average MAE of the
individual and mixed models with CMOs is 8.82 and 10.21
mEj, respectively, while the corresponding deviations from the
LMO models are only 0.69 and 1.04 mE,, respectively. LMOs
also demonstrate increased transferability since the difference
between mixed and individual models is 0.35 mE,, while the
same difference with CMOs is 1.39 mE;. We also note that the
deviations from LMO individual and mixed models are
comparable, apart from divinyl ether (difference of 0.90 mEj).

5.2. Evaluation of the Amplitude Selection Schemes.
The bar plot of Figure 4 shows the distribution of all
amplitudes (black bars) as well as 20% of the amplitudes
selected from the SB, CB, LA, PS, and EC schemes (yellow
bars). These amplitudes were calculated with the STO-3G
basis set and using LMOs. In addition to the above-mentioned
schemes, a distribution for 20% of randomly selected data
points is also shown in Figure 4e for comparison with the data-
driven selection schemes. The SB, CB, LA, PS, and EC
schemes select almost all the amplitudes with considerably
larger magnitudes as shown in Figure 4(a), (b), (c), (d), and
(f) respectively, whereas the random model omits a significant
number of amplitudes with larger magnitudes.

A comparison of MAE for the calculation of energy for test
conformers with different amplitude selection schemes with
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random selection approach was also depicted in gray. CCSD amplitudes for training and testing were calculated using the STO-3G basis set and

LMO formalism.

LMOs is shown in Figure S. It is evident that the CB and PS
models provide an accuracy below 1 kcal/mol with only 5% of
the total amplitudes. Models with the LA approach provide an
accuracy below 1 kcal/mol error with 9.81% of the total
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amplitudes. Both SB and randomly selected amplitude models
have an accuracy below 1 kcal/mol with 20% of the total
amplitudes. Overall, with LMOs, all schemes achieve less than
1 kcal/mol accuracy with a significantly lower number of
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Figure 6. Bar plot with the MAEs for models trained with SB, CB, LA, EC, and PS schemes calculated with the cc-pVDZ basis set. The difference
between MP2 and CCSD correlation energies is shown as MP2 (left bar). The 1 kcal/mol threshold is indicated by a horizontal red line.

amplitudes. Interestingly, the CB, LA, and random-amplitude
models converge to the accuracy of the all-amplitude model as
the number of training data points systematically approaches
the full amplitude space (100%). SB models approach a plateau
at around 60% of the total amplitudes. We would also like to
note that the PS model with LMOs has the best performance
across all different amplitude percentages, from S to 90% (vide
infra). On the contrary, all CMO models with amplitude
selection failed to achieve below 1 kcal/mol accuracy (see
Supporting Information, Section S-VII). An important
observation is the behavior of the LA models, which achieve
significantly less error (6.95 mE,) than the all-amplitude model
(10.19 mE,) at 18% of the total amplitudes, but the error
gradually increases and approaches asymptotically the all-
amplitude model when the number of amplitudes increases.

Next, we performed an analysis to investigate the effect of
the number of bins on the accuracy of SB and CB models with
LMO formalism. Results of this analysis are listed in the
Supporting Information, Section S-VIIL. The best number of
bins for SB models was 300 X 300 bins and that for CB models
was 50 bins. These results will be used for the calculations with
the cc-pVDZ basis set.

The behavior of the LA models shows an interesting pattern.
Errors from LA models are large at low data percentages (less
than 10% of the total data points used for training). This large
error can be attributed to neglecting contributions from a large
number of amplitudes for the correlation energy calculation.
The accuracy is increased when more amplitudes are added
(15%). Upon incremental addition above 20%, the errors start
to increase and asymptotically reach the error of the all-
amplitude model. Thus, with 15% of the total number of

1944

amplitudes, we avoid overfitting of the DDCCSD/LA model.
This is visually shown in Figure 3, where the R? value between
all MP2 and CCSD amplitudes is 0.9330, which increases to
0.9943 when only the large amplitudes are considered.

The EC scheme shows behavior similar to that of the LA
scheme. At low percentages, the error is significantly high due
to a lack of an adequate number of amplitudes to account for
the accurate estimation of the total correlation energy. The EC
scheme approaches the lowest error of 0.363 mE, with only
14.3% (when the cutoff is 1 X 1077 mE,) of the total
amplitudes. Upon further addition of amplitudes, the MAE
increases asymptotically due to overfitting and eventually
approaches the all-amplitude model error when 42.9% (cutoff
is 1 X 107 mE,) of the total amplitudes are used.

Models trained with PS schemes at low percentages
(between S and 20%) predict the CCSD energy with greater
accuracy than the other schemes considered in this study.
Further addition of amplitudes above 30% does not deviate
from the accuracy of the all-amplitude model, and the highest
accuracy for the PS scheme is at 60% (0.523 mE;). The PS
scheme has the lowest range of variation of MAE, thus, it is the
most consistent scheme out of all the amplitude selection
schemes we have used for STO-3G.

