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Abstract: Convolutional neural networks (CNNs) have demonstrated remarkable performance in
many areas but require significant computation and storage resources. Quantization is an effective
method to reduce CNN complexity and implementation. The main research objective is to develop a
scalable quantization algorithm for CNN hardware design and model the performance metrics for
the purpose of CNN implementation in resource-constrained devices (RCDs) and optimizing layers
in deep neural networks (DNNs). The algorithm novelty is based on blending two quantization tech-
niques to perform full model quantization with optimum accuracy, and without additional neurons.
The algorithm is applied to a selected CNN model and implemented on an FPGA. Implementing
CNN using broad data is not possible due to capacity issues. With the proposed quantization algo-
rithm, we succeeded in implementing the model on the FPGA using 16-, 12-, and 8-bit quantization.
Compared to the 16-bit design, the 8-bit design offers a 44% decrease in resource utilization, and
achieves power and energy reductions of 41% and 42%, respectively. Models show that trading
off one quantization bit yields savings of approximately 5.4K LUTs, 4% logic utilization, 46.9 mW
power, and 147 µJ energy. The models were also used to estimate performance metrics for a sample
DNN design.

Keywords: convolutional neural networks; deep neural networks; FPGA; hardware design; quantization;
resource-constrained devices

1. Introduction

Convolutional neural networks (CNNs) have been successfully applied in a wide
range of cognitive tasks such as image recognition and classification, natural language
processing, object detection, voice recognition, and autonomous driving [1,2]. This is
mainly due to CNN’s remarkable accuracy and performance. However, CNNs require
significant computations and memory resources. Recent improvements in CNN accuracy
have been achieved by over-parameterized models, which present a significant challenge
when being deployed in resource-constrained applications [1,3].

The hardware implementation of CNNs has been studied and optimized in recent
years. One motivation to implement CNN in hardware is to achieve the desired per-
formance (i.e., in terms of high-accuracy and real-time response) with the least power
and energy consumption. In fact, it is currently trendy to see CNN designs being im-
plemented in digital devices, embedded systems, and edge devices; which are resource
constrained [4,5]. However, with such CNN implementations on resource-constrained
devices (RCDs) and as the number of neurons grows, the area, energy, and delay grow
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quadratically, and memory traffic increases significantly. Thus, realizing large CNNs in
hardware is a significant challenge [6].

RCDs, which are typically found in embedded systems and edge devices, have limited
resources that include small memory (RAM and ROM) to execute the applications and store
data/parameters, low data processing power, limited battery capacity, and small physical
area [7]. Consequently, designing CNNs for RCDs is challenging and requires a delicate
balance between resources and model accuracy, and even unaffordable for larger CNN
models [4,8,9].

While it is important to streamline the CNN design, CNN layers have different design
challenges and present a unique hurdle to the optimum method(s) that reduces CNNs
complexity. On one hand, the convolutional layers are computation-centric as they contain
a high volume of computations; and on the other hand, the fully connected (FC) layers are
memory-centric and require large memory bandwidth. An efficient optimization method
should focus on simplifying the computations and the memory system [5].

Several optimization methods have been proposed to reduce the design complexity
and simplify the implementation of CNNs. One such method is quantization, which in-
volves replacing real-valued numbers with low-bit (i.e., low-precision) fixed-point integers.
By reducing the bit width of parameters (i.e., weights and biases) and the outputs from
each layer (activations), quantization unlocks speed gains, lower power consumption,
and smaller memory footprints.

Numerous research has reported quantized CNNs using 32-, 16- and 8-bits [5,6,10–15].
Additionally, other research work proposed aggressive quantization techniques that con-
strain the parameters to as low as two bits (e.g., ternary networks) or even one bit
(e.g., binarized networks). Aggressive quantization, however, potentially degrades CNN
accuracy [16]. To compensate for the accuracy drop, the number of neurons is increased,
which, unfortunately, could offset quantization benefits [17].

Another proposed method (to reduce CNN design complexity) involves approximat-
ing low-rank filters in pre-trained networks. For example, Zhang et al. [18] proposed
an approach that enables an asymmetric reconstruction, which reduces the rapidly ac-
cumulated error when multiple layers are approximated. Other methods restrict filters
with low-rank constraints during the training phase. For example, the low-rank tensor
decomposition proposed in [19] removes the redundancy in the weights of a pre-trained
neural network (NN) and reduces the number of parameters significantly.

Another proposed optimization method involves employing smaller and more efficient
CNN architectures. One idea involves replacing 3 × 3 convolutional filters with 1 × 1 size
to reduce the model complexity, as demonstrated in GoogLeNet [20] and SqueezeNet [21].
A second idea involves utilizing residual connections to relieve the gradient vanishing
problem during deep network training, such as the design in ResNet [22]. A third idea
involves generalizing the group convolution and the depthwise separable convolution,
such as the design in ShuffleNet [23]. In fact, the utilized depthwise separable convolutions,
as in Xception [24] and MobileNet [25], have been proved to be effective.

Other methods to reduce CNN complexity involve pruning and structural sparsity.
Pruning reduces model size by removing redundant weights [26]. It is typically achieved
by setting some weights, neurons, or connections in the NN model to zero or near-zero
values [27]. Han et al. [28] discussed pruning to reduce the memory requirement of CNNs
with no loss of accuracy. Additionally, the research works in [29,30] employ structural
sparsity for more energy-efficient compression. Further, singular value decomposition
(SVD) is used, as in [5], to reduce memory footprint.

Several technologies are used to realize CNN implementation, including CPUs, GPUs,
FPGAs, or ASIC. However, FPGAs are believed to present attractive implementations
compared to other technologies for several reasons [1,2,31]:

• FPGAs are more energy efficient compared with GPUs and CPUs.
• FPGAs have parallel computing resources with high performance.
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• Reconfigurability in FPGAs provides significant flexibility to explore CNNs’ design
options and alternatives.

• FPGAs provide high security [31].

While deep neural networks (DNNs) continue to be a major research focus, there is a
growing enthusiasm for smaller and lightweight NNs. Future FPGA-based NN acceleration
will be embedded, lightweight, and portable [1]. Additionally, the lightweight CNN
quantization method extends further to optimize DNNs. By strategically applying it to
specific layers, we can minimize quantization errors and efficiently implement the DNN
using fewer FPGAs, leading to significant power and energy savings. Hence, it is important
to focus FPGA-based research on lightweight CNNs, which are targeted for embedded
designs and applications such as AI-of-Things (AIoT) [1] and are also beneficial for DNNs.

The main objective of this research is to develop an FPGA-based quantization method
to reduce CNN hardware design, and to estimate-and-model the enhancements in area,
power, and energy. This will enable implementing CNNs in RCDs (e.g., FPGA devices).
Additionally, the derived models will facilitate the quick and easy evaluation of DNN de-
sign choices. Our research successfully addressed the above-stated objective by delivering
the following key contributions.

• Designed and validated an algorithm to quantize the full CNN model. The novelty of
the algorithm is that it combines quantization-aware training (QAT) and post-training
quantization techniques (PQT), and it provides full model quantization (weights and
activations) without increasing the number of neurons.

