
FRIENDS TO HELP: SAVING FEDERATED LEARNING FROM CLIENT DROPOUT

Heqiang Wang, Jie Xu

Electrical and Computer Engineering, University of Miami
Coral Gables, FL 33146, USA

ABSTRACT

Federated learning (FL) is a new distributed machine learning frame-

work known for its benefits on data privacy and communication effi-

ciency. Since full client participation in many cases is infeasible due

to constrained resources, partial participation FL algorithms have

been investigated that proactively select/sample a subset of clients,

aiming to achieve learning performance close to the full participa-

tion case. This paper studies a passive partial client participation

scenario that is much less well understood, where partial participa-

tion is a result of external events, namely client dropout, rather than

a decision of the FL algorithm. We cast FL with client dropout as a

special case of a larger class of FL problems where clients can sub-

mit substitute (possibly inaccurate) local model updates. Based on

our convergence analysis, we develop a new algorithm FL-FDMS

that discovers friends of clients (i.e., clients whose data distributions

are similar) on-the-fly and uses friends’ local updates as substitutes

for the dropout clients, thereby reducing the substitution error. Ex-

periments on MNIST and CIFAR-10 confirmed the superior perfor-

mance of FL-FDMS in handling client dropout in FL.

Index Terms— Federated learning, client dropout, bias mitiga-

tion.

1. INTRODUCTION

Federated learning (FL) is a distributed machine learning paradigm

where a set of clients with decentralized data work collaboratively

to learn a model under the coordination of a centralized server.

Depending on whether or not all clients participate in every learn-

ing round, FL is classified as either full participation or partial

participation. While full participation is the ideal FL mode that

achieves the best convergence performance, a lot of effort has been

devoted to developing partial participation strategies via client selec-

tion/sampling [1–9] due to the attractive benefit of reduced resource

(i.e. communication and computation) consumption. Existing works

show that some of these partial participation strategies [2, 3] can in-

deed achieve performance close to full participation. Although the

details differ, the principal idea of these strategies is the careful

selection of appropriate clients to participate in each FL round.

For example, in many cases [1–3], clients are sampled uniformly at

random so that the participating clients form an “unbiased” represen-

tation of the whole client population in terms of the data distribution.

In others [4–9], “important” clients are selected more often to lead

FL towards the correct loss descending direction.

This paper studies partial participation FL, but from an angle in

stark contrast with existing works. In our considered problem, par-

tial participation is a result of an arbitrary client dropout process,

This work is supported in part by the National Science Foundation under
grants 2033681, 2006630, 2044991, 2319780.

which the FL algorithm has absolutely no control over. However,

a client may not be able to participate (in other words, drop out) in

an FL round due to, e.g., dead/low battery or loss of the commu-

nication signal. This means that the subset of clients participating

in a FL round may not be “representative” or “important” in any

sense. Client dropout is related to the “straggler” issue in FL, which

is caused by the delayed local model uploading by some clients. Ex-

isting solutions to the straggler issue can be categorized into the fol-

lowing two types: allowing clients to upload their local models asyn-

chronously to the server [10–13], and using the stored last updates

of the inactive clients to join the model aggregation [14, 15].

We shall note that client dropout can occur simultaneously with

client selection/sampling and hence partial participation can be a

mixed result of both. As will become clear, our algorithm can be

readily applied to this scenario and our theoretical results can also be

extended provided that the client selection/sampling strategy used in

conjunction has its own theoretical performance guarantee. How-

ever, since these results will depend on the specific client selec-

tion/sampling strategy adopted, and in order to better elucidate our

main idea, this paper will not consider client selection/sampling.

Our main contributions are summarized as follows: (1) We analyze

FL problems with inaccurate local updates, including client dropout,

and find that FL convergence depends on the gap between actual and

substitute updates. Minimizing this gap is key for better FL perfor-

mance with dropout. (2) We introduce “friendship” among clients

with similar data and updates. To mitigate dropout effects, we use

a non-dropped friend’s update, but identifying these friendships is

challenging. (3) Our method dynamically identifies friendships for

update substitution. Tests on MNIST and CIFAR-10 show their ef-

fectiveness in improving FL performance with client dropout.

2. FEDERATED LEARNING WITH CLIENT DROPOUT

We consider a server and a set of K clients, who work together to

train a machine learning model by solving a distributed optimization

problem:

min
w∈Rd

{

f(w) :=
1

K

K
∑

k=1

Eξk∼Dk [F
k(w; ξk)]

}

(1)

where F k : R
d → R denotes the objective function, ξk ∼ Dk

represents the sample/s drawn from distribution Dk at the k-th client

and w ∈ R
d is the model parameter to learn. In a non-i.i.d. data

setting, the distributions Dk are different across the clients.

