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ABSTRACT As the leading mobile operating system, Android powers critical infrastructure and personal
devices across sectors such as finance and healthcare and a wide range of user scenarios. However, its
open-source nature presents considerable security challenges. Exploiting vulnerabilities in native and custom
permissions, malicious API calls, intents, signatures, and manifests, threat actors can gain access to sensitive
data and device control. The continuously evolving landscape of Android malware necessitates robust and
generalized detection methods. While traditional machine learning (ML) models have been employed to
address this issue, they have limitations. Focusing on single datasets can impede both generalization and
effective detection. Further, the dynamic nature of malware renders many traditional methods inadequate
for providing comprehensive and real-time protection. This paper addresses this critical need by proposing
DeeplmageDroid, an advanced and efficient deep learning (DL) framework for Android malware detection.
DeepImageDroid harnesses the combined power of Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs), utilizing three diverse Android malware datasets. This hybrid approach significantly
improves detection accuracy and model generalization compared to existing solutions. By employing the
weighted average ensemble method, DeepImageDroid achieved a remarkable 96% accuracy.

INDEX TERMS Android, CNN, deep learning, ensemble, hybrid, malware, security, ViTs.

I. INTRODUCTION
The Android operating system (OS) continues to dominate
a wide range of devices, and its significance on a global
scale cannot be understated. Thus, it is crucial to implement
measures that mitigate the vulnerabilities inherent in Android
devices and enhance the security ecosystem. Android’s
most prominent application is in mobile devices, including
smartphones, wearable technology, and even medical and
health-related equipment.

The open-source nature of Android has propelled it to
the forefront of the smart device market, boasting over
2 billion active users and a commanding 74% market
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share. However, this widespread popularity also presents
a considerable security challenge. The extensive user base
makes Android a prime target for malware developers who
exploit the platform’s accessibility to create sophisticated
threats. These malicious programs often aim to compromise
the device or the sensitive data it stores. They can leverage
system resources such as cameras, microphones, and location
data or directly access private information like contacts,
emails, and messages. Malware can also infiltrate legitimate
applications by repackaging them with malicious code or
requesting excessive permissions during updates, effectively
transforming them into Trojan horses [1], [2].

Recent research underscores the significant threat mali-
cious actors pose targeting Android’s vast user base. Studies
indicate that personal privacy theft is a primary objective
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in Android malware attacks, with nearly half of all such
malware functioning as multifunctional Trojans designed to
steal user data. This threat is exacerbated by the sheer volume
of applications available on the official Google Play store,
which exceeded 3 million by the end of 2020 [2], [3]. Several
factors contribute to Android’s vulnerability, including:

o Environmentally accessible methods: Android appli-
cations can access various sensors and functionalities
within the device, offering potential attack vectors.

o Coarse-grained permission control: The permission
system can be exploited due to its limited granularity,
granting potentially broader access than necessary.

o Third-party code execution: The ability to execute code
from external sources introduces additional security
risks [3].

These vulnerabilities collectively create a vast attack
surface for malicious actors, jeopardizing the integrity and
security of Android apps. The alarming statistics emphasize
the severity of the issue, with over 3.25 million infected apps
discovered in 2016 alone, translating to roughly one new
malicious app every 10 seconds [3], [4]. Thus, it is imperative
to address these security challenges to protect users and
maintain the integrity of the Android ecosystem.

Further, Android malware detection faces a continuous
battle against the ever-evolving tactics of malicious actors.
Malware authors employ sophisticated obfuscation tech-
niques such as encryption, polymorphism, and metamorphic
methods, making their creations increasingly difficult to
detect [4], [5], [6]. This challenge is exacerbated by recent
malware programs that mimic popular apps, incorporating
subtle similarities to evade human detection [4].

Traditional approaches, which rely on feature extraction
and machine learning (ML) classifiers, often fall short in
this dynamic landscape. While these methods can achieve
high accuracy, they remain vulnerable to attackers who add
benign features like pop-up messages or logging, thereby
tricking the classifier into categorizing malicious apps as
benign [4]. Moreover, traditional algorithms struggle to learn
complex patterns in high-dimensional data, limiting their
effectiveness.

The effectiveness of these models is also heavily dependent
on the quality and relevance of the training data. Models
trained on a specific dataset often become obsolete as
new Android apps are developed and software evolves [6].
This necessitates constant retraining and adaptation, which
poses a significant challenge for real-world deployment.
To address these issues, developing more robust and
adaptable malware detection methods is essential to keep
pace with the rapid evolution of threats in the Android
ecosystem.

Our approach to addressing the challenges in Android
malware detection leverages the power of Deep Neural
Networks (DNNs), a leading force in the ML landscape.
Unlike traditional methods that require manual feature
engineering, DNNs automatically extract features directly
from raw data. This capability allows them to learn intricate
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representations with minimal prior knowledge, enhancing
their ability to detect sophisticated and evolving malware
threats [6], [7], [8].

The inherent capability of DNNs proves invaluable in the
fight against malware, allowing them to detect even subtle
changes employed by malicious actors. By training on large
datasets, our model can effectively discern the true nature
of an application despite the presence of obfuscating benign
features. Previous research has demonstrated the effective-
ness of DNN-based image classifiers in identifying malware,
and our approach builds upon this success. Moreover,
DNN s offer the exciting potential to detect never-before-seen
malware variants, a crucial advantage in the ever-evolving
malware landscape [4]. Motivated by the growing threat of
Android malware and the limitations of traditional detection
methods, we introduce DeeplmageDroid, a novel framework
for malware detection and classification. This framework
leverages the power of deep learning (DL) to achieve robust
and generalized performance.

DeepImageDroid’s key strength lies in its diverse training
data, utilizing three distinct datasets encompassing a wide
range of malware and benign samples. This varied data expo-
sure equips the model to learn comprehensive representations
and generalize effectively to unseen threats. DeepIlmageDroid
employs a hybrid approach, combining two robust DL
architectures: Visual Transformer (ViT) and Convolutional
Neural Network (CNN). ViT excels at capturing long-range
dependencies within data, while CNNs effectively learn
local patterns. By combining these complementary strengths,
DeeplmageDroid gains a deeper understanding of both global
and local features, leading to more accurate and robust
malware identification. In our experimentation, the CNN
model achieved an impressive 96% accuracy in malware
detection, while the ViT architecture closely followed with
95% accuracy. Recognizing the potential synergy between
these architectures, we combined them through a weighted
average ensemble method, resulting in DeepImageDroid
achieving an outstanding 96% accuracy. This significant
improvement underscores the effectiveness of our hybrid
approach, paving the way for a more robust and generalizable
solution to Android malware detection.

The key contributions of this paper can be outlined as
follows:

e We curate three diverse Android malware binary
datasets and convert them into grayscale images for
comprehensive data representation, enabling the identi-
fication of subtle malicious patterns.

o We develop a resilient ViT model tailored for Android
malware detection, demonstrating ViT’s effectiveness in
analyzing spatial relationships and long-range depen-
dencies.

o We propose DeeplmageDroid, a novel hybrid model
combining CNNs and ViTs, achieving an impressive
accuracy of 96% using the weighted average ensemble
method and leveraging the unique strengths of each DL
architecture.
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o We leverage diverse training data from three distinct
datasets to equip the model with comprehensive repre-
sentations, enabling effective generalization to unseen
threats.

o We transform large datasets of binary malware and
benign features into grayscale images, facilitating
smoother processing and valuable insights for DL
models.

o We significantly improve malware detection accuracy
and generalization compared to existing solutions,
underscoring the hybrid approach’s effectiveness in
combating Android malware using grayscale images.

Our comprehensive approach, efficient data utilization,
novel model introduction, and superior accuracy set a
new benchmark for Android malware detection using DL.
It opens doors for further exploration of visual representations
and hybrid models, paving the way for more robust and
generalizable solutions against the ever-evolving threat of
Android malware.

The rest of this article is structured as follows: Section II
summarizes the state-of-the-art related to our work. Next,
Section III provides background information on Android
malware and DNNs with grayscale images. In Section IV,
we present the details of our methodology, while Section V
expands on our experiments and results. Last, Section VI
concludes this work.

Il. RELATED WORK

Our research focuses on detecting and classifying Android
malware utilizing DL techniques. Specifically, we leverage
CNN and ViT models and subsequently develop an ensemble
model that integrates these approaches. In this section,
we review several relevant studies that employ CNN, ViT,
and ensemble methods for Android malware detection and
delineate how our work differentiates itself from these
existing efforts.

A. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
Many researchers have utilized CNNs for malware detec-
tion using grayscale or RGB images, employing various
techniques and hyperparameter tuning to achieve optimal
results. Kinkkead et al. [9] investigated the significance of
CNNs in identifying critical locations in an Android app’s
opcode sequence contributing to malware detection. They
identified essential locations within opcode sequences and
compared these with those identified by the state-of-the-art
explainability method LIME using the Drebin benchmark
dataset. The study revealed that the locations identified as
most malicious by their CNN closely aligned with those
highlighted by LIME, instilling confidence in CNN’s ability
to focus on patterns of malicious opcodes in Android apps.
Building on using CNNs, Vu and Jung [10] proposed
AdMat, a framework that treats Android applications as
images by creating an adjacency matrix for each application.
These matrices serve as ““input images” for a CNN model,
enabling it to discern between benign and malicious apps
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and identify specific malware families. AdMat demonstrated
adaptability across various training ratios, achieving an
average detection rate of 98.26% across different malware
datasets and successfully recognizing over 97% of different
malware families even with limited training data. Similarly,
Nicheporuk et al. [11] introduced a CNN mixed-data model
that utilizes API method calls and a set of permissions
associated with Android applications, represented using
Word2vec technology and binary features, respectively.
This novel approach leverages the strengths of CNNs and
integrates multiple data sources to enhance the efficacy of
Android malware detection. Ganesh et al. [12] focused on
investigating permission patterns using CNNs, demonstrating
arobust performance with a 93% accuracy rate in identifying
and categorizing malicious applications within a dataset
of 2500 Android applications. This DL-based method
showcases the potential for enhanced mobile security through
accurate malware detection.