• Explored, designed, and verified multiple hardware designs of the quantized CNN;
each design with different quantization bits to fit the FPGA capacity and resources.

• Performed compilation and synthesis of the hardware designs in the FPGA device,
which is Altera Stratix IV.

• Analyzed and modeled the resources, timing, throughput, power, and energy results.
• Estimated the performance metrics for a sample DNN design using the derived models.

The rest of the paper is organized as follows. Section 2 summarizes the latest research
work in CNN quantization. Section 3 presents the research methodology and design
flow. Section 4 explains the proposed algorithm in detail. Section 5 discusses the FPGA
implementation of the quantized CNN model. Section 6 summarizes the area, timing,
throughput, power, and energy results of FPGA implementations. Section 7 discusses
modeling metrics and applying them to DNN. Section 8 discusses concluding remarks and
future research opportunities.

2. Related Work

In general, examining research work in CNN quantization, researchers have exercised
two design options when quantizing a CNN model:

• Quantization of parameters only versus quantization of the entire model (i.e., parame-
ters and activations) [26];

• QAT versus PTQ. Generally speaking, with the same bit precision, QAT achieves
higher accuracy [32].

It is noteworthy to mention that the approach of “quantization of parameters only”
somewhat strikes a balance between “no quantization”, which has expensive computations
and high memory bandwidth, and “quantization of the entire model” that unleashes the
full potential of quantization, but tends to be harder and requires careful implementation
due to potential higher accuracy loss.

Additionally, we should mention that QAT involves a cyclical process of quantization
and retraining to optimize a pre-trained CNN for quantized representations. The key steps,
which are repeated until convergence, are as follows: quantizing the weights, forward
pass using floating point activations, and lastly, back-propagation pass using floating point
gradient. Because of the weight quantization, it is necessary to approximate the gradients
using (for example) straight-through estimator (STE) [33].
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From the implementation point of view, the reader should notice that high accuracy
QAT requires a long training time; however, it is justifiable for the models that will be
deployed for long periods of time. On the other hand, PTQ quantizes a pre-trained
NN without any extra training, which is helpful when training data are not sufficient
or unavailable, and quickly provides quantized NN. In both QAT and PTQ, sometimes
quantization can be fine-tuned with a small set of calibration data [32].

Several quantization-based frameworks and tools were developed to automate and
optimize NN implementation on FPGAs and ASICs [34]. Examples include the Xilinx
FINN [35] and hls4ml [36] frameworks. On one hand, the FINN framework leverages
Brevitas [37] for quantization-aware training. A research example, which explored the
trade-off between accuracy and resource usage on FPGAs using such a framework is
Ducasse et al. [34]. This research implemented quantized NNs (with less than 8 bits) in
FPGAs while maintaining 88% accuracy. On the other hand, hls4ml is an open-source
framework that combines software and hardware design to translate NNs to FPGAs
and ASICs. Its workflow integrates network optimization techniques, allowing for low-
power implementations. While such frameworks are valuable for exploring efficient
hardware solutions, it is important to consider their limitations such as customization and
troubleshooting.

Researchers also use algorithm hardware co-design technique to automatically develop
efficient NNs and hardware, which considers both software and hardware together during
the design and quantization process. For example, Fan et al. [38] proposed a three-phase
co-design framework, which decouples training from the design space exploration and
adopts the Gaussian process to predict accuracy and power consumption. In compari-
son with the manually-designed ResNet101, InceptionV2, and MobileNetV2, the authors’
proposed framework can achieve up to 5% higher accuracy with up to 3× speed up on
the ImageNet dataset. Additionally, Wang et al. [39] proposed a hardware/software co-
design methodology targeting CPU+FPGA-based heterogeneous platforms. The authors’
proposed methodology includes optimization (i.e., hardware-aware NN pruning, cluster-
ing and quantization), and an end-to-end design space exploration flow. Experimental
results show that the authors’ work can achieve a peak throughput of 2.13 TOPS. More-
over, Haris et al. [40] proposed SECDA, a hardware/software co-design methodology,
which combines the system’s simulation with FPGA execution. SECDA achieved an av-
erage performance speedup across models of up to 3.5× with a 2.9× reduction in energy
consumption over CPU-only inference. Overall, we believe that a major challenge in
algorithm-hardware co-design is the high cost of training NNs and the lengthy process of
implementing hardware. This makes it impractical to explore the vast range of potential
NN architectures and hardware designs [27,38].

The rest of this section discusses research in “parameter quantization only” or simply
to be called “parameter quantization”, and “entire model quantization”.

2.1. Parameter Quantization

Compared with quantization of the entire NN model, parameter quantization is rela-
tively easier in implementation and demonstrates high accuracy results [9,41,42]. For ex-
ample, Holt et al. [43] performed training with fixed point 16-bit weights and 8-bit inputs.
While parameter quantization reduces model size with minimal accuracy loss (i.e., by a few
percent drop) for 32-bit and 16-bit precision, some researchers explore even lower bit widths,
accepting a larger accuracy drop for further efficiency gains. For example, the binarized NN
(BNN) approach constrains the weights to one bit, which can represent two possible values
(e.g., −1 or 1). This approach simplifies the hardware by replacing multiply-accumulate
units with accumulate units [44]. There are Ternary networks [9], which increase weight
bit width to 2 bits representing three values (e.g., −1, 0, 1). The additional bit improves
accuracy compared with BNN [9].

There is also a three-bit quantization of parameters examined as well. For example,
Park et al. [45] developed an FPGA-based fixed-point NN using only on-chip memory,
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by quantizing weights to 3 bits (for input and hidden layers) and 8 bits (for output layer).
The authors utilized QAT, where the training is performed in three steps: floating-point
training, optimal uniform quantization, and retraining with fixed-point weights. The
FPGA implementation is tested for the Modified National Institute of Standards and Tech-
nology (MNIST) handwritten digit recognition benchmark and a phoneme recognition
task on Texas Instruments/Massachusetts Institute of Technology (TIMIT) corpus. The
implemented FPGA shows a throughput that is about one-quarter of a GPU system, but con-
sumes 2~4% of the energy consumption of the GPU system, resulting in over 10 times the
power efficiency. One issue of the design is that the base design (with floating point prior
to quantization) has an error rate up to 27.81%, which is significant and potentially affects
the quantized design results.

Zhou et al. [42] proposed an incremental network quantization (INQ) method to
quantize model weights to either zero value or power of two values. The method consists
of three operations: weight partition, group-wise quantization, and re-training. Weights
in each layer are divided into two groups. The first group is from a low-precision base
and quantized by a variable-length encoding method. The second group is retrained to
compensate for the accuracy loss from the quantization. The operations are repeated until
all the weights are converted into low-precision ones.

Abdelouahab et al. [17] presented a method to optimize DSP utilization in FPGAs for
CNN implementations while maintaining high accuracy. The method is based on exploring
design space by varying the neuron count in each layer and the precision of weights and
biases. The study concluded that classification accuracy increases with the number of
neurons and with numerical precision.

