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Operating in harsh and unsteady marine environment, offshore wind turbine (OWT) structures are exposed to
unpredictable wind and wave loads. Identifying the structural loads and their effects on the OWTs allow for
predicting the remaining fatigue life of these structures and improving the structural design procedure. In this
paper, a finite element (FE) model inversion method is presented to estimate the unknown loads and model
parameters of OWTs using sparse measurement data. A realistic FE model of an OWT structure with jacket
substructure is created in the open-source simulation platform, OpenSees. A Bayesian inference framework is
presented to integrate the measured data with the FE model to estimate unknown wind loads and mass of rotor-
nacelle assembly. To evaluate the performance of this data assimilation framework, the effect of sensor type,
number of sensors, and modeling errors on the estimation accuracy of wind loads and model parameters are
investigated through different case studies where synthetic data are used as measurements. The results of this
study are important to guide instrumentation of new OWT structures, and to understand the potential limitations
and sources of error in the real-world application of this data assimilation framework for joint model parameter
and input load estimation.

1. Introduction

Offshore wind turbine (OWT) structures operate in harsh marine
environment and are exposed to unpredictable dynamic loads
(Rockmann et al., 2017). Dynamic loads impact the remaining useful life
and can result in fatigue failure in OWT components and structure
(Igwemezie et al., 2019). Because of the uncertain operational condi-
tions, loadings considered in the design stage of OWT structures can be
different from the operational stage, so fatigue life can be shorter than
what is expected. Estimation of the wind and wave loads from the dy-
namic response of the structure can improve the fatigue design process
and can be further used to predict the remaining useful life of structures
for instrumented OWTs. Additionally, any potential damage or deteri-
oration in the structural system can be identified by tracking the struc-
tural properties such as mass and stiffness. In this paper, a finite element
(FE) model updating method is presented for estimating structural
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model parameters and unknown loads of an OWT using sparsely
measured structural responses. The objective is to evaluate the efficacy
of the method and understand its potential and limitations for real-world
application through a series of case studies using numerically simulated
data.

In the FE model updating process, mechanics-based laws are
employed to develop a structural model, and measurement responses are
used to estimate the unknown model parameters and input loads. Two
main approaches exist for FE model updating: frequency-domain model
updating (Augustyn et al., 2020; Friswell and Mottershead, 1995; Hu
et al., 2018) and time-domain model updating (Ebrahimian et al., 2015;
Eftekhar Azam et al., 2015; Naets et al., 2015). In the frequency-domain
model updating, first, the numerical model of the structure is parame-
trized based on the structural parameters such as stiffness, damping, and
mass. Through experimental modal analysis or operation modal analysis
(OMA), modal properties are identified using measurement data. Then,

Received 14 June 2024; Received in revised form 24 September 2024; Accepted 5 October 2024

Available online 24 October 2024

0029-8018/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:hebrahimian@unr.edu
www.sciencedirect.com/science/journal/00298018
https://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2024.119458
https://doi.org/10.1016/j.oceaneng.2024.119458
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2024.119458&domain=pdf

M. Valikhani et al.

model parameters are estimated by minimizing the discrepancies be-
tween model-predicted and identified modal properties. Conventional
OMA methods have been used for wind turbine structural health
monitoring, condition assessment, and modal identification (Augustyn
et al., 2020; Devriendt et al., 2014; Hines et al., 2023; Moynihan et al.,
2023; Ozbek and Rixen, 2013; Song et al., 2022, 2023; Xu et al., 2020).
These methods include natural excitation technique combined with
eigensystem realization algorithm (NExT-ERA) (James III et al., 1993)
and data-driven stochastic subspace identification (SSI) (Oliveira et al.,
2016; Peeters and de Roeck, 1999), which are based on the broadband
assumption for input excitations. Nevertheless, because of the rotation
of turbine blades, the excitation frequencies would include harmonic
components, such as fundamental rotational (1 P) and blade passing
frequencies (3 P for three-bladed turbines) (Van der Tempel, 2006),
which may affect the modal identification accuracy. Various modified
OMA approaches have been developed to deal with the disturbing har-
monic components of structural responses to improve modal identifi-
cation accuracy (Dai et al., 2017; Jacobsen et al., 2007; Pintelon et al.,
2010). Using classical OMA at idling or parked conditions can also
minimize the effect of harmonic components in the modal identification
of wind turbines (Augustyn et al., 2020; Devriendt et al., 2014). In this
paper, we pursue a time-domain model updating approach to avoid the
potential shortcomings of frequency-domain methods.

