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AbstractÐPost-traumatic stress disorder (PTSD) is a serious
condition that is characterized by negative mood and affect,
hyperarousal, irritability, and reactivity, as well as deterioration
of cognitive processes such as attention and memory. Timely
identification and treatment of PTSD symptoms can signifi-
cantly improve symptom management and recovery. However,
accurate prediction of PTSD outside clinical settings is often
challenging. In this work, we investigate whether deficits in
cognitive performance can be used to classify individuals with
and without PTSD. We further examine whether neural and
physiological signals such as prefrontal cortex activity, heart rate,
respiration, and electrodermal activity recorded in conjunction
with cognitive task performance can be leveraged to improve
PTSD classification. Our results indicate that working memory
tasks can achieve an F1 score of 0.80 at classifying individuals
with PTSD, which can be further improved to 0.91 by combining
multimodal information from neurophysiological signals. Based
on our findings, we provide recommendations for in-the-wild
PTSD classification.

Index TermsÐpost-traumatic stress disorder, PTSD, cognitive
performance, neural activity, physiological signals, wearables

I. INTRODUCTION

Post-traumatic stress disorder (PTSD) is a serious psy-

chiatric condition that can develop when an individual is

exposed to a traumatic experience that is beyond a regular

stressor, including military combat, transportation accidents,

natural disasters, sexual violence, personal assault etc. [1]. It is

often characterized by recurring intrusive thoughts, flashbacks,

nightmares, and avoidance of stimuli related to the traumatic

experience [2]. The lifetime prevalence of PTSD among civil-

ians in the United States ranges from 3 to 27%, with higher

risk identified among females and younger populations [3].

Individuals with PTSD may experience emotional numbing,

dysphoria, and psychosomatic symptoms, as well as significant

negative affect and problems with emotional expression [4].

Additionally, PTSD may lead to irritability, hypervigilance,
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and trouble sleeping and concentrating [2]. Cognitive theo-

ries of PTSD further underscore the influence of emotional

stress on cognitive functioning, having deleterious effects on

memory, attention, planning, and problem-solving abilities [5].

Evidence-based treatment can significantly improve outcomes

in individuals with PTSD ± to this end, prior work has pro-

posed several interventions ranging from clinical approaches

such as psychoeducation, mindfulness training, or trauma-

focused treatment [6] to digital tools such as game-based expo-

sure therapy [7] or virtual reality-based stress inoculation [8].

However, for such interventions to be delivered effectively,

it is imperative to be able to accurately diagnose and monitor

an individual’s PTSD symptoms over time [2]. A characteriza-

tion of PTSD symptoms, and the associated changes in mood

and affect, is also beneficial for the development of context-

aware affective computing tools [9]. Nonetheless, there is a

lack of prior work on detecting PTSD in the wild, especially

in a non-military population.

This work therefore focuses on furthering the affective

computing community’s knowledge of multimodal PTSD pre-

diction in real-world settings. Specifically, we investigate

whether performance as well as physiological and neural

signals measured during cognitive tasks can be leveraged to

identify individuals with PTSD. To this end, we aim to answer

the following research questions:

RQ1: Are PTSD symptoms associated with self-reported

affect and/or objective cognitive performance in a civilian

population?

RQ2: Can performance on cognitive tasks involving atten-

tional control, emotion regulation, or working memory

demands predict PTSD? If so, which tasks have the best

predictive performance?

RQ3: Can multimodal models leveraging neural and/or phys-

iological signals during cognitive tasks improve PTSD

classification? If so, which multimodal features are most

informative for prediction?

These questions have important research and real-world
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implications in terms of informing the development of affec-

tive technologies that account for a user’s underlying trauma

context. Our findings indicate that (i) PTSD symptom severity

is associated with dimensions of negative affect as well as

deficits in attention and working memory, (ii) these working

memory deficits can be used to identify individuals with

PTSD, and (iii) multimodal physiological and neural signals

recorded in conjunction with working memory tasks can

improve PTSD classification performance. Based on these

results, we provide recommendations on the cognitive tasks

and neurophysiological signals that can be used to accurately

predict PTSD in civilian populations.