Expanding on the innovative uses of CNNs, Xiao and
Yang [13] employ an innovative approach to address
challenges in existing malware detection techniques, par-
ticularly data obfuscation and limited code coverage. Their
method uses CNNs to learn features directly from Dalvik
bytecode, overcoming obfuscation limitations and achieving
comprehensive code coverage. This approach facilitates
the automatic extraction of meaningful features, enabling
the model to distinguish between benign and malicious
applications with an average detection time of 0.22 seconds
and an overall accuracy surpassing 93%.

Similarly, Zhang et al. [14] introduce DeepClassify-
Droid, a DL-based system for Android malware detection.
It employs a three-step feature extraction, embedding,
and detection approach using CNNs. Evaluated against
various ML methods, DeepClassifyDroid achieved a 97.4%
detection rate with minimal false alarms, demonstrating
superior efficiency by being 10 times faster than linear-SVM
and 80 times faster than kNN. Addressing computational
demands, Hasegawa and Iyatomi [15] present a lightweight
method that analyzes a minimal portion of the APK file
through a 1-D CNN, achieving an accuracy of 95.40% to
97.04% using 10-fold cross-validation on datasets of 5,000
malware and 2,000 goodware samples.

B. VISUAL TRANSFORMERS (ViTs)

While ViT architectures have gained traction in various
domains, their application for Android malware detection and
classification still needs to be explored. Our review suggests
that our work is among the few that specifically adapt ViT for
Android malware. Researchers have explored ViT variants
for broader malware detection tasks, though not tailored to
Android’s unique challenges. Rahali and Akhloufi [16] intro-
duced MalBERT, a model built upon BERT, for automating
the detection of malicious software through static analysis
of Android application source code. MalBERT utilizes
preprocessed features to classify malware into representative
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categories, leveraging transformer architectures beyond NLP.
The results from MalBERT are promising, highlighting the
high performance of transformer-based models in malware
detection.

In another study, Jo et al. [17] introduce ViT-MalDetect,
a ViT-based malware detection model focused on high
detection accuracy and interpretability. The model leverages
ViT’s attention mechanisms to interpret and understand
intricate patterns in application images robustly, achieving
a detection accuracy of 80.27% on real-world datasets.
Ravi et al. [18] present ViT4Mal, a lightweight ViT approach
for malware detection on edge devices. By converting exe-
cutable bytecode into images, ViT4Mal facilitates malware
feature learning and employs a customized ViT for accurate
detection within resource constraints. Extensive experiments
show that ViT4Mal achieves comparable accuracy to state-
of-the-art CNNs, reaching around 97%, without requiring
deeper networks.

Further expanding using ViTs, Seneviratne et al. [4] intro-
duce SHERLOCK, a cutting-edge malware detection model
based on ViT architecture and self-supervised learning.
SHERLOCK leverages image-based binary representation to
distinguish malware from benign programs without needing
labeled data. This model captures intricate patterns in
Android applications, achieving a remarkable 97% accuracy
for binary classification and outperforming state-of-the-art
techniques in multi-class malware classification with macro-
F1 scores of .497 and .491 for types and families, respectively.
SHERLOCK demonstrates the potential of self-supervised
learning and ViT architecture in advancing Android malware
detection, positioning itself as a formidable tool in cybersecu-
rity. This study highlights the promise of ViTs in improving
Android malware detection in the cybersecurity landscape.
Although ViTs are relatively unexplored in Android malware
detection, our study is among the few utilizing them. This
integration of CNNs and ViTs forms the basis of our robust
hybrid model.

C. ENSEMBLE/HYBRID TECHNIQUE

Ensemble methods, which combine the strengths of diverse
ML and DL architectures, offer another avenue for Android
malware detection and classification. Our study leverages
this approach, specifically employing a weighted average
ensemble that integrates the unique capabilities of CNNs and
ViTs.

Building on this concept, Wang et al. [19] propose a hybrid
model to enhance the accuracy and efficiency of large-scale
Android malware detection by combining a deep autoencoder
(DAE) and a CNN. This approach addresses the challenges
of high-dimensional features in Android applications. The
model reconstructs high-dimensional features and employs
multiple CNNs. In their serial CNN architecture (CNN-S),
they use the ReLLU activation function for increased sparsity
and incorporate dropout to prevent overfitting. Combining
convolutional and pooling layers with a fully connected layer
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enhances feature extraction capabilities. To expedite training,
they introduce a deep autoencoder as a pre-training method
for the CNN. The hybrid model, DAE-CNN, learns flexible
patterns more efficiently. Experimental evaluations on 10,000
benign and 13,000 malicious apps show improvements:
CNN-S achieves a 5% accuracy improvement over traditional
ML methods like SVM, while DAE-CNN reduces training
time by 83% compared to CNN-S.

Similarly, Pei et al. [20] proposed MalNet, a stacked
ensemble model based on CNN and LSTM for classifying
malicious files. Designed to address the complexities of
Android malware detection and family attribution, MalNet
leverages Graph Convolutional Networks (GCNs) to model
high-level graphical semantics and identify semantic and
sequential patterns. An Independently Recurrent Neural
Network (IndRNN) also decodes deep semantic information,
extracting features independently while utilizing remote
dependent information between nodes. Experimental results
on multiple benchmark datasets highlight MalNet’s superi-
ority over other state-of-the-art techniques, showcasing its
robustness and performance.

In another study, Lin and Chang [21] introduce a Selective
Deep Ensemble Learning-based (SDEL) detector, leveraging
ensemble learning for enhanced detection accuracy. They
designed an Ensemble Deep Taylor Decomposition (EDTD)
approach to provide pixel-level explanations for the SDEL
detector’s outputs. To augment model interpretability, they
introduced a novel Interpretable Dropout approach (IDrop)
and trained on the SDEL detector with insights from the
EDTD explanation. Experimental results demonstrate the
superior explanation quality of EDTD compared to previous
methods in image-based malware detection. Furthermore,
IEMD achieves an impressive detection accuracy of up
to 99.87%, maintaining interpretability with high-quality
prediction results.

Further contributing to the field, Pierazzi et al. [22]
conducted a data-driven characterization of modern Android
spyware from July 2016 to July 2017, utilizing both tradi-
tional and deep ML approaches. The authors introduce an
innovative Ensemble Late Fusion (ELF) architecture, which
combines the predicted probabilities of multiple classifiers
to generate a final prediction. ELF outperforms several
well-known traditional and DL classifiers, demonstrating its
effectiveness in Android spyware detection. Additionally, the
study automatically identifies key features that distinguish
spyware from goodware and other malware, offering valuable
insights into the distinct characteristics of these malicious
entities.

1) COMPARISON OF DeeplmageDroid WITH
STATE-OF-THE-ART METHODS

Ensemble methods have emerged as a promising approach for
enhancing the accuracy and robustness of Android malware
detection systems. Our proposed DeeplmageDroid model
leverages this paradigm by combining the strengths of CNNs
and ViTs through a weighted averaging ensemble. While
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TABLE 1. A summary of related works.

ViTs architecture

Ref. Focus DL Method Data Representation Strengths Limitations
Kinkkead et | Identifying critical CNN Opcode sequence Aligns with explainability methods Focuses only on opcode
al. [9] locations in opcode sequence

sequence
Vu et al. [10] Treating apps as images CNN Adjacency matrix High accuracy (98.26%) family Requires generating

using adjacency matrix recognition processing  adjacency

matrix
Nicheporuk Mixed-data model CNN API calls (Word2vec) Per- Integrates multiple data sources Might be complex for
etal. [11] for API calls permissions missions (binary) interpretability
Ganesh et al. Identifying CNN Permissions High accuracy (93%) Limited to permission
[12] permission patterns data
Xiao et al Feature learning CNN Dalvik bytecode Efficient (0.22s) high accuracy Might be vulnerable to
[13] from Dalvik bytecode (93%) obfuscation
Zhang et al. Feature extraction DL- CNN Feature sets from static anal- High accuracy (97.4%) Feature engineering re-
[14] based detection ysis fast (10x faster than Linear-SVM) quired
Hasegawa et | Lightweight 1D CNN for 1D CNN Last 512-1K bytes of APK | High accuracy (95.40%-97.04%) Limited to APK file
al. [15] minimal APK analysis file lightweightLimited to APK file snippet
snippet

Rahali et al. Source code analysis, Transformer model Source code (preprocessed High performance for malware de- Not tailored to Android
[16] classification (BERT), a variant of | features) tection malware

Joetal. [17]

ViT-based malware detec-
tion, interpretability

ViT

App images

Interpretability, accuracy (80.27%)

Accuracy could be bet-
ter

[19]

ciency

reduced training time

Ravi et al Lightweight ViT for mal- Lightweight ViT Executable bytecode con- Lightweight and efficient, accuracy Requires bytecode to
[18] ware verted to images 97% image conversion
detection on edge devices
Seneviratne Self-supervised ViT for | ViT Android application binaries High accuracy (97%),  self- Requires and relies
etal. [4] malware detection (image-based representation) supervised learning on large unlabeled
datasets
Wang et al. Large-scale detection effi- Hybrid DAE-CNN High-dimensional features Improved accuracy (98.60%) Might require more

training data
Used a few pre-trained
models

Pei et al. [20]

Malware family classifica-
tion interpretability

Combined techniques:
GCNs, IndRNN

CNN, LSTM

Stacked ensemble

for classification: CNN
LSTM

Code, API calls, permissions
intents

Robustness performance

Complex architecture

Lin et al
[21]

Ensemble learning for ac-
curacy interpretability

Stacked CNN Models

Grayscale images without
binary raw files from 25 fam-
ilies

High accuracy (99.87%) model
interpretability/explainability

Might be computation-
ally expensive,
Not dealing with An-
droid Malware

Pierazzi et

Spyware detection

Ensemble Late Fusion

Static and dynamic Features

Outperforms traditional DL

Limited to spyware de-

malware detection

(DeepImageDroid)

al. [22] (ELF):  Combination methods in spyware and goodware tection

of traditional ML and detection
DL classifiers (MLP +
CNN+BRBM.

