2023 11th International Conference on Affective Computing and Intelligent Interaction (ACII) | 979-8-3503-2743-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/ACI159096.2023.10388200

2023 11th International Conference on Affective Computing and Intelligent Interaction (ACII)

Detecting PTSD Using Neural and Physiological
Signals: Recommendations from a Pilot Study

Manasa Kalanadhabhatta
University of Massachusetts Amherst
Ambherst, MA, USA
manasak @cs.umass.edu

Asif Salekin
Syracuse University
Syracuse, NY, USA

asalekin@syr.edu

Abstract—Post-traumatic stress disorder (PTSD) is a serious
condition that is characterized by negative mood and affect,
hyperarousal, irritability, and reactivity, as well as deterioration
of cognitive processes such as attention and memory. Timely
identification and treatment of PTSD symptoms can signifi-
cantly improve symptom management and recovery. However,
accurate prediction of PTSD outside clinical settings is often
challenging. In this work, we investigate whether deficits in
cognitive performance can be used to classify individuals with
and without PTSD. We further examine whether neural and
physiological signals such as prefrontal cortex activity, heart rate,
respiration, and electrodermal activity recorded in conjunction
with cognitive task performance can be leveraged to improve
PTSD classification. OQur results indicate that working memory
tasks can achieve an F1 score of 0.80 at classifying individuals
with PTSD, which can be further improved to 0.91 by combining
multimodal information from neurophysiological signals. Based
on our findings, we provide recommendations for in-the-wild
PTSD classification.

Index Terms—post-traumatic stress disorder, PTSD, cognitive
performance, neural activity, physiological signals, wearables

I. INTRODUCTION

Post-traumatic stress disorder (PTSD) is a serious psy-
chiatric condition that can develop when an individual is
exposed to a traumatic experience that is beyond a regular
stressor, including military combat, transportation accidents,
natural disasters, sexual violence, personal assault etc. [1]. It is
often characterized by recurring intrusive thoughts, flashbacks,
nightmares, and avoidance of stimuli related to the traumatic
experience [2]. The lifetime prevalence of PTSD among civil-
ians in the United States ranges from 3 to 27%, with higher
risk identified among females and younger populations [3].

Individuals with PTSD may experience emotional numbing,
dysphoria, and psychosomatic symptoms, as well as significant
negative affect and problems with emotional expression [4].
Additionally, PTSD may lead to irritability, hypervigilance,
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and trouble sleeping and concentrating [2]. Cognitive theo-
ries of PTSD further underscore the influence of emotional
stress on cognitive functioning, having deleterious effects on
memory, attention, planning, and problem-solving abilities [5].
Evidence-based treatment can significantly improve outcomes
in individuals with PTSD - to this end, prior work has pro-
posed several interventions ranging from clinical approaches
such as psychoeducation, mindfulness training, or trauma-
focused treatment [6] to digital tools such as game-based expo-
sure therapy [7] or virtual reality-based stress inoculation [§].

However, for such interventions to be delivered effectively,
it is imperative to be able to accurately diagnose and monitor
an individual’s PTSD symptoms over time [2]. A characteriza-
tion of PTSD symptoms, and the associated changes in mood
and affect, is also beneficial for the development of context-
aware affective computing tools [9]. Nonetheless, there is a
lack of prior work on detecting PTSD in the wild, especially
in a non-military population.

This work therefore focuses on furthering the affective
computing community’s knowledge of multimodal PTSD pre-
diction in real-world settings. Specifically, we investigate
whether performance as well as physiological and neural
signals measured during cognitive tasks can be leveraged to
identify individuals with PTSD. To this end, we aim to answer
the following research questions:

RQI: Are PTSD symptoms associated with self-reported
affect and/or objective cognitive performance in a civilian
population?

RQ2: Can performance on cognitive tasks involving atten-
tional control, emotion regulation, or working memory
demands predict PTSD? If so, which tasks have the best
predictive performance?

RQ3: Can multimodal models leveraging neural and/or phys-
iological signals during cognitive tasks improve PTSD
classification? If so, which multimodal features are most
informative for prediction?

These questions have important research and real-world
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implications in terms of informing the development of affec-
tive technologies that account for a user’s underlying trauma
context. Our findings indicate that (i) PTSD symptom severity
is associated with dimensions of negative affect as well as
deficits in attention and working memory, (ii) these working
memory deficits can be used to identify individuals with
PTSD, and (iii) multimodal physiological and neural signals
recorded in conjunction with working memory tasks can
improve PTSD classification performance. Based on these
results, we provide recommendations on the cognitive tasks
and neurophysiological signals that can be used to accurately
predict PTSD in civilian populations.

