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A B S T R A C T

Operating in harsh and unsteady marine environment, offshore wind turbine (OWT) structures are exposed to 
unpredictable wind and wave loads. Identifying the structural loads and their effects on the OWTs allow for 
predicting the remaining fatigue life of these structures and improving the structural design procedure. In this 
paper, a finite element (FE) model inversion method is presented to estimate the unknown loads and model 
parameters of OWTs using sparse measurement data. A realistic FE model of an OWT structure with jacket 
substructure is created in the open-source simulation platform, OpenSees. A Bayesian inference framework is 
presented to integrate the measured data with the FE model to estimate unknown wind loads and mass of rotor- 
nacelle assembly. To evaluate the performance of this data assimilation framework, the effect of sensor type, 
number of sensors, and modeling errors on the estimation accuracy of wind loads and model parameters are 
investigated through different case studies where synthetic data are used as measurements. The results of this 
study are important to guide instrumentation of new OWT structures, and to understand the potential limitations 
and sources of error in the real-world application of this data assimilation framework for joint model parameter 
and input load estimation.

1. Introduction

Offshore wind turbine (OWT) structures operate in harsh marine 
environment and are exposed to unpredictable dynamic loads 
(Röckmann et al., 2017). Dynamic loads impact the remaining useful life 
and can result in fatigue failure in OWT components and structure 
(Igwemezie et al., 2019). Because of the uncertain operational condi
tions, loadings considered in the design stage of OWT structures can be 
different from the operational stage, so fatigue life can be shorter than 
what is expected. Estimation of the wind and wave loads from the dy
namic response of the structure can improve the fatigue design process 
and can be further used to predict the remaining useful life of structures 
for instrumented OWTs. Additionally, any potential damage or deteri
oration in the structural system can be identified by tracking the struc
tural properties such as mass and stiffness. In this paper, a finite element 
(FE) model updating method is presented for estimating structural 

model parameters and unknown loads of an OWT using sparsely 
measured structural responses. The objective is to evaluate the efficacy 
of the method and understand its potential and limitations for real-world 
application through a series of case studies using numerically simulated 
data.

In the FE model updating process, mechanics-based laws are 
employed to develop a structural model, and measurement responses are 
used to estimate the unknown model parameters and input loads. Two 
main approaches exist for FE model updating: frequency-domain model 
updating (Augustyn et al., 2020; Friswell and Mottershead, 1995; Hu 
et al., 2018) and time-domain model updating (Ebrahimian et al., 2015; 
Eftekhar Azam et al., 2015; Naets et al., 2015). In the frequency-domain 
model updating, first, the numerical model of the structure is parame
trized based on the structural parameters such as stiffness, damping, and 
mass. Through experimental modal analysis or operation modal analysis 
(OMA), modal properties are identified using measurement data. Then, 
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model parameters are estimated by minimizing the discrepancies be
tween model-predicted and identified modal properties. Conventional 
OMA methods have been used for wind turbine structural health 
monitoring, condition assessment, and modal identification (Augustyn 
et al., 2020; Devriendt et al., 2014; Hines et al., 2023; Moynihan et al., 
2023; Ozbek and Rixen, 2013; Song et al., 2022, 2023; Xu et al., 2020). 
These methods include natural excitation technique combined with 
eigensystem realization algorithm (NExT-ERA) (James III et al., 1993) 
and data-driven stochastic subspace identification (SSI) (Oliveira et al., 
2016; Peeters and de Roeck, 1999), which are based on the broadband 
assumption for input excitations. Nevertheless, because of the rotation 
of turbine blades, the excitation frequencies would include harmonic 
components, such as fundamental rotational (1 P) and blade passing 
frequencies (3 P for three-bladed turbines) (Van der Tempel, 2006), 
which may affect the modal identification accuracy. Various modified 
OMA approaches have been developed to deal with the disturbing har
monic components of structural responses to improve modal identifi
cation accuracy (Dai et al., 2017; Jacobsen et al., 2007; Pintelon et al., 
2010). Using classical OMA at idling or parked conditions can also 
minimize the effect of harmonic components in the modal identification 
of wind turbines (Augustyn et al., 2020; Devriendt et al., 2014). In this 
paper, we pursue a time-domain model updating approach to avoid the 
potential shortcomings of frequency-domain methods.

Time-domain model updating approaches can be used to estimate 
jointly the states, model parameters, and input forces of a dynamic 
system (Naets et al., 2015). In these approaches, the state of the system is 
augmented with unknown model parameters and inputs, and an 
Extended Kalman filter (EKF) (Simon, 2006) can be employed to esti
mate the augmented state. Fallais et al. (2016) identified the hydrody
namic load and stiffness of an OWT with an EKF using simulated data. 
Maes et al. (2016) compared three algorithms, including Kalman filter, a 
joint input-state estimation, and modal expansion, to monitor the dy
namic strains in the OWT tower with monopile substructure at parked 
and operating conditions. All three algorithms were evaluated for a 
given model of the structure and compared when acceleration-only data 
or a combination of acceleration and strain data were used. For 
acceleration-only data, joint input-state estimation and modal expan
sion provided acceptable results, while the inclusion of strain data 
improved the KF-based results. Nabiyan et al. (2021) employed a 
sequential Bayesian inference method to estimate an unknown model 
parameter (rotational stiffness of the foundation) jointly with the 
effective wind load time history applied to a monopile OWT using strain 
response measurements. They compared the accuracy of this estimation 
method with the modal expansion method for predicting flexural 
moment time history at the mudline. The results show that the Bayesian 
algorithm can be more accurate than the modal expansion method. Song 
et al. (2022) used a recursive Bayesian inference approach for joint 
parameter-input estimation and strain time history prediction of an 
offshore platform in the North Sea. They updated the FE model of the 
structure using acceleration and strain data and compared their pro
posed method with the modal expansion-based method for strain pre
diction. They observed that the Bayesian framework provides more 
accurate strain prediction than the modal expansion method. The 
Bayesian inference also has been employed for monitoring monopile of 
OWT (Xu et al., 2023), virtual modeling of offshore jacket structures 
(Wang et al., 2022), optimal sensor placement (Mehrjoo et al., 2022), 
load identification of wind turbines (Wei et al., 2023), support condition 
monitoring of OWT (Ren et al., 2023), fatigue monitoring of wind tur
bines (Flores Terrazas et al., 2022), breaking wave load estimation 
(Maes et al., 2018), virtual sensing of subsoil strain response (Zou et al., 
2023), foundation parameter estimation of OWT (Simpson et al., 2024), 
and fatigue stress assessment of OWT (Noppe et al., 2018; Tatsis et al., 
2017).