2.2. Quantize the Entire Model: Weights and Activations

Despite the complexities of full model quantization, numerous works implemented,
examined, and implemented this method. For example, the 16-bit quantization Q6.10 (6-bit
integer and 10-bit fraction) is used as in [6,46], and quantization Q8.8 (8-bit integer and
8-bit fraction) is used as in [47]. Additionally, as in [48], 32-bit quantization is used during
training while 16-bit is used in the inference phase.

Courbariaux et al. [49] trained a set of CNNs on three benchmark datasets, with three
formats: floating point, fixed point, and dynamic fixed point. The research concluded that
the minimum bit-width for the activations is 10-bit and 12-bit for parameters. Below these
bit-widths, the error rate rises significantly.

Vanhoucke et al. [50] performed the training using a single precision floating point,
while evaluation was performed with 8-bit weights and activations. When compared with
floating-point, the 8-bit arithmetic provided an over two times speedup without having a
loss of accuracy when being applied on speech recognition design.

Qiu et al. [5] presented an FPGA design for large-scale CNN. The proposed method
combines SVD and quantization. The authors’ implementation of the method consists
of two phases: weight quantization and data quantization. The method reduces fraction
bits in weights and activations while minimizing accuracy loss. Compared with 16-bit
quantization, 8/4-bit quantizations halve the storage space for intermediate data and reduce
three-fourths of the memory footprint. However, when 8/4-bit quantizations are used, a
0.4% accuracy loss is introduced by data quantization for the VGG16 model. One issue of
this work is that the accuracy of the base design (i.e., VGG16 with floating point) is 68.1%.
As such, the reported accuracy loss might not reflect the loss in the quantization accuracy.

Chen et al. [6] presented a detailed study in hardware accelerators for small and large
NNs. For small NNs, all neurons and synapses are realized in hardware. Small designs
and short interconnects result in high-speed and low-energy implementation. The study
shows that, as the number of neurons grow, the area, energy, and delay grow quadratically,
which makes realizing large NNs in hardware very challenging. Another issue for large-
scale NNs is the high memory traffic. Hence, the hardware implementation for large-
scale NNs realizes a fraction of neurons and synapses. For hardware implementation,
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the research suggested the following techniques: tiling, pipelining, buffers, and DMAs.
It also replaced the floating-point computations with 16 fixed-point computations (6 bits
for the integer part, 10 bits for the fractional part), which reduces the power and area and
slightly increases the error rate by 0.26%. The CNN was trained and tested on the standard
MNIST machine-learning benchmark [51], and the CNN implementation leverages a 65 nm
process technology.

2.3. Discussion

In light of the above research, we believe it is important to highlight the follow-
ing points.

• Parameter quantization reduces CNN complexity efficiently, but misses out on po-
tential reductions from activation quantization. Full model quantization targets both
computation and memory but requires careful accuracy consideration.

• Another issue is the accuracy of the base design (i.e., with floating point and prior to
quantization). In some research works, the accuracy of the base design should have
been better, which indicates issues with model training [5,45].

• Some of the quantization methods add additional neuron operations to mitigate the
accuracy drop, which in turn increases model complexity [17].

• Large NN implementation techniques (e.g., tiling and pipelining) are different from
small NNs [6].

• Surprisingly, most research on quantized designs fail to model key performance
metrics like power and energy.

Our focus in this research is to present a comprehensive approach to the quantization
method. It includes:

• Proposing a full-model quantization algorithm without requiring extra neurons;
• Modeling the impact of quantization on resources (e.g., energy, power, and area);
• It should scale up to DNNs.

To the best of our knowledge, our literature review found no prior work that encom-
passed such a comprehensive approach.

3. Research Methodology

In this section, we discuss our research methodology, which has a similar flow to
those used in other similar research works, including [52–54]. Figure 1 outlines the flow
steps, which mainly consist of algorithm development and simulations, hardware design,
and performance evaluation. The following subsections provide a detailed explanation of
each step in Figure 1.

3.1. Research Objectives

Clear research objectives should be set early in the project because they direct the
activities and tasks of the research. One objective of this research is to develop a method
to reduce the CNN hardware design. Quantization was chosen because it is effective and
powerful. Another objective is to devise an algorithm that can be applied to CNNs. We
are aware of numerous research works reporting the quantization of a wide range of bits;
however, it is important to present an algorithm that could be applied to any CNN. Another
objective is to understand the impact of quantization on resources, timing, throughput,
power, and energy, which is achieved through modeling those metrics. Such understanding
would enable implementing CNNs on RCDs (e.g., FPGA devices), as well as on DNNs.

Finally, determining the optimal bit-width for a specific CNN while maintaining
accuracy is a common objective, and extensive research has been conducted on this aim.
Instead, we challenge this approach by offering a more versatile method (i.e., a quantization
algorithm and modeling of performance metrics) that can be seamlessly applied to any NN
and DNN. This empowers broader applicability and adaptability.
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Figure 1. Research flow

3.2. Selection of CNN

The selection of a CNN architecture is a necessary step for conducting experiments and
validating the design and implementation of an algorithm. Numerous CNNs have been
proposed in the literature, with varying levels of complexity ranging from small models to
deep architectures [55]. In this work, the following criteria are considered desirable for the
selection of the CNN model:

• The model must fit in the FPGA device used in this research (i.e., Altera® Stratix® IV),
and hence should be a small (i.e., lightweight) model;

• The model should be known to the research community.

We decided to select the 5-layers LeNet captured in Figure 2, which is designed for
MNIST handwritten digits recognition [51] since it is simple, lightweight, and considered
a representative CNN [1]. Also, LeNet CNN is well known and studied by numerous
researchers in many studies such as the ones in [56–58].

LeNet consists of convolutional, pooling (i.e., subsampling), and fully connected
layers. It accepts 32 × 32 digit image and produces ten outputs to classify the input digit.
Table 1 describes the layers shown in Figure 2. The third column in Table 1 displays the
feature map size, which is the size of the layer output. The feature map size is expressed
as: width (W) × length (L) × depth (D) for a convolutional layer output and as depth
(D) for an FC layer. The last column lists the number of parameters (weights and biases)
required for the layer computations. The total number of parameters for the CNN model is
61,470 parameters. There are minor variations of LeNet in the literature (e.g., in terms of
the activation functions). This research utilizes activation functions in the following way:

• The rectified linear unit (ReLU) activation function in C1 and C2;
• The sigmoid activation function in C3 and FC1;
• Softmax in the output layer.

For the third layer (i.e., C3), the size of its input feature map is W × L× D = 5× 5× 16,
and its filter size is W × L (i.e., 5 × 5). In this case, the convolutional layer converges to
an FC layer. This explains why this layer appears in both the convolutional and the FC
entry (i.e., C3/FC0) in the 7th row in Table 1. While LeNet is referred to as 5 layers, some
researchers consider Pooling (and even non-linear functions) as a separate layer. If Pooling
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is counted as a separate layer, then LeNet is considered 7 layers [2]. Table 1 follows the
latter convention.