II. RELATED WORK

A. Effect of PTSD on Affect and Cognition

PTSD is a psychiatric disorder characterized by recurring

intrusive thoughts, flashbacks, nightmares, and avoidance of

stimuli related to the traumatic experience [2]. Research has

demonstrated that individuals with PTSD exhibit atypical

levels of stress hormones, which can contribute to negative

affect, emotional numbing, hyperarousal symptoms, and mood

and anxiety disorders [4]. Characterizing PTSD symptoms can

therefore help contextualize an individual’s affective states.

In addition to impacting emotions, cognitive models of

PTSD also suggest that it can alter functional brain activ-

ity and lead to alterations in cognitive processes such as

memory, attention, and planning [5], [10]. Individuals with

PTSD exhibit performance deficits in motor reaction and

interference control [11], affective working memory [12], as

well as attentional bias tasks [13]. This association between

PTSD and cognitive performance motivates our investigation

into using task performance as a potential predictor of PTSD.

B. Neural and Physiological Correlates of PTSD

Neuroimaging research over the years has discovered altered

activity in several brain regions among individuals with PTSD.

For instance, Henigsberg et al. reported stronger amygdala

activation in response to emotional stimuli compared to non-

emotional stimuli, smaller hippocampus size and activity dur-

ing memory tasks, and lower prefrontal cortex (PFC) activity

during cognitive control among individuals with PTSD as

compared to healthy controls [14]. Individuals with PTSD have

also been observed to exhibit higher event-related potential

latencies during response inhibition and higher frontal activity

in response to irrelevant stimuli [15], as well as significantly

higher oxyhemoglobin changes in the lateral PFC during

response inhibition [16].

Additionally, PTSD is associated with a range of physio-

logical changes such as higher heart rates and lower high-

frequency heart rate variability (HRV) during stress [17].

Individuals with PTSD also exhibit decreased parasympathetic

activity in the autonomic nervous system and reduced HRV in

response to affective stimuli [18]. Decreased parasympathetic

and increased sympathetic control were also evidenced by

low baseline respiratory sinus arrhythmia and high base-

line electrodermal activity (EDA) among individuals with

PTSD [19]. PTSD is also associated with a higher number

of EDA responses during threatening stimuli [20]. These

observations set the stage for investigating whether neural or

physiological activity during cognitive tasks can differentiate

between individuals with and without PTSD.

C. Detecting PTSD in the Wild

Early detection and intervention are crucial for improving

long-term outcomes among individuals with PTSD [2]. To

this end, wearable devices have emerged as a potential tool

for in-the-wild PTSD detection, with several studies exploring

their predictive utility. For example, Sadeghi et al. utilized a

smartwatch to predict PTSD hyperarousal events among vet-

erans using heart rate and body acceleration features, achiev-

ing an accuracy of over 81% using an XGBoost classifier

[21]. Fletcher et al. used an ankle-worn EDA, motion, and

skin temperature sensor to detect arousal events and initiate

cognitive-behavioral interventions [22]. However, these studies

are limited by the subjective nature of self-reported arousal

events and do not test for overall PTSD symptom severity.

Webb et al. attempted to fill this gap and used heart

rate and skin conductance signals while participants watched

emotionally evocative videos via virtual reality to identify indi-

viduals with PTSD vs those without trauma/PTSD, achieving a

classification accuracy of 90% [23]. Similarly, Liu et al. used

brain activity measured via functional Magnetic Resonance

Imaging (fMRI) to distinguish individuals with PTSD from

healthy controls with an accuracy of 92.5% [24]. Nevertheless,

the use of neural data for PTSD detection in the wild has been

very limited due to practical considerations.

The emergence of functional Near-Infrared Spectroscopy

(fNIRS) as a relatively non-invasive, safe, portable, and cost-

effective means of monitoring brain activity as compared to

traditional neuroimaging technologies has created opportu-

nities for investigating the neural basis of psychiatric and

neurological disorders and utilizing these for diagnoses more

widely [25]. Balters et al. utilized a portable fNIRS sys-

tem to investigate the cortical activation patterns associated

with emotional face processing and predict PTSD in youth

with post-traumatic stress symptoms (PTSS) [26]. They ob-

served increased activation in the dorsolateral prefrontal cor-

tex (DLPFC) in response to both fearful and neutral faces

compared to baseline, and demonstrated a strong correlation

between cortical responses in eight frontocortical channels and

PTSS scores. Our work builds on prior research to investigate

the feasibility of using fNIRS and physiological signals for

in-the-wild PTSD classification.