In the previous studies, OWT model updating has been carried out 
based on simplified structural models (Dai et al., 2017; Fallais et al., 
2016; Xu et al., 2020), white noise assumption for input excitation 

(Oliveira et al., 2016), and non-operational conditions, i.e., idling or 
parked (Augustyn et al., 2020; Devriendt et al., 2014). Past studies 
considered a simple 2D model of the structure and estimated the input 
wind force only in one direction (Dai et al., 2017; Fallais et al., 2016; Xu 
et al., 2020); while in an actual OWT, the wind and wave loads excite the 
structure in both side-to-side and fore-aft directions simultaneously.

This study is a proof-of-concept for creating virtual models of wind 
turbine structures (digital twinning) and predicting the responses at 
inaccessible locations (virtual sensing). The aim is to investigate the 
application and limitation of time-domain model updating for joint 
parameter-load estimation in OWTs. For this purpose, the study is based 
on synthetic data to provide an upper bound accuracy on the estimation 
results. Realistic model of a jacket-based OWT, which represents the 
turbines at Block Island Wind Farm (BIWF) in the United States, under 
realistic loadings is built to generate synthetic data recorded from 
realistic sensor configurations.

In this paper, a window-based Bayesian model updating of jacket- 
based OWT model is developed through a 3D FE model. Simulated re
sponses of the OWT structure under wind and wave loads are used to 
estimate jointly the unknown model parameters and wind loads applied 
to the tower at both side-to-side and fore-aft directions. The model 
updating method is implemented in the time domain and can be used at 
any operational condition of OWTs without any assumptions about the 
input loads. The window-based Bayesian model updating was first 
developed by Ebrahimian et al. (2018) and has been applied to model 
updating of civil structures (Ghahari et al., 2020), digital twinning of a 
bridge (Ghahari et al., 2022), virtual sensing of a wind turbine (Nabiyan 
et al., 2021), and model inversion of wind turbine drivetrain (Valikhani 
et al., 2023). Here, this method is applied to an OWT under simulated 
wave and wind loads at both side-to-side and fore-aft directions. The 
simulated loads are extracted from OpenFAST (NREL, 2022) and im
ported to the 3D FE model of the OWT. The 3D FE model is created in 
OpenSees platform (McKenna et al., 2000) to simulate structural re
sponses. Acceleration responses at three locations of the tower structure, 
and strain responses at the base and middle level of the tower are 
simulated, contaminated with white noise, and considered as measure
ment data for model updating. Then, given the model and measurement 
data, the wind loads at the top of tower including forces and moments in 
both side-to-side and fore-aft directions are estimated in conjunction 
with mass of rotor-nacelle assembly (RNA). The effects of sensor type, 
number of sensors, and modeling error on the estimated model param
eters and wind input loads are investigated through different case 
studies.

2. Estimation and modeling procedures

2.1. Bayesian model updating

Bayesian model updating is used to simultaneously estimate un
known model parameters and wind loads of an OWT structure. To apply 
the Bayesian framework, we assume that the finite element model is 
accurate without any modeling error, with the uncertainty stemming 
from unknown model parameters and loads, which are augmented to a 
parameter vector. The parameter vector is modeled as random variables 
with a joint prior Gaussian probability density function (PDF). More
over, an observation model is assumed to be a Gaussian white noise 
process. Under the Gaussian assumption for the prior PDF of the 
parameter vector and the likelihood function, the posterior PDF of the 
parameter vector conditioned on observation data can be updated.

The time-discretized equation of motion of a linear FE model of a 
dynamical system at time step t can be written as 

M(θ)ẍt + C(θ)ẋt + K(θ)xt = u*
t (1) 

in which θ ∈ ℝnθ×1 is model parameter vector, where nθ denotes the 
number of unknown model parameters, M(θ), C(θ), K(θ) ∈ RnDOF×nDOF are 
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parameterized mass, damping, and stiffness matrices, respectively, 
where nDOF denotes the number of degrees of freedom. ẍt, ẋt, xt, u*

t ∈

RnDOF×1 denote acceleration, velocity, displacement, and input load (i.e., 
wind and wave loads in this study) vectors, respectively. The subscript t 
denotes the time step such that t = 1,2,⋯,T, where T indicates the total 
number of time steps.

Eq. (1) can be solved recursively in time, for example by the 
Newmark-beta time integration method (Chopra, 2007). In general, the 
response of the structural model at time step t can be expressed as a 
nonlinear function of the unknown model parameters θ, the input load 
vector time history from time step 1 to time step t, and initial velocity 
and displacement vectors as 

ŷt = ht
(
θ, u*

1:t , ẋ0, x0
)

(2) 

in which u*
1:t =

[
u*T

1 , u*T
2 , ⋯, u*T

t
]T represents the time history of the 

input load vector; ẋ0 and x0 ∈ RnDOF×1 denote initial velocity and 
displacement vectors; and ht(.) ∈ Rny×1 is the nonlinear response func
tion of the FE model at time step t, where ny denotes the number of 
measured responses.

A measurement model can be expressed in the terms of predicted 
response and measurement noise at time step t as 

yt = ŷt + vt vt ∼ N(0, Rk) (3) 

where yt ∈ Rny×1 denotes measured response vector, ŷt ∈ Rny×1 de
notes the model-predicted response vector given in Eq. (2), and vt ∈

Rny×1 represents the measurement noise vector, which is assumed to be a 
Gaussian white noise process with zero mean and covariance matrix of 
Rt ∈ ℝny×ny .

In the FE model expressed by Eq. (2), the model parameters and some 
input loads are unknown (wind loads in this study), and a window-based 
Bayesian inference approach (Ebrahimian et al., 2018) is adopted to 
estimate them using measurement data. In this approach, the mea
surement dataset is divided into overlapping windows referred to as the 
estimation windows. Considering the mth estimation window with the 
starting time tm

1 and ending time tm
2 as shown in Fig. 1, the window 

length is tl = tm2 − tm
1 . The measurement dataset at this window can be 

represented by ytm1 :tm2
=

[
yT

tm
1

, yT
tm
1 +1, ⋯, yT

tm
2

]T
, which includes all mea

surements in the time interval tm
1 to tm

2 . Assume that the estimation 
window m has to overlapping time steps with the next window m + 1, so 
the sliding stride, which is defined as the time step difference between 
starting times of two successive windows equals to ts = tl − to.