Table 1. Layers of LeNet-5.

Layer Description Feature Map Size (W × L × D) Filter Size Stride Parameters (Weights and Biases)

Input input image 32 × 32 × 1 - - -

C1 convolutional 28 × 28 × 6 5 × 5 1 156

S1 pooling 14 × 14 × 6 2 × 2 2

C2 convolutional 10 × 10 × 16 5 × 5 1 2416

S2 pooling 5 × 5 × 16 2 × 2 2

C3/FC0 convolutional
layer

1 × 1 × 120 5 × 5 1 48,120

FC1 Fully connected 84 - - 10,164

FC2 (Output) Fully connected 10 - - 850

Input 
32x32

C1 
28x28x6

S1
14x14x6

C2 
10x10x16

S2
5x5x16

C3/FC0 
1x1x120

FC1 
84

FC2(output) 
10

Convolution
Pooling Convolution Pooling Full

Connection Full
Connection

Full
Connection

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 2. The architecture of LeNet-5

3.3. Algorithm Development and Simulations

This step encompasses the entire process from scratch, including design, debugging,
and simulation of the proposed algorithm. Notably, we opted for a completely custom-
designed CNN architecture (rather than utilizing pre-built libraries). This approach grants
us maximum control over the network’s structure, enabling a more thorough debugging
process. There are several programs written in Python to facilitate this step which are
as follows.

• The primary program implements the LeNet model and is capable of quantizing
weights and/or activations of any layer with the desired bit width. This program is
trained and tested with grayscale images of size 28 × 28 for the 10 digits (i.e., 0,1,. . . ,9).
The training and testing data are chosen from the MNIST dataset [59]. The training
parameters and hyper-parameters are listed in Table 2. One important constraint for
our algorithm, which is discussed in Section 4, is to maintain the original architecture
of the LeNet, which means it is not possible to add layers or neurons to the quantized
CNN.

• Another program was written to generate the files containing quantized weights
to be used in the hardware design. The weights must be expressed in binary or
hexadecimal format.

• To debug and verify the hardware design, one more program was written to compare
the model layer outputs with the hardware results and to determine the mismatching
layer.

Table 2. Training parameters and hyper-parameters.

Name Value

Dataset MNIST [59]

Batch Size 50
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Table 2. Cont.

Name Value

Epochs 200

Optimizer ADAM

Learning Rate 0.05

Loss Function Cross Entropy

3.4. Hardware Design

In this research, the quantized CNN is implemented in hardware using a hardware
description language (HDL), which is VerilogTM. Our HDL design includes the CNN HDL
implementation and the testbench to validate the results. The simulations are performed
using the ModelSim simulator [60]. The HDL design incorporates the quantized parameters
computed by our algorithm, which is verified at the end based on the testbench simulations.

During the initial design phase, findings from HDL design feasibility studies and
simulation trials are used to refine specific algorithm parameters (detailed in Section 4).
Figure 1 illustrates this feedback loop with the dotted arrow from the HDL simulation
back to the algorithm development. This iterative process provides valuable insights from
hardware design to improve the algorithm development.

Once the design is verified, the HDL is ready to be processed by the FPGA software
tools. In this research, the FPGA that we used is the Altera Stratix IV [61], and we used
the Quartus PrimeTM software tool to process the HDL. Table 3 provides the versions of
the FPGA device, tools, and simulator. Technical details regarding the software tool are
available in [62]. Then, the HDL design goes through a flow similar to the flows discussed
in published research, such as [63,64]. Finally, the compiled design is being analyzed and
examined using the following performance metrics, which are thoroughly discussed next:
resource utilization, timing, throughput, power, and energy.

Table 3. Field Programmable Gate Array (FPGA) device and tool versions.

Name Value

FPGA Device Altera Stratix IV version EP4SGX230

FPGA Software Tool Quartus Prime Standard Edition version 17.0

Verilog Simulator ModelSim-Intel FPGA Standard Edition version 10.5b

3.4.1. Resource Utilization Performance Metric

The resource utilization analysis lists the resources allocated for the design. The re-
sources can be: Look-Up Table (LUT) and DSP blocks. An LUT is the smallest logical
construct, which can be configured as a combinational logic or a register. Some versions
of Altera FPGAs use Adaptive LUT (ALUT), which is an advanced version of the LUT
and have the same number of inputs or outputs. From the documentation, there is no
distinction in size between LUTs and ALUTs [62].

The DSP block implements an n-bit multiplier: P = A × B. Optionally, input A or
input B data are saved in an n-bit register; and the output P result is saved in a 2n-bit
register. To better compare different designs, we have chosen to approximate the resource
utilization in terms of the LUTs. Consequently, an n-bit multiplier is approximated by LUTs
as was demonstrated in [65] and based on Equation (1):

Nm ≈ 1.25 × n2 (1)

where Nm represents an n-bit multiplier size expressed in number of LUTs.
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An n-bit register size is approximated by Equation (2):

Nr ≈ n (2)

where Nr represents an n-bit register size expressed in number of LUTs.

3.4.2. Timing and Throughput Performance Metrics

The timing analysis computes the design frequency by calculating the longest timing
paths. Several trials for the timing runs identified 25 ns as the clock period (i.e., our
timing constraint) that ensures reliable operation on the targeted FPGA while avoiding
excessive resource consumption during synthesis. Additionally, the timing results are used
to compute the implementation throughput as discussed in Section 6.2.

3.4.3. Power and Energy Performance Metrics

The power analysis, using the Power AnalyzerTM tool [62], computes the power
dissipation of our implementation. The power is computed based on the resources, routing
information, and node activity. The node activity is extracted from the waveform files
(i.e., value-change dump files), which are produced by the ModelSim during simulating
the design. Power AnalyzerTM reports core dynamic power (in mW), which includes four
components: DSP block, combinational, register, and clock. Finally, the energy consumed
during the processing of an image is the product of the power consumption and the
processing time per image.

3.5. Performance Evaluation

During this step, we analyze the results to gain insights into CNN performance
and draw key conclusions. This involves parsing and summarizing reports generated
by FPGA tools for each performance metric, extracting crucial data points and trends.
These summaries not only reveal data behavior but also serve as a foundation for building
mathematical models of CNN performance on the target FPGA.

It is important to note that meaningful comparisons with prior work or baselines
require implementing the same NN model on the same FPGA device. Comparisons across
different models or devices can be misleading due to inherent variations. Therefore, in this
research, where feasible quantized designs are limited by FPGA capacity and desired
accuracy, we focus on comparing the performance of our implemented CNN designs
against each other.

4. The Proposed Algorithm

Figure 3 illustrates the main steps of the proposed algorithm. This algorithm achieves
full model quantization without introducing additional neurons. It leverages a hybrid
approach, combining quantization training and post-training quantization. The process
consists of two phases:

• Phase-I: Quantization training, which quantizes weights through dedicated training
procedures.

• Phase-II: Post-training quantization, which further refines the model by optimally
quantizing activations. No retraining is performed after the quantization because our
experiments showed that it offered few advantages and could even have drawbacks.