II. RELATED WORK
A. Effect of PTSD on Affect and Cognition

PTSD is a psychiatric disorder characterized by recurring
intrusive thoughts, flashbacks, nightmares, and avoidance of
stimuli related to the traumatic experience [2]. Research has
demonstrated that individuals with PTSD exhibit atypical
levels of stress hormones, which can contribute to negative
affect, emotional numbing, hyperarousal symptoms, and mood
and anxiety disorders [4]. Characterizing PTSD symptoms can
therefore help contextualize an individual’s affective states.

In addition to impacting emotions, cognitive models of
PTSD also suggest that it can alter functional brain activ-
ity and lead to alterations in cognitive processes such as
memory, attention, and planning [5], [10]. Individuals with
PTSD exhibit performance deficits in motor reaction and
interference control [11], affective working memory [12], as
well as attentional bias tasks [13]. This association between
PTSD and cognitive performance motivates our investigation
into using task performance as a potential predictor of PTSD.

B. Neural and Physiological Correlates of PTSD

Neuroimaging research over the years has discovered altered
activity in several brain regions among individuals with PTSD.
For instance, Henigsberg et al. reported stronger amygdala
activation in response to emotional stimuli compared to non-
emotional stimuli, smaller hippocampus size and activity dur-
ing memory tasks, and lower prefrontal cortex (PFC) activity
during cognitive control among individuals with PTSD as
compared to healthy controls [14]. Individuals with PTSD have
also been observed to exhibit higher event-related potential
latencies during response inhibition and higher frontal activity
in response to irrelevant stimuli [15], as well as significantly
higher oxyhemoglobin changes in the lateral PFC during
response inhibition [16].

Additionally, PTSD is associated with a range of physio-
logical changes such as higher heart rates and lower high-
frequency heart rate variability (HRV) during stress [17].
Individuals with PTSD also exhibit decreased parasympathetic
activity in the autonomic nervous system and reduced HRV in
response to affective stimuli [18]. Decreased parasympathetic
and increased sympathetic control were also evidenced by
low baseline respiratory sinus arrhythmia and high base-
line electrodermal activity (EDA) among individuals with

PTSD [19]. PTSD is also associated with a higher number
of EDA responses during threatening stimuli [20]. These
observations set the stage for investigating whether neural or
physiological activity during cognitive tasks can differentiate
between individuals with and without PTSD.

C. Detecting PTSD in the Wild

Early detection and intervention are crucial for improving
long-term outcomes among individuals with PTSD [2]. To
this end, wearable devices have emerged as a potential tool
for in-the-wild PTSD detection, with several studies exploring
their predictive utility. For example, Sadeghi et al. utilized a
smartwatch to predict PTSD hyperarousal events among vet-
erans using heart rate and body acceleration features, achiev-
ing an accuracy of over 81% using an XGBoost classifier
[21]. Fletcher et al. used an ankle-worn EDA, motion, and
skin temperature sensor to detect arousal events and initiate
cognitive-behavioral interventions [22]. However, these studies
are limited by the subjective nature of self-reported arousal
events and do not test for overall PTSD symptom severity.

Webb et al. attempted to fill this gap and used heart
rate and skin conductance signals while participants watched
emotionally evocative videos via virtual reality to identify indi-
viduals with PTSD vs those without trauma/PTSD, achieving a
classification accuracy of 90% [23]. Similarly, Liu et al. used
brain activity measured via functional Magnetic Resonance
Imaging (fMRI) to distinguish individuals with PTSD from
healthy controls with an accuracy of 92.5% [24]. Nevertheless,
the use of neural data for PTSD detection in the wild has been
very limited due to practical considerations.

The emergence of functional Near-Infrared Spectroscopy
(fNIRS) as a relatively non-invasive, safe, portable, and cost-
effective means of monitoring brain activity as compared to
traditional neuroimaging technologies has created opportu-
nities for investigating the neural basis of psychiatric and
neurological disorders and utilizing these for diagnoses more
widely [25]. Balters et al. utilized a portable fNIRS sys-
tem to investigate the cortical activation patterns associated
with emotional face processing and predict PTSD in youth
with post-traumatic stress symptoms (PTSS) [26]. They ob-
served increased activation in the dorsolateral prefrontal cor-
tex (DLPFC) in response to both fearful and neutral faces
compared to baseline, and demonstrated a strong correlation
between cortical responses in eight frontocortical channels and
PTSS scores. Our work builds on prior research to investigate
the feasibility of using fNIRS and physiological signals for
in-the-wild PTSD classification.