In the window-based Bayesian inference method, the aim is to obtain 
the maximum a posteriori estimate of the updating parameters given the 
measurement dataset at the estimation window m, i.e., 

maxφm p
(

φm|ytm1 :tm
2

)
, where the parameter vector φm includes unknown 

model parameters, θ, and time history of unknown input load vector, 

utm1 :tm2 , across the mth estimation window, i.e., φm =
[

θT uT
tm1 :tm

2

]T
. The 

updated model parameter vector is then transferred to the next esti
mation window as initial values. A brief review of the method is pro
vided next.

The posterior PDF of the parameter vector φm given the measure
ment ytm

1 :tm2 
can be determined through the Bayes’ theorem as 

(Ebrahimian et al., 2018) 

p
(

φm|ytm1 :tm2

)
=

p
(

ytm1 :tm2

⃒
⃒
⃒φm

)
p(φm)

p
(

ytm1 :tm2

) (4) 

where p
(

ytm1 :tm2

⃒
⃒
⃒φm

)
and p(φm) denote the likelihood function and the 

prior PDF of the parameter vector, respectively. The term p
(

ytm1 :tm2

)
is a 

normalizing constant.
According to Eq. (3) and assuming that the measurement noise is an 

independent Gaussian white noise process, the likelihood function 

p
(

ytm
1 :tm2

⃒
⃒
⃒φm

)
is a Gaussian distribution with mean ŷtm

1 :tm2 
(predicted 

response) and covariance matrix R̃ = diag
(

Rtm
1

, Rtm
1 +1, ⋯, Rtm2

)
, where 

Rt for k ∈
{
tm
1 , ⋯, tm

2
}

is the measurement noise covariance matrix at 
time step k, and is assumed to be time-independent, i.e. Rt = R, and 
diag( ⋅) is an operator that gets matrices and forms a block-diagonal 
matrix. The prior PDF of the parameter vector p(φm) is assumed to 
have a Gaussian distribution with mean φ̂−

m and covariance matrix 
(
P̂

−

φ
)

m. Under these assumptions and approximating the posterior PDF 
as Gaussian distribution (Gaussianization), the MAP estimate of the 
parameter vector, and covariance matrix of posterior PDF can be derived 
as (Ebrahimian et al., 2018) 

φ̂+

m = φ̂−

m + G
(

ytm1 :tm2
− ŷtm1 :tm2

)

(
P̂

+

φ

)

m = (I − GC)
(
P̂

−

φ

)

m(I − GC)
T

+ GR̃ GT
(5) 

where φ̂+

m and 
(
P̂

+

φ

)

m are the posterior mean vector and covariance 

matrix of the parameter vector; G =
(

CTR̃
−1

C +
(
P̂

−

φ

)−1

m

)−1
CTR̃

−1 
is the 

Kalman gain matrix (Simon, 2006); ytm1 :tm2 
and ŷtm1 :tm2 

denote time histories 

of measured and model-predicted responses at window m, and C =

∂htm1 :tm2

(
φm, û1:tm1 −1, ẋ0, x0

)
/∂φm

⃒
⃒
⃒

φm=φ̂−
m 

denotes the sensitivity matrix, 

which is the Jacobian of model-predicted responses with respect to the 
parameter vector φm at φ̂−

m.
Gaussianization of the posterior PDF described above is a nonlinear 

procedure, and it can be performed through an iterative process. To 
improve the convergence of the iterative process at each iteration, the 
parameter vector becomes subjected to a random perturbation as 

φm,i = φm,i−1 + wi−1 wi−1 ∼ N(0, Q) (6) 

where φm,i and φm,i−1 are the parameter vector at iteration i and i − 1, 
respectively, and wi−1 denotes the perturbation term with zero mean 
and covariance matrix Q. Using Eq. (6), the prior mean vector and 
covariance matrix of the parameter vector at iteration i can be predicted 
as 

Fig. 1. Dividing the dataset into the overlapping windows in the window-based Bayesian inference approach.

M. Valikhani et al.                                                                                                                                                                                                                              Ocean Engineering 313 (2024) 119458 

3 



φ̂−

m,i = φ̂+

m,i−1
(
P̂

−

φ

)

m,i =
(
P̂

+

φ

)

m,i−1 + Q
(7) 

where φ̂+

m,i−1 and 
(
P̂

+

φ

)

m,i−1 are posterior mean vector and covariance 

matrix at iteration i − 1 computed using Eq. (5) as φ̂+

m,i−1 = φ̂+

m and 
(
P̂

+

φ

)

m,i−1 =
(
P̂

+

φ

)

m, and φ̂−

m,i and 
(
P̂

−

φ

)

m,i are prior terms, which are used 
for updating the mean and covariance matrix in Eq. (5). The iterative 
process to estimate the parameter vector based on the measurement data 
at mth estimation window is continued until convergence criteria are 

satisfied, i.e., the iterative process stops if 
⃦
⃦
⃦φ̂+

m,i −φ̂−

m,i

⃦
⃦
⃦ < ϵ

⃦
⃦
⃦φ̂−

m,i

⃦
⃦
⃦ is 

satisfied, where ‖ ⋅‖ denotes Euclidean norm, and ϵ is the tolerance 
value. Then, the estimated parameter vector and its associated covari
ance matrix at the current window are set as initial values for the next 
estimation window (Ebrahimian et al., 2018). Table 1 summarizes the 
framework of the window-based Bayesian inference approach for joint 
input loads and parameter estimation.

2.2. Finite element model of OWT structure

In this paper, we investigate the FE model inversion of an OWT 
structure, which is located approximately 3 miles southeast of the Block 
Island in Rhode Island in the United States. The OWT structure consists 
of a steel tower mounted on a steel jacket structure as shown in Fig. 2. 
The center of the hub is approximately 100 m above the mean sea level 
(MSL). The substructure consists of a jacket structure with legs con
nected to piles, a deck, and a transition piece connecting the substruc
ture to the tower. The height of the platform from the MSL is 
approximately 22 m, and the water depth is about 28 m.

The FE model of the OWT structure was created in the open-source 
FE platform, OpenSees (McKenna et al., 2000), to simulate the struc
ture response, and it is interfaced with MATLAB (MathWorks Inc, 2022) 
for model updating. OpenSees is an object-oriented open-source soft
ware for creating linear and nonlinear finite element models of struc
tural and soil systems. The aim of OpenSees is to provide an open-source 
platform in which researchers can easily build and test their models, and 

develop new materials, elements, and solvers.
To build the FE model of the OWT structure, the following assump

tions are made. The rotor-nacelle-assembly is simplified as a lumped 
mass on the top of the tower, whose mass and mass moment of inertia 
are selected based on the actual turbine properties. Only flexural 
deformation of the tower and jacket are considered, and they are 
modeled by linear Euler-Bernouli beam elements. The connections of 
tower bottom and the jacket substructure (transition piece) are modeled 
using rigid beams constraining rotational and translational degrees of 
freedom of the nodes at the tower bottom with nodes at the top of the 
jacket. The boundary conditions of the jacket elements at the mudline 
are assumed to be fixed.