We consider a typical FL algorithm [16] working in the client

dropout setting. In each round t, only a subset St ¦ K of clients

participate due to external reasons uncontrollable by the FL algo-

rithm. We call the clients that cannot participate dropout (or inac-

tive) clients. Then, FL executes the following four steps among the

non-dropout (or active) clients in round t:

8896979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024
Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

1. Global model download. Each client k ∈ St downloads the

global model wt from the server.

2. Local model update. Each client k ∈ St uses wt as the

initial model to train a new local model wk
t+1, typically by using

mini-batch stochastic gradient descent (SGD) as follows:

wk
t,τ+1 = wk

t,τ − ηLg
k
t,τ , ∀τ = 1, ..., E (2)

where ξkt,τ is a mini-batch of data samples, gkt,τ = ∇F k(wk
t,τ ; ξ

k
t,τ)

is the mini-batch stochastic gradient, ηL is the client local learning

rate and E is the number of epochs for local training.

3. Local model upload. Clients upload their local model up-

dates to the server. Instead of uploading the local model wk
t+1 itself,

client k can simply upload the local model update ∆k
t , which is de-

fined as the accumulative model parameter difference as follows:

∆k
t =

1

ηL

(

wk
t,E − wk

t,0

)

= −

E−1
∑

τ=0

gkt,τ (3)

4. Global model update. The server updates the global model

by using the aggregated local model updates of the clients in St:

wt+1 = wt + ηηL∆t, where ∆t :=
1

St

∑

k∈St

∆k
t (4)

and η is the global learning rate and St ≜ |St| denotes the number

of the non-dropout clients.

For the main result of this paper, we consider the most general

case of the client dropout process by imposing only an upper limit

on the dropout ratio. That is, there exists a constant α ∈ [0, 1) such

that (K − St)/K f α. If all clients drop out in a round, then

essentially the round is skipped. Also note that if St were a choice

of the FL algorithm, then the problem would become FL with client

selection/sampling. We stress again that in our problem, St is not a

choice, it is an uncontrollable client participation scenario.

3. CONVERGENCE ANALYSIS

Consider an FL round t where the set St of clients are active while

the remaining set K\St of clients dropped out. Thus, one can only

use the local model updates ∆k
t of the active clients in St to perform

global model updates since the inactive clients upload nothing to the

server. However, rather than completely ignoring the inactive clients,

we write the aggregate model update ∆t in a different way to include

all clients in the equation:

∆t :=
1

St

∑

k∈St

∆k
t =

1

K





∑

k∈St

∆k
t +

∑

k∈K\St

∆̃k
t



 (5)

where in the second equality we simply take ∆̃k
t = 1

St

∑

k∈St
∆k

t .

In other words, although the inactive clients did not participate in

the round t’s learning, it is equivalent to the case where an inactive

client k ∈ K\St uses ∆̃k
t = 1

St

∑

k∈St
∆k

t as a substitute of its true

local update ∆k
t (which it may not even calculate due to dropout).

Apparently, because ∆̃k
t ̸= ∆k

t in general, similar substitutes lead to

a biased error in the global update and hence affect the FL conver-

gence performance.

Leveraging the above observation, we consider a larger class of

FL problems that include client dropout as a special case. Specifi-

cally, imagine that an inactive client k, instead of contributing noth-

ing, uses a substitute ∆̃k
t for ∆k

t when submitting its local model

update. Apparently, ∆̃k
t = 1

St

∑

k∈St
∆k

t is a specific choice of the

substitute. We will still use the notation ∆t as the aggregate model

update with local update substitution and the readers should not be

confused. Our convergence analysis will utilize the following stan-

dard assumptions about the FL problem.

Assumption 1 (Lipschitz Smoothness). The local objective func-

tions satisfy the Lipschitz smoothness property, i.e.,∃L > 0, such

that ∥∇F k(x)−∇F k(y)∥ f L∥x− y∥, ∀x, y ∈ R
d and ∀k ∈ K.

Assumption 2 (Unbiased Local Gradient Estimator). The mini-

batch based local gradient estimator is unbiased, i.e.