This paper Generalizability on Ensemble Hybrid Binary to grayscale images Robustness, high accuracy, general- Ensemble model
diverse Malware datasets model through | of Android Malware features izability accuracy could be im-
and robust preprocessing weighted  averaging: (API calls, permission, In- Accuracy of 95.63% proved
techniques for Android ViTs CNN tent, etc.) (ViT) + 96.11% (CNN) = 96.00%

several studies have explored ensemble-based techniques for
this task, DeeplmageDroid distinguishes itself through its
unique architecture and performance.

Comparing these recent models with DeepImageDroid
reveals the robustness and effectiveness of our proposed
hybrid ensemble approach. Unlike Wang et al’s [19]
DAE-CNN, which primarily focuses on reducing training
time, DeeplmageDroid emphasizes balanced accuracy and
robustness by combining CNNs’ local feature extraction with
ViTs’ global dependency-capturing capabilities. Compared
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to Pei et al’s [20] MalNet, which incorporates complex
sequential patterns using LSTMs and GCNs, Deeplm-
ageDroid achieves comparable performance using a more
straightforward yet robust hybrid of CNN and ViT architec-
tures. Lastly, Lin et al.’s [21] SDEL detector, which integrates
interpretability through EDTD and IDrop, aligns with our
goal of enhancing malware detection accuracy. However,
DeeplmageDroid’s weighted averaging technique for com-
bining model predictions ensures a more robust ensemble
model that effectively reduces false positives and negatives
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{Android Operating System]

Android APK J

[
e e

[AndmidManifesLxml (apps structure and behavior)] [ Source Code E Resources J L Assets J
Activities classes.dex resources.arsc META-INF
Services lib res assets
Intent

Content provider
Broadcast receiver
Etc.

FIGURE 1. Android operating system high level files system.

and prioritizes the most reliable model predictions. These
comparisons underscore the robustness of DeepIlmageDroid,
highlighting its superior ability to integrate diverse model
strengths for enhanced Android malware detection.

D. THE UNIQUENESS OF OUR STUDY

The proposed work distinguishes itself from the related works
by focusing on the unique challenges of Android malware
detection through a hybrid deep learning approach that
combines the strengths of ViTs and CNNs. While the existing
literature predominantly addresses intrusion detection in
network environments, such as IoT and fog-cloud systems,
as explored by Li et al. [23] and Binbusayyis [24], the
proposed work explicitly targets the Android platform, which
poses distinct challenges due to its open-source nature and
widespread adoption. Unlike Jemili et al. [25], who utilize
ensemble learning for big data classification, and Horchul-
hack et al. [26], who focus on network-based intrusion
detection using image-based CNNs and transfer learning, our
work uniquely integrates ViTs to capture global dependencies
in data alongside CNNs for local feature extraction. This
combination allows for a more comprehensive analysis of
Android malware patterns.

Further, while Dai et al. [27] leverage CNNs, BiLSTM,
and attention mechanisms to enhance temporal and spatial
feature detection in network intrusions, our approach stands
out by employing a novel weighted average ensemble
method, improving the model’s generalizability and robust-
ness against diverse malware threats. Thus, the proposed
work contributes to the field by providing a specialized
and highly effective solution tailored for Android malware
detection, expanding the applicability of hybrid deep learning
models beyond traditional network-based intrusion scenarios.

A summary of the related works is given in Table 1.
Building upon these foundational studies, our research
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introduces several novel elements in the domain of Android
malware detection, setting it apart from existing works.
Unlike methods that rely on static analysis and single models,
we utilize grayscale images for greater generalizability
and employ a hybrid architecture combining ViTs and
CNNs. This approach potentially leads to improved feature
learning and model robustness. While some methods convert
applications to grayscale images, we operate on raw binary
files, extracting broader information within the binaries. This
allows for a more comprehensive analysis than approaches
focusing solely on specific patterns within the images.
Our combination of ViTs and CNNs enhances the models’
complexity and feature learning capabilities, achieving an
accuracy of 95.35%, surpassing models’ performance using
a single architecture.

Lastly, compared to hybrid ensemble methods that do
not utilize images and are based on fewer datasets, our
extensive use of diverse datasets and preprocessing binaries
into grayscale images contributes to robustness and general-
izability in detecting unknown Android malware. Our hybrid
DeepIlmageDroid model demonstrates strong performance
with an accuracy of 96%, highlighting this novel approach’s
potential and exceeding the results of most hybrid ensemble
studies in Android malware detection and classification.

lll. BACKGROUND

This section delves into the underlying structure of the
Android OS and its Android Package Kits (APKs). It explores
the inherent security challenges lurking within APKs,
highlighting the specific features we leverage for our study.
Additionally, it justifies the suitability of DL approaches
for detecting and classifying Android malware, providing
context for our chosen methods. Understanding these key
concepts is crucial for comprehending the foundation and
potential of our proposed approach.
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A. ANDROID 0OS

Fig. 1 provides a high-level taxonomy of the Android
OS components, illustrating the structure of an Android
APK (application package) and its key elements such as
the AndroidManifest.xml file, source code, resources, and
assets. Each component is further detailed to show the
specific files and functionalities it includes, emphasizing
the organized framework within which Android applications
operate. Applications are distributed through APKs, each
containing code, resources, and a manifest file outlining
permissions and components. While this openness empowers
developers, it also creates attack vectors for malicious actors.
Despite security measures, APKs remain susceptible to
manipulation. Code obfuscation, hidden resources, and fake
signatures are just a few tricks malware employs to evade
detection. The sheer volume and diversity of new APKs
further pose a constant challenge for traditional security
approaches [10], [22], [28], [29].

1) ANDROID APPLICATION PACKAGES (APK)

Android applications are packaged as compressed files
known as APKs. Each APK must contain essential elements
for installation: program code, developer certificates, and a
Manifest file. This Manifest serves as a blueprint, specifying
the app’s components and the permissions it needs to
access system resources. Crucially, Android enforces a
permission-based security model. Apps can only access
specific resources if they explicitly request the corresponding
permissions within the Manifest file. Users are responsible
for granting or denying these permissions during installation
or runtime, offering control over their data and devices.

Furthermore, the AndroidManifest.xml file holds critical
information about an app’s structure and behavior. This file
can be used to define key components like activities (user
interfaces), services (background processes), intents (com-
munication messages), content providers (data exchange),
and broadcast receivers (message listeners). Each component
plays a specific role within the app, and their presence
and configuration can indicate potential security concerns
[22], [28].

Further, analyzing the contents of the AndroidManifest.xml
file provides valuable insights for identifying malicious
applications. Different features can be extracted based on
the specific role and purpose of each component listed
within the file. This means the methods for extracting
and representing these features will vary depending on the
analyzed component. However, it is crucial to emphasize
that malware with root privileges on the device must not
include all the information mentioned above in the Manifest.
By carefully examining these features and their relationships,
researchers can develop more effective tools for detecting and
mitigating malware threats on Android devices [10], [22].

2) DETAILED ANALYSIS OF APK STRUCTURE
While the AndroidManifest.xml file provides valuable infor-
mation for malware detection, it’s just one piece of the puzzle.
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To gain a comprehensive understanding of an app, it’s crucial
to analyze other essential files within the APK. Key elements
are outlined as follows.

a: SOURCE CODE

« classes.dex: This file contains the compiled application
code, typically in the Dalvik Executable (DEX) format.
Examining the code structure and functionalities can
reveal suspicious behavior or hidden features.

o lib: Native libraries, often written in C or C+-+,
are included here. These libraries can bypass security
restrictions, so their presence and purpose warrant
investigation.

b: RESOURCES

o res: This directory stores uncompiled resources like
images, layouts, and strings. Analyzing these resources
for unusual content or inconsistencies can help identify
malicious behavior.

o resources.arsc: This compiled file holds processed
resource information. Identifying inconsistencies bet-
ween uncompiled and compiled resources might indi-
cate attempts to obfuscate malicious content.

c: ASSETS
« assets: This directory contains raw assets like configura-
tion files or data used by the app. Examining these assets
can reveal hidden functionalities or sensitive informa-
tion that might be misused for malicious purposes.

d: SECURITY AND SIGNATURES
« META-INF: This directory holds critical security infor-
mation, including digests and signatures for verifying
the app’s integrity and authenticity. Malicious actors
might tamper with these signatures, highlighting the
need for careful validation [10], [14], [28].

Analyzing these diverse APK components with the
Manifest file paints a more comprehensive picture of an
app’s behavior and potential security risks. By understanding
the roles and functionalities of each file type, more robust
and effective methods for detecting and preventing malware
threats on Android devices can be developed.

B. DEEP LEARNING FOR ANDROID MALWARE DETECTION
Our approach to addressing the Android malware detection
challenge leverages DL techniques to achieve optimal
solutions to the ever-evolving malware threat landscape.
While traditional ML algorithms such as Support Vector
Machines (SVMs), Random Forests, and XGBoost have
demonstrated their efficacy, they fall short in handling
intricate patterns within high-dimensional data when faced
with rapidly evolving Android malware [6], [30]. Besides,
inspired by the mammalian visual cortex, CNNs are a
powerful class of DL models used in image recognition
tasks. Their architecture uses hierarchical convolutional and
fully connected layers, with convolutional layers acting as
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feature detectors that extract increasingly complex features.
These features are then combined and classified by the fully
connected layers. This ability to automatically learn relevant
features makes CNNs ideal for image classification and
object detection [31], [32].

Several key factors contribute to these challenges. Tra-
ditional ML approaches often rely on manually crafted
features, a labor-intensive process requiring significant
expertise. High-dimensional data, such as APKs, present
a substantial obstacle, necessitating considerable human
effort to effectively identify and transform relevant features.
Additionally, the dynamic nature of the Android ecosystem
means that training data quickly becomes outdated as
applications evolve and development practices change. This
necessitates constant retraining of models to maintain accu-
racy, which is a resource-intensive endeavor. Furthermore,
attackers continuously devise new techniques to bypass
security measures, rendering even well-trained traditional
ML models susceptible to evolving threats and leaving users
and businesses vulnerable [6], [30], [33].