III. METHODS

A. Participants

As part of a larger study on the effect of mindfulness-based

interventions on PTSD symptom severity, 31 participants were

recruited to complete a baseline and a six-week follow-

up session post intervention [27]. The present study reports

only on the baseline sessions, focusing on the detection of

PTSD symptom severity at this stage. Therefore, none of the

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on January 17,2024 at 15:59:47 UTC from IEEE Xplore.  Restrictions apply. 



participants were exposed to any mindfulness strategies or

other PTSD interventions. The study was approved by the

Institutional Review Board at Syracuse University and was

advertised as a study on college student stress and trauma; the

presence of PTSD was not an inclusion/exclusion criterion. All

participants completed written informed consent at the start of

the study. All participants were female (recruitment was open

to all genders but only female participants volunteered). The

mean age of the participants was 22.4 years (SD: 4.52 years).

19 participants identified as White, 8 as Black, and 1 each as

Asian, Hispanic, and Native American.

B. PTSD, Stress, and Affect Measures

The PTSD Checklist - Civilian Version (PCL-C; [28]) was

used to measure participants’ traumatic stress. The PCL-C is a

17-item self-report questionnaire in which civilian respondents

rate how bothered they have been by DSM-IV posttraumatic

stress symptoms in the past month on a 5-point Likert scale

from ªnot at allº (1) to ªextremelyº (5). The PCL-C is used to

screen for PTSD and monitor symptom changes, with scores

above 30 indicating sub-threshold PTSD. Accordingly, we

categorize all participants scoring above 30 as those with

PTSD (N = 19) and the rest as non-PTSD (N = 12).

Participants’ positive and negative affect over the past

week were measured using the Positive and Negative Affect

Schedule (PANAS-SF; [29]). Additionally, somatic symptoms

of anxiety over the past seven days were measured using

the Somatic Arousal ± Fear questionnaire [30]. Lastly, the

10-item Perceived Stress Scale (PSS) was used to assess

how unpredictable, uncontrollable, and overloaded participants

found their lives to be in the past month [31].

C. Cognitive Tasks

Participants completed six cognitive tasks that involved

attentional control (AC), emotion regulation (ER), or working

memory (WM) demands. These tasks were selected in order

to engage cognitive resources known to be impaired by stress

and PTSD [12], [15], [32]. Tasks were presented using a Latin

Square design with controlled rest periods between each task

via an experiment developed using the PsychoPy toolkit [33].

Participants read the on-screen instructions and completed a

set of practice trials for each task before the beginning of the

testing session.

The AC tasks included a Reaction Time task [34], where

participants were required to respond as quickly as possible to

a large ªXº stimulus that appeared on the screen in each trial.

Additionally, a Go/No-Go task [35] was used to test response

inhibition ± in each trial, participants were presented either

with the target stimulus (a red rectangle) or a distractor (a

blue oval). Participants were required to respond as quickly as

possible when a target stimulus appeared and withhold their

response when the distractor stimulus appeared.

Participants also completed two ER tasks ± the emotional

Stroop task and an emotional delayed recall/working memory

task. The Emotional Stroop task [13] is a variant of the classic

Stroop task, where participants are asked to respond with

the color a word is presented in rather than reading aloud

the color the word spells. In this variant, participants are

asked to respond to words that represent neutral valence (e.g.

ªpencilº, ªfruitº) or negative valence or physical threat (e.g.,

ªweaponº, ªfightº). The words are presented in one of four

colors (red, yellow, green, or blue) and the participants are

asked to respond with the letter corresponding to the first letter

of the color (e.g., ªrº for ªredº). In the Emotional Working

Memory task [12], participants are shown a sequence of six

letters to memorize and are asked to recall them after a delay

period. During the delay, they are presented with an image

that has either a neutral or a high negative valence.

Finally, the WM tasks included an N-Back task [36] where

participants were presented with a stream of letters on the

screen and asked to recall whether the current letter was the

same as the one displayed N stimuli previously. In addition to

this visual task, we used an auditory variant, the Audio N-Back

task, that followed the same protocol but used auditory cues

instead. We used N=2 for both variants of the task.

The performance on each of the cognitive tasks was mea-

sured in terms of the average response times and the average

accuracy across all trials.

