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ABSTRACT

Federated learning (FL) is a new distributed machine learning frame-
work known for its benefits on data privacy and communication effi-
ciency. Since full client participation in many cases is infeasible due
to constrained resources, partial participation FL algorithms have
been investigated that proactively select/sample a subset of clients,
aiming to achieve learning performance close to the full participa-
tion case. This paper studies a passive partial client participation
scenario that is much less well understood, where partial participa-
tion is a result of external events, namely client dropout, rather than
a decision of the FL algorithm. We cast FL with client dropout as a
special case of a larger class of FL problems where clients can sub-
mit substitute (possibly inaccurate) local model updates. Based on
our convergence analysis, we develop a new algorithm FL-FDMS
that discovers friends of clients (i.e., clients whose data distributions
are similar) on-the-fly and uses friends’ local updates as substitutes
for the dropout clients, thereby reducing the substitution error. Ex-
periments on MNIST and CIFAR-10 confirmed the superior perfor-
mance of FL-FDMS in handling client dropout in FL.

Index Terms— Federated learning, client dropout, bias mitiga-
tion.

1. INTRODUCTION

Federated learning (FL) is a distributed machine learning paradigm
where a set of clients with decentralized data work collaboratively
to learn a model under the coordination of a centralized server.
Depending on whether or not all clients participate in every learn-
ing round, FL is classified as either full participation or partial
participation. While full participation is the ideal FL mode that
achieves the best convergence performance, a lot of effort has been
devoted to developing partial participation strategies via client selec-
tion/sampling [1-9] due to the attractive benefit of reduced resource
(i.e. communication and computation) consumption. Existing works
show that some of these partial participation strategies [2,3] can in-
deed achieve performance close to full participation. Although the
details differ, the principal idea of these strategies is the careful
selection of appropriate clients to participate in each FL round.
For example, in many cases [1-3], clients are sampled uniformly at
random so that the participating clients form an “unbiased” represen-
tation of the whole client population in terms of the data distribution.
In others [4-9], “important” clients are selected more often to lead
FL towards the correct loss descending direction.

This paper studies partial participation FL, but from an angle in
stark contrast with existing works. In our considered problem, par-
tial participation is a result of an arbitrary client dropout process,
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which the FL algorithm has absolutely no control over. However,
a client may not be able to participate (in other words, drop out) in
an FL round due to, e.g., dead/low battery or loss of the commu-
nication signal. This means that the subset of clients participating
in a FL round may not be “representative” or “important” in any
sense. Client dropout is related to the “straggler” issue in FL, which
is caused by the delayed local model uploading by some clients. Ex-
isting solutions to the straggler issue can be categorized into the fol-
lowing two types: allowing clients to upload their local models asyn-
chronously to the server [10-13], and using the stored last updates
of the inactive clients to join the model aggregation [14, 15].

We shall note that client dropout can occur simultaneously with
client selection/sampling and hence partial participation can be a
mixed result of both. As will become clear, our algorithm can be
readily applied to this scenario and our theoretical results can also be
extended provided that the client selection/sampling strategy used in
conjunction has its own theoretical performance guarantee. How-
ever, since these results will depend on the specific client selec-
tion/sampling strategy adopted, and in order to better elucidate our
main idea, this paper will not consider client selection/sampling.
Our main contributions are summarized as follows: (1) We analyze
FL problems with inaccurate local updates, including client dropout,
and find that FL convergence depends on the gap between actual and
substitute updates. Minimizing this gap is key for better FL perfor-
mance with dropout. (2) We introduce “friendship” among clients
with similar data and updates. To mitigate dropout effects, we use
a non-dropped friend’s update, but identifying these friendships is
challenging. (3) Our method dynamically identifies friendships for
update substitution. Tests on MNIST and CIFAR-10 show their ef-
fectiveness in improving FL performance with client dropout.