Given these limitations, constructing robust and trans-
parent defenses against Android malware using traditional
ML techniques alone has become increasingly challenging.
DL emerges as a compelling alternative, offering several
key advantages. As a powerful subset of artificial neural
networks, DL leverages massive datasets to effectively
address classification and prediction tasks. Its prominence
is underscored by its foundational role in transformative
technologies such as computer vision, natural language
processing, self-driving cars, fraud detection, and malware
detection [33].

The unique architecture of DL models, characterized by
multiple layers of interconnected processing units, allows
for the automatic learning of increasingly abstract data
representations. This capability enables machines to learn
directly from raw data, extracting critical features necessary
for accurate detection and classification without the need for
manual feature engineering [30]. Moreover, the continuous
learning mechanism inherent in DL models ensures their
adaptability to evolving threats, maintaining an edge over
attackers’ tactics. The ability of DL to discern intricate
patterns enhances its resilience against obfuscation and other
techniques employed by malware authors [6], [33]. Our study
employed CNN and ViT DL architectures to achieve these
objectives.

C. VISUALIZING MALWARE AS IMAGE

Image-based malware detection has gained significant trac-
tion in recent years, leveraging the strengths of DL models
adept at processing visual data. Visualization techniques,
particularly those creating image representations of malware,
have become valuable tools in malware research. Researchers
in the Android and Windows-based malware space, such
as [4], [34], [35], [36], [37], and [38], employed image
processing to convert binaries into grayscale images or RBG,
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effectively reducing the need for expensive feature engineer-
ing and specialized knowledge. This method’s success in
accurately classifying malware based on grayscale and RGB
features highlighted the potential of using malware as images
for more advanced research and detection techniques.

Further, studies have shown that image-based tech-
niques can significantly reduce preprocessing requirements.
Researchers can directly feed this information into powerful
models like ViTs and CNNs by representing malware as
grayscale pixel data. This approach streamlines the analysis
process and unlocks the ability to learn complex patterns
within the data, leading to potentially more accurate and
robust malware detection systems [6], [33].

ViTs have gained traction in computer vision due to their
impressive performance and efficient computation compared
to traditional CNNs. ViTs employ a unique architecture
based on self-attention and point-wise fully connected layers
in both encoder and decoder modules. Self-attention lets
ViTs capture global dependencies within the input data,
enabling them to learn complex relationships between image
elements. ViTs split the input image into smaller patches
for patch processing, transforming these into embeddings
for further processing. Although the decoder is not used
directly for malware detection, it helps during training by
encouraging the model to learn informative features. ViTs
offer several advantages for Android malware detection.
The self-attention mechanism allows them to capture more
global context within images, which is crucial for accurate
classification [39].

Additionally, skip connections in early layers facilitate
better information propagation, leading to more robust
feature learning and improved performance [18], [39]. ViTs
are not yet widely popular in Android malware detection
despite their advantages. To the best of our knowledge, our
study is among the few that explore ViTs for this purpose [4].

IV. METHODOLOGY AND FRAMEWORK DESIGN

This section discusses the datasets used in this work, includ-
ing their sources, sizes, and compositions. We elaborate on
the pre-processing steps and provide details about the DL
models we leverage, including the novel DeeplmageDroid
hybrid model proposed for this work. Further, we describe
the training process of our models, including parameters,
hyperparameter tuning strategies, and evaluation metrics.

A. DATASETS

The experiments conducted to assess DeeplmageDroid
utilized three datasets sourced from distinct collections of
Android app samples. Table 2 provides comprehensive details
for each dataset. The initial one, Drebin-215 [40], comprises
vectors of 215 features extracted from 15,036 app samples.
Among these, 9,476 were identified as benign, while 5,560
were classified as malware. The second dataset, Android-
HealthCheck [41], encompasses various flavors and diverse
Android malware APK files, featuring 215 distinct features
derived from 16,300 APK files. Within this set, 15,506
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TABLE 2. Datasets used for DeeplmageDroid experiments.

Datasets Samples | Malware | Benign | Features
Drebin-215 15,036 5,560 9,467 215
AndroidHealthCheck | 16,300 15,506 4,000 215
NATICUSdroid 29,332 14,700 14,632 86

were classified as malware, and 4,000 were labeled benign
APK files. The third dataset, NATICUSdroid [42], primarily
comprises 86 Android native and custom permission features
extracted from 29,332 benign and malware Android apps
released between 2010-2019. Within this dataset, 14,632
samples were identified as benign, while 14,700 were
recognized as malicious. The diversity inherent in our dataset
contributes to the robustness of our model, endowing it with
the capability to generalize effectively.

B. DATASET PREPROCESSING

The initial datasets were provided in binary format, consisting
solely of Os and 1s. To facilitate analysis with Deep-
ImageDroid, we considered the following comprehensive
preprocessing pipeline:

« Data consolidation: The three datasets are merged into
a single collection, categorizing each sample into one of
two distinct classes: benign and malware. This unified
structure simplifies model training and evaluation by
providing a consistent labeling scheme.

« Automated feature extraction and image conversion: A
custom module [43] is developed to extract relevant
features from each data row. These features are then
converted into grayscale image representations. This
process transforms the numerical data into a visual
format suitable for DeeplmageDroid’s image-based
analysis.

« Normalization: To ensure consistent image intensity and
prevent potential biases during training, the grayscale
values are normalized to range 0-1 to help improve
model convergence and performance.

Fig. 2 illustrates the preprocessing pipeline and emphasizes
the key data transformation steps involved. After completing
these preprocessing steps, 44,262 Android malware images
are generated and categorized into benign and malware
classes in our grey-scaled image dataset. Approximately 50%
of the samples are benign, and slightly less than 50% are
malware. This indicates a balanced dataset for both classes.

C. PROPOSED FRAMEWORK AND MODEL
ARCHITECTURES

Utilizing the meticulously preprocessed datasets, we devel-
oped three distinct models to assess their performance on
our novel grayscale representation. This marks the first
attempt to integrate and use three diverse Android malware
datasets in this fashion. Our objective was to evaluate the
effectiveness of our grayscale data for both CNNs and ViTs
before introducing the proposed hybrid model.
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1) DeeplmageDroid’s CNN ARCHITECTURE

As shown in Fig. 3, the model starts with an Input Layer for
grayscale images with dimensions of 64 x 64 pixels. The first
Convolutional Layer uses 32 filters of size 3 x 3 to extract
distinct feature maps. A ReLU activation function is applied
after each convolution to introduce non-linearity and enhance
the learning of complex relationships [32]. Following the
convolution, a MaxPooling Layer downsamples the feature
maps by taking the maximum value from each 2 x 2 block,
reducing spatial dimensions while preserving key features to
control computational costs and prevent overfitting.

A second convolutional layer with 64 filters of size
3 x 3 is applied, followed by a ReLU activation function
for non-linearity, and another MaxPooling layer is used to
reduce spatial dimensions further and enhance efficiency.
To prevent overfitting and improve generalization, a Dropout
Layer with a rate of 0.25 is introduced, randomly dropping
neurons during training to ensure robust feature learning.
The features are then flattened into a 1D vector for the
fully connected layers, which handle high-level reasoning and
classification tasks. The first Dense Layer with 128 neurons
and ReLU activation learns complex patterns, followed by
another Dropout Layer with a rate of 0.5 for additional
regularization. A subsequent Dense Layer with 50 neurons
and ReLU activation further refines the representations. The
Output Layer, consisting of a single neuron with a sigmoid
activation function, handles the binary classification task
(malware vs. benign) by mapping the output to a probability
between 0 and 1.

We utilized the binary cross-entropy loss function to
optimize the model’s performance, a standard choice for
binary classification tasks. The Adam optimizer was selected
for its efficiency in gradient descent and parameter updates
during training. Accuracy was the primary metric to monitor
the model’s learning progress and assess its effectiveness in
distinguishing between benign and malicious Android app
samples. By adopting this CNN architecture, we aimed to
leverage the robust feature extraction capabilities of CNNs
to analyze the grayscale representations of our malware
datasets.

2) DeeplmageDroid’s ViT ARCHITECTURE

Fig. 4 depicts the DeepImageDroid’s ViT architecture, where
the model begins with an input layer accepting grayscale
images of a fixed size (64 x 64 pixels in this case). The key
stages are outlined next.

a: PATCH CREATION AND POSITIONAL ENCODING

This initial stage of the ViT architecture involves patching.
Here, the input image is divided into smaller, non-overlapping
squares known as patches. The chosen patch size (e.g.,
11 x 11 in this study) determines the granularity of the
feature extraction process. Each patch is flattened and
transformed into a vector using a projection layer. Since the
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FIGURE 2. Datasets preprocessing steps.

order of patches within an image holds valuable information,
the ViT incorporates positional encoding. This technique
injects information about the relative position of each patch
into its corresponding vector representation. This enables
the model to understand the spatial relationships between
different parts of the image and effectively capture global
dependencies [39].

b: TRANSFORMER ENCODER

The heart of the ViT architecture lies in the transformer
encoder, consisting of several stacked transformer blocks.
Each block comprises two key components:

o Multi-head attention: This mechanism enables the
model to learn relationships between different patches
within the image, capturing long-range dependencies
that CNNs might struggle with. It essentially allows the
model to “attend”” to specific regions of the image based
on their relevance to the task at hand (malware detection
in this case) [39].

o Multi-layer perceptron (MLP): This component further
refines the encoded features by applying non-linear
transformations through fully connected layers [39].

The transformer encoder in this ViT model utilizes 8 such

transformer blocks, allowing for the progressive extraction of
increasingly complex features from the input data.

c: CLASSIFICATION HEAD

Following the final transformer block, a classification head is
employed to convert the learned feature representation into
class probabilities. This head typically consists of a series
of fully connected layers, culminating in a final output layer
with a single neuron using a sigmoid activation function
for binary classification tasks like malware detection. The
sigmoid function maps the output value between 0 and 1,
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representing the probability of the input image belonging
to the malware class. Furthermore, the ViT model is
trained using the AdamW optimizer with a learning rate of
0.0005 and weight decay of 0.0001. The training process
involves feeding the model batches of 64 grayscale images
and their corresponding labels for 20 epochs. Early stopping
with a patience of 15 epochs is employed to prevent
overfitting by halting training if the validation loss fails to
improve for a specified number of epochs.