III. METHODS
A. Participants

As part of a larger study on the effect of mindfulness-based
interventions on PTSD symptom severity, 31 participants were
recruited to complete a baseline and a six-week follow-
up session post intervention [27]. The present study reports
only on the baseline sessions, focusing on the detection of
PTSD symptom severity at this stage. Therefore, none of the
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participants were exposed to any mindfulness strategies or
other PTSD interventions. The study was approved by the
Institutional Review Board at Syracuse University and was
advertised as a study on college student stress and trauma; the
presence of PTSD was not an inclusion/exclusion criterion. All
participants completed written informed consent at the start of
the study. All participants were female (recruitment was open
to all genders but only female participants volunteered). The
mean age of the participants was 22.4 years (SD: 4.52 years).
19 participants identified as White, 8 as Black, and 1 each as
Asian, Hispanic, and Native American.

B. PTSD, Stress, and Affect Measures

The PTSD Checklist - Civilian Version (PCL-C; [28]) was
used to measure participants’ traumatic stress. The PCL-C is a
17-item self-report questionnaire in which civilian respondents
rate how bothered they have been by DSM-IV posttraumatic
stress symptoms in the past month on a 5-point Likert scale
from “not at all” (1) to “extremely” (5). The PCL-C is used to
screen for PTSD and monitor symptom changes, with scores
above 30 indicating sub-threshold PTSD. Accordingly, we
categorize all participants scoring above 30 as those with
PTSD (N = 19) and the rest as non-PTSD (/N = 12).

Participants’ positive and negative affect over the past
week were measured using the Positive and Negative Affect
Schedule (PANAS-SF; [29]). Additionally, somatic symptoms
of anxiety over the past seven days were measured using
the Somatic Arousal — Fear questionnaire [30]. Lastly, the
10-item Perceived Stress Scale (PSS) was used to assess
how unpredictable, uncontrollable, and overloaded participants
found their lives to be in the past month [31].

C. Cognitive Tasks

Participants completed six cognitive tasks that involved
attentional control (AC), emotion regulation (ER), or working
memory (WM) demands. These tasks were selected in order
to engage cognitive resources known to be impaired by stress
and PTSD [12], [15], [32]. Tasks were presented using a Latin
Square design with controlled rest periods between each task
via an experiment developed using the PsychoPy toolkit [33].
Participants read the on-screen instructions and completed a
set of practice trials for each task before the beginning of the
testing session.

The AC tasks included a Reaction Time task [34], where
participants were required to respond as quickly as possible to
a large “X” stimulus that appeared on the screen in each trial.
Additionally, a Go/No-Go task [35] was used to test response
inhibition — in each trial, participants were presented either
with the target stimulus (a red rectangle) or a distractor (a
blue oval). Participants were required to respond as quickly as
possible when a target stimulus appeared and withhold their
response when the distractor stimulus appeared.

Participants also completed two ER tasks — the emotional
Stroop task and an emotional delayed recall/working memory
task. The Emotional Stroop task [13] is a variant of the classic
Stroop task, where participants are asked to respond with

the color a word is presented in rather than reading aloud
the color the word spells. In this variant, participants are
asked to respond to words that represent neutral valence (e.g.
“pencil”, “fruit”) or negative valence or physical threat (e.g.,
“weapon”, “fight”). The words are presented in one of four
colors (red, yellow, green, or blue) and the participants are
asked to respond with the letter corresponding to the first letter
of the color (e.g., “r” for “red”). In the Emotional Working
Memory task [12], participants are shown a sequence of six
letters to memorize and are asked to recall them after a delay
period. During the delay, they are presented with an image
that has either a neutral or a high negative valence.

Finally, the WM tasks included an N-Back task [36] where
participants were presented with a stream of letters on the
screen and asked to recall whether the current letter was the
same as the one displayed N stimuli previously. In addition to
this visual task, we used an auditory variant, the Audio N-Back
task, that followed the same protocol but used auditory cues
instead. We used N=2 for both variants of the task.