Eξk∼Dk [∇F k(x; ξk)] = ∇F k(x), ∀k ∈ K

Assumption 3 (Bounded Local and Global Variance). There exist

constants ρL > 0 and ρG > 0 such that the variance of each local

gradient estimator is bounded, i.e.,

Eξk∼Dk

[

∥∇F k(x; ξk)−∇F k(x)∥2
]

f ρ2L, ∀x, ∀k ∈ K
And the global variability of the local gradient is bounded by

∥∇F k(x)−∇f(x)∥2 f ρ2G, ∀x, ∀k ∈ K.

Let ∆̄t = 1
K

∑

k∈K ∆k
t be the average local model update as-

suming that all clients are active in round t and submitted their true

local updates. Thus, et := ∆t − ∆̄t represents aggregate global up-

date error due to client dropout and local update substitution in round

t. Furthermore, let ekt := ∆̃k
t −∆k

t , ∀k ∈ K\St be the individual

substitution error for an individual inactive client k in round t.

Theorem 1. Let constant local and global learning rates ηL and

η be chosen as such that ηL f 1
8EL

and ηηL f 1
4EL

. Under

Assumption 1-3, the sequence of model wt generated by using model

update substitution with a substitution error sequence e0, ..., eT−1

satisfies

min
t=0,...,T−1

E∥∇f(wt)∥
2 f

f0 − f∗
cηηLET

+Φ+Ψ(e0, ..., eT−1)

(6)

where Φ = 1
c

[

5η2
LEL2(ρ2L + 6Eρ2G) +

ηηLL

K
ρ2L

]

, c is a constant,

f0 ≜ f(w0), f∗ ≜ f(w∗), w∗ is the optimal model and

Ψ(e0, ..., eT−1) =
1 + 3ηηLLE

cE2T

T−1
∑

t=0

E[∥et∥
2] (7)

The expectation is over the local dataset samples among the clients.

The convergence bound consists of three components: a dimin-

ishing term as T grows, a constant term Φ independent of T , and a

term based on substitution errors e0, ..., eT−1. With constant learn-

ing rates η and ηL and bounded ∥et∥
2, the convergence bound is

O(1/T) + C, where C is a constant. The key insight derived by

Theorem 1 is that the FL convergence bound depends on the cumula-

tive substitution error
∑T−1

t=0 Et[∥et∥
2]. Without client dropout, this

error is zero, making the convergence bound simply f0−f∗
cηηLET

+ Φ,

which degenerates to the same bound established in [3] for the nor-

mal full participation case.

Our analysis provides an intuitive understanding of the impact of

client dropout and model substitution on FL convergence and char-

acterizes the convergence under a biased scenario, which is an im-

portant and previously unaddressed issue in FL research. The main

challenge was consolidating all the bias-related errors into a single

term in the final convergence bound.

8897
Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

Next, we derive a more specific bound on Ψ(e0, ..., eT−1) for

the naive dropout case where an inactive client uploads nothing to

the server or, equivalently, uses 1
St

∑

k∈St
∆k

t as a substitute. The

following additional assumption is needed.

Assumption 4. For any two clients i and j, the local model update

difference is bounded as follows: E[∥∆i(w)−∆j(w)∥2] f σ2
i,j , ∀w

where the expectation is over the local dataset samples.

Assumption 4 provides a pairwise characterization of clients’

dataset heterogeneity in terms of the local model updates. When

two clients i, j have the same data distribution and assuming that

the min-batch SGD utilizes the entire local dataset (i.e., the local

gradient estimator is accurate), then it is obvious σ2
i,j = 0. We let

σ2
P ≜ maxi,j σ

2
i,j be the maximum pairwise difference.

With Assumption 4, the round-t substitution error can then

be bounded as E[∥et∥
2] f α2σ2

P . Plugging this bound into

Ψ(e0, ..., eT−t), we have

Ψ(e0, ..., eT−1) f
α2σ2

P (1 + 3ηηLLE)

cE2
≜ Ψ̄ (8)

Note that Ψ̄ is a constant independent of T . This implies that, with

constant learning rates ηL and η, mint E∥∇f(wt)∥
2 converges to

some value at most Φ+ Ψ̄ as T → ∞.

4. FRIEND MODEL SUBSTITUTION

In this section, we develop a new algorithm to reduce the substitution

error of FL with client dropout. Our key idea is to find a better

substitute ∆̃k
t for ∆k

t when client k drops out in round t in order

to reduce Ψ(e0, ..., eT−1). This is possible by noticing that σ2
i,j are

different across client pairs and the local model updates are more

similar when the clients’ data distributions are more similar. Thus,

when a client i drops out, one can use the local model update ∆j
t as

a replacement of ∆i
t if j shares a similar data distribution with i, or

in our terminology, j is a friend of i. We make “friendship” formal

in the following definition.