D. Measuring Prefrontal Cortex Neural Activation

Participants’ neural activation levels in the dorsolateral

prefrontal cortex (DLPFC) during the cognitive tasks were

recorded using functional Near Infrared Spectroscopy (fNIRS).

We used the Hitachi ETG-4000 fNIRS device with a 3x11

probe covering the frontal cortex region and resulting in

52 channels of data. The position of the optode array was

consistent across all participants, with the central channel

positioned over the nasion and the middle bottom probe over

the Fpz location as per the international 10-20 coordinate

system [37]. Data were recorded at 10 Hz and a bandpass filter

of 0.01 to 0.5 Hz was applied to remove physiological noise

and isolate cognitive activation. The data were downsampled

to 4 Hz and converted to changes in optical density per

channel. The relative changes in oxyhemoglobin (∆HbO) and

deoxyhemoglobin (∆HbR) were computed using the modified

Beer-Lambert law [38].

The ∆HbO data was modeled as a generalized linear model

(GLM) for each cognitive task completed by the participant

as well as for the rest periods in order to obtain the per-

channel coefficients that indicate the magnitude of neural ac-

tivation. The GLM was fit using the autoregressive iteratively

reweighted least squares approach based on the canonical

hemodynamic response function [39]. The per-channel coeffi-

cients were condensed into activation levels across particular

regions of interest (ROIs) by mapping them to functional

brain regions. Data were averaged across three ROIs ± the

frontopolar area (FPA), the orbitofrontal cortex (OFC), and

the premotor cortex (PMC) ± on each hemisphere (left/right).

Additionally, the average activation levels across the entire left

and right DLPFC were also computed. This resulted in eight

ROI-based activation level values for each cognitive task. The
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values for each task were normalized for each participant by

subtracting the activation levels of the controlled rest period.

E. Measuring Physiological Responses

In addition to neural activation, we recorded participants’

physiological data including electrocardiogram (ECG), elec-

trodermal activity (EDA), and respiration rate using the Biopac

MP-150 receiver device. ECG data were obtained using 3

electrodes, each placed on the right and left arm and the

left leg. Respiration data was collected using the BIOPAC

respiratory effort transducer band and EDA was measured at

the palm of the participant. The raw data was processed to

extract five aggregated physiological measures during each

cognitive task as well as the rest periods ± mean heart

rate, mean ECG peak distance, respiration rate, mean EDA

amplitude, and mean EDA rise time. The values for the rest

periods were subtracted from the values for each task for

each participant. The five physiological measures are together

referred to henceforth as the Biopac signals.

F. Analysis

We now describe the analysis methods used to answer the

research questions previously described in Section I. First, we

attempted to determine whether PTSD severity is associated

with weekly or monthly affect ratings as well as with per-

formance on each cognitive task described in Section III-C.

We computed the Spearman correlation between the PTSD

scores and self-reported measures of positive and negative

affect, somatic arousal, and perceived stress. Similarly, we also

computed the Spearman correlation between PTSD severity

and the average reaction time on each task to validate prior

work that shows attention, emotion regulation, and memory

deficits among individuals with PTSD [12], [13], [32].

Further, we examined whether cognitive task performance

can be leveraged to predict PTSD status. To this end, we

trained machine learning models that use the response time

and accuracy on each task as features to predict whether a

person’s PTSD score is above the clinical threshold.

We used a stratified 3-fold cross-validation scheme to

evaluate model performance and report the mean F1 scores

and accuracies across all folds. Within each fold, missing

feature values were first imputed using the mean value over

the train set in that fold, and synthetic minority oversampling

(SMOTE) was used to handle class imbalance [40]. SMOTE

uses the training data to create synthetic samples of the

minority class from the neighborhood of existing samples to

improve training. The features were then scaled and princi-

pal component analysis (PCA) was applied [41]. We chose

PCA for dimensionality reduction and regularization instead

of using feature selection based on training data in order

to maintain consistent feature sets across training folds. We

trained and evaluated five different machine learning models

± logistic regression, random forest, gradient boosting, K-

nearest neighbors, and support vector classifiers ± and selected

optimal hyperparameters via grid search. These models were

chosen due to their amenability to datasets of sizes similar

to ours as well as their relatively higher explainability in

comparison to deep learning models. In addition to training

PTSD prediction models individually on the features from

each cognitive task, we followed the same strategy to train

a classifier on the concatenated features from all cognitive

tasks to investigate whether multiple tasks can achieve better

classification performance.