The performance on each of the cognitive tasks was mea-
sured in terms of the average response times and the average
accuracy across all trials.

D. Measuring Prefrontal Cortex Neural Activation

Participants’ neural activation levels in the dorsolateral
prefrontal cortex (DLPFC) during the cognitive tasks were
recorded using functional Near Infrared Spectroscopy (fNIRS).
We used the Hitachi ETG-4000 fNIRS device with a 3x11
probe covering the frontal cortex region and resulting in
52 channels of data. The position of the optode array was
consistent across all participants, with the central channel
positioned over the nasion and the middle bottom probe over
the Fpz location as per the international 10-20 coordinate
system [37]. Data were recorded at 10 Hz and a bandpass filter
of 0.01 to 0.5 Hz was applied to remove physiological noise
and isolate cognitive activation. The data were downsampled
to 4 Hz and converted to changes in optical density per
channel. The relative changes in oxyhemoglobin (A HbO) and
deoxyhemoglobin (A HbR) were computed using the modified
Beer-Lambert law [38].

The AHbO data was modeled as a generalized linear model
(GLM) for each cognitive task completed by the participant
as well as for the rest periods in order to obtain the per-
channel coefficients that indicate the magnitude of neural ac-
tivation. The GLM was fit using the autoregressive iteratively
reweighted least squares approach based on the canonical
hemodynamic response function [39]. The per-channel coeffi-
cients were condensed into activation levels across particular
regions of interest (ROIs) by mapping them to functional
brain regions. Data were averaged across three ROIs — the
frontopolar area (FPA), the orbitofrontal cortex (OFC), and
the premotor cortex (PMC) — on each hemisphere (left/right).
Additionally, the average activation levels across the entire left
and right DLPFC were also computed. This resulted in eight
ROI-based activation level values for each cognitive task. The
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values for each task were normalized for each participant by
subtracting the activation levels of the controlled rest period.

E. Measuring Physiological Responses

In addition to neural activation, we recorded participants’
physiological data including electrocardiogram (ECG), elec-
trodermal activity (EDA), and respiration rate using the Biopac
MP-150 receiver device. ECG data were obtained using 3
electrodes, each placed on the right and left arm and the
left leg. Respiration data was collected using the BIOPAC
respiratory effort transducer band and EDA was measured at
the palm of the participant. The raw data was processed to
extract five aggregated physiological measures during each
cognitive task as well as the rest periods — mean heart
rate, mean ECG peak distance, respiration rate, mean EDA
amplitude, and mean EDA rise time. The values for the rest
periods were subtracted from the values for each task for
each participant. The five physiological measures are together
referred to henceforth as the Biopac signals.

F. Analysis

We now describe the analysis methods used to answer the
research questions previously described in Section I. First, we
attempted to determine whether PTSD severity is associated
with weekly or monthly affect ratings as well as with per-
formance on each cognitive task described in Section III-C.
We computed the Spearman correlation between the PTSD
scores and self-reported measures of positive and negative
affect, somatic arousal, and perceived stress. Similarly, we also
computed the Spearman correlation between PTSD severity
and the average reaction time on each task to validate prior
work that shows attention, emotion regulation, and memory
deficits among individuals with PTSD [12], [13], [32].

Further, we examined whether cognitive task performance
can be leveraged to predict PTSD status. To this end, we
trained machine learning models that use the response time
and accuracy on each task as features to predict whether a
person’s PTSD score is above the clinical threshold.

We used a stratified 3-fold cross-validation scheme to
evaluate model performance and report the mean F1 scores
and accuracies across all folds. Within each fold, missing
feature values were first imputed using the mean value over
the train set in that fold, and synthetic minority oversampling
(SMOTE) was used to handle class imbalance [40]. SMOTE
uses the training data to create synthetic samples of the
minority class from the neighborhood of existing samples to
improve training. The features were then scaled and princi-
pal component analysis (PCA) was applied [41]. We chose
PCA for dimensionality reduction and regularization instead
of using feature selection based on training data in order
to maintain consistent feature sets across training folds. We
trained and evaluated five different machine learning models
— logistic regression, random forest, gradient boosting, K-
nearest neighbors, and support vector classifiers — and selected
optimal hyperparameters via grid search. These models were
chosen due to their amenability to datasets of sizes similar

to ours as well as their relatively higher explainability in
comparison to deep learning models. In addition to training
PTSD prediction models individually on the features from
each cognitive task, we followed the same strategy to train
a classifier on the concatenated features from all cognitive
tasks to investigate whether multiple tasks can achieve better
classification performance.