D. DeeplmageDroid’s HYBRID MODEL: COMBINING
STRENGTHS FOR ENHANCED MALWARE DETECTION
DeepImageDroid goes beyond leveraging the individual
strengths of CNNs and ViTs. It takes a further step by
implementing a hybrid model based on ensemble learn-
ing. This section delves into the specific architecture and
functionalities of this ensemble approach. DeepImageDroid’s
core innovation lies in its hybrid model, which strategically
combines the strengths of both CNNs and ViTs to achieve
superior malware detection performance. This approach
leverages the unique capabilities of each model to create a
more robust and comprehensive feature extraction process.

1) HYBRID MODEL ARCHITECTURE

ViTs excels at capturing long-range dependencies, identify-
ing subtle relationships in data that CNNs might miss due to
their focus on local features. Conversely, CNNs are proficient
at learning local features, which is crucial for detecting spe-
cific visual patterns in malware. Combining these strengths,
a hybrid model can achieve higher accuracy by leveraging
the diverse feature extraction capabilities of both ViTs and
CNNs, leading to a comprehensive understanding of the
data [30], [39]. Ensemble learning enhances this approach
by combining predictions from multiple models, improving
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Algorithm 1 DeeplmageDroid: Hybrid CNN and ViT Model
for Android Malware Detection

1: Input: Dataset D = {(x;, y,»)}f’: | Where x; is the grayscale image

and y; is the label (0: benign, 1: malware)

2: Output: Trained hybrid model H

3: procedure TRAIN HYBRID MODEL

4: // Preprocess the data

5: Dyrains Diest <— split(D, train_test_ratio = 0.8)

6.

7

8

Xirains Yirain < extract(Dyyqin)
Xiests Yiest < extract(Dyest)
: // Initialize CNN and ViT models
9: CNN < initialize_ CNN()
10: ViT < initialize_ViT()
11: // Train CNN model

12: for each epoch in epochs do

13: CNN <« train(CNN, Xtain» Yirain)
14: // Train ViT model

15: for each epoch in epochs do

16: VIiT < train(ViT , X¢rain» Yirain)

17: // Make predictions on the test set
18: Pcny < predict(CNN, Xyegt)
19: Pyir < predict(ViT , Xyest)

20: // Combine predictions using weighted average
21: acyy < 0.9
22: ayr < 0.5
23: for eachiin 1 to |X,eS,1|J do (i P
. 11 — 2NN -Penn lil4avir -Pyir [i
24: Phybrialil = acnnFavir

25: return Trained hybrid model H = (CNN, ViT', Phypyid)

26: procedure ESTIMATE

27: Input: X = {x1,xp,..
(CNN, ViT , Ppybrid)

28: // Generate embeddings and predictions

29: Pcyy < predict(CNN, X)

30: Pyir < predict(ViT, X)

., xy}, Trained hybrid model H =

31: // Combine predictions using weighted average
32: acyy < 0.9
33: ayr < 0.5
34: foreachvinlto|X|I§10 . -
. — acnN -Penn vitaevir -Pyir [v
35: Pﬁnal[V] = aCNN+aVIlT :

36: // Predict the final class
37 Y <« argmax(Pfinar)
38: return Estimated Y

performance, reducing variance, and resulting in more robust
and generalizable outcomes [44], [45].

Building on these advantages, we propose a hybrid model
consisting of two primary components: a CNN-based mal-
ware detection model and a ViT-based classification model.
Figures 3 and 4 show that both models are pretrained on our
robust dataset and fine-tuned to optimize performance for
malware detection tasks. The pretrained models are loaded
into memory and combined using a weighted ensemble
approach. Predictions from each model are weighted based
on their performance, with the weights calibrated to optimize
classification accuracy. The weighted predictions are then
combined to generate a final ensemble prediction.

Further contributing to our approach, weighted averaging
is a powerful ensemble method that leverages the strengths
of multiple learners by combining their predictions into a
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more robust output. This method assigns weights to each
individual learner, reflecting its perceived reliability or accu-
racy within the ensemble. Consequently, predictions from
learners deemed more reliable or accurate contribute more
significantly to the final combined prediction, while those
from less reliable learners have a diminished influence [44].
The weighted average prediction is expressed as:

K
5> wipiw' - § (0
i=1

where:
o ¥ is the weighted average prediction
o K is the number of ensemble members
o w; is the weight of the i-th ensemble member
o y; is the prediction of the i-th ensemble member
o W is the weight vector
o ¥ is the vector of ensemble member predictions

2) OPERATIONAL WORKFLOW

The hybrid ensemble model follows a step-by-step approach
to classify malware images, leveraging the strengths of the
two individual models (CNN and ViTs) and combining
their predictions for improved accuracy. As detailed in
Algorithm 1, our proposed hybrid model leverages the
strengths of both CNN and ViT to enhance the accuracy
of Android malware detection. This algorithm outlines the
steps for training the hybrid model and combining predictions
using weighted averaging to achieve robust classification
performance. Additionally, Fig. 5 illustrates the operational
workflow of the proposed model, which consists of the
following:

« Model loading: The workflow begins with loading two
pre-trained models, CNN and ViT, both designed for
Android malware detection. These models are retrieved
from saved files and put into memory for subsequent
use.

« Individual predictions: The loaded models are indepen-
dently applied to the test dataset of unseen malware
and benign images. Each model generates a prediction
representing the probability of an image being malware.

o Weighted averaging: Predefined weights are assigned
to each model’s predictions based on their validation
performance. The individual weighted predictions are
then combined using a weighted averaging technique
(np.tensordot), amplifying the influence of the better-
performing model.

o Consensus prediction: The weighted predictions from
both models are combined to form a single consensus
prediction for each test sample, reflecting the ensemble’s
hybrid nature and leveraging both models’ strengths.

o Thresholding and binary classification: The consensus
predictions are subjected to a threshold (0.5), converting
them into binary classification results. Predictions
exceeding the threshold are classified as malware, and
those below as benign.
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FIGURE 3. DeeplmageDroid’s CNN architecture.
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FIGURE 4. DeeplmageDroid’s ViT architecture.

« Performance evaluation: The final binary classifications
are compared with the actual labels of the test data.
Standard performance metrics are calculated to assess
the effectiveness of the ensemble model in identifying
malware and benign samples.

By integrating the complementary strengths of CNNs
and ViTs, DeepImageDroid harnesses both models’ com-
prehensive feature extraction capabilities. This hybrid
approach captures global relationships and fine-grained
details within malware images, resulting in a more accurate
and robust data analysis. Consequently, this enhanced
understanding significantly improves the model’s perfor-
mance in identifying malicious applications, surpassing
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the effectiveness of relying solely on either CNNs or
ViTs.

V. EVALUATION

This section uses a robust grayscale dataset to evaluate
the effectiveness of DeeplmageDroid, our proposed hybrid
model for Android malware detection. Dataset preprocessing
details are provided in Subsection IV-B and Fig. 2. We discuss
the evaluation metrics used to assess model performance and
present the experimental results of the CNN, ViT, and Deep-
ImageDroid models. Finally, we compare DeepImageDroid
with the standalone models to demonstrate the enhanced
efficiency of the hybrid approach.
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FIGURE 5. The proposed DeeplmageDroid hybrid model.

A. EVALUATION METRICS

The following various metrics are used to assess the

performance of our malware classification framework.

o Accuracy (ACC): The proportion of correctly classified

images relative to the total number of samples, expresses

as: %. TP, TN, FP, and FN represent

true positives, true negatives, false positives, and false
negatives, respectively.

o Precision (PRE): The ratio of accurately classified
positive images to the total number of predicted positive
images, expressed as: %.

o Recall (REC): The proportion of correctly identified
positive images relative to the total number of actual
positive cases, expressed as: TJ&%'

e Fl-Score: A metric combining precision and recall,
calculated as the harmonic mean of precision and recall,
calculated as: 2 - %.

o Confusion matrix: A visual representation of TP, FP,
FN, and TN for both malware and benign classes.
It helps identify the model’s strengths and weaknesses
and compute the false positive rate (FPR: ITIS——P]"IV)’ false

negative rate (FNR: %), and true positive rate (TPR:
TP
TP4FN )- ) o )
These metrics are all critical for evaluating the perfor-

mance of any deep learning model. They were chosen
because they comprehensively evaluate all the models in our
study. However, since our study primarily concerns malware
detection and the classification of a novel model, Deeplm-
ageDroid, in the context of Android malware detection and
classification, we prioritize recall, precision, F1-Score FNR,
and FPR, for the following reasons:

1) Recall: Highrecall is essential because the primary goal
of malware detection is to identify as many malware
instances as possible. Missing a piece of malware (false
negative) can have severe consequences, including
security breaches and data loss. Ensuring that the model
detects nearly all instances of malware helps minimize
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the risk of undetected threats that could compromise
the system.

2) Precision: Precision is important to reduce the number
of false positives, which are benign instances incor-
rectly classified as malware. High precision ensures
that it is likely to be correct when the model identifies
malware. A high number of false positives can lead
to alert fatigue, where users start ignoring warnings
because too many benign files are flagged as malicious.
This can undermine the effectiveness of the malware
detection system.

3) F1-Score: The Fl-score balances precision and recall,
providing a single measure that considers both the
ability to identify malware and the accuracy of positive
predictions correctly. In malware detection, it is crucial
to have a balanced view of the model’s performance
since both missing malware (low recall) and false
alarms (low precision) are undesirable.

4) False Negative Rate (FNR): FNR is the complement
of recall and directly indicates the proportion of
malware that the model fails to detect. A low FNR
is crucial to ensure the system is robust against
threats and minimizes the risk of undetected mal-
ware.