The FE Model of the OWT structure consists of 61 nodes and 88 el
ements. The tower is divided into 32 elements along the vertical height 
to consider changes in the cross-section, see Fig. 3. The substructure is 
modeled as a frame structure, including 48 elements. The wind loads 
consist of concentrated forces and moments and are applied to the tower 
top. The wave loads are distributed over the jacket substructure and are 
applied as equivalent nodal forces in the finite element model (Bathe, 
2006).

The main parameters of the OWT structure for creating the FE model 
are summarized in Table 2. Some of the parameter values are not dis
closed because of confidentiality and reserving the rights of the turbine 
owner and manufacturer. The RNA mass and moments of inertias are 
calculated about the local coordinate system, which is described in 
Section 2.3.1. The jacket and tower element properties including mass, 
length, cross-section area, and second moment of area are calculated 
based on the design drawings.

2.3. Wind and wave loads applied on the OWT structure

2.3.1. Wind load
This study uses OpenFAST platform (NREL, 2022) to simulate the 

wind loads to be applied to the structural model. Wind load can be 
calculated based on the Blade Element Momentum (BEM) theory, in 
which a wind turbine blade is divided into small elements acting aero
dynamically as a two-dimensional (2D) airfoil (Moriarty and Hansen, 

Table 1 
A window-based Bayesian inference method for joint input loads and parameter estimation.

1. Setting the window properties and initial values for the first estimation window
1.1 Set the window counter m = 1.
1.2 Define the estimation window length tl and sliding stride ts.

1.3 Set the initial values of prior mean and covariance matrix of the parameter vector as φ̂+
m,0 =

[

θ̂
T
0 ûT

t11 :t12 ,0

]T
, where θ̂0 is the initial value of the unknown model parameters and 

ût11 :t12 ,0 is the initial value of unknown input loads at the first estimation window, and 
(
P̂

+

φ
)

m,0 =

[
(P̂θ)0 0

0
(
P̂

+

u
)

t11 :t12 ,0

]

, where (P̂θ)0 is the prior covariance matrix of the unknown 

model parameters and 
(
P̂

+

u
)

t11 :t12 ,0 is the prior covariance matrix of unknown input loads at the first estimation window.

1.4 Define the perturbation covariance matrix Q and measurement error covariance matrix R̃.

2. Updating the parameter vector and covariance matrix at mth window
2.1 Set the iteration counter i = 1.

2.2 Set φ̂−
m,i = φ̂+

m,i−1 and 
(
P̂

−

φ
)

m,i =
(
P̂

+

φ
)

m,i−1 + Q.

2.3 Run the model with φ̂−

m,i to find the predicted response: ŷtm1 :tm2 = htm1 :tm2

(
φ̂−

m,i , û1:tm1 −1, ẋ0,x0

)
.

2.4 Compute the response sensitivity: C = ∂htm1 :tm2

(
φm, û1:tm1 −1, ẋ0, x0

)
/∂φm

⃒
⃒
⃒
φm=φ̂−

m,i

.

2.5 Compute the Kalman gain matrix: G =
(

CTR̃
−1

C +
(
P̂

−

φ
)−1

m,i

)−1
CTR̃

−1
.

2.6 Compute the parameter vector and associated covariance matrix:

φ̂+

m,i = φ̂−

m,i + G
(

ytm1 :tm2
− ŷtm1 :tm2

)
and 

(
P̂

+

φ
)

m,i = (I − GC)
(
P̂

−

φ
)

m,i(I − GC)
T

+ GR̃GT .

2.7 Check the convergence criteria ‖φ̂+
m,i − φ̂−

m,i‖ < ϵ‖φ̂−
m,i‖, and if it is satisfied, go to step 3, otherwise, set i = i + 1 and repeat from step 2.2.

3. Setting the initial values of the parameter vector and covariance matrix for (m + 1)
th estimation window

3.1 Set m = m + 1.
3.2 Compute the initial parameter vector: φ̂−

m,0 (see Ref. (Ebrahimian et al., 2018) for more details).

3.3 Compute the covariance matrix: 
(
P̂

−

φ
)

m,0 (see Ref. (Ebrahimian et al., 2018) for more details).
3.4 Return to Step 2.
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2005). In this paper, the turbulence wind regime is considered, and 
Kaimal spectrum (Jonkman and Buhl, 2005) is selected to determine the 
turbulence component of the wind velocity as 

Sv(f) =
4I2L

(1 + 6fL/v)
1.67 (8) 

where Sv(f) denotes wind speed power spectral density, f is wind 

frequency in Hz, I denotes the turbulence intensity. Also, L is an integral 
scale parameter such that, L = 20z for z < 30 m and L = 600 m for >

30 m , where z is the height from sea level. In Eq. (8) v is the mean wind 
velocity, which can be computed using the logarithmic wind profile as 

v(z) =
Vlog(z/z0)

log(H/z0)
(9) 

where V is the mean wind speed at the turbine reference height H at 
which the speed V is known, and z0 is the roughness length of the ocean 
surface. In this study, mean wind speed is considered as 12 m/s, 
roughness of sea surface is 10−4 m, and turbulence intensity is 10%.

Fig. 2. Block Island Wind Farm, in Rhode Island, United States (Photo credit: Gary Norton, DOE).

Fig. 3. Schematics of the FE model of the OWT structure.

Table 2 
The main parameters of the OWT structure.

Components Parameters (geometrical and physical)

Names Values

Nacelle RNA mass Confidential
RNA mass moments of 
inertias

Confidential

Tower Length 78 m
Inner and outer radiuses Confidential
Moments of area Confidential
Modulus of elasticity and 
Poission’s ratio

200 GPa, and 
0.25

Density 7850 Kg/m3

Deck and jacket (including legs 
and braces)

All geometrical parameters Confidential
Modulus of elasticity and 
Poission’s ratio

200 GPa, and 
0.25

Density 7850 Kg/m3

Fig. 4. Local and global coordinate systems of the OWT.
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Wind loads are computed and represented in the local coordinate 
system (side-to-side as local y direction and fore-aft as local x direction) 
of the turbine as shown in Fig. 4. The simulated wind loads in OpenFAST 
are applied on the FE model along the fore-aft and side-side directions in 
this study. For FE model updating, the loads are projected to a global 
coordinate system, i.e., X-Y-Z in Fig. 4, where Z denotes upright direc
tion. The wind loads at the local coordinate system are projected to the 
global coordinate system as 

FX−Y−Z = TFx−y−z, MX−Y−Z = TMx−y−z (10) 

where the transformation matrix is 

T =

⎡

⎣
cos γ −sin γ 0
sin γ cos γ 0

0 0 1

⎤

⎦ (11) 

In Eq. (10), the terms FX−Y−Z =
[
FWind

X FWind
Y FWind

Z

]T and MX−Y−Z =
[
MWind

X MWind
Y MWind

Z

]T are wind force and moment vectors in the 

global coordinate system, respectively, and Fx−y−z =

[
FWind

x FWind
y FWind

z

]T 
and Mx−y−z =

[
MWind

x MWind
y MWind

z

]T 
are wind 

force and moment vectors in the local coordinate system, respectively.