Time-domain model updating approaches can be used to estimate
jointly the states, model parameters, and input forces of a dynamic
system (Naets et al., 2015). In these approaches, the state of the system is
augmented with unknown model parameters and inputs, and an
Extended Kalman filter (EKF) (Simon, 2006) can be employed to esti-
mate the augmented state. Fallais et al. (2016) identified the hydrody-
namic load and stiffness of an OWT with an EKF using simulated data.
Maes et al. (2016) compared three algorithms, including Kalman filter, a
joint input-state estimation, and modal expansion, to monitor the dy-
namic strains in the OWT tower with monopile substructure at parked
and operating conditions. All three algorithms were evaluated for a
given model of the structure and compared when acceleration-only data
or a combination of acceleration and strain data were used. For
acceleration-only data, joint input-state estimation and modal expan-
sion provided acceptable results, while the inclusion of strain data
improved the KF-based results. Nabiyan et al. (2021) employed a
sequential Bayesian inference method to estimate an unknown model
parameter (rotational stiffness of the foundation) jointly with the
effective wind load time history applied to a monopile OWT using strain
response measurements. They compared the accuracy of this estimation
method with the modal expansion method for predicting flexural
moment time history at the mudline. The results show that the Bayesian
algorithm can be more accurate than the modal expansion method. Song
et al. (2022) used a recursive Bayesian inference approach for joint
parameter-input estimation and strain time history prediction of an
offshore platform in the North Sea. They updated the FE model of the
structure using acceleration and strain data and compared their pro-
posed method with the modal expansion-based method for strain pre-
diction. They observed that the Bayesian framework provides more
accurate strain prediction than the modal expansion method. The
Bayesian inference also has been employed for monitoring monopile of
OWT (Xu et al., 2023), virtual modeling of offshore jacket structures
(Wang et al., 2022), optimal sensor placement (Mehrjoo et al., 2022),
load identification of wind turbines (Wei et al., 2023), support condition
monitoring of OWT (Ren et al., 2023), fatigue monitoring of wind tur-
bines (Flores Terrazas et al., 2022), breaking wave load estimation
(Maes et al., 2018), virtual sensing of subsoil strain response (Zou et al.,
2023), foundation parameter estimation of OWT (Simpson et al., 2024),
and fatigue stress assessment of OWT (Noppe et al., 2018; Tatsis et al.,
2017).

In the previous studies, OWT model updating has been carried out
based on simplified structural models (Dai et al., 2017; Fallais et al.,
2016; Xu et al., 2020), white noise assumption for input excitation
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(Oliveira et al., 2016), and non-operational conditions, i.e., idling or
parked (Augustyn et al., 2020; Devriendt et al., 2014). Past studies
considered a simple 2D model of the structure and estimated the input
wind force only in one direction (Dai et al., 2017; Fallais et al., 2016; Xu
et al., 2020); while in an actual OWT, the wind and wave loads excite the
structure in both side-to-side and fore-aft directions simultaneously.

This study is a proof-of-concept for creating virtual models of wind
turbine structures (digital twinning) and predicting the responses at
inaccessible locations (virtual sensing). The aim is to investigate the
application and limitation of time-domain model updating for joint
parameter-load estimation in OWTs. For this purpose, the study is based
on synthetic data to provide an upper bound accuracy on the estimation
results. Realistic model of a jacket-based OWT, which represents the
turbines at Block Island Wind Farm (BIWF) in the United States, under
realistic loadings is built to generate synthetic data recorded from
realistic sensor configurations.

In this paper, a window-based Bayesian model updating of jacket-
based OWT model is developed through a 3D FE model. Simulated re-
sponses of the OWT structure under wind and wave loads are used to
estimate jointly the unknown model parameters and wind loads applied
to the tower at both side-to-side and fore-aft directions. The model
updating method is implemented in the time domain and can be used at
any operational condition of OWTs without any assumptions about the
input loads. The window-based Bayesian model updating was first
developed by Ebrahimian et al. (2018) and has been applied to model
updating of civil structures (Ghahari et al., 2020), digital twinning of a
bridge (Ghahari et al., 2022), virtual sensing of a wind turbine (Nabiyan
et al., 2021), and model inversion of wind turbine drivetrain (Valikhani
et al., 2023). Here, this method is applied to an OWT under simulated
wave and wind loads at both side-to-side and fore-aft directions. The
simulated loads are extracted from OpenFAST (NREL, 2022) and im-
ported to the 3D FE model of the OWT. The 3D FE model is created in
OpenSees platform (McKenna et al., 2000) to simulate structural re-
sponses. Acceleration responses at three locations of the tower structure,
and strain responses at the base and middle level of the tower are
simulated, contaminated with white noise, and considered as measure-
ment data for model updating. Then, given the model and measurement
data, the wind loads at the top of tower including forces and moments in
both side-to-side and fore-aft directions are estimated in conjunction
with mass of rotor-nacelle assembly (RNA). The effects of sensor type,
number of sensors, and modeling error on the estimated model param-
eters and wind input loads are investigated through different case
studies.