Definition 1 (Friendship). Let σ2
F < σ2

P be some constant. We say

that clients i and j are friends if σ2
i,j f σ2

F . Further, denote Bk as

the set of friends of client k and Bk = |Bk| as the size of Bk.

While “friendship” exists among clients, it’s hidden in the FL

algorithm, making model update substitution for dropout clients

challenging. However, knowing this, if friendship was fully re-

vealed, would provide an optimal baseline for our following pro-

posed algorithm.

Suppose in any round t, for any inactive client i ∈ K\St, there

exists active client j that is client i’s friend. With friend model

substitution, the accumulated substitution error can be bounded as

E[∥et∥
2] f α2σ2

F . Substituting this bound into Ψ(e0, ..., eT−1):

Ψ(e0, ..., eT−1) f
α2σ2

F (1 + 3ηηLLE)

cE2
≜ Ψ∗

(9)

Note that Ψ∗ is still a constant independent of T but it is much

smaller than Ψ̄, since typically σ2
F j σ2

P . In Fig. 1, we illustrate the

difference in local model updates between σ2
F and σ2

P throughout the

entire training period. From the result, we observe that σ2
F is much

smaller than σ2
P in every round. Therefore, the convergence bound

can be improved if the algorithm utilizes the friendship information.

The above analysis shows that the FL convergence can be sub-

stantially improved if the algorithm can utilize the friendship infor-

mation. Next, we develop a learning-assisted FL algorithm, called

0 25 50 75 100 125 150 175 200
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ca

l M
od

el
 U

pd
at

e
Di

ffe
re

nc
e

2
F
2
P

Fig. 1: The Local Model Update Difference σ2
F and σ2

P .

FL with Friend Discovery and Model Substitution (FL-FDMS), that

discovers the friends of clients and uses the model update of the dis-

covered friends for substitution.

In each FL round t, in addition to the regular steps in the FL

algorithm described in Section 3, FL-FDMS performs different ac-

tions depending on the client status. For active clients, FL-FDMS

calculates pairwise similarity scores to learn the similarity between

clients. For inactive clients, FL-FDMS uses the historical similarity

scores to find active friend clients and use their local model updates

as substitutes. We describe these two cases in more detail below.

Active Clients. For any pair of active clients i and j in St. The

server calculates a similarity score ri,jt = r(∆i
t,∆

j
t) based on their

uploaded local model updates ∆i
t and ∆j

t . Many functions can be

used to calculate the score. For example, r(∆i
t,∆

j
t) can simply be

the negative model difference, i.e., −∥∆i
t −∆j

t∥, or the normalized

cosine similarity, i.e.,

r(∆i
t,∆

j
t) =

1

2

(

ï∆i
t,∆

j
tð

∥∆i
t∥∥∆

j
t∥

+ 1

)

(10)

Because the normalized cosine similarity takes value from a bounded

and normalized range [0, 1], which is more amenable for mathemati-

cal analysis, we will use this function in this paper. Clearly, a higher

similarity score implies that the two clients are more similar in terms

of their data distribution.

However, a single similarity score calculated in one particular

round does not provide accurate similarity information because of

the randomness in the initial model in that round and the randomness

in the mini-batch SGD for local model computation. Thus, the server

maintains and updates an average similarity score Ri,j
t for clients i

and j based on all similarity scores calculated so far as follows,

Ri,j
t =







N
i,j
t−1

N
i,j
t−1

+1
Ri,j

t−1 +
1

N
i,j
t−1

+1
ri,jt , if i, j ∈ St

Ri,j
t−1, otherwise

(11)

where N i,j
t is the number of rounds where both clients i and j did

not drop out up to round t.
Inactive Clients. For any inactive client k, the server looks up

Rk,i
t between k and every active client i ∈ St, finds the one with

the highest similarity score, denoted by φt(k) = argmaxi∈St R
k,i
t ,

and uses the local model update ∆
φt(k)
t as a substitute for ∆k

t when

computing the global update.

In the experimental section, we will demonstrate that our FL-

FDMS algorithm effectively identifies hidden friends for clients who

drop out, leading to improved learning performance.