After examining the predictive accuracy of task

performance-based models, we used the physiological

and neural data described in the previous subsections to

train and evaluate multimodal PTSD prediction models.

Specifically, we employed the same pipelines and evaluation

strategy that was used for task performance-based models to

train models with three additional feature sets during each

cognitive task: (i) task performance + Biopac (physiological)

features, (ii) task performance + fNIRS (neural) features, and

(iii) task performance + Biopac + fNIRS features. The Biopac

features included mean heart rate, mean ECG peak distance,

respiration rate, mean EDA amplitude, and mean EDA rise

time. The fNIRS features included activation levels in the left

and right DLPFC, FPA, OFC, and PMC. We tested whether

these additional features improve predictive performance over

using only task performance for classification. In addition to

evaluating this for each cognitive task, we also investigated

whether these feature sets improve PTSD prediction when

utilizing all cognitive tasks.

Finally, we scrutinized the interpretability of the best-

performing PTSD classifier by computing the SHapley Addi-

tive exPlanations (or SHAP values; [42]) for the model. SHAP

uses a game theoretic approach to explain the predictions of

a machine learning model by computing the contribution of

each feature to the prediction in an additive fashion. We report

the importance of each feature in terms of the mean absolute

SHAP value as well as examine the dependence of SHAP

values on the magnitude of input features in order to deter-

mine how they impact the predicted PTSD probabilities. We

compared our findings to the existing literature on the effect of

PTSD on physiology and neural activation to critically evaluate

the features that influence our model’s predictions.

IV. RESULTS

A. Association Between PTSD and Affect/Cognition

Table I shows the Spearman correlation (and p value)

between each affect/cognitive performance score and PTSD

symptom severity. We observe that

• Positive affect does not show a significant association

with PTSD severity. However, negative affect, somatic

arousal, and perceived stress all exhibit a significant

(p < 0.01) positive correlation with PTSD scores.

• PTSD scores show a significant negative correlation with

response times on the Reaction Time and Audio N-Back

tasks.

Our findings are in line with prior research showing that

PTSD severity is strongly associated with negative emotional

states [4] as well as attention [11] and working memory
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Fig. 1: Mean and standard deviations of F1 scores of the best-performing models for each feature set and cognitive task.

TABLE I: Correlation between PTSD symptom severity and

affect scores/cognitive performance (∗ =⇒ p < 0.05).

Spearman r p value

Affect

(self report)

Positive Affect −0.06 0.75

Negative Affect 0.71 < 0.001∗

Somatic Arousal 0.42 0.02∗

Perceived Stress 0.62 < 0.001∗

Cognitive Performance

(response time)

Reaction Time −0.37 0.04∗

Go/No-Go −0.30 0.11

Emotional Stroop −0.21 0.26

Emotional Working Memory 0.10 0.58

N-Back −0.33 0.07

Audio N-Back −0.51 0.03∗

deficits [32]. Knowing whether an individual has PTSD may

provide important context about their affective and cognitive

states, helping intervene more effectively.

B. Predicting PTSD Using Cognitive Task Performance

PTSD prediction models were trained using features from

cognitive task performance as described in Section III-F.

Specifically, the average reaction time and performance ac-

curacies from each task were used as features to train task-

specific models. We found that logistic regression models

outperformed others for all task-specific models. The average

F1 score and accuracy for the best task-specific models are

reported in Table II. The model trained on the N-Back task

features outperformed other tasks, with an average F1 score

of 0.80 and an average accuracy of 0.74 at detecting PTSD.

When training machine learning models to predict PTSD

using features from all cognitive tasks, a support vector

TABLE II: PTSD classification based on task performance ±

mean F1 Score and accuracy of best-performing models for

each cognitive task (LR: Logistic Regression, SVC: Support

Vector Classifier).

Task Best F1 Score Accuracy

Model Mean ± SD Mean ± SD

Reaction Time LR 0.76± 0.01 0.61± 0.02

Go/No-Go LR 0.79± 0.06 0.67± 0.10

Emotional Stroop LR 0.79± 0.05 0.67± 0.01

Emotional Working Memory LR 0.76± 0.01 0.61± 0.02

N-Back LR 0.80± 0.09 0.74± 0.12

Audio N-Back LR 0.79± 0.05 0.68± 0.09

All SVC 0.80± 0.02 0.71± 0.07

classifier achieved the best classification performance, with an

F1 score of 0.80 and an accuracy of 0.71 (see Table II).