2.3.2. Wave load
As can be seen in Fig. 2, the jacket substructure is made of four cy

lindrical legs, and wave load is distributed over each leg. Morison’s 
equation can be used to calculate the wave load acting on a slender 
cylindrical structure (Faltinsen, 1993), see Fig. 5. The wave load dF 
acting on a strip of length dz of the substructure can be expressed as 

dF =
1
2

ρDCd|u̇|u̇dz +
1
4

πCmD2ρüdz (12) 

where ρ = 1025 kg/m3 is the density of the water, D = 1.6 m is the 
diameter of the substructure, and Cd = 1.2 and Cm = 2 represent the 
drag and mass coefficients, respectively. Moreover, the acceleration and 
velocity of water wave particles (ü and u̇) can be determined using 
JONSWAP spectrum (IEC 61400-3-1:2019) as follows 

S(f) =
5
16

H2
s Tω

(
f
fω

)−4

α(1 − 0.287 ln γ)γβ (13) 

where f is frequency of the spectrum, Tω = 10 s is the wave period, 
fω = 1/Tω is the wave frequency, Hs = 3m is the significant wave height, 

γ denotes the peakedness parameter (IEC 61400-3-1:2019), α = exp
(

−

1.25(f/fω)
−4

)
, and β = exp

(

−
(f−fω)2

2σ2f2
ω

)

, where parameter σ can be 

computed as 

σ =

{
0.07 f < fω
0.09 f > fω

(14) 

According to the JONSWAP spectrum, water particles velocity and 
acceleration can be determined as 

u̇ =
∑N

j=1
ωjAj

cos h[k(z + Hw) ]

Tω sin h(kHw)
sin

(
ωjt − kjx + ϕj

)

ü =
∑N

j=1
ω2

j Aj
cos h[k(z + Hw) ]

Tω sin h(kHw)
cos

(
ωjt − kjx + ϕj

)
(15) 

where ω is the wave frequency in rad/s, k is the wave number in 1/m 
and can be related to wave frequency ω and water depth z by the 
dispersion equation, k tanh(kz) = ω2/g where g = 9.8 m/s2, ϕj repre
sents the uniform random phase angle distributed over [0, 2π], Hw =

27.75 m is the water depth, and Aj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2S
(
ωj

)
Δω

√

where Δω = ωc/N in 
which ωc represents the upper cut-off frequency and N denotes the 
number of frequency data points.

3. Case studies

In this section, the effect of sensor type, the number of sensors, and 
modeling errors on the accuracy of input loads and model parameter 
estimation are investigated through three case studies described in 
Table 3. In Case 1, assume that only wind forces as input and RNA mass 
as model parameters are unknown. In this case, the FE model used for 
simulation is the same as the model used for input/parameter estima
tion. Objective here is to investigate the effect of sensor type on input/ 
parameter estimation, and to this end, only wind forces are considered. 
In Case 2, wind-induced moments are also included in the models to 
increase the number of unknown input loads, and the goal is to inves
tigate the number of sensors on input/parameter estimation. Case 3 is 
considered to investigate the effect of input load assumptions and 
parameter errors on input/parameter estimation, so it is divided into 
two subcases (Case 3-1 and Case 3-2). In Case 3-1, the module of elas
ticity in the simulation model is different from the estimation model. In 
Case 3-2, wave load is included in the simulation model while neglected 
in the estimation model to understand the potential effects of various 
modeling errors on the model updating process in offshore wind turbine 
applications.

In the simulation model, the wind and wave loads generated from 

Fig. 5. Cylindrical substructure with wave load.

Table 3 
Summary of case studies.

Case 
name

Objective Loads in the 
simulation 

model

Unknown 
Loads in the 
estimation 

model

Remarks

1 Investigating the 
effect of sensor 
type on input/ 
parameter 
estimation

Wind forces 
only

Wind forces 
only

No modeling 
error

2 Investigating the 
effect of number of 
sensors on input/ 
parameter 
estimation

Wind forces 
and moments

Wind forces 
and moments

No modeling 
error

3–1 Investigating the 
effect of model 
parameter error on 
input/parameter 
estimation

Wind forces 
and moments

Wind forces 
and moments

Model of 
elasticity in the 
simulation 
model is 
different with 
the estimation 
model

3–2 Investigating the 
effect of model 
input load error on 
input/parameter 
estimation

Wind and 
wave forces, 
and wind 
moments

Wind forces 
and moments

Inputs in the 
simulation 
model is 
different with 
the estimation 
model
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OpenFAST and Morrison’s equation, respectively, are applied to the FE 
model of the wind turbine. Then, responses of the structure are recorded 
and artificially polluted with Gaussian white noise, where noise to signal 
ratio is 1% for each measurement channel, i.e., RMS(noise) = 0.01 ×

RMS(measurement). The noisy responses are considered as synthetic 
measurement data. In the estimation model, wind loads and model pa
rameters are unknown. The synthetic measurement data are integrated 
into the FEM model of the tower using the Bayesian inference method to 
estimate unknown wind loads and model parameters.

Fig. 6 (a) illustrates the top view of the tower, the local and global 
coordinate systems, and the wind and wave directions. Fig. 6 (b) shows 
the cross section of the tower top and the wind loads, and Fig. 6 (c) il
lustrates the cross section of the deck leg base and the wave loads. Fig. 7
shows the synthetic wind loads and their frequency spectra applied to 
the tower top in the local coordinate system. Fig. 8 displays the synthetic 
wave loads and their frequency spectra at deck leg base, which is located 
at sea level as shown in Figs. 3 and 6 (a) with a green color node. The 
wave loads are distributed over the substructure, and nodal forces and 
moments are accordingly calculated and applied to the FE model. The 
wave loads shown here are only in one direction, and they are assumed 
to be zero in other directions. The wind and wave loads are assumed to 
be in the same direction. While the interaction of wind and blades cre
ates loads with different components in x and y directions, and the 
interaction of wave and substructure only creates a distributed force in 
one direction.