After examining the predictive accuracy of task
performance-based models, we used the physiological
and neural data described in the previous subsections to
train and evaluate multimodal PTSD prediction models.
Specifically, we employed the same pipelines and evaluation
strategy that was used for task performance-based models to
train models with three additional feature sets during each
cognitive task: (i) task performance + Biopac (physiological)
features, (ii) task performance + fNIRS (neural) features, and
(iii) task performance + Biopac + fNIRS features. The Biopac
features included mean heart rate, mean ECG peak distance,
respiration rate, mean EDA amplitude, and mean EDA rise
time. The fNIRS features included activation levels in the left
and right DLPFC, FPA, OFC, and PMC. We tested whether
these additional features improve predictive performance over
using only task performance for classification. In addition to
evaluating this for each cognitive task, we also investigated
whether these feature sets improve PTSD prediction when
utilizing all cognitive tasks.

Finally, we scrutinized the interpretability of the best-
performing PTSD classifier by computing the SHapley Addi-
tive exPlanations (or SHAP values; [42]) for the model. SHAP
uses a game theoretic approach to explain the predictions of
a machine learning model by computing the contribution of
each feature to the prediction in an additive fashion. We report
the importance of each feature in terms of the mean absolute
SHAP value as well as examine the dependence of SHAP
values on the magnitude of input features in order to deter-
mine how they impact the predicted PTSD probabilities. We
compared our findings to the existing literature on the effect of
PTSD on physiology and neural activation to critically evaluate
the features that influence our model’s predictions.

IV. RESULTS
A. Association Between PTSD and Affect/Cognition

Table I shows the Spearman correlation (and p value)
between each affect/cognitive performance score and PTSD
symptom severity. We observe that

« Positive affect does not show a significant association
with PTSD severity. However, negative affect, somatic
arousal, and perceived stress all exhibit a significant
(p < 0.01) positive correlation with PTSD scores.

o PTSD scores show a significant negative correlation with
response times on the Reaction Time and Audio N-Back
tasks.

Our findings are in line with prior research showing that
PTSD severity is strongly associated with negative emotional
states [4] as well as attention [11] and working memory
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Fig. 1: Mean and standard deviations of F1 scores of the best-performing models for each feature set and cognitive task.

TABLE I: Correlation between PTSD symptom severity and
affect scores/cognitive performance (* — p < 0.05).

Spearman r p value
Affect
(self report)
Positive Affect —0.06 0.75
Negative Affect 0.71 < 0.001*
Somatic Arousal 0.42 0.02*
Perceived Stress 0.62 < 0.001*
Cognitive Performance
(response time)
Reaction Time —0.37 0.04*
Go/No-Go —0.30 0.11
Emotional Stroop —0.21 0.26
Emotional Working Memory 0.10 0.58
N-Back —0.33 0.07
Audio N-Back —0.51 0.03*

deficits [32]. Knowing whether an individual has PTSD may
provide important context about their affective and cognitive
states, helping intervene more effectively.

B. Predicting PTSD Using Cognitive Task Performance

PTSD prediction models were trained using features from
cognitive task performance as described in Section III-F.
Specifically, the average reaction time and performance ac-
curacies from each task were used as features to train task-
specific models. We found that logistic regression models
outperformed others for all task-specific models. The average
F1 score and accuracy for the best task-specific models are
reported in Table II. The model trained on the N-Back task
features outperformed other tasks, with an average F1 score
of 0.80 and an average accuracy of 0.74 at detecting PTSD.

When training machine learning models to predict PTSD
using features from all cognitive tasks, a support vector

TABLE II: PTSD classification based on task performance —
mean F1 Score and accuracy of best-performing models for
each cognitive task (LR: Logistic Regression, SVC: Support
Vector Classifier).