To summarize, our results indicate that

• The N-Back working memory task is best at classifying

individuals with and without PTSD based solely on

reaction time and performance accuracy.

• A combination of all six cognitive tasks fails to signifi-

cantly improve classification performance over using only

the N-Back task.

Prior research has also demonstrated the utility of the N-

Back task towards probing working memory deficits as well

as delivering working memory training interventions among

individuals with PTSD [43].

C. Multimodal Prediction of PTSD

In addition to predicting PTSD based on cognitive per-

formance, we evaluated whether DLPFC neural activity or

physiological signals such as heart rate, respiration, or EDA

recorded during cognitive tasks could improve classification
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TABLE III: Multimodal PTSD classification ± mean F1 score

and accuracy of best-performing task/model combinations

for each multimodal feature set (ANB: Audio N-Back, GB:

Gradient Boosting classifier).

Feature Set Best Best F1 Score Accuracy

Task Model Mean ± SD Mean ± SD

Task+Biopac ANB GB 0.88± 0.03 0.84± 0.04

Task+fNIRS ANB GB 0.84± 0.12 0.81± 0.12

Task+Biopac+fNIRS ANB GB 0.91± 0.08 0.88± 0.11

performance. To this end, we evaluated models trained with

Task Performance + Biopac, Task Performance + fNIRS, and

Task Performance + Biopac + fNIRS features.

Figure 1 shows the mean F1 scores of these models in

comparison to those using only Task Performance markers as

features. Specifically, we plot the mean and standard deviation

of the best-performing model across 3-fold cross-validation for

each feature set and cognitive task. We find that

• The addition of Biopac features improves prediction per-

formance over solely using performance features under

the Go/No-Go, Emotional Stroop, Emotional Working

Memory, and Audio N-Back tasks.

• The addition of fNIRS features improves prediction per-

formance over solely using performance features under

the Go/No-Go, Emotional Stroop, Emotional Working

Memory, N-Back, and Audio N-Back tasks.

• When using the Reaction Time or Audio N-Back tasks

for classification, adding both Biopac and fNIRS features

provides better classification performance than using only

one of these modalities.

In terms of overall multimodal classification performance,

Table III shows the mean F1 scores and accuracy for the best-

performing classifiers for each multimodal feature set (i.e., task

performance + Biopac, task performance + fNIRS, and task

performance + Biopac + fNIRS features). We observe that

• Gradient boosting classifiers trained on features from

the Audio N-Back task provide the best multimodal

classification performance when using a single cognitive

task.

• The addition of Biopac features achieves an average F1

score of 0.88, outperforming fNIRS features that achieve

an F1 score of 0.84. However, the addition of both Biopac

and fNIRS can further improve classification, with an F1

score of 0.91 and an accuracy of 0.88.

Further, Figure 1 also shows that using multimodal features

from all cognitive tasks does not improve PTSD classification

F1 scores over using only the Audio N-Back task.

The better performance of multimodal classifiers trained on

the Audio N-Back task, compared to those trained on other

cognitive tasks, is supported by prior findings on neural and

physiological correlates of working memory in individuals

with PTSD [44]. PTSD is also known to mediate the relation-

ship between HRV and working memory performance [45].

As seen in the previous subsection, the N-back and Audio

Fig. 2: SHAP Feature Importances for the Multimodal PTSD

Prediction Model

N-Back WM tasks also achieve the two highest accuracies at

classifying PTSD among all cognitive tasks based solely on

task performance measures.

D. Model Interpretability and Feature Importance

After identifying the best-performing multimodal model for

PTSD classification, we examine the impact of each task

performance, physiological, and neural feature on the model’s

predictions. We do so by computing the mean absolute SHAP

value of each feature in the multimodal (task performance +

Biopac + fNIRS) Audio N-Back model.

As observed in Figure 2:

• The right FPA activation level emerged as the most

important feature, changing the predicted probability of

PTSD by 0.13. Activation levels in the right DLPFC and

the left OFC were the next most important features, each

with a SHAP value of 0.09.

• Mean heart rate was the most important physiological fea-

ture with a SHAP value of 0.09, followed by respiration

rate and mean EDA rise time.