2. FEDERATED LEARNING WITH CLIENT DROPOUT

We consider a server and a set of K clients, who work together to
train a machine learning model by solving a distributed optimization
problem:

min {f(w) = %ZEgkak [Fk(w§§k)]} (¢))
k=1

weRD

where F* : RY — R denotes the objective function, £* ~ DF
represents the sample/s drawn from distribution D* at the k-th client
and w € R? is the model parameter to learn. In a non-i.i.d. data
setting, the distributions DF are different across the clients.

We consider a typical FL algorithm [16] working in the client
dropout setting. In each round ¢, only a subset S; C K of clients
participate due to external reasons uncontrollable by the FL algo-
rithm. We call the clients that cannot participate dropout (or inac-
tive) clients. Then, FL executes the following four steps among the
non-dropout (or active) clients in round ¢:
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1. Global model download. Each client k € S; downloads the
global model w; from the server.

2. Local model update. Each client £ € S; uses w; as the
initial model to train a new local model wf+1, typically by using
mini-batch stochastic gradient descent (SGD) as follows:

wf,T+l = wf,T - T/Lgfﬂ?VT = 1a ey E (2)

where fﬁf is a mini-batch of data samples, gff = VFk(wf’T; §ET)
is the mini-batch stochastic gradient, 7z, is the client local learning
rate and F is the number of epochs for local training.

3. Local model upload. Clients upload their local model up-
dates to the server. Instead of uploading the local model wa itself,
client k can simply upload the local model update A¥, which is de-
fined as the accumulative model parameter difference as follows:

1 E-1
P O S EE S SEc)
nL 7=0

4. Global model update. The server updates the global model
by using the aggregated local model updates of the clients in S;:

1
Wer1 = wr + MrAe, where A;:= 5 Z A,’f )

t keSe

and 7 is the global learning rate and S; 2 |S;| denotes the number
of the non-dropout clients.

For the main result of this paper, we consider the most general
case of the client dropout process by imposing only an upper limit
on the dropout ratio. That is, there exists a constant « € [0, 1) such
that (K — S¢)/K < a. If all clients drop out in a round, then
essentially the round is skipped. Also note that if S; were a choice
of the FL algorithm, then the problem would become FL with client
selection/sampling. We stress again that in our problem, S; is not a
choice, it is an uncontrollable client participation scenario.

3. CONVERGENCE ANALYSIS

Consider an FL round ¢ where the set S; of clients are active while
the remaining set K\S; of clients dropped out. Thus, one can only
use the local model updates A¥ of the active clients in S; to perform
global model updates since the inactive clients upload nothing to the
server. However, rather than completely ignoring the inactive clients,
we write the aggregate model update A; in a different way to include
all clients in the equation:

Mimg YAl (XAt XA ©

keS: keS: kEK\St

where in the second equality we simply Fake Af = S% > ks, Af.
In other words, although the inactive clients did not participate in
the round #’s learning, it is equivalent to the case where an inactive
client k € K\S; uses A} = S% > kes, A¥ as a substitute of its true

local update A¥ (which it may not even calculate due to dropout).
Apparently, because A¥F £ AFin general, similar substitutes lead to
a biased error in the global update and hence affect the FL conver-
gence performance.

Leveraging the above observation, we consider a larger class of
FL problems that include client dropout as a special case. Specifi-
cally, imagine that an inactive client k, instead of contributing noth-
ing, uses a substitute AY for A¥ when submitting its local model

update. Apparently, A = si D ke s, A¥ is a specific choice of the
substitute. We will still use the notation A as the aggregate model
update with local update substitution and the readers should not be
confused. Our convergence analysis will utilize the following stan-
dard assumptions about the FL problem.

Assumption 1 (Lipschitz Smoothness). The local objective func-
tions satisfy the Lipschitz smoothness property, i.e,3L > 0, such
that ||VF*(z) = VF*(y)|| < L||lz — y||, Vo, y € R and Vk € K.

Assumption 2 (Unbiased Local Gradient Estimator). The mini-
batch based local gradient estimator is unbiased, i.e.