Table 4 explains the algorithm parameters used in the algorithm discussion. Several
parameters have recommended values or defined limits, which were established through
extensive trial runs and feasibility simulations.

An N-bit fixed point has I integer bits and F fraction bits, where N = I + F. For
example, the fixed-point signed number Z = 011.10011 has I = 3, F = 5, and N = 8. The
N-bit signed value of Z is expressed by Equation (3):

VALUEI.F =
Binary value of N-bit number without radix point

2F (3)
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Train Full Model 
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Figure 3. Algorithm flow.

So, the signed value of Z is equal to ||01110011||
25 = +115

32 = +3.59375. The maxi-
mum and minimum values that can be represented by an N-bit number are expressed in
Equations (4) and (5):

MAX_VALUEI.F =
2(N−1) − 1

2F = 2(I−1) − 1
2F (4)

MIN_VALUEI.F =
−2(N−1)

2F = −2(I−1) (5)

For example, an 8-bit representation with I = 3, F = 5 has a MAX_VALUE3.5 =
3.96875 and a MIN_VALUE3.5 = −4.0.

Table 4. Algorithm parameters.

Parameter Description

N Number of bits of the quantized number, which consists of an integer part and a fraction part.

I Number of bits in the integer part in the quantized number

F Number of bits in the fraction part of the quantized number
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Table 4. Cont.

Parameter Description

VALUEI.F The signed value of the N-bit fixed point number, with I-bit representing integer part and F-bit
representing the fraction part.

MAX_VALUEI.F The maximum signed value of an N-bit fixed point number, with I bits representing integer part and
F-bit representing the fraction part.

MIN_VALUEI.F The minimum signed value of an N-bit fixed point number, with I-bit representing integer part and
F-bit representing the fraction part.

NW_MAX The initial number of bits to quantize weights; used in Phase-I of the algorithm. It is recommended
that NW_MAX = 32-bit, which is the integer size.

NW_MIN The final number of bits to quantize weights; used in Phase-I of the algorithm. To ensure the results
accuracy, we set NW_MIN = 8.

δW The amount by which the number of quantized bits is reduced in each iteration of Phase-I. The typical
value for δW = 2 to decrement both I and F by one.

Model_WQN The CNN model with N-bit quantized weights.

NA_MAX The initial number of bits to quantize activations; used in Phase-II of the algorithm. Typically,
NA_MAX ≤ NW_MAX .

NA_MIN The final number of bits to quantize activations; used in Phase-II of the algorithm. To ensure the results
accuracy, NA_MIN = 8.

δA The amount by which the number of quantized bits is reduced in each iteration of Phase-II. Typical
value for δA = 4.

Model_QN The CNN model with N-bit quantized weights and activations.

The algorithm phases, shown in Figure 3, are discussed in the following subsections.

4.1. Phase-I: Quantizing Weights

This phase utilizes a progressive and iterative quantization scheme for modeling
the weights. This approach aims to achieve a balance between accuracy preservation
and efficient storage/computation by quantizing the weights in a step-by-step manner.
Initially, weights are quantized to N = NW_MAX. In each iteration, the model is trained
with the quantized weights. At the end of the iteration, N is decremented by δW to start a
new iteration.

We now present a breakdown of the steps within this phase (as illustrated in Figure 3):

1. Model is initially trained with a single precision floating point.
2. Set N = NW_MAX .
3. Quantize weights (and biases) to N-bit values, where I = F = N

2 .
4. Train the model:

• Perform forward pass with N-bit quantization on weights and biases.
• Perform back-propagation with floating points for the entire model.

5. Save quantized weights (and biases) as Model_WQN .
6. Decrement N by δW .
7. Check if iterations are completed:

• If N ≥ NW_MIN : Go to step 3.
• Otherwise: terminate Phase-I.

4.2. Phase-II Quantizing Activations

Building upon Phase-I’s quantized weights, Phase-II refines the model by quantizing
activations for specific bit-widths (N). However, not all quantized models from Phase-I
are utilized, resulting in a subset of N values explored in Phase-II. For activation quan-
tization, we employ an optimized technique called “funnel bit assignment”. The output
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bits’ selection in this approach works similarly to that of a funnel shifter design [66]. This
optimization leverages a set of the input images, known as “regression images”, to guide
the quantization process, ensuring optimal bit allocation.
The following are the steps of Phase-II (as illustrated in Figure 3):

1. Set N = NA_MAX .
2. Load Model_WQN , which is generated by Phase-I.
3. For the weights that have small integer part (i.e., integer part < 2I−1), assign more bits

to the fractional part to achieve better accuracy.
4. Run regression images through the model.
5. For each layeri, i ∈ 1, . . . , 7, perform funnel bit assignment:

(a) Compute the maximum and minimum values of activation outputs.
(b) Determine the number of bits I required to store the integer part. This is done

by computing the number of bits to store the maximum and minimum values
of activations: I1, I2.

• I1 = log2(Max Activation Value).
• I2 = log2(abs(Min Activation Value)).
• Set I to the larger value of I1 and I2.

(c) Perform bit assignment:

• If I < N: assign I bits to the integer part and F bits to the fraction part,
where F = N − I.

• If I ≥ N: assign all N bits to upper bits of the integer part and no bits are
assigned to the fraction part. Effectively, I = N and F = 0.

(d) Run regression images and record accuracy. When computing activation output:

• If an activation is above the MAX_VALUEI.F, then saturate the output to
MAX_VALUEI.F.

• If an activation is below the MIN_VALUEI.F, then saturate the output to
MIN_VALUEI.F.

(e) Decrement I by one, repeat steps (c)–(e) to find out the optimum assignment.

6. Save model as Model_QN .
7. Decrement N by δA.
8. Check if iterations are completed:

• If N ≥ NA_MIN : Go to step 2.
• Otherwise: Terminate Phase-II.

5. Hardware Design

In this section, we discuss the hardware implementation of the LeNet model, which
is shown in Figure 4. The implementation is scalable and can be fine-tuned to any other
CNN’s. The hardware design consists of the following main units:

• Layer units realize the model layers corresponding to Figure 2 and Table 1. The units
perform the computations of the LeNet model. They include:

– CONV 1, CONV 2, and CONV 3, which implement the convolutional layers C1,
C2, and C3, respectively.

– POOL 1 and POOL 2, which implement the S1 and S2 layers, respectively.
– FC 1 and FC 2 are the fully connected layer implementations.

• Memory units implement the data memory and the interfacing logic. The interface
logic enables continuous data access by using two data memories, as explained below.
The units include:

– Memory interface (Mem I/F), which is a dedicated unit to facilitate communica-
tion between the CNN model and the memory system.

– Two data memories, MemA and MemB, which store the model’s input data and
activation values.
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– ROMs to store the weights and biases used by the model.

The following subsections present a detailed description of the hardware design and
its configurability.