2. Estimation and modeling procedures
2.1. Bayesian model updating

Bayesian model updating is used to simultaneously estimate un-
known model parameters and wind loads of an OWT structure. To apply
the Bayesian framework, we assume that the finite element model is
accurate without any modeling error, with the uncertainty stemming
from unknown model parameters and loads, which are augmented to a
parameter vector. The parameter vector is modeled as random variables
with a joint prior Gaussian probability density function (PDF). More-
over, an observation model is assumed to be a Gaussian white noise
process. Under the Gaussian assumption for the prior PDF of the
parameter vector and the likelihood function, the posterior PDF of the
parameter vector conditioned on observation data can be updated.

The time-discretized equation of motion of a linear FE model of a
dynamical system at time step t can be written as

M(0)X; + C(0)x, + K(0)x, = u, (€))

in which @ € R**! is model parameter vector, where n, denotes the
number of unknown model parameters, M(0), C(6), K(0) € R0 *"™F are
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parameterized mass, damping, and stiffness matrices, respectively,
where npor denotes the number of degrees of freedom. %, X, X, u; €
R™o <! denote acceleration, velocity, displacement, and input load (i.e.,
wind and wave loads in this study) vectors, respectively. The subscript t
denotes the time step such thatt =1,2,---, T, where T indicates the total
number of time steps.

Eq. (1) can be solved recursively in time, for example by the
Newmark-beta time integration method (Chopra, 2007). In general, the
response of the structural model at time step t can be expressed as a
nonlinear function of the unknown model parameters 6, the input load
vector time history from time step 1 to time step ¢, and initial velocity
and displacement vectors as

?t =h, (07u£;t7X07X0) 2)

in which u}, = [w”, uj7, -, uT]" represents the time history of the
input load vector; X, and x, € R™*! denote initial velocity and
displacement vectors; and h,(.) € R¥*! is the nonlinear response func-
tion of the FE model at time step t, where n, denotes the number of
measured responses.

A measurement model can be expressed in the terms of predicted
response and measurement noise at time step t as

Y. =¥:+Ve Vi~N(O,Ry) 3)

where y, € Rv*! denotes measured response vector, ¥, € RY*! de-
notes the model-predicted response vector given in Eq. (2), and v, €
R™*! represents the measurement noise vector, which is assumed to be a
Gaussian white noise process with zero mean and covariance matrix of
R, € R* ™y,

In the FE model expressed by Eq. (2), the model parameters and some
input loads are unknown (wind loads in this study), and a window-based
Bayesian inference approach (Ebrahimian et al., 2018) is adopted to
estimate them using measurement data. In this approach, the mea-
surement dataset is divided into overlapping windows referred to as the
estimation windows. Considering the m™ estimation window with the
starting time ¢' and ending time tJ' as shown in Fig. 1, the window
length is f; = tJ — t]". The measurement dataset at this window can be

T
represented by Ymm = ycT,lm yg,. 1 yé] , which includes all mea-

surements in the time interval t]* to tJ'. Assume that the estimation
window m has t, overlapping time steps with the next window m+ 1, so
the sliding stride, which is defined as the time step difference between
starting times of two successive windows equals to t; = t;— t,.

In the window-based Bayesian inference method, the aim is to obtain
the maximum a posteriori estimate of the updating parameters given the
measurement dataset at the estimation window m, i.e.,

maxe, p (q)m|yq7.f27.>, where the parameter vector ¢,, includes unknown

model parameters, 0, and time history of unknown input load vector,
T

ugm,m across the m™ estimation window, i.e., @,, = {GT ugn:én} . The

updated model parameter vector is then transferred to the next esti-
mation window as initial values. A brief review of the method is pro-
vided next.

t)

mth window

T " 1
[ -

Data in channel j

Time
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The posterior PDF of the parameter vector ¢,, given the measure-
ment ymm can be determined through the Bayes’ theorem as

(Ebrahimian et al., 2018)