Eeropk [VF*(2;6")] = VF*(z),Vk € K

Assumption 3 (Bounded Local and Global Variance). There exist
constants pr, > 0 and pg > 0 such that the variance of each local
gradient estimator is bounded, i.e.,

Eer opr [[[VF*(z; %) — VF*(2)||*] < p2,Va,Vk € K

And the global variability of the local gradient is bounded by
IVF*(z) = Vf(2)|2 < ph, ¥a, Wk € K.

Let A; = % D okex A¥ be the average local model update as-
suming that all clients are active in round ¢ and submitted their true
local updates. Thus, e; := A; — A, represents aggregate global up-
date error due to client dropout and local update substitution in round
t. Furthermore, let ef := AF — AF vk € KC\S: be the individual
substitution error for an individual inactive client k in round ¢.

Theorem 1. Let constant local and global learning rates ny, and
n be chosen as such that n, < EZE% and nmr < ﬁ. Under
Assumption 1-3, the sequence of model w; generated by using model
update substitution with a substitution error sequence eg, ...,eT—1
satisfies

Jo—Ffs

min E||V f 2<7+(I)+ vy €T
0,...1,T 1 || (wt)|| S L \If(eo, , € 1)
(6)

where ® = + [577%EL2 (p2 + 6EpZ) + %pi] c is a constant,

s

fo 2 f(wo), f« 2 f(ws), w. is the optimal model and

T-1
1+ 3nmmLE
\11(60, ...,6'1“,1) = # Z E[HetHQ] (7)
t=0

The expectation is over the local dataset samples among the clients.

The convergence bound consists of three components: a dimin-
ishing term as 7" grows, a constant term ¢ independent of 7', and a
term based on substitution errors e, ..., er—1. With constant learn-
ing rates 7 and 1z, and bounded ||e;||?, the convergence bound is
O(1/T) + C, where C is a constant. The key insight derived by
Theorem 1 is that the FL convergence bound depends on the cumula-
tive substitution error 3, ' E¢[||e¢||?]. Without client dropout, this
error is zero, making the convergence bound simply Cf] %Z fE*T + O,
which degenerates to the same bound established in [3] for the nor-
mal full participation case.

Our analysis provides an intuitive understanding of the impact of
client dropout and model substitution on FL convergence and char-
acterizes the convergence under a biased scenario, which is an im-
portant and previously unaddressed issue in FL research. The main
challenge was consolidating all the bias-related errors into a single
term in the final convergence bound.
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Next, we derive a more specific bound on ¥(eo, ..., er—1) for
the naive dropout case where an inactive client uploads nothing to
the server or, F:guivalently, uses s% Yok s, A¥ as a substitute. The
following additional assumption is needed.

Assumption 4. For any two clients i and j, the local model update
difference is bounded as follows: E[|| A" (w)—A7 (w)||*] < o7, Vw
where the expectation is over the local dataset samples.

Assumption 4 provides a pairwise characterization of clients’
dataset heterogeneity in terms of the local model updates. When
two clients ¢, j have the same data distribution and assuming that
the min-batch SGD utilizes the entire local dataset (i.e., the local
gradient estimator is accurate), then it is obvious aﬁ ; = 0. We let
o3 2 max; 01-27 ; be the maximum pairwise difference.

With Assumption 4, the round-t substitution error can then
be bounded as E[|le]|’] < oc%. Plugging this bound into
U(eg, ..., er—t), we have

o’ (14 3L LE) 5§

Y(eo, ..., er—1) < oD

®)
Note that ¥ is a constant independent of 7. This implies that, with
constant learning rates 7, and 7, min, E||V f(w¢)||* converges to
some value at most ® + ¥ as T" — oo.

4. FRIEND MODEL SUBSTITUTION

In this section, we develop a new algorithm to reduce the substitution
error of FL with client dropout. Our key idea is to find a better
substitute Af for AF when client & drops out in round ¢ in order
to reduce ¥ (e, ..., er—1). This is possible by noticing that o7 ; are
different across client pairs and the local model updates are more
similar when the clients’ data distributions are more similar. Thus,
when a client ¢ drops out, one can use the local model update A7 as
a replacement of A! if j shares a similar data distribution with i, or
in our terminology, 7 is a friend of <. We make “friendship” formal
in the following definition.