5) False Positive Rate (FPR): FPR measures the rate
at which benign instances are incorrectly classified
as malware. While not as critical as recall or pre-
cision, maintaining a low FPR is still important to
ensure the system remains user-friendly and effi-
cient, avoiding unnecessary interruptions due to false
alarms.

Our study demonstrates that the novel model, DeepIm-
ageDroid, performed well across all these validation metrics.
By considering these metrics together, we can obtain a com-
prehensive assessment of DeeplmageDroid’s effectiveness
in detecting Android malware, thereby providing a robust
cybersecurity solution.
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TABLE 3. Test set accuracy for ViT and CNN models on unseen data.

Model | Accuracy
ViT 0.9537
CNN 0.9611

B. TRAINING AND TESTING STRATEGIES

To ensure the effectiveness of our hybrid model, each
constituent model within the ensemble needs to be robust
and capable of accurate classification. In this context,
we evaluate the performance of our CNN and ViT models
in distinguishing between benign and malicious malware
images. Our well-preprocessed grayscale dataset (split into
training and testing sets) is utilized for the evaluation.

1) TRAINING PROCESS

The training data, comprising grayscale image features and
corresponding labels (malware or benign), is fed to both the
CNN and ViT models. These models undergo training for
20 epochs, iteratively learning to map the input features to
the correct class labels. During training, the models process
the data in batches, adjusting their internal parameters to
minimize the difference between their predictions and the true
labels.

2) TESTING THE MODELS: EVALUATION ON UNSEEN DATA
Once trained, the CNN and ViT models are evaluated on a
separate, unseen test dataset to assess their generalizability
and performance on unfamiliar data. Our model achieved
96.11% accuracy on the test set, as shown in Table 3. The
models make predictions based on the test data, which are
compared to the true labels to calculate various evaluation
metrics, such as accuracy, precision, recall, and F1-score.

C. CNN RESULTS AND ANALYSIS

As highlighted in Table 4 and Fig. 6, our CNN model achieved
excellent performance on the evaluation. Specifically, the
model achieved an overall validation accuracy of 96.11%,
indicating a high proportion of correctly classified samples
in the test set. The training accuracy increased across epochs,
reaching a final value of 96.72%, suggesting that the model
correctly classifies nearly 97% of the training samples. The
validation accuracy remained above 95% throughout the
training process, demonstrating that the model generalizes
well and avoids overfitting.

In terms of precision, the model achieved 95.65% for the
benign class and 96.60% for the malware class, indicating
high accuracy in identifying both benign and malicious
samples with few false positives. The recall values were
96.80% for benign and 95.38% for malware, showing that
the model misses very few actual malware or benign samples.
The F1-Score, a harmonic mean of precision and recall, was
0.9622 for the benign class and 0.9599 for the malware class,
providing a balanced view of the model’s performance.
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Last, FPR was 0.031, meaning only 3.1% of benign
images were incorrectly classified as malware, minimizing
unnecessary alarms and reducing the burden on human
analysts. FNR was 0.046, indicating that the model misses
4.6% of actual malware images. Despite this, the model’s
TPR of 0.9538 demonstrates its effectiveness, correctly
identifying 95.38% of actual malware images.

TABLE 4. Classification report for CNN model.

Precision  Recall Fl- Support
score

Benign 0.9565 0.9680 0.9622 6799
Malware 0.9660 0.9538 0.9599 6480
Accuracy 0.9611
macro avg 0.9613 0.9609 0.9611 13279
weighted 0.9612 0.9611 0.9611 13279
avg
FPR 0.031%
FNR 0.046%
TPR 0.95.38%

These results demonstrate the robustness and efficacy
of our CNN model in differentiating between benign and
malicious malware images. This individual solid model per-
formance contributes significantly to the overall effectiveness
of the hybrid DeeplmageDroid model.

D. ViTs RESULTS AND ANALYSIS

As evidenced by the compelling results presented in Table 5
and Fig. 7, our ViT model also demonstrates remarkable
performance in the task of Android malware classification.
This achievement underscores the promising potential of
ViTs for this critical domain.

As evidenced by the compelling results presented in
Table 5 and Fig. 7, our ViT model also demonstrates
remarkable performance in the task of Android malware
classification. Specifically, for the ‘“Benign” class, the
precision is 0.9658, indicating that 96.58% of instances
predicted as benign are actually benign. The recall for
this class is 0.9482, meaning the model correctly identifies
94.82% of all actual benign instances. For the ‘“Malware”
class, the precision is 0.9466, indicating that 94.66% of
instances predicted as malware are indeed malware. The
recall for this class is 0.9648, meaning the model correctly
identifies 96.48% of all actual malware instances. It is worth
noting that the ViT model exhibits more fluctuations in
validation performance compared to the CNN, as observed
in the validation loss trends. This can be attributed to ViT’s
reliance on self-attention mechanisms for capturing global
dependencies, which increases its sensitivity to variations
in the dataset, leading to greater instability during training.
In contrast, CNN’s localized feature extraction contributes to
a more stable validation trend.
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FIGURE 6. Analysis of our CNN model training session: The training accuracy starts at 0.9112 and steadily increases across epochs, reaching a final value
of 96.72%. This suggests the model is correctly classifying nearly 97% of the training samples. The validation accuracy gradually moves above 95% during
the training process, indicating the model is generalizing well and avoiding overfitting the training data. The training loss steadily decreases across
epochs, indicating the model is effectively learning to minimize its error during training. This is a positive sign, suggesting the model improves its ability

to distinguish between benign and malicious samples.

Additionally, the F1-scores, which balance precision and
recall, are around 0.95 for both classes, indicating good
overall performance. FPR is 0.051, meaning 5.1% of benign
instances are incorrectly classified as malware, indicating a
low potential for false alarms. TPR is 0.9648, showing the
model successfully identifies 96.48% of malware images.
FNR is 3.5%, indicating a slight chance of overlooking some
malware.

Last, The overall validation accuracy of our ViT model
reaches 0.9563, correctly predicting approximately 95.7% of
instances, which suggests good generalization and avoidance
of overfitting. The training accuracy increases steadily
throughout the epochs, reaching a final value of 96.27%,
indicating effective learning and differentiation between the
two image classes during training.

Overall, the ViTs model demonstrates strong performance
in distinguishing between benign and malware instances,
as indicated by high precision, recall, and F1-score values,
along with a relatively low false positive rate and FNR. This
contributes significantly to the overall effectiveness of the
hybrid DeepImageDroid model.

E. DeeplmageDroid MODEL RESULTS AND ANALYSIS

By combining the unique capabilities of our robust ViTs and
CNN models as described in Fig. 5, our hybrid model, Deep-
ImageDroid, employs a collaborative approach, combining
the predictions of two diverse models and leveraging their
individual strengths to achieve potentially improved malware
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TABLE 5. Classification and confusion matrix report for ViT model.

Precision  Recall F1- Support
score

Benign 0.9658 0.9482 0.9569 6799
Malware 0.9466 0.9648 0.9556 6480
Accuracy 0.9563
macro avg 0.9562 0.9565 0.9563 13279
weighted 0.9565 0.9563 0.9563 13279
avg
FPR 0.051%
FNR 0.035%
TPR 0.96.48%

classification performance as seen in Table 6. The introduced
weighted average for our ensemble DeepImageDroid model
is simplified as follows:

K
y=> widi, )
i=1

where 3, y;, and w represent the final ensemble prediction,
predictions of the CNN and ViTs models, and the vector of
weights, respectively.

This can be equivalently expressed in the form of a dot
product as y = w’ - §, where 3, §, and w now denote the final
prediction of the ensemble model, a vector containing the

156299



IEEE Access

C. C. Obidiagha et al.: DeeplmageDroid: A Hybrid Framework Leveraging ViTs and CNNs

ViT Training Accuracy Over Epochs

o
©
o

Accuracy
o
[(e)
s

0.92

| ! |

2.5 5.0 7.5 10.0 12.5 15.0 175
Epoch

ViT Validation Accuracy Over Epochs

0.950

0.945

Accuracy

0.940

0.935} , ‘ :

2.5 5.0 7.5 10.0 125 150 175
Epoch

ViT Training Loss Over Epochs

0.20}
%]
§ 0.15}

0.10}

2.5 5.0 7.5 10.0 12,5 15.0 17.5
Epoch

ViT Validation Loss Over Epochs

0.16
0.15}
@
k) 0.14}
0.13}
0.12}

2.5 5.0 7.5 10.0 12,5 150 17.5
Epoch

FIGURE 7. Analysis of our ViTs model training session: The training accuracy steadily increases throughout the epochs, reaching a final value of nearly
96%. This indicates that the model effectively learns to distinguish between the two image classes during training. The validation accuracy also increases
throughout the training process, reaching a final value of over 95%. This suggests the model generalizes well and doesn’t simply memorize the training
data. The training loss follows a decreasing trend, reaching a final value below 0.10. This signifies that the model progressively minimizes its errors
during training. The validation loss also shows a decreasing trend, though with some fluctuations, which is expected during the validation process.

predictions of the individual models, and a vector containing
the weights assigned to the CNN (0.9) and ViT (0.5) model,
respectively. We assigned a higher weight to the model
that performed well on the validation data. w/ denotes the
transpose of the weight vector. Last, the dot . product signifies
the weighted sum.

The obtained results from the DeepImageDroid ensemble
hybrid model for malware classification demonstrate promis-
ing performance, suggesting a successful collaboration
between the CNN and ViT models. Specifically, the model
shows a high overall accuracy of 0.96, correctly classifying
nearly 96% of malware and benign images in the test set,
showcasing the effectiveness of the ensemble approach.
It achieves balanced class performance, with precision and
recall values above 0.96 for benign and malware classes,
indicating no significant bias. The model maintains a low
FPR of 0.042%, minimizing misclassification of benign
images as malware, and a low FNR of 0.037%, indicating
few missed malware images. Additionally, the high TPR of
0.9628% shows that DeepImageDroid accurately identifies
over 96% of actual malware images.