Synthetic measurement data include acceleration and strain re
sponses at different locations along the tower as shown in Fig. 9. The 
green nodes represent accelerometers placed at heights of 26 m, 52 m, 
and top of the tower. The accelerometers are assumed to be biaxial, 
measuring acceleration responses in X and Y directions. The red nodes 
indicate the strain gauges placed at the base and middle height of the 
tower. There are four strain gauges at each section in order to estimate 
wind loads in X and Y directions. Each strain gauge can record axial 
strain only in the Z direction.

In system identification and model updating applications, identifi
ability or observability analysis can be utilized to decide about the most 
identifiable parameter sets, especially when dealing with large number 
of unknown parameters. However, most of the assessment frameworks 
are either for model parameters (Ebrahimian et al., 2019; Shi et al., 
2021) or input loads (Martinelli, 2019), and a joint input-parameter 
identifiability assessment framework has not been developed for 
generic models (Maes et al., 2019). For a model parameter to be iden
tifiable, the model response at measurement locations should be sensi
tive enough to the parameter, and the parameter should not have 
correlation or dependence on other unknown parameters. Adjusting the 
measurement locations, i.e., optimal sensor placement (Ercan et al., 
2023; Ercan and Papadimitriou, 2023), can help with the identifiability 
problem. Regardless of the number of unknown parameters, as long as 

the unknown parameters remain identifiable, they can be estimated 
through the model updating process. In the current problem, for the 
given sensor array shown in Fig. 9, it was found that only RNA mass and 
wind loads applied to the tower top can be jointly estimated accurately.

Characterizing the aerodynamic damping in wind turbine modeling 
can often be challenging (Hansen, 2015; Hansen et al., 2006; Stäblein 
et al., 2017). Aerodynamic damping stems from the wind-blade inter
action and it can affect the blade dynamics, which is transferred to the 
tower top as force components. In this study, the estimated input wind 
loads embody both the interactions of wind-blades and tower-blades; 
thus, they will include the effects of aerodynamic damping.

To implement the window-based Bayesian inference approach for 
joint input loads and model parameter estimation, window parameters, 
and filter hyperparameters should be selected carefully. Tunning the 
hyperparameter was investigated in previous studies (Ebrahimian et al., 
2015, 2018). Here the effects of different hyperparameters are discussed 
briefly. 

• The window length and sliding stride are set to 100- and 80-time 
steps, respectively. It was founded in Ebrahimian et al. (2018) that 
large window length improves the input load estimation accuracy 
but increases the computational cost. On the other hand, small 
window length does not embody enough system responses, i.e., the 
short window is not informative enough to estimate the input loads 
accurately. There is a trade-off between estimation accuracy and 
computational cost to select proper window length.

• The initial value of the model parameters and associated covariance 
matrix at the first window is set as θ̂0 = 0.8θ̂true and (P̂θ)0 =

diag(pθ θ̂0)
2, where θ̂true is the true value of the model parameter 

(RNA mass), and pθ = 0.3 is the coefficient of variation (CoV) of the 
initial parameter estimate. Generally, the covariance matrix (P̂θ)0 
quantifies the uncertainties in the initial parameter estimate. It is a 
diagonal matrix, which indicates the parameters are statistically 
uncorrelated. Increasing CoV, pθ, introduces more uncertainty to the 
initial value of the model parameters. In this condition, the Bayesian 
filtering process relies more on the discrepancies between the pre
dicted and measured responses than the initial values to update the 
parameters. Higher value of pθ may accelerate the parameter esti
mation process but may also destabilize the estimation process 
(Ebrahimian et al., 2015; Hoshiya and Saito, 1984; Simon, 2006).

• The initial values of load estimate ûT
t1
1 :t12 ,0 at the first window is zero, 

and the covariance matrix of load estimate is a diagonal matrix with 
diagonal entries (supu)

2, where su = 1000 denotes a scaling factor 
indicating the order of magnitude of the wind loads, and pu is the 
initial standard deviation of the wind loads which are set as pu = 0.5 
kN for input forces and pu = 0.5 kN.m for input moments. By setting 
the value of pu, we can regularize the estimation process or enforce 

Fig. 6. (a) Top view of the wind turbine and coordinate systems, (b) cross section of the tower top and direction of wind loads, and (c) cross section of the deck leg 
base and direction of wave loads.
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Fig. 7. Synthetic wind loads applied to the tower top, (a,b) wind force time history and its frequency spectrum in the x direction, (c,d) wind force time history and its 
frequency spectrum in the y direction, (e,f) wind moment time history and its frequency spectrum in the x direction, and (g,h) wind moment time history and its 
frequency spectrum in the y direction.

Fig. 8. Synthetic wave loads at deck leg base, (a,b) wave force time history and its frequency spectrum in the x direction, (c,d) wave moment time history and its 
frequency spectrum in the x direction.
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smoothness on the loads estimate (Aster et al., 2018; Dashti and 
Stuart, 2017; Mohammad-Djafari, 2021). The small value of pu re
sults in smoother input load estimates, and the algorithm trusts more 
on prior information; however, the large value of pu makes the al
gorithm sensitive to the measurement data, and the estimated loads 
can become noisy (Ebrahimian et al., 2018).

• The covariance matrix of the perturbation term in Eq. (6) is 
expressed as a diagonal matrix with two diagonal submatrices Qθ and 
Qu, where the matrix Qθ associated with parameter perturbation is 
set as Qθ = diag(qθ θ̂0)

2 with the coefficient of variation qθ = 10−3, 
and the matrix Qu associated with load perturbation is a diagonal 
matrix with entries (qu)

2 and the standard deviation value is set to 
qu = 10−2. The perturbation term adds perturbation to the iterative 
process, whereby the large value of the perturbation variance im
proves the convergence speed but might cause instability of the al
gorithm; conversely, the smaller value of perturbation variance 
deaccelerates the convergence of the process (Ebrahimian et al., 
2018).

• Moreover, the covariance matrix of measurement error R is a diag
onal matrix with entries 

(
rf × RMS(y)

)2, where rf = 10−2 is noise-to- 
signal ratio (NSR), and RMS(y) denotes root mean square of the 
measurement data. The value of NSR depends on the quality of 
measurement data. The higher NSR enforces the algorithm to rely 
more on the prior information about the parameters than the mea
surements. It will also slow down the convergence process. However, 
small values indicate trustworthy data, and the estimation process 
becomes sensitive to the discrepancies between the predicted and 
measured responses, which may destabilize the estimation process. 
Generally, the statistics of measurement error are unknown but can 
be estimated based on the sensor properties. Moreover, adaptive 
Bayesian filtering can be employed to estimate measurement error 
covariance matrix based on measurement data (Akhlaghi et al., 
2018; Nabiyan et al., 2023).