Definition 1 (Friendship). Let 0% < 0% be some constant. We say
that clients © and j are friends ifal-%j < o2. Further, denote By, as
the set of friends of client k and By, = |By| as the size of B.

While “friendship” exists among clients, it’s hidden in the FL
algorithm, making model update substitution for dropout clients
challenging. However, knowing this, if friendship was fully re-
vealed, would provide an optimal baseline for our following pro-
posed algorithm.

Suppose in any round ¢, for any inactive client ¢ € K\ S, there
exists active client j that is client ¢’s friend. With friend model
substitution, the accumulated substitution error can be bounded as
E[|let||?] < o®c%. Substituting this bound into ¥ (eo, ..., er—1):

2 2
a“op(1+3mLLE) 5
\I/(eo,...,eT_l) S cE2 =

Note that ¥* is still a constant independent of 7' but it is much
smaller than U, since typically 0% < 0. InFig. 1, we illustrate the
difference in local model updates between 0% and o throughout the
entire training period. From the result, we observe that 0% is much
smaller than 0% in every round. Therefore, the convergence bound
can be improved if the algorithm utilizes the friendship information.

The above analysis shows that the FL. convergence can be sub-
stantially improved if the algorithm can utilize the friendship infor-
mation. Next, we develop a learning-assisted FL algorithm, called

v* ©))

e o O kB =
» o © o N
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Fig. 1: The Local Model Update Difference 0% and 0.

FL with Friend Discovery and Model Substitution (FL-FDMS), that
discovers the friends of clients and uses the model update of the dis-
covered friends for substitution.

In each FL round ¢, in addition to the regular steps in the FL
algorithm described in Section 3, FL-FDMS performs difterent ac-
tions depending on the client status. For active clients, FL-FDMS
calculates pairwise similarity scores to learn the similarity between
clients. For inactive clients, FL-FDMS uses the historical similarity
scores to find active friend clients and use their local model updates
as substitutes. We describe these two cases in more detail below.

Active Clients. For any pair of active clients ¢ and j in S;. The
server calculates a similarity score r;”7 = r(A%, A7) based on their
uploaded local model updates A% and A{ . Many functions can be
used to calculate the score. For example, (A%, A7) can simply be

the negative model difference, i.e., —|| A} — AJ||, or the normalized
cosine similarity, i.e.,
Ay L[ (ALA])
r(ALAD) = - <7f 1 (10)
2 \IAHIIAZ

Because the normalized cosine similarity takes value from a bounded
and normalized range [0, 1], which is more amenable for mathemati-
cal analysis, we will use this function in this paper. Clearly, a higher
similarity score implies that the two clients are more similar in terms
of their data distribution.

However, a single similarity score calculated in one particular
round does not provide accurate similarity information because of
the randomness in the initial model in that round and the randomness
in the mini-batch SGD for local model computation. Thus, the server
maintains and updates an average similarity score R} for clients 4
and j based on all similarity scores calculated so far as follows,

2% .
Nf,—l 2%} + 1
¥ t—1 ¥
N, +1 N7 +1

2,5
Ry,

il if i eS8,

Ry = (11)

otherwise

where NZ 7 is the number of rounds where both clients i and j did
not drop out up to round ¢.

Inactive Clients. For any inactive client &, the server looks up
Rf ** between k and every active client 7 € S;, finds the one with
the highest similarity score, denoted by ¢ (k) = arg max;cs, R},

) as a substitute for A¥ when

and uses the local model update A‘ft (k
computing the global update.

In the experimental section, we will demonstrate that our FL-
FDMS algorithm effectively identifies hidden friends for clients who
drop out, leading to improved learning performance.