Mem A

CONV 1 POOL 1 CONV 2 POOL 2

CONV 3 FC 1 FC 2
(Output)

Mem 
I/F

Mem B

Weights Weights

Weights Weights Weights

N-bit

N-bit

N-bit N-bit

N-bit N-bit N-bit

Figure 4. Convolutional neural networks (CNN) hardware design.

5.1. Design Configurability

Early in the design process, we faced an important issue: how to efficiently design
multiple similar units like CONV 1, CONV 2, and CONV 3. Two options were examined:
independent units versus configurable units. The option of independent units requires
designing each CONV layer as a separate hardware unit. This approach requires individual
design and verification efforts for each unit, leading to potentially higher development
time. On the other hand, the configurable unit designs a single, configurable unit capable
of executing the functionality of all three CONV layers. This option requires careful design
for configuration and flexibility but allows for significant design reuse, which reduces
development time and effort. We ultimately chose the second option, the configurable unit,
to leverage the benefits of design reuse.

Furthermore, to accommodate diverse N-bit implementations, the design incorporates
configurability within datapath units, memories, and buses. This allows for hardware
customization based on specific bit-width requirements.

5.2. Layer Units

The design of CONV units (i.e., CONV 1, CONV 2, and CONV 3), which is illustrated
in Figure 5 and consists of a control unit and datapath unit. The control unit consists of the
finite-state machine (FSM) to manage the activities. It handles the handshakes with other
units, generates the control signals for the datapath blocks, and computes addresses for
ROM and MEM I/F. The datapath unit consists of a Multiply-Add block, activation block,
weight ROM, multiplexer, and register.

The Multiply-Add block computes one column of the 5 × 5 convolution operation,
and hence, 5 cycles are required to complete the convolution. The activation function
block performs the non-linear activation operation. The multiplexer and register send
the registered partial results back to the Multiply-Add block or send the final result to
the MEM/IF. The ROM and Mem I/F supply the Multiply-Add block with data and
weights/biases.

The initial design exploration examined the ROM implementation options, which are
the memory versus constant tables as synthesized by the FPGA tool. Ultimately, it was
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decided to use the tables due to energy concerns in the RCD (i.e., FPGA) that we considered
in this research. The relatively small size of the ROMs and memory energy consumption
played key roles in favoring the constant tables. In general, implementing small-sized
ROMs using LUT is more energy-efficient compared with RAMs [67].

The adder block is carefully designed to select the appropriate N-bits out of the
addition operation result. This is to support the shifting operation required by the algorithm
in Phase-II. The selection is controlled by the shift signal generated by the control unit. For
example, if shift = 0, then the selected N-bits are the most significant N-bit of the addition
result. If shift = 1, then the selected N-bits are those to the right of the most significant
bit of the addition result. Furthermore, to avoid overflow, adder output is saturated to
MAX_VALUEI.F or MIN_VALUEI.F values in the following cases:

• If the addition result > MAX_VALUEI.F, then the output is set to MAX_VALUEI.F.
• If the addition result < MIN_VALUEI.F, then the output is set to MIN_VALUEI.F.

“POOL” and “FC” units have similar overall structure with differences in the implementa-
tion details.

Controldone

start

data 
address

MULT

ADDER

Weight ROM

weightsweight 
address

MEM I/F

data

Activation
Function

data

RegisterMUX

select

MULT_ADD

shift

Datapath

Figure 5. Convolutional layer hardware design.

5.3. Memory Units

Figure 6 illustrates the block diagram of the memory interface and data memory. To
optimize the design performance, the system leverages two distinct memories (MEM-A
and MEM-B) and operates in two dedicated modes, maximizing efficiency and resource
utilization. When mode = 0, the design reads from MEM-A and writes to MEM-B; when
mode = 1, the design reads from MEM-B and writes to MEM-A. This organization allows the
design to perform read/write operations without any interruption or delays. At the start of
processing an image, the image is loaded in MEM-A. CONV 1 layer executes with mode = 0;
it reads from MEM-A and writes to MEM-B. Then, POOL 1 executes with mode = 1; it reads
from MEM-B and writes to MEM-A. This continues for the rest of the layers.

5.4. Execution Flow

The execution of the hardware operations in CNN hardware starts by asserting the
“start” signal of CONV 1 unit. When CONV 1 completes its operations, it asserts the “done”
signal, which triggers the “start” signal of POOL 1. This continues with the rest of the units,
until FC 2 asserts “done”, which is the end of the CNN hardware operations.

Inside each unit, when the “start” signal arrives, it informs the unit to begin processing
the data. In each clock, the addresses of data and weights are dispatched to the MEM
I/Fs and the ROMs. When data and weight arrive, the Multiply-Add block performs
multiplication operations and adds the results.
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If the convolution operation is complete, the result is processed by the activation
function and saved in the register. The next cycle, data, and its address are dispatched to
the MEM I/F. If the convolution operation is in progress, the partial result is saved in the
register. In the next cycle, the partial result is sent as input to the addder.

DEMUX

MUX

MEM
A

ReadData

WriteData

Mode

1

0

0

1

WriteData

ReadData

1

0 WriteAddress

1

0 ReadAddressReadAddress

WriteAddress

MEM
B

ReadData

WriteData

ReadAddress

WriteAddress

DEMUX

DEMUX

N-bit

N-bit

N-bit

N-bit

N-bit

N-bit

Figure 6. Memory interface and data memory.

6. Implementation Results

As discussed in Section 3, the HDL design is processed by the FPGA tools to compile,
synthesize, and fit the design on the FPGA. The CNN model was quantized for N = 32-,
24-, 20-, 16-, 12-, and 8-bit. All quantized models have 1-top accuracy > 98.5%. During
the fitting phase, the design with N = 32- , 24-, and 20-bit did not fit in the FPGA device
due to insufficient resources (this can be inferred from the presented results in the last
column of Table 5 as shall be discussed in the following subsection). This truly presented
us with a real challenge: to fit the CNN model in an RCD, which is the FPGA in this case.
However, we succeeded in fitting the FPGA with N = 16-, 12-, and 8-bit. The rest of the
section provides a summary of the performance metrics.

6.1. Resource Utilization

Table 5 summarizes the resource utilization, as discussed below:

• The second and third columns list the LUTs and register utilization.
• The fourth column to the seventh columns list the 9-bit, 12-bit, 18-bit, and 36-bit

multipliers used in the design.
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• The eighth column computes the total LUTs, with multipliers estimated as discussed
in Section 3.

• The ninth column normalizes the results with respect to the 16-bit design.
• The last column lists the logic utilization, which is calculated as the ratio of the used

resources to the total available resources. Looking at the trend of the logic utilization
versus N in this column clearly shows that it is not possible to fit more than a 16-bit
design in the FPGA.

It should be noted that reducing N = 16 to N = 12 (and also reducing N = 12 to
N = 8), reduces resources by about 26%. However, reducing N by half (i.e., reducing
N = 16 to N = 8), reduces the design resources by 46%. This means that the design exhibits
excellent scalability with respect to N, meaning most of the components or resources reduce
proportionally to N with only a minor fixed overhead logic. The overhead logic includes
control circuits, which do not scale with N.