F. DISCUSSIONS

1) COMPARATIVE PERFORMANCE ANALYSIS OF RESULTS
The results of our study demonstrate the effectiveness
of CNN, ViT, and the hybrid DeeplmageDroid model
in detecting Android malware. Each model exhibits vital
performance metrics, including precision, recall, Fl-score,
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TABLE 6. Classification report and confusion matrix for DeeplmageDroid.

Precision  Recall F1- Support
score

Benign 0.96 0.96 0.96 6799
Malware 0.96 0.96 0.96 6480
Accuracy 0.96
macro avg 0.96 0.96 0.96 13279
weighted 0.96 0.96 0.96 13279
avg
FPR 0.042%
FNR 0.037%
TPR 0.96%

FPR, TPR, and FNR. However, the hybrid model achieves
a performance comparable to each model’s. Table 7 presents
the results of all models.

As shown in Table 7, the CNN model achieved the highest
overall accuracy (0.9611) and Fl-score (0.9611) among
the individual models. This aligns with the strengths of
CNNs in image classification. The ViT and DeepImageDroid
models displayed competitive performance, highlighting the
potential of transformer-based architectures and ensemble
approaches. Additionally, the ViT model achieves an accu-
racy of approximately 95%, with an FPR of 5.1%, TPR
of 96.48%, and FNR of 3.5%. The CNN model achieves
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an accuracy of around 96.11%, with a FPR of 3.1%, TPR
of 95.38%, and FNR of 4.6%. Both models demonstrate
balanced precision and recall.

The DeepImageDroid hybrid model leverages the strengths
of both CNNs and ViTs. While performing slightly lower
than the individual CNN model in accuracy and Fl-score
(0.96 vs. 0.9611), it exhibits a well-balanced performance
across all metrics, with high accuracy (0.96), precision
(0.96), and recall (0.96). The hybrid model maintains a low
FPR (0.042) and FNR (0.037), indicating a good balance
between minimizing false alarms and correctly identifying
true positives. These results suggest that the DeepIlmageDroid
hybrid model offers competitive performance and effectively
combines the strengths of CNNs and ViTs for malware
classification.

The preceding comparative performance analysis of the
CNN, ViT, and the hybrid model (DeeplmageDroid) for
Android malware detection provides valuable insights into
their effectiveness and potential areas for improvement.
However, the hybrid model, DeepIlmageDroid, demonstrates
a balanced performance by leveraging the strengths of both
CNN and ViT models. While it does not outperform the CNN
model in terms of accuracy and precision, it achieves a better
balance between TPR and FPR, reducing the chances of both
false positives and false negatives.

o FPR: DeeplmageDroid has a moderate FPR, lower than
ViT but higher than CNN. This balance helps in reducing
unnecessary alerts while maintaining a good detection
rate.

o TPR: The hybrid model’s TPR is closer to the ViT
model, ensuring a high detection rate for malware
instances.

« FNR: With an FNR of 0.037, DeepImageDroid misses
fewer malware instances than the CNN model, indicat-
ing improved reliability in malware detection.

The hybrid model DeepImageDroid provides a well-
rounded performance in Android malware detection, balanc-
ing the strengths of CNN and ViT models. While the CNN
model achieves the highest accuracy and lowest FPR, the
ViT model excels in TPR and FNR. The hybrid approach
effectively integrates these strengths, resulting in a reliable
and robust malware detection system.

2) COMPARATIVE FEATURE EXTRACTION CAPABILITIES OF
CNNs AND ViTs

In this study, CNNs and ViTs demonstrated distinct strengths
in feature extraction capabilities, which contributed to
the overall robustness of the proposed DeeplmageDroid
framework. CNNs are particularly effective at capturing local
features within images, thanks to their use of convolutional
layers and pooling operations. These layers allow CNNs to
detect fine-grained patterns and details, such as edges and tex-
tures, by focusing on small receptive fields and progressively
building more complex feature hierarchies. This capability
is crucial for identifying specific characteristics of malware,
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such as unusual patterns or structures in binary images that
may indicate malicious activity.

On the other hand, ViTs excels at capturing global context
and long-range dependencies within the data. Unlike CNNss,
which rely on localized convolutional filters, ViTs utilize a
self-attention mechanism that can simultaneously consider
relationships between all parts of an image. This enables
ViTs to understand the broader context and more complex
relationships within the data, which is particularly useful
for detecting subtle and sophisticated malware behaviors
that might span across different parts of an image or
involve complex interactions. The ability of ViTs to integrate
information from the entire image allows them to capture
global patterns that might be overlooked by CNNs, which are
more focused on local features.

While CNNs can extract detailed local features, ViTs
provide a complementary strength by capturing global depen-
dencies and contextual information. Integrating these two
models in the DeeplmageDroid framework leverages their
strengths, resulting in a more comprehensive and practical
approach to Android malware detection. This combination
enhances the model’s ability to detect a wide range of
malware characteristics, from specific patterns to broader
contextual cues, thereby improving detection accuracy and
robustness.

3) COMPARATIVE ANALYSIS OF DeeplmageDroid WITH
STATE-OF-THE-ART MODELS

To evaluate the effectiveness and robustness of the proposed
DeeplmageDroid model, we compare its performance against
state-of-the-art models for Android malware detection. These
models, selected from the most recent literature, employ
various deep learning techniques, including CNNs, Vision
Transformers, and self-supervised learning methods, each
offering unique strengths and approaches to malware detec-
tion. By analyzing key metrics such as accuracy, precision,
recall, Fl-score, and False Positive Rate (FPR), we aim to
highlight the advantages and limitations of DeepImageDroid
relative to these models. The following comparative analysis
focuses on understanding where DeeplmageDroid excels and
how its hybrid architecture balances the trade-offs between
performance criteria.

o DeepImageDroid vs. AdMat: AdMat achieves a
higher accuracy (98.26%) compared to Deeplmage-
Droid (96.00%) and also outperforms DeeplmageDroid
in precision (97.8%), recall (96.9%), and Fl-score
(97.3%). In contrast, DeepImageDroid offers consistent
performance across all key metrics (96.00% for accu-
racy, precision, recall, and F1-score) and demonstrates
a lower False Positive Rate (FPR) of 0.042, which is
beneficial in reducing false alarms—a critical factor
in practical malware detection settings. This highlights
DeepImageDroid’s focus on minimizing false positives,
making it suitable for environments that require high
reliability, such as mobile and edge computing.
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TABLE 7. A comparative analysis of the models.

Model Accuracy Precision Recall F1-Score FPR TPR FNR
CNN 0.9611 0.9612 0.9611 0.9611 0.031 0.9538 0.046
ViT 0.9563 0.9565 0.9563 0.9563 0.051 0.9648 0.035
DeepImageDroid 0.96 0.96 0.96 0.96 0.042 0.9628 0.037
TABLE 8. Performance comparison of DeeplmageDroid with state-of-the-art models.

Model Accuracy | Precision Recall F1-Score | FPR

AdMat [10] 98.26% 97.8 96.9 97.3 -

ViT4Mal [18] 97% - - - -

Self-Supervised Vision Transformers [4] 97% 87% 89% 87.8% -

MalSSL [46] 96.2% - - - 0.6

DeeplmageDroid 96% 96.5% 96.48% 95% 0.042

o DeepImageDroid vs. ViT4Mal: ViT4Mal achieves a
higher accuracy (97%) compared to DeepImageDroid’s
accuracy (96.00%). However, ViT4Mal’s approach
involves converting executable byte-code into images,
adding computational overhead that may limit scal-
ability. DeeplmageDroid’s hybrid model effectively
combines CNN and ViT, balancing local and global
feature extraction. Although DeeplmageDroid shows
slightly lower accuracy, its hybrid approach allows for a
broader generalization across diverse malware patterns,
making it a more versatile choice for comprehensive
malware detection.

« DeepImageDroid vs. Self-Supervised Vision Trans-
formers (SSViT): SSVIT achieves a marginally higher
accuracy (97%) but falls short in precision (87%),
recall (89%), and Fl-score (87.8%), compared to
DeeplmageDroid’s precision, recall, and Fl-score of
96%. Additionally, DeepImageDroid has a lower FPR
(0.042) than SSVIT, suggesting fewer false alarms. This
efficiency, coupled with DeeplmageDroid’s simpler
architecture, makes it a more practical choice for
environments with limited computational resources.

o DeepImageDroid vs. MalSSL: MalSSL achieves a
slightly higher accuracy (96.2%) but lacks comprehen-
sive evaluation metrics such as precision, recall, and
F1-score, limiting direct comparison. DeepIlmageDroid,
however, demonstrates consistent performance across
all metrics (96%) and has a lower FPR (0.042), under-
scoring its strength in minimizing false alarms. Integrat-
ing CNN and ViT models, this balanced approach makes
DeepImageDroid highly adaptable to different malware
patterns, providing a robust Android detection solution.

DeepImageDroid stands out for its hybrid model architec-
ture that leverages the strengths of both CNNs and ViTs,
providing a comprehensive feature extraction mechanism
capable of handling complex malware detection tasks. The
model’s balanced performance across all evaluation metrics
makes it highly reliable for varied and unpredictable malware
landscapes. Moreover, its lower computational overhead
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compared to models that rely on more resource-intensive
methods like self-supervised learning makes it suitable
for real-world applications, including mobile and edge
devices.

4) INTEGRATION WITH REAL-TIME MONITORING SYSTEMS
FOR DYNAMIC MALWARE DETECTION

Integrating the framework with real-time monitoring sys-
tems is crucial to enhance the practical applicability and
effectiveness of DeepImageDroid. Such systems can provide
continuous surveillance and dynamic detection capabilities,
enabling timely responses to emerging threats. Real-time
monitoring systems typically operate by continuously ana-
lyzing network traffic, system logs, and other data sources
to identify suspicious activities. Integrating DeepImageDroid
into these systems can provide the following advantages.

Immediate Threat Detection: By continuously monitor-
ing devices and network activities, real-time systems can
instantly utilize DeeplmageDroid’s capabilities to detect
anomalies and potential malware threats. This is especially
vital in scenarios requiring quick action to mitigate security
risks.