Remark on Privacy: The averaged similarity score is calculated
based on the uploaded model and does not require any additional
information from the client. Previous works such as [17, 18], al-
beit addressing different FL problems, also rely on finding the client
relationships or clusters. Thus, the privacy protection level of our
algorithm is similar to that of those algorithms.
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5. EXPERIMENTS

5.1. Setup

We perform experiments on two standard public datasets, namely
MNIST and CIFAR-10, with two data settings. In the clustered set-
tings (one on MNIST and one on CIFAR-10), we artificially create 5
client clusters where clients in the same cluster possess data samples
with the same labels. Thus, clients in the same cluster are naturally
regarded as friends. However, the clustering structure is unknown
to our algorithm. In the general setting (on CIFAR-10), 20 clients
receive a random subset of the whole dataset using a common way
of generating non-iid FL datasets that are widely used in existing
works. We use the LeNet architecture [19] to train the MNIST and
CIFAR-10 datasets. The following parameters are used for train-
ing: the number of local iterations £ = 2, the local learning rate
nr = 0.1 and the global learning rate n = 1.
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Fig. 2: Performance comparison with various o

We compare FL-FDMS with the following three benchmarks.

Full Participation (Full). This is the ideal case where all clients
participate in FL. without dropout. It is used as a performance upper
bound.

Client Dropout (Dropout). In this case, the server simply ig-
nores the dropout clients and performs global aggregation on the
non-dropout clients.

Staled Substitute (Stale). Another method to deal with dropout
clients is to use their last uploaded local model updates for the cur-

rent round’s global aggregation. Such a method was also used to deal
with the “straggler” issue in FL in some previous works [14, 15].

5.2. Performance Comparison

We first compare the convergence performance in the clustered set-
ting under different dropout ratios a € {0.5,0.7}. Fig. 2 plots
the convergence curves on the MNIST dataset and the CIFAR-10
dataset, respectively. Several observations are made as follows.
First, FL-FDMS outperforms Dropout and Stale in terms of test
accuracy and convergence speed and achieves performance close to
Full in all cases. Second, FL-FDMS reduces the fluctuations caused
by the client dropout on the convergence curve. Third, with a larger
dropout ratio, the performance improvement of FL-FDMS is larger.
Fourth, on more complex datasets (e.g., CIFAR-10), FL-FDMS
achieves an even more significant performance improvement.

We also perform experiments in the more general non-iid case
to illustrate the wide applicability of the proposed algorithm. Fig. 2
plots the convergence curves on CIFAR-10 under the general setting.
The results confirm the superiority of FL-FDMS. However, we also
note that the improvement is smaller than that in the clustered set-
ting. This suggests a limitation of FL-FDMS, which works best
when the “friendship” relationship among the clients is stronger.

5.3. Friend Discovery

FL-FDMS relies on successfully discovering the friends of dropout
clients. In Fig. 3, we show the pairwise similarity scores in the fi-
nal learning round. In our controlled clustered setting, 20 clients
were grouped into 5 clusters, but this information was not known by
the algorithm at the beginning. As the figure shows, the similarity
scores obtained by FL-FDMS are larger for intra-cluster client pairs
and smaller for inter-cluster client pairs, indicating that the cluster-
ing/friendship information can be successfully discovered. More-
over, our experiments show that the discovered friendship is more
obvious for CIFAR-10 than for MNIST. This is likely due to the dif-
ferent dataset structures and the different CNN models adopted.

0.6 0.6
0.4 0.4
0.2 0.2
| |
J -i
0.0 0.0

(a) MNIST dataset (b) CIFAR-10 dataset

Fig. 3: Pairwise similarity scores in the final learning round.

6. CONCLUSION

This paper investigated the impact of client dropout on the conver-
gence of FL. Our analysis treats client dropout as a special case of
local update substitution and characterizes the convergence bound in
terms of the total substitution error. This inspired us to develop FL-
FDMS, which discovers friend clients on-the-fly and uses friends’
updates to reduce substitution errors, thereby mitigating the negative
impact of client dropout. Extensive experiment results show that dis-
covering the client’s “friendship” is possible and it can be a useful
resort for addressing client dropout problems.
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