The estimation process follows the steps described in Table 1. 
OpenSees is used to predict the response of the structure in the local 
coordinate system given model parameters and input loads, then it in
terfaces with MATLAB to use the responses for model updating. The 
predicted responses are transformed to the global coordinate system in 
MATLAB, the model parameters are updated, and wind loads are 

estimated in the global coordinate system. Afterward, the estimated 
parameter and wind loads are shared with OpenSees in the local coor
dinate system for the next iteration. In the following case studies, results 
are shown in the global coordinate system, which is independent of 
turbine orientation or yaw angle.

3.1. Case 1: investigating the effect of sensor types on input load and 
model parameter estimation

In this case, the effect of sensor types such as strain gauge and 
accelerometer on input wind loads and parameter estimation is inves
tigated. In this simplest case study, only wind forces are considered as 
the source of excitation or input. The tower structure response is 
simulated by applying wind forces in X and Y directions in the global 
coordinate system. Three sets of measurement are considered in this 
case as listed in Table 4. In the model updating process, it is assumed 
that wind forces in the X and Y directions and RNA mass are unknown 
and to be estimated by employing the Bayesian inference framework.

Fig. 10 shows time history and frequency spectrum of the nominal/ 
true forces and those estimated according to the data of three sensor sets. 
As can been observed, the estimated forces based on Set 1, including 
only accelerations, show low-frequency drifts. These drifts appear 
because the dynamic response is not sensitive to low-frequency 
component of the input forces, i.e., quasi-static forces (Eftekhar Azam 
et al., 2015; Lourens et al., 2012; Valikhani and Younesian, 2019). 
Conversely, the estimated forces based on Set 2, including only strain 
data have high-frequency oscillations. This effect is due to the reason 
that strain data are not sensitive to high frequency forces. However, the 
combination of acceleration and strain measurements provide the most 
accurate estimation of input forces in a broader frequency range as 
shown in Fig. 10 (a)–(d). Fig. 11 shows the convergence history of the 
estimated RNA mass (normalized by true value of RNA mass which is not 

Fig. 9. (a) Sensor array on the tower, (b) sensor locations measured from the tower base, (c) biaxial accelerometers, and (d) uniaxial strain gauges.

Table 4 
Sensor types and their placement on the tower for Case 1.

Set 
Name

Sensor types and their placement

Set 1 3 accelerometers located at nodes B, D, and E as shown in Fig. 9
Set 2 4 strain gauges at node A as shown in Fig. 9
Set 3 3 accelerometers at nodes B, D, and E and 4 strain gauges at node A as 

shown in Fig. 9
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disclosed due to confidentiality) using different sensor sets. The nacelle 
mass can be estimated accurately if the dataset includes acceleration 
measurements, as in Set 1 and Set 3. Strain data do not include the mid- 
and high-frequency responses to which the RNA mass contributes, so Set 
2 is not informative to estimate RNA mass.

3.2. Case 2: investigating the effect of the number of sensors on input load 
and model parameter estimation

In this case, the effect of the number of sensors on wind load and 
model parameter estimation is studied. To this end, the dynamic 
response is simulated from the FE model of the tower by applying the 
wind loads, including wind forces and moments in X and Y directions. 
Two sensor sets are considered to record synthetic data as tabulated in 
Table 5. In the model updating process, it is assumed that wind loads, i. 
e., forces and moments at the tower top in X and Y directions are un
known to be estimated.

Fig. 12 compares the estimated forces and moments in X and Y di
rections at time and frequency domains based on the two sensor sets. As 

can be seen, the estimated loads based on both sets have high-amplitude 
oscillations at the beginning of the time history, which is because of the 
effect of non-zero initial conditions. In the beginning of the estimation 
window, we assumed at-rest initial condition. This is done to replicate a 
real-world monitoring condition. Moreover, the estimated loads based 
on the Set 1 display low-frequency drifts. These drifts are because of the 
insufficient number of strain gauge sensors. When data are recorded in 
one section of the tower, force and moments cannot be estimated 
uniquely, so additional strain data in Set 2 improves the load estimation 
accuracy.

Fig. 13 shows the convergence history of normalized estimated RNA 
mass for the two sensor sets. As can been seen, RNA mass can be esti
mated accurately for both sets. Each set contains acceleration data, 
which are sufficient to estimate the RNA mass.

3.3. Case 3: investigating the effect of modeling errors on input load and 
model parameter estimation

In this Section, two different sources of modeling errors are investi
gated. In Case 3-1, the effect of model parameter error is investigated, 
and in Case 3-2, the effect of input load error is investigated. 

Case 3-1. The effect of model parameter error

The modulus of elasticity is an important stiffness-related parameter 
in the FE modeling of an OWT structure. While the variation of this 
parameter is not significant for steel material in practice, deviation from 
the nominal values is possible due to, for example, manufacturing de
fects, corrosion, or other sources of operational deterioration. In previ
ous case studies, the modulus of elasticity was considered similar 
between the simulation and estimation models. This case study in
vestigates the effect of error in the modulus of elasticity on wind load 
and RNA mass estimation. To this end, synthetic data are generated 
using the FE model of the tower with the modulus of elasticity E = 190 
GPa. In the model updating process, the modulus of elasticity in the FE 
model is assumed to be E = 200 GPa, i.e., 5% error is introduced to the 
modulus of elasticity. Input loads in the simulation and parameter 
estimation models are similar, i.e., they include wind forces and mo
ments in the X and Y directions. Sensor types and locations are the same 
as Set 2 described in Table 5.

Fig. 14 shows the time history and frequency spectrum of true and 
estimated loads for this case study. The estimated loads in X and Y di
rections include low-frequency drifts, which appear as a baseline and are 
due to the error in the modulus of elasticity. The wind loads have sig
nificant energy at the low-frequency band, and the response of the 

Fig. 10. Time history and frequency spectrum of true and estimated wind forces for different sensor sets, (a,b) X direction, (c,d) Y direction for Case 1.

Fig. 11. Convergence history of normalized RNA mass for different sensor sets 
for Case 1.

Table 5 
Sensor types and their placement on the tower for Case2.