Remark on Privacy: The averaged similarity score is calculated

based on the uploaded model and does not require any additional

information from the client. Previous works such as [17, 18], al-

beit addressing different FL problems, also rely on finding the client

relationships or clusters. Thus, the privacy protection level of our

algorithm is similar to that of those algorithms.

8898
Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

5. EXPERIMENTS

5.1. Setup

We perform experiments on two standard public datasets, namely

MNIST and CIFAR-10, with two data settings. In the clustered set-

tings (one on MNIST and one on CIFAR-10), we artificially create 5

client clusters where clients in the same cluster possess data samples

with the same labels. Thus, clients in the same cluster are naturally

regarded as friends. However, the clustering structure is unknown

to our algorithm. In the general setting (on CIFAR-10), 20 clients

receive a random subset of the whole dataset using a common way

of generating non-iid FL datasets that are widely used in existing

works. We use the LeNet architecture [19] to train the MNIST and

CIFAR-10 datasets. The following parameters are used for train-

ing: the number of local iterations E = 2, the local learning rate

ηL = 0.1 and the global learning rate η = 1.

0 20 40 60 80 100
Number of Rounds

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Full
Dropout
Stale
FDMS

(a) MNIST clustered (α = 0.5)

0 20 40 60 80 100
Number of Rounds

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Full
Dropout
Stale
FDMS

(b) MNIST clustered (α = 0.7)

0 100 200 300 400 500
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Full
Dropout
Stale
FDMS

(c) CIFAR-10 clustered (α = 0.5)

0 100 200 300 400 500
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Full
Dropout
Stale
FDMS

(d) CIFAR-10 clustered (α = 0.7)

0 100 200 300 400 500
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Full
Dropout
Stale
FDMS

(e) CIFAR-10 general (α = 0.5)

0 100 200 300 400 500
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Full
Dropout
Stale
FDMS

(f) CIFAR-10 general (α = 0.7)

Fig. 2: Performance comparison with various α

We compare FL-FDMS with the following three benchmarks.

Full Participation (Full). This is the ideal case where all clients

participate in FL without dropout. It is used as a performance upper

bound.

Client Dropout (Dropout). In this case, the server simply ig-

nores the dropout clients and performs global aggregation on the

non-dropout clients.

Staled Substitute (Stale). Another method to deal with dropout

clients is to use their last uploaded local model updates for the cur-

rent round’s global aggregation. Such a method was also used to deal

with the “straggler” issue in FL in some previous works [14, 15].

5.2. Performance Comparison

We first compare the convergence performance in the clustered set-

ting under different dropout ratios α ∈ {0.5, 0.7}. Fig. 2 plots

the convergence curves on the MNIST dataset and the CIFAR-10

dataset, respectively. Several observations are made as follows.

First, FL-FDMS outperforms Dropout and Stale in terms of test

accuracy and convergence speed and achieves performance close to

Full in all cases. Second, FL-FDMS reduces the fluctuations caused

by the client dropout on the convergence curve. Third, with a larger

dropout ratio, the performance improvement of FL-FDMS is larger.

Fourth, on more complex datasets (e.g., CIFAR-10), FL-FDMS

achieves an even more significant performance improvement.

We also perform experiments in the more general non-iid case

to illustrate the wide applicability of the proposed algorithm. Fig. 2

plots the convergence curves on CIFAR-10 under the general setting.

The results confirm the superiority of FL-FDMS. However, we also

note that the improvement is smaller than that in the clustered set-

ting. This suggests a limitation of FL-FDMS, which works best

when the “friendship” relationship among the clients is stronger.

5.3. Friend Discovery

FL-FDMS relies on successfully discovering the friends of dropout

clients. In Fig. 3, we show the pairwise similarity scores in the fi-

nal learning round. In our controlled clustered setting, 20 clients

were grouped into 5 clusters, but this information was not known by

the algorithm at the beginning. As the figure shows, the similarity

scores obtained by FL-FDMS are larger for intra-cluster client pairs

and smaller for inter-cluster client pairs, indicating that the cluster-

ing/friendship information can be successfully discovered. More-

over, our experiments show that the discovered friendship is more

obvious for CIFAR-10 than for MNIST. This is likely due to the dif-

ferent dataset structures and the different CNN models adopted.

0.0

0.2

0.4

0.6

0.8

1.0

(a) MNIST dataset

0.0

0.2

0.4

0.6

0.8

1.0

(b) CIFAR-10 dataset

Fig. 3: Pairwise similarity scores in the final learning round.