5.3. Basis Set Effects. Next, we explored basis set effects
by keeping the same hyperparameters (e.g,, number of bins
and amplitude percentage) as they were obtained from the
smaller STO-3G basis set. For example, the percentages for the
CB and SB models were 5% and 20%, respectively, since those
were the lowest percentage values that provided MAEs below 1
kcal/mol. The number of bins used in the CB and SB models
was 50 and 300 X 300, respectively. For the LA model, a cutoff
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Table 2. MAE (in mE;) Calculated for LA, EC, and PS Schemes with Different Cutoff Values (cc-pVDZ Basis Set)“

LA scheme EC scheme PS scheme
cutoff MAE percent amplitudes Peutoff MAE cutoff (percent) MAE
1x107? 493.563 (99.836) 0.003% 99.1% 1.406 (0.503) 2% 5253 (4.675)
1x1073 112.333 (36.765) 0.330% 99.15% 1.288 (0.767) 4% 3.027 (2.423)
1x10™* 2.447 (1.531) 4.654% 99.2% 1.370 (0.975) 6% 2.674 (1.765)
1x107° 8.837 (1.648) 21.801% 99.25% 1.565 (1.164) 8% 6.850 (5.231)
1x107° 8.754 (1.338) 49.024% 99.3% 1.953 (1.205) 10% 10.501 (6.019)

“Cutoff values for the LA scheme are set for the magnitude of MP2 amplitudes, whereas the cutoffs for the EC scheme are set for the correlation
energy of each data point. For the PS scheme, cutoffs are the percentages of data points selected from the total amplitude space. Percentages of
amplitudes selected for training EC scheme models were fixed at 5.76% of the total number of amplitudes. The standard deviation for each MAE

calculation is given in parentheses.

value of 1 X 10™* was applied since the model with 1 X 107
cutoff provides the lowest error for the STO-3G basis set.

MAEs for models trained with SB, CB, LA, EC, and PS
schemes calculated with the cc-pVDZ basis set are shown in
Figure 6, together with the MAE between MP2 and CCSD
correlation energies (45.04 mE,, see bar with label “MP2”).
The model trained with 5% of the total amplitude space using
the CB approach has an MAE of 11.68 mE,, while the SB
model with 20% of amplitudes has an MAE of 10.06 mE;.
Additional models that utilize larger data percentages of the
total amplitudes were trained (CB with 20%, 30% with SB),
but the accuracy remained close to or above 10 mE, (10.55
and 9.941 mE;, for CB and SB, respectively). Since the addition
of larger amounts of training data (larger percentages)
increases the computational effort without decreasing the
model deviations, we are not considering the CB and SB
approaches in the following sections.

As mentioned above, the first model for the LA approach
with the cc-pVDZ basis set was trained using the cutoff value
for the best LA model for the STO-3G basis set (1 x 107).
CCSD energies were predicted with an accuracy of 2.447 mE;
using only 4.65% of the amplitudes with this model. Next,
models were trained and tested with the LA approach by using
different cutoff values to identify the best value for the cc-
pVDZ basis set (see Table 2, left column). As the number of
amplitudes is decreased by increasing the cutoff, the MAE
increases. A smaller cutoff increases the number of amplitudes
for training and testing but the MAE also increases (~8.8
mE, ). Therefore, from this analysis, we found that the accuracy
of the models converges at the 1 X 107* cutoff. Similar
behavior for MAE was observed for STO-3G models (Figure
5).

The EC model that was tested with a p ¢ of 99.15% of the
total MP2 correlation was able to provide the lowest errors
(see the middle column of Table 2). This model was able to
predict the CCSD energy with an error of 1.288 mEj,.

For the PS approach, the model trained with 60% of the
total amplitudes resulted in a large deviation (117.160 mE},).
To further evaluate the performance at lower percentages of
amplitudes, we trained models with the PS approach from 1 to
10% (see Table 2, right column), and the lowest MAE (2.674
mE,) was achieved with only 6% of the total number of
amplitudes. Therefore, the PS offers a useful roadmap for
avoiding model overfitting.

We selected the best scheme from the cc-pVDZ basis set
calculations, which is the EC scheme, for the aug-cc-pVDZ
basis set calculations. The results for the aug-cc-pVDZ basis set
with different cutoff values are summarized in Table S7 of the
Supporting Information, Section S-IX. The average difference
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between MP2 and CCSD correlation energy for the aug-cc-
pVDZ basis set is 42.532 mE,. The EC model was trained
using 4.47% of the total number of amplitudes (amplitudes
with Iefj%Mpz)l greater than 1 X 107°E,). The best cutoff for
testing the EC model was 98.8%, and the MAE for this cutoff is
1.946 mE,.

6. CONCLUSIONS

The DDCC model offers an alternative approach to the
acceleration of CC theory. As the system and basis set sizes
increase, the number of training data that are needed increases
and eventually becomes the bottleneck for the application of
DDCC to larger molecular systems. The main objective of this
study was the ¢, amplitude space truncation, an important task
that can reduce the required quantum chemical data and
training time, while also increase model accuracy. For this
purpose, we introduced five amplitude selection schemes that
can be grouped into two categories. The first category includes
“data-driven” schemes such as the SB, the CB, and the PS. The
second category contains two schemes that are based on
chemical arguments and in particular on the two-electron
excitation parameter f, (LA) or the two-electron excitation
energy e’ (EC). Results obtained from the STO-3G basis set
allowed us to explore the behavior and accuracy of these
schemes as well as to refine model hyperparameters. We found
that models that utilized 15% of the total amplitude set
together with the LA, EC, and PS schemes were able to
provide similar or better accuracy when compared with the
model trained with all available amplitudes. These three
schemes were also able to provide reasonable accuracy when
used together with the data obtained from the cc-pVDZ basis
set, but further assessment with the larger aug-cc-pVDZ basis
set revealed that only the EC scheme was able to provide
satisfactory results. Finally, our initial hypothesis of reduction
of overfitting by amplitude space truncation was proven, since
errors start to increase after reaching a minimum for all basis
sets when LA and PS approaches were used. We are currently
exploring physics-based approaches that can be coupled
together with the amplitude selection schemes discussed here
that can further increase the applicability of DDCC schemes.
Another future direction is the exploration of electron
correlation effects far from the equilibrium geometries, to
develop models with improved transferability for strongly
correlated systems.
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