Table 5. Resource utilization for 16-bit, 12-bit, and 8-bit quantized models.

Des. LUTs Reg. Utilization 9-b M. 12-b M. 18-b M. 36-b M. Tot. LUT Norm. Res. Logic Util.

16-bit 76,217 821 0 0 20 5 93,778 1 82%

12-bit 60,683 741 0 20 0 5 73,544 0.78 65%

8-bit 45,866 659 20 0 5 0 50,840 0.54 49%

6.2. Timing Analysis

Timing analysis is performed based on the timing constraints presented in Section 3.
Table 6 shows the reported maximum frequencies for different values of N. The last column
in the table normalizes the frequencies with respect to the 16-bit design. The values in
Table 6 reveal a trend: the maximum frequency tends to be slightly higher for smaller
values of N. For instance, the maximum frequency for 8-bit is roughly 2% higher than
the one for 16-bit. This observation might be attributed to the efficient scalability of our
design, which is a result of its well-considered parametric structure. We should mention
that adjusting a few parameters in the HDL code allows for adaptation to various N-bit
designs, with the primary design changes occurring in the datapaths (longest timing paths).
These alterations leverage pre-designed and optimized datapath units within the FPGA,
leading to minimal timing variations (few logic levels of delay) across different designs.
Additionally, the timing analysis helps us compute the throughput (i.e., processed images
per second) using Equation (6):

Throughput(Image/Second) = 1
TimeProcessOneImage

TimeProcessOneImage = CyclesProcessOneImage × CycleTime
(6)

where:

• TimeProcessOneImage is the time required to process one image.
• CyclesProcessOneImage represents the total number of clock cycles needed to process a

single image.
• CycleTime refers to the duration of one clock cycle.

The throughput results of the 16-, 12-, and 8-bit designs are 328 image/second, 333
image/second, and 334 image/second, respectively.

Table 6. Maximum frequency (MHz) for 16-bit, 12-bit, and 8-bit quantized models.

Design Fmax Norm. Fmax

16-bit 43.33 1.000
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Table 6. Cont.

Design Fmax Norm. Fmax

12-bit 44.06 1.017

8-bit 44.11 1.018

6.3. Power and Energy Consumption

Table 7 summarizes the power results for our implemented designs of varying N-
bit, where N ∈ (16, 12, 8). Columns two through five show the power dissipation for
combinational cells, registers, clock, and DSP blocks, and columns six and seven list the
total power and normalized total power with respect to the 16-bit design, respectively.

Looking carefully at Table 7, the following can be inferred.

• The combined power consumption of the clock and registers, known as sequential
power, accounts for only 2% of the total power, playing a minor role in overall power
consumption. This is primarily because these sequential circuits occupy a smaller area
compared to the more power-hungry data path logic.

• The power consumption of the DSP blocks is around 5% of the total power. This
indicates that the datapath resources like multipliers and adders are well-designed for
low power.

• The combinational cells are the primary source of power consumption, accounting for
approximately 93% of the total power. This is primarily due to the presence of random
logic, high routing overhead, and large data selection components like multiplexers
and demultiplexers.

• The final column of Table 7 showcases the superior power saving of the 8-bit design,
consuming around 41% less power compared to the 16-bit design. While the 12-bit
design offers a modest 2% power saving over the 16-bit option. This unexpectedly
low power saving in the 12-bit design prompted further investigation. We believe
the root cause might be the combined nature of combinational cell power: it includes
both block power and routing power. The routing power is the power consumed by
the metal wires and the routing resources that connect the logic blocks. It increases
with the wire length and complexity of routing paths. Interestingly, the 12-bit design
displayed minimal change, even a slight increase in routing power compared to the
16-bit design. We suspect this anomaly might indicate an issue with the software
tool’s routing algorithm, potentially favoring byte-aligned sizes (8-bit and 16-bit) and
hindering efficiency for non-aligned designs like the 12-bit one. While other factors
could contribute to the 12-bit power consumption, Table 7 clearly demonstrates the
scalability of power consumption with a 41% reduction achieved by halving the bit-
width from 16 to 8. This power saving is achieved by 41% power reduction in the
combinational cell power and 35% reduction in the DSP power.

Table 7. Power results (mW) for 16-bit, 12-bit, and 8-bit quantized models.

Design Comb. Cells Registers Clock DSP Power Total Power Norm. Total Power

16-bit 857.77 3.79 9.94 52.84 924.34 1.0

12-bit 855.56 2.26 9.04 37.97 904.83 0.98

8-bit 501.26 3.23 10.32 34.61 549.42 0.59

Now, regarding the energy analysis, it is captured by Equation (7), which shows how
the energy of processing one input (i.e., an image) is being computed:

Energy = Power × TimeProcessOneImage (7)
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The analyzed energy results, based on Equation (7) and presented in Table 8 convinc-
ingly demonstrate the design’s energy scalability. By simply halving the bit-width from 16
to 8 bits, we achieved a significant 42% reduction in energy consumption as shown in the
last column of Table 8. However, the 12-bit design’s energy saving remains modest due to
the previously discussed power anomaly.

Table 8. Energy results (mJ) for 16-bit, 12-bit, and 8-bit quantized models.

Design Total Energy Norm. Energy

16-bit 2.82 1.0

12-bit 2.72 0.96

8-bit 1.65 0.58

7. Discussion

While Section 6 comprehensively analyzed and discussed the results of designs with
varying bit widths (N), this section delves into their broader implications in terms of
modeling and implementation within DNNs.

7.1. Modeling Performance Metrics

It is important to model the behavior of the performance metrics in terms of N-bit quan-
tization. We applied linear modeling to the data. We then assessed the model’s “goodness
of fit” by calculating the coefficient of determination, also known as R-Squared (R2).

The total LUT and logic utilization can be modeled by Equation (8) with R2 = 0.99.
This means that reducing the number of quantization bits by 1 is expected to save approxi-
mately 5.4 K LUTs and decrease logic utilization by 4%.

Total_LUT = 5367 × N + 8314
Logic_Utilization (%) = 4.13 × N + 15.83

(8)

Examining the power and energy results in Tables 7 and 8, clearly these metrics exhibit
slight non-linearity. However, we believe a linear model provides a good fit to the data and
offers valuable simplicity for system design. Therefore, we have chosen to model power
and energy linearly in this work. Equation (9) models power with R2 = 0.79. The reduced
value of R2 is due to the 12-bit power, which was considered in deriving the model. This
shows clearly that reducing 1-bit in quantization saves around 46.9 mW in power.

Power (mW) = 46.9 × N + 230.5 (9)

Finally, Equation (10) shows an energy model with R2 = 0.82. This means a reduction
of one quantization bit should save around 147 µJ.

Energy (µJ) = 146.7 × N + 634 (10)

7.2. Applying the Proposed Algorithm to DNN

So far, we have demonstrated the effectiveness of our proposed quantization algorithm
on the LeNet CNN model. However, the scalability and ability to model various metrics
achieved through our two-phase approach suggest its broader applicability to deeper
neural networks (DNNs). While hardware implementation is beyond the scope of this work,
the following analysis serves as an illustrative example showcasing the potential application
and comprehensiveness of our concepts and models to DNNs. This paves the way for
future hardware implementations and offers a valuable foundation for further exploration.