Task Best F1 Score Accuracy
Model | Mean + SD Mean + SD
Reaction Time LR 0.76 £0.01 0.61 +0.02
Go/No-Go LR 0.79 £ 0.06 0.67 +£0.10
Emotional Stroop LR 0.79 £ 0.05 0.67 £ 0.01
Emotional Working Memory LR 0.76 £ 0.01 0.61 +0.02
N-Back LR 0.80+0.09 | 0.74+0.12
Audio N-Back LR 0.79 £ 0.05 0.68 +0.09
All SvC 0.80 +0.02 0.71 +0.07

classifier achieved the best classification performance, with an
F1 score of 0.80 and an accuracy of 0.71 (see Table II).
To summarize, our results indicate that

« The N-Back working memory task is best at classifying
individuals with and without PTSD based solely on
reaction time and performance accuracy.

o A combination of all six cognitive tasks fails to signifi-
cantly improve classification performance over using only
the N-Back task.

Prior research has also demonstrated the utility of the N-
Back task towards probing working memory deficits as well
as delivering working memory training interventions among
individuals with PTSD [43].

C. Multimodal Prediction of PTSD

In addition to predicting PTSD based on cognitive per-
formance, we evaluated whether DLPFC neural activity or
physiological signals such as heart rate, respiration, or EDA
recorded during cognitive tasks could improve classification
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TABLE III: Multimodal PTSD classification — mean F1 score
and accuracy of best-performing task/model combinations
for each multimodal feature set (ANB: Audio N-Back, GB:
Gradient Boosting classifier).

Feature Set Best Best F1 Score Accuracy
Task | Model | Mean = SD | Mean 4+ SD
Task+Biopac ANB GB 0.884+0.03 | 0.84+£0.04
Task+fNIRS ANB GB 0.84 £0.12 | 0.81+0.12
Task+Biopac+fNIRS | ANB GB 0.914+0.08 | 0.88+0.11

performance. To this end, we evaluated models trained with
Task Performance + Biopac, Task Performance + fNIRS, and
Task Performance + Biopac + fNIRS features.

Figure 1 shows the mean F1 scores of these models in
comparison to those using only Task Performance markers as
features. Specifically, we plot the mean and standard deviation
of the best-performing model across 3-fold cross-validation for
each feature set and cognitive task. We find that

o The addition of Biopac features improves prediction per-
formance over solely using performance features under
the Go/No-Go, Emotional Stroop, Emotional Working
Memory, and Audio N-Back tasks.

o The addition of fNIRS features improves prediction per-
formance over solely using performance features under
the Go/No-Go, Emotional Stroop, Emotional Working
Memory, N-Back, and Audio N-Back tasks.

« When using the Reaction Time or Audio N-Back tasks
for classification, adding both Biopac and fNIRS features
provides better classification performance than using only
one of these modalities.

In terms of overall multimodal classification performance,
Table III shows the mean F1 scores and accuracy for the best-
performing classifiers for each multimodal feature set (i.e., task
performance + Biopac, task performance + fNIRS, and task
performance + Biopac + fNIRS features). We observe that

« Gradient boosting classifiers trained on features from
the Audio N-Back task provide the best multimodal
classification performance when using a single cognitive
task.

« The addition of Biopac features achieves an average F1
score of 0.88, outperforming fNIRS features that achieve
an F1 score of 0.84. However, the addition of both Biopac
and fNIRS can further improve classification, with an F1
score of 0.91 and an accuracy of 0.88.

Further, Figure 1 also shows that using multimodal features
from all cognitive tasks does not improve PTSD classification
F1 scores over using only the Audio N-Back task.

The better performance of multimodal classifiers trained on
the Audio N-Back task, compared to those trained on other
cognitive tasks, is supported by prior findings on neural and
physiological correlates of working memory in individuals
with PTSD [44]. PTSD is also known to mediate the relation-
ship between HRV and working memory performance [45].
As seen in the previous subsection, the N-back and Audio
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Fig. 2: SHAP Feature Importances for the Multimodal PTSD
Prediction Model

N-Back WM tasks also achieve the two highest accuracies at
classifying PTSD among all cognitive tasks based solely on
task performance measures.

D. Model Interpretability and Feature Importance

After identifying the best-performing multimodal model for
PTSD classification, we examine the impact of each task
performance, physiological, and neural feature on the model’s
predictions. We do so by computing the mean absolute SHAP
value of each feature in the multimodal (task performance +
Biopac + fNIRS) Audio N-Back model.

As observed in Figure 2:

o The right FPA activation level emerged as the most
important feature, changing the predicted probability of
PTSD by 0.13. Activation levels in the right DLPFC and
the left OFC were the next most important features, each
with a SHAP value of 0.09.

« Mean heart rate was the most important physiological fea-
ture with a SHAP value of 0.09, followed by respiration
rate and mean EDA rise time.