In order to better understand the contribution of each

feature to the model’s PTSD predictions, we also examine

the SHAP summary plot showing feature magnitudes along

with their effects and overall importance (Figure 3). This plot

demonstrates that:

• Higher activation values in the right DLPFC, left OFC,

and right PMC are associated with high negative SHAP

values (or a lower predicted PTSD probability).

• Higher activation values in the right FPA and left PMC

are associated with high positive SHAP values (or a

higher predicted PTSD probability).

• A higher heart rate and EDA amplitude decrease the

predicted PTSD probability, whereas a higher ECG peak

distance, respiration, or EDA rise time increases the

predicted probability.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on January 17,2024 at 15:59:47 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: SHAP Summary Plot for the Multimodal PTSD Pre-

diction Model

Comparing the feature dependencies learned by our model

with existing work on neurophysiological responses among

individuals with PTSD, we note that previous work that has

observed reduced activity in the right hemisphere [46] as

well as generally in the LPFC [47] among participants with

PTSD during WM tasks. However, there is limited research on

physiological responses during WM tasks among individuals

with PTSD, and future work should validate whether the same

relationships as described above would hold in a broader

population.

V. DISCUSSION

This work presents results from an exploratory study on

PTSD classification using multimodal signals during the com-

pletion of cognitive tasks. We collect pilot data involving

various cognitive tasks and multiple sensing modalities in

order to train baseline machine learning models and bench-

mark classification performance under a variety of settings.

Our findings have important implications for choosing the task

settings and the auxiliary signals to be recorded for optimal

PTSD classification in civilian populations. Informed by these,

we make the following specific recommendations for future

studies and in-the-wild deployments:

• For in-the-wild PTSD classification where additional

sensing capabilities are unavailable, reaction times and

response accuracy on the N-Back task may be used to

achieve reasonably high classification performance.

• For in-the-wild PTSD classification where it is possible to

include other sensing modalities (e.g., wearables), prac-

titioners should consider using the Audio N-Back task

and collect physiological signals such as heart rate/HRV,

EDA, and respiration rate for improved prediction perfor-

mance.

• Within lab settings or when portable fNIRS devices may

be used, DLPFC activation may be recorded in addition to

task performance and physiological signals corresponding

to the Audio N-Back task in order to further improve

PTSD classification.

Posthoc analysis of our models also reveals that single-

task models perform as well as, or better than, models trained

on features from all cognitive tasks. The emergence of WM

tasks as the best predictors of PTSD is also in line with

prior literature ± attention and memory deficits are commonly

observed in PTSD populations [32] and cognitive training

tasks for PTSD also often target WM or emotional WM [43].

Similarly, our analysis of SHAP values of multimodal features

also indicates that the model learns some known associations

± prior work has established that individuals with PTSD

may engage fewer cognitive resources and exhibit lower PFC

activation during WM tasks [47].

As a pilot study, our work has certain limitations that should

be addressed in future research. Our study was conducted with

an entirely female participant pool, and further investigations

are needed to replicate these findings with larger sample sizes

that include male participants to examine if there are similar

or different predictors of PTSD for the biomarkers measured

in this study. The study relies on self-reported measures of

affect and PTSD symptoms, which may be subject to bias

and measurement error. Moreover, this was a volunteer non-

clinical sample and further research may be needed to affirm

these findings with clinical samples that score above the

subthreshold score of 30 for PTSD.

VI. CONCLUSION

This work aims to expand the understanding of how perfor-

mance differences, physiological signals, and neural correlates

during cognitive tasks can be used to identify individuals with

PTSD. We show that neurophysiological features collected

in conjunction with the Audio N-Back task can be used to

develop a brief, accurate screening tool for PTSD, enabling the

identification of at-risk individuals in a non-invasive manner

and helping intervene effectively. Our findings provide valu-

able insights for the development of affective technologies that

account for an individual’s underlying trauma context.

ETHICAL IMPACT STATEMENT

Since our work involves predicting highly sensitive out-

comes such as PTSD symptom severity, it is important to

take several measures to ensure ethical and responsible de-

ployments of any models that may be developed based on

these recommendations. Our findings as well as future models

should be validated on larger samples and evaluated on dif-

ferent demographic groups to ensure fairness and reliability.

The screening outcomes should be handled in a privacy-

sensitive manner and individuals identified as experiencing

PTSD should be provided effective interventions.
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