We assume that a DNN is implemented using multiple FPGAs. A group of DNN
layers (referred to them as a single partition) are fitted in a single FPGA. A partition has a
number of layers equivalent to those in LeNet, and it is denoted as NLP. Similar to LeNet,
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we set NLP = 7. If we assume that a DNN is partitioned to M partitions, then the number
of layers in the DNN is expressed in Equation (11):

NLDNN = M × NLP (11)

We also assume the following (see Figure 7):

• M = 3. This number is chosen as a rough estimate, and it can easily be changed, and it
means that we need to partition the design into three partitions, each fits in an FPGA
device, where Partitioni is quantized with Ni-bit as captured in Figure 7.

• The complexity of each DNN layer is the same as those of the LeNet Model, otherwise,
the models should be scaled up.

• The design is fitted on the same FPGA device utilized in this research. If another
device is used, then update the models.

• The DNN model is quantized using the same N-bit values as we used before (i.e., Each
Ni is chosen in the range from 16-bit to 8-bit).

Figure 7 shows the M partitions that we assumed above (i.e., M = 3), where each
partition is modeled on an FPGA device, and has its own Ni-bit quantization as represented
by N1, N2, and N3, respectively, for the three layers.

Partition
(1)

Partition
(2)

Partition
(3)

Quantization 
with N=N1

Quantization 
with N=N2

Quantization 
with N=N3

FPGA (1) FPGA (2) FPGA (3)

Input Output

DNN

Figure 7. Deep neural networks (DNN) partitions.

Given the DNN’s size (as controlled by the M parameter), varying quantization across
partitions is possible. To maintain accuracy, it is generally recommended to use higher
precision (larger quantization levels, Ni) for earlier layers in the network i.e., N1 ≥ N2 ≥ N3.
This ensures that errors introduced by lower precision (smaller Ni) in the initial stages do
not propagate and accumulate throughout the network, potentially leading to incorrect
final outputs. Several research works, such as [68], have demonstrated the effectiveness
of using higher precision quantization for early layers as a design choice. Thus, we
suggest quantizing starts from Partition1 to PartitionM. For a Partitioni, we perform the
following steps:

• Run Phase-I of the algorithm on Partitioni to PartitionM;
• Run Phase-II of the algorithm to quantize Partitioni and select Ni;
• For the rest of the steps, Partitioni is quantized at Ni.

To illustrate those steps, we apply them on the above DNN:

• Quantize Partition1;

– Run Phase-I of the algorithm on the entire DNN (i.e., Partition1, Partition2 and
Partition3);

– Run Phase-II of the algorithm to quantize Partition1 and select N1;
– For the rest of the steps, Partition1 is quantized at N1.

• Quantize Partition2

– Run Phase-I of the algorithm on Partition2 and Partition3;
– Run Phase-II of the algorithm to quantize Partition2 and select N2, where N2 ≤ N1;
– For the rest of the steps, Partition2 is quantized at N2.
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• Quantize Partition3

– Run Phase-I of the algorithm on Partition3;
– Run Phase-II of the algorithm to quantize Partition3 and select N3, where N3 ≤ N2.

The total LUT’s average logic utilization, power utilization, and energy (of the above
suggested DNN) are modeled and expressed, following linear regression modeling, as in
Equation (12), Equation (13), Equation (14), and Equation (15), respectively:

Total_LUTDNN = 8314 × M + ΣM
i=1Ni × 5367 (12)

Average_Logic_ UtilizationDNN = 15.83 + ΣM
i=1 Ni×4.13

M
(13)

PowerDNN(mW) = 230.5 × M + ΣM
i=1Ni × 46.9 (14)

EnergyDNN(µJ) = 634 × M + ΣM
i=1Ni × 146.7 (15)

Assuming the above steps resulted in N1 = 16-bit, N2 = 12-bit, and N3 = 8-bit for
each of the three partitions, Table 9 displays the predicted performance metrics for the
DNN model. These predicted metrics offer valuable insights into the DNN’s resource
requirements, power consumption, and energy usage. This information can significantly
influence crucial design decisions. For instance, the predicted power consumption can
inform the selection of a suitable power supply capable of meeting the DNN’s average
power needs. Similarly, the predicted energy usage can help determine if the system’s
battery can adequately handle the power demands of DNN operations. Furthermore, the
total number of LUTs plays a role in determining the appropriate size of future FPGA
device needed.

Table 9. Deep neural networks (DNN) performance metrics.

Total LUT Ave. Logic Util. % Power (W) Energy (mJ)

218,154 65.4% 2.38 7.18

8. Conclusions and Future Works

In this research, we presented a scalable quantization algorithm to reduce the CNN
hardware design and estimate and model the area, power, and energy. The algorithm
combines quantization training and post-training quantization techniques and it provides
full model quantization without increasing the model complexity.

We implemented LeNet in Altera Stratix® IV FPGA. The algorithm was applied to
quantize the model to various bit widths. We succeeded in implementing the model on
the FPGA using 16-, 12-, and 8-bit quantizations. Compared to the 16-bit design, the 8-bit
design offers improved resource efficiency with a 44% decrease in LUT utilization, and it
achieves power and energy reductions of 41% and 42%, respectively.

The derived models show significant value in estimating design metrics. This indicates
that trading off one quantization bit yields savings of approximately 5.4 K LUTs, 4% logic
utilization, 46.9 mW power, and 147 µJ energy. We also demonstrated the practical use of
the derived models to estimate performance metrics for a sample DNN design.

Future efforts could investigate the expansion of the algorithm to handle aggressive
quantization, such as 4-bit or even lower. Subsequently, modeling the metrics at these
extremely low-precision levels would provide valuable insights into their effects on re-
sources and performance. Moreover, exploring architectural options like pipelining could
potentially lead to significant design savings. Also, exploring the feasibility and impact of
merging computations from multiple layers into a unified layer deserves further research.
Furthermore, future work can explore the impact of alternative quantization techniques and
conduct a broader comparison study to optimize NN design efficiency. Finally, applying
the algorithm to a recent, representative DNN architecture presents an exciting opportunity
to assess its potential for substantial performance improvements. This practical evaluation
could solidify the algorithm’s effectiveness and real-world impact.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
NN Neural Network
DNN Deep Neural network
RCD Resource-Constrained Devices
FC Fully Connected
SVD Singular Value Decomposition
FPGA Field-Programmable Gate Array
QAT Quantization-Aware Training
PTQ Post-Training Quantization
BNN Binarized Neural Network
Qn.m Fixed-point representation with n bits for the integer part,

m bits for the fractional part
NN parameters Weights/synapses and biases
Feature map Output of convolutional layer
FSM Finite State Machine
STE Straight-Through Estimator
MNIST Modified National Institute of Standards and Technology
TIMIT Texas Instruments/Massachusetts Institute of Technology
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