Dynamic Adaptation to New Threats: The evolving nature
of malware, characterized by frequent updates and new
variants, necessitates an adaptive approach to detection.
Real-time systems equipped with DeepImageDroid can be
updated with new detection models as they become available,
ensuring the system remains robust against new threats.

Resource Optimization: Real-time monitoring systems
can prioritize resources by focusing more intensive scan-
ning efforts on devices or network segments flagged by
DeepImageDroid as potentially compromised. This selec-
tive approach helps optimize computational resources and
reduces the overall burden on the system.

Enhanced Reporting and Alerting: The integration allows
for the generation of detailed reports and alerts based
on DeeplmageDroid’s findings. These reports can include
insights into the types of malware detected, potential entry
points, and recommended mitigation strategies. Alerts can be
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configured to notify administrators or automated systems for
immediate action.

Cross-Platform Protection: Given that Android devices
often interact with other platforms and network infras-
tructures, real-time monitoring systems can provide
cross-platform protection by correlating data from multiple
sources. DeeplmageDroid can be a crucial component in
this broader security ecosystem, enhancing overall system
resilience.

By integrating DeeplmageDroid with real-time monitoring
systems, organizations can significantly bolster their security
posture, providing robust and adaptive protection against the
ever-evolving landscape of Android malware.

5) MODEL INTERPRETABILITY

In security-sensitive environments, understanding the
decision-making processes of ML models is crucial for
building trust and ensuring responsible deployment. While
the current implementation of DeepImageDroid prioritizes
achieving high accuracy and robust malware detection, the
interpretability of the hybrid model remains an area that
requires further development. Enhancing interpretability is
essential for fostering greater trust and ease of adoption,
particularly in contexts where understanding model decisions
is critical.

To address this, future work will focus on integrating model
explainability techniques such as Layer-wise Relevance
Propagation (LRP) [47], SHapley Additive exPlanations
(SHAP) [48], and Local Interpretable Model-agnostic Expla-
nations (LIME) [49]. These techniques can provide insights
into which features or parts of the input data significantly
influence the model’s decisions. By doing so, security
analysts and stakeholders can better understand the reasoning
behind classifications, such as why a particular sample was
labeled as benign or malicious.

6) ABLATION STUDY FOR DEEPIMAGEDROID

The ablation study for DeeplmageDroid was conducted to
provide a detailed analysis of the contributions of each
component- CNN, ViT, and their hybrid combination- to
the model’s overall performance. This analysis helps to
understand which components are most critical for achieving
high accuracy in malware detection and how different settings
affect their effectiveness.

a: CNN COMPONENT ANALYSIS
The CNN component of DeeplmageDroid, as depicted in
Fig.3, is designed to learn local patterns in grayscale images.
The CNN architecture includes:

o Input Layer: Grayscale images with dimensions
64 x 64 pixels.

« Convolutional Layers: Two convolutional layers with
ReLU activation functions, where the first layer uses
32 filters and the second layer uses 64 filters, both with
a kernel size of 3 x 3.
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« Pooling Layers: Max pooling layers after each convo-
lutional layer with a pool size of 2 x 2 to reduce spatial
dimensions.

« Dropout Layers: Dropout layers with rates of 0.25 and
0.5 for regularization, preventing overfitting by ran-
domly setting a fraction of input units to zero at each
update during training.

« Dense Layers: Two dense (fully connected) layers with
128 and 50 neurons, respectively, followed by ReLU
activation.

e Output Layer: A single neuron with a sigmoid
activation function for binary classification.

Hyperparameters: The CNN was trained with a learning
rate of 0.001, batch size of 32, and trained for 20 epochs. The
optimizer used was Adam, and the loss function was binary
cross-entropy. The dropout rates and the number of filters
were tuned based on validation accuracy to avoid overfitting
and improve generalization.

Impact on performance: The CNN model achieved an
accuracy of 96.11% with high precision (95.65%) and recall
(96.80%) for the benign class. The CNN was particularly
effective in capturing local dependencies, contributing to a
lower false positive rate (FPR) of 0.031.

b: ViT COMPONENT ANALYSIS

The ViT component, as illustrated in Fig. 4, focuses on
capturing long-range dependencies by processing the image
as a sequence of patches. Key components include:

o Patch Creation and Embedding: The input image is
divided into non-overlapping patches of size 16 x 16.
Each patch is linearly embedded into a vector.

o Transformer Encoder: Comprises 8 transformer lay-
ers, each with multi-head self-attention (with 8 attention
heads) and a feed-forward network.

« Positional Encoding: Adds positional information to
each patch embedding to retain spatial structure.

o Classification Head: An MLP head with fully con-
nected layers leads to a sigmoid-activated output for
binary classification.

Hyperparameters: The ViT model was trained with a
learning rate of 0.0005, batch size of 64, and 20 epochs. The
weight decay was set to 0.0001, and the AdamW optimizer
was used. These hyperparameters were chosen through a
grid search to balance underfitting and overfitting while
maximizing the validation accuracy.

Impact on performance: The ViT model achieved an
accuracy of 95.63%, with a higher True Positive Rate (TPR)
of 0.9648 compared to the CNN, which shows its strength
in capturing global dependencies. However, the ViT had a
higher False Positive Rate (FPR) of 0.051, indicating more
false alarms than the CNN.

¢: HYBRID MODEL COMPONENT ANALYSIS
The hybrid model integrates the strengths of both CNNs and
ViTs through a weighted ensemble approach, combining their
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predictions to form a consensus as shown in Fig. 5. The
ensemble strategy involves:

o Weighted Averaging: Predictions from the CNN and
ViT models are weighted based on their validation
performance. The weights assigned were 0.6 for CNN
and 0.4 for ViT.

o Final Prediction: The final output is determined by
combining the weighted outputs of both models, aiming
to leverage the local feature extraction power of CNNs
and the global dependency modeling of ViTs.

Hyperparameters: The weights for combining the predic-

tions were determined based on cross-validation results, and
the weighted averaging was implemented using the numpy
library.

d: PERFORMANCE COMPARISON OF THE DIFFERENT
MODELS

Table 7 demonstrates the performance of the individual CNN
and ViT models and their combination in DeeplmageDroid.
The CNN achieved an accuracy of 96.11% with a low
FPR of 0.031 but had a TPR of 0.9538, showing room for
improvement in sensitivity. The ViT had a slightly lower
accuracy of 95.63% but a higher TPR of 0.9648 and a lower
FNR of 0.035, indicating better sensitivity despite a higher
FPR of 0.051. Combining CNN and ViT predictions without
weighted averaging resulted in an accuracy of 95.24%,
benefiting from their complementary strengths. However,
the weighted hybrid model outperformed all configurations
with an accuracy of 96.00%, precision, recall, and FI-
score of 96.00%, a TPR of 0.9628, FNR of 0.037, and
FPR of 0.042, effectively leveraging the strengths of both
models.

Impact on Performance: The hybrid model yielded the
best performance, with an accuracy of 96.00%, precision,
recall, and F1-score at 96.00%. It achieved a balanced FPR
of 0.042 and FNR of 0.037, indicating enhanced sensitivity
and specificity. As demonstrated in Table 7, the hybrid model
effectively combines the strengths of CNN and ViT, resulting
in a more robust malware detection system.

The ablation study demonstrates the critical role each
component plays in DeepIlmageDroid. The CNN effectively
captures local features with a low FPR, while the ViT excels
in capturing global dependencies with a high TPR. The hybrid
model’s weighted combination of CNN and ViT predictions
leverages these strengths, leading to a more robust and
accurate model for Android malware detection. The choice
of hyperparameters for each model was crucial in optimizing
their performance and ensuring the hybrid model’s superior
results.

7) COMPUTATIONAL EFFICIENCY OF DeeplmageDroid

DeeplmageDroid demonstrates computational advantages
due to its hybrid architecture, which effectively balances
using CNNs and ViTs. The CNN component captures local
features with high efficiency, utilizes fewer parameters, and
requires lower computational power than transformer-based
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architectures. The ViT component is then used to capture
global dependencies, which enhances the model’s ability
to generalize to diverse malware patterns. By leveraging
each component for its strength, the hybrid model avoids
redundant and resource-intensive operations if a single,
unified architecture (such as a standalone ViT) is used for
local and global feature extraction.

The use of a weighted average ensemble method further
contributes to computational efficiency. Instead of training
a larger monolithic model, DeeplmageDroid combines the
predictions of the CNN and ViT through a weighted ensemble
approach. This reduces the need for exhaustive training and
optimizes resource usage during the training and inference
phases. The weighted fusion strategy focuses on maximizing
the predictive power of both models without incurring the
additional computational cost of a fully unified deep model.

Additionally, DeepImageDroid’s modular hybrid approach
results in a lower overall parameter count compared to
standalone transformer models, which often contain a large
number of parameters to achieve similar performance.
This makes DeeplmageDroid more suitable for real-time
applications and resource-constrained environments such as
mobile or edge devices, where maintaining high performance
with limited computational resources is critical.

VI. CONCLUSION

This paper proposes a novel Android malware detection and
classification framework using a hybrid ensemble weighted
averaging approach. Our approach has demonstrated the
effectiveness of individual CNN and ViT models and
the hybrid DeeplmageDroid model in Android malware
detection. These models exhibit high precision, recall, F1-
scores, robustness, and generalizability, highlighting their
potential for real-world mobile security applications. Further,
the ViT and CNN models each showcase robust performance
in different aspects of malware detection. The hybrid model,
combining both strengths, achieves high accuracy and a
balanced FPR and TPR, demonstrating the benefits of an
ensemble approach. Future improvements could include
feature fusion techniques, hyperparameter tuning, ensemble
diversity, and data augmentation.

Our study contributes to the field of Android malware
detection and DL. The hybrid DeepIlmageDroid model rep-
resents a promising avenue for future research and practical
implementation in securing mobile devices against evolving
malware threats. We plan to explore more sophisticated
ensemble methods like stacking or boosting and extend the
model’s application to other cybersecurity areas, such as IoT
security, network security, and intrusion detection systems,
ultimately enhancing the security of critical systems and
protecting users from evolving cyber threats.
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