In order to better understand the contribution of each
feature to the model’s PTSD predictions, we also examine
the SHAP summary plot showing feature magnitudes along
with their effects and overall importance (Figure 3). This plot
demonstrates that:

o Higher activation values in the right DLPFC, left OFC,
and right PMC are associated with high negative SHAP
values (or a lower predicted PTSD probability).

« Higher activation values in the right FPA and left PMC
are associated with high positive SHAP values (or a
higher predicted PTSD probability).

o A higher heart rate and EDA amplitude decrease the
predicted PTSD probability, whereas a higher ECG peak
distance, respiration, or EDA rise time increases the
predicted probability.
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Fig. 3: SHAP Summary Plot for the Multimodal PTSD Pre-
diction Model

Comparing the feature dependencies learned by our model
with existing work on neurophysiological responses among
individuals with PTSD, we note that previous work that has
observed reduced activity in the right hemisphere [46] as
well as generally in the LPFC [47] among participants with
PTSD during WM tasks. However, there is limited research on
physiological responses during WM tasks among individuals
with PTSD, and future work should validate whether the same
relationships as described above would hold in a broader
population.

V. DISCUSSION

This work presents results from an exploratory study on
PTSD classification using multimodal signals during the com-
pletion of cognitive tasks. We collect pilot data involving
various cognitive tasks and multiple sensing modalities in
order to train baseline machine learning models and bench-
mark classification performance under a variety of settings.
Our findings have important implications for choosing the task
settings and the auxiliary signals to be recorded for optimal
PTSD classification in civilian populations. Informed by these,
we make the following specific recommendations for future
studies and in-the-wild deployments:

o For in-the-wild PTSD classification where additional
sensing capabilities are unavailable, reaction times and
response accuracy on the N-Back task may be used to
achieve reasonably high classification performance.

o For in-the-wild PTSD classification where it is possible to
include other sensing modalities (e.g., wearables), prac-
titioners should consider using the Audio N-Back task
and collect physiological signals such as heart rate/HRYV,
EDA, and respiration rate for improved prediction perfor-
mance.

o Within lab settings or when portable fNIRS devices may
be used, DLPFC activation may be recorded in addition to
task performance and physiological signals corresponding
to the Audio N-Back task in order to further improve
PTSD classification.

Posthoc analysis of our models also reveals that single-
task models perform as well as, or better than, models trained
on features from all cognitive tasks. The emergence of WM
tasks as the best predictors of PTSD is also in line with
prior literature — attention and memory deficits are commonly
observed in PTSD populations [32] and cognitive training
tasks for PTSD also often target WM or emotional WM [43].
Similarly, our analysis of SHAP values of multimodal features
also indicates that the model learns some known associations
— prior work has established that individuals with PTSD
may engage fewer cognitive resources and exhibit lower PFC
activation during WM tasks [47].

As a pilot study, our work has certain limitations that should
be addressed in future research. Our study was conducted with
an entirely female participant pool, and further investigations
are needed to replicate these findings with larger sample sizes
that include male participants to examine if there are similar
or different predictors of PTSD for the biomarkers measured
in this study. The study relies on self-reported measures of
affect and PTSD symptoms, which may be subject to bias
and measurement error. Moreover, this was a volunteer non-
clinical sample and further research may be needed to affirm
these findings with clinical samples that score above the
subthreshold score of 30 for PTSD.

VI. CONCLUSION

This work aims to expand the understanding of how perfor-
mance differences, physiological signals, and neural correlates
during cognitive tasks can be used to identify individuals with
PTSD. We show that neurophysiological features collected
in conjunction with the Audio N-Back task can be used to
develop a brief, accurate screening tool for PTSD, enabling the
identification of at-risk individuals in a non-invasive manner
and helping intervene effectively. Our findings provide valu-
able insights for the development of affective technologies that
account for an individual’s underlying trauma context.

ETHICAL IMPACT STATEMENT

Since our work involves predicting highly sensitive out-
comes such as PTSD symptom severity, it is important to
take several measures to ensure ethical and responsible de-
ployments of any models that may be developed based on
these recommendations. Our findings as well as future models
should be validated on larger samples and evaluated on dif-
ferent demographic groups to ensure fairness and reliability.
The screening outcomes should be handled in a privacy-
sensitive manner and individuals identified as experiencing
PTSD should be provided effective interventions.
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