6. CONCLUSION

This paper investigated the impact of client dropout on the conver-

gence of FL. Our analysis treats client dropout as a special case of

local update substitution and characterizes the convergence bound in

terms of the total substitution error. This inspired us to develop FL-

FDMS, which discovers friend clients on-the-fly and uses friends’

updates to reduce substitution errors, thereby mitigating the negative

impact of client dropout. Extensive experiment results show that dis-

covering the client’s “friendship” is possible and it can be a useful

resort for addressing client dropout problems.

8899
Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

7. REFERENCES

[1] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,

Sashank J Reddi, Sebastian U Stich, and Ananda Theertha

Suresh, “Scaffold: Stochastic controlled averaging for on-

device federated learning.,” 2019.

[2] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and

Zhihua Zhang, “On the convergence of fedavg on non-iid

data,” in International Conference on Learning Representa-

tions, 2019.

[3] Haibo Yang, Minghong Fang, and Jia Liu, “Achieving linear

speedup with partial worker participation in non-iid federated

learning,” in International Conference on Learning Represen-

tations, 2020.

[4] Monica Ribero and Haris Vikalo, “Communication-efficient

federated learning via optimal client sampling,” arXiv preprint

arXiv:2007.15197, 2020.

[5] Wenlin Chen, Samuel Horváth, and Peter Richtárik, “Optimal

client sampling for federated learning,” Transactions on Ma-

chine Learning Research, 2022.

[6] Yae Jee Cho, Jianyu Wang, and Gauri Joshi, “Client selec-

tion in federated learning: Convergence analysis and power-of-

choice selection strategies,” arXiv preprint arXiv:2010.01243,

2020.

[7] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf

Chowdhury, “Oort: Efficient federated learning via guided par-

ticipant selection,” in 15th Symposium on Operating Systems

Design and Implementation, 2021, pp. 19–35.

[8] Hongda Wu and Ping Wang, “Node selection toward faster

convergence for federated learning on non-iid data,” IEEE

Transactions on Network Science and Engineering, 2022.

[9] Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Hi-

mayat, Virginia Smith, and Jeff Bilmes, “Diverse client selec-

tion for federated learning via submodular maximization,” in

International Conference on Learning Representations, 2021.

[10] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple,

and Stephen Jarvis, “Safa: a semi-asynchronous protocol for

fast federated learning with low overhead,” IEEE Transactions

on Computers, vol. 70, no. 5, pp. 655–668, 2020.

[11] Yanan Li, Shusen Yang, Xuebin Ren, and Cong Zhao, “Asyn-

chronous federated learning with differential privacy for edge

intelligence,” arXiv preprint arXiv:1912.07902, 2019.

[12] Cong Xie, Sanmi Koyejo, and Indranil Gupta, “Asynchronous

federated optimization,” arXiv preprint arXiv:1903.03934,

2019.

[13] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rang-

wala, “Asynchronous online federated learning for edge de-

vices with non-iid data,” in 2020 IEEE International Confer-

ence on Big Data (Big Data). IEEE, 2020, pp. 15–24.

[14] Yikai Yan, Chaoyue Niu, Yucheng Ding, Zhenzhe Zheng, Fan

Wu, Guihai Chen, Shaojie Tang, and Zhihua Wu, “Distributed

non-convex optimization with sublinear speedup under inter-

mittent client availability,” arXiv preprint arXiv:2002.07399,

2020.

[15] Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo

Huang, “Fast federated learning in the presence of arbitrary

device unavailability,” Advances in Neural Information Pro-

cessing Systems, vol. 34, pp. 12052–12064, 2021.

[16] Jakub Konevcny, H Brendan McMahan, Felix X Yu, Peter

Richtárik, Ananda Theertha Suresh, and Dave Bacon, “Fed-

erated learning: Strategies for improving communication effi-

ciency,” arXiv preprint arXiv:1610.05492, 2016.

[17] Yichen Ruan and Carlee Joe-Wong, “Fedsoft: Soft clustered

federated learning with proximal local updating,” in Proceed-

ings of the AAAI Conference on Artificial Intelligence, 2022,

vol. 36, pp. 8124–8131.

[18] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ram-

chandran, “An efficient framework for clustered federated

learning,” Advances in Neural Information Processing Sys-

tems, vol. 33, pp. 19586–19597, 2020.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner, “Gradient-based learning applied to document recog-

nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–

2324, 1998.

8900
Authorized licensed use limited to: University of Florida. Downloaded on December 16,2024 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