Set 
Name

Sensor types and their placement

Set 1 3 accelerometers at nodes B, D, and E and 4 strain gauges at node A as 
shown in Fig. 9

Set 2 3 accelerometers at nodes B, D, and E and 8 strain gauges at nodes A and 
C as shown in Fig. 9

M. Valikhani et al.                                                                                                                                                                                                                              Ocean Engineering 313 (2024) 119458 

10 



structure subjected to low-frequency loads is mostly controlled by the 
stiffness properties of the model. Therefore, the error in the modulus of 
elasticity is compensated for by a drift in the estimated wind loads. 
Fig. 15 displays the convergence history of the normalized RNA mass. As 
can been seen, the estimated RNA mass is higher than the true value, 
which is the result of the modeling error in the modulus of elasticity. 

Case 3-2. The effect of input load error

The dynamic response of an OWT structure to wave loads is often 
insignificant compared to wind loads, due to the amplitude and appli
cation location of wave loads. Nevertheless, wave loads will be a source 
of modeling error if not accounted for correctly in the model updating 
process. The objective of this case study is to investigate the potential 
impacts of neglecting wave loads in the joint wind load and model 
parameter estimation. For this purpose, both wind and wave loads are 
considered in the simulation model, but only wind loads are considered 
and estimated in the model updating process. Sensor type and array are 
the same as Set 2 as described in Table 5.

Fig. 16 shows the time history and frequency spectrum of true and 
estimated wind loads for the case where the effects of wave loads are 
neglected in the model updating process. As can be observed, the esti
mated wind loads match the true loads. The reason is likely due to the 
high stiffness of the jacket substructure and the relatively low amplitude 
of wave loads, which cannot excite the system considerably. Fig. 17
displays the convergence history of the estimated RNA mass for the case 
having error in input loads. As can be seen, the error in the input loads 
has little impact on the RNA mass estimation.

4. Conclusions

Estimation of input loads and mechanics-based model parameters 
characterizing the dynamic response of offshore wind turbine (OWT) 

Fig. 12. Time history and frequency spectrum of true and estimated wind loads for two sensor sets, (a,b) forces in the X direction, (c,d) forces in the Y direction, (e,f) 
moments in the X direction, and (g,h) moments in the Y direction for Case 2.

Fig. 13. Convergence history of normalized RNA mass according to the data of 
two sensor sets for Case 2.
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structures is important for health monitoring, digital twinning, and 
remaining useful life prediction of these assets. In this study, a time- 
domain Bayesian inference method was presented to estimate input 
wind loads and rotor-nacelle assembly (RNA) mass in an OWT based on 
the dynamic response of the tower. The objective was to investigate the 
potential and limitations of the presented inference approach. Three 
fundamental questions pertaining to wind load and model parameter 
estimation were investigated through three different case studies using 
synthetically simulated data. These cases include the effects of sensor 

type (Case 1), number of sensors (Case 2), and modeling error (Case 3) 
on the estimation results. The first case study showed that the combi
nation of acceleration and strain measurements are essential for accu
rate estimation of wind loads and RNA mass. Acceleration response is 
sensitive to high-frequency loadings while strain response is sensitive to 
low-frequency loading. Their combination yields the best wind load 
estimation capacity in broad frequency band. The second case study 
demonstrated that sensors should be deployed at different levels of the 
tower to enable the estimation of all components of wind loading 
including forces and moments. In the studied case, acceleration and 
strain data at two cross-sections along the tower height were required 
for a unique estimation of the wind forces and moments. In the third case 
study, the effect of two modeling errors including model parameter error 
(inaccurate modulus of elasticity) and input load error (neglected wave 
loads) in the model updating process were investigated. For the model 
parameter error case, wind load estimates were affected by the modeling 
error, which caused a low-frequency drift in the estimated wind loads. In 
the case of model input load error, the studied case results showed that 
neglecting wave loads in the model updating process will likely have 
negligible effects on the wind load estimation. This is due to the low 
impact of the wave loads on the dynamic response of the OWT tower and 
the high stiffness of the substructure to which the wave loads were 
applied in the considered case study.

The framework proposed in this paper can be used for monitoring 

Fig. 14. Time history and frequency spectrum of true and estimated wind loads based on the model with error in modulus of elasticity, (a,b) forces in the X direction, 
(c,d) forces in the Y direction, (e,f) moments in the X direction, and (g,h) moments in the Y direction for Case 3-1.

Fig. 15. Convergence history of normalized RNA mass based on the model with 
error in modulus of elasticity for Case 3-1.
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and estimating parameters including model parameters and loads that 
can affect the structural responses. The marine condition has a stochastic 
dynamic nature, and it can cause change in the properties of structures 
and loadings. For example, extreme events such as storms in the ocean 
can apply significant loads to OWT structures, or temperature variation 
might change the properties of composite materials in blades, so it might 
affect the blade-tower interaction forces. If the environmental and 
operational conditions can be represented by parameters, then the 

Bayesian framework can be used to estimate those parameters from the 
structural responses. The parameters are identifiable if the measured 
responses are informative enough about the parameters, and also the 
parameters should be uncorrelated or independent; otherwise, the 
environment conditions will result in modeling error.

This study highlighted the importance of instrumentation, including 
sensor type and number, and modeling error in input load and model 
parameter estimation in OWTs. The combination of different sensors 
provides informative data to accurately estimate model parameters and 
wind loads in broader frequency band without having low-frequency 
drifts or high-frequency oscillations. Moreover, accurate and unique 
joint input-parameter estimation is possible with adequate number of 
sensors installed at locations where the structural responses are sensitive 
to the estimation quantities. Modeling error is a challenging issue in the 
model updating process and can result in biased estimations, as seen in 
the case of model parameter error. Generally, the effect of modeling 
error can be reduced if sources of error can be identified, and error 
characteristics can be quantified. The study included two main limita
tions. First, it has been performed using synthetic data through idealized 
case studies. In real-world problems, the data include measurement 
noise with unknown statistics. Second, the study did not offer a holistic 
and comprehensive approach to find the optimal type, number, and 
placement of sensors for different estimation objectives. This can be the 
subject of future work. Nevertheless, the study illuminated important 

Fig. 16. Time history and frequency spectrum of true and estimated wind loads based on the model with error in input loads, (a,b) forces in the X direction, (c,d) 
forces in the Y direction, (e,f) moments in the X direction, and (g,h) moments in the Y direction for Case 3-2.

Fig. 17. Convergence history of normalized RNA mass based on the model with 
error in input loads for Case 3-2.
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physical facts about the application of time-domain Bayesian inference 
for joint input-parameter estimation in OWTs, which can guide future 
research efforts.
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