P(ytg";gz" @m | P
P(ves)

where p (yt;.l:t,zn ’(pm) and p(g,,) denote the likelihood function and the

p ((pm\qu;) = 4

prior PDF of the parameter vector, respectively. The term p(yﬁ{.f;) isa

normalizing constant.
According to Eq. (3) and assuming that the measurement noise is an
independent Gaussian white noise process, the likelihood function

p(yf{l:q)(pm) is a Gaussian distribution with mean ymm (predicted

response) and covariance matrix R = diag(Rtrlm Remyiq, o, Rgzn), where

R, fork € {¢", -, '} is the measurement noise covariance matrix at
time step k, and is assumed to be time-independent, i.e. R, = R, and
diag(-) is an operator that gets matrices and forms a block-diagonal
matrix. The prior PDF of the parameter vector p(¢,,) is assumed to
have a Gaussian distribution with mean ¢,, and covariance matrix
(f’;)m. Under these assumptions and approximating the posterior PDF
as Gaussian distribution (Gaussianization), the MAP estimate of the
parameter vector, and covariance matrix of posterior PDF can be derived
as (Ebrahimian et al., 2018)

B = By + G(Yq";gzn - 375;:1!;)

— ~ 5)
(P,), = (I-GO)(P,),(I-GC)" +GRG"

~+ =+ . .
where (1) and (P ) are the posterior mean vector and covariance
m ®/m

~ o~ -1 \ 1 ~—
matrix of the parameter vector; G = (CTR et ), ) C'R ' isthe
Kalman gain matrix (Simon, 2006); Ve and ?qn o denote time histories

of measured and model-predicted responses at window m, and C =

denotes the sensitivity matrix,

ohym g (q)m, Uym 1, %o, Xo) /0@

Pm=Pm
which is the Jacobian of model-predicted responses with respect to the
parameter vector @,, at @,,,.

Gaussianization of the posterior PDF described above is a nonlinear
procedure, and it can be performed through an iterative process. To
improve the convergence of the iterative process at each iteration, the
parameter vector becomes subjected to a random perturbation as

Pmi = Pmy1 + Wi Wi ~N(0,Q) 6)

where @,,; and @,,; , are the parameter vector at iterationiandi— 1,
respectively, and w; ; denotes the perturbation term with zero mean
and covariance matrix Q. Using Eq. (6), the prior mean vector and
covariance matrix of the parameter vector at iteration i can be predicted
as

(m + 1) window

Lo

Data in channel j

Time

tF+1 t?+l

Fig. 1. Dividing the dataset into the overlapping windows in the window-based Bayesian inference approach.
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~— ~+
Pri = P

P —t 7
(P¢)m.i = (Pl/l)m,i—l +Q

~ =+ . .
where §,,, ; and (P, )., are posterior mean vector and covariance

matrix at iteration i — 1 computed using Eq. (5) as @, ; = §,, and
=+ ~ ~ -~ . .
(Py) i = (P,),»and @, and (P, ) . are prior terms, which are used
for updating the mean and covariance matrix in Eq. (5). The iterative
process to estimate the parameter vector based on the measurement data
at m" estimation window is continued until convergence criteria are

satisfied, i.e., the iterative process stops if Ha;.i*@;ﬂ

< e[| is
satisfied, where ||| denotes Euclidean norm, and ¢ is the tolerance
value. Then, the estimated parameter vector and its associated covari-
ance matrix at the current window are set as initial values for the next
estimation window (Ebrahimian et al., 2018). Table 1 summarizes the
framework of the window-based Bayesian inference approach for joint
input loads and parameter estimation.

2.2. Finite element model of OWT structure

In this paper, we investigate the FE model inversion of an OWT
structure, which is located approximately 3 miles southeast of the Block
Island in Rhode Island in the United States. The OWT structure consists
of a steel tower mounted on a steel jacket structure as shown in Fig. 2.
The center of the hub is approximately 100 m above the mean sea level
(MSL). The substructure consists of a jacket structure with legs con-
nected to piles, a deck, and a transition piece connecting the substruc-
ture to the tower. The height of the platform from the MSL is
approximately 22 m, and the water depth is about 28 m.

The FE model of the OWT structure was created in the open-source
FE platform, OpenSees (McKenna et al., 2000), to simulate the struc-
ture response, and it is interfaced with MATLAB (MathWorks Inc, 2022)
for model updating. OpenSees is an object-oriented open-source soft-
ware for creating linear and nonlinear finite element models of struc-
tural and soil systems. The aim of OpenSees is to provide an open-source
platform in which researchers can easily build and test their models, and

Table 1
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develop new materials, elements, and solvers.

To build the FE model of the OWT structure, the following assump-
tions are made. The rotor-nacelle-assembly is simplified as a lumped
mass on the top of the tower, whose mass and mass moment of inertia
are selected based on the actual turbine properties. Only flexural
deformation of the tower and jacket are considered, and they are
modeled by linear Euler-Bernouli beam elements. The connections of
tower bottom and the jacket substructure (transition piece) are modeled
using rigid beams constraining rotational and translational degrees of
freedom of the nodes at the tower bottom with nodes at the top of the
jacket. The boundary conditions of the jacket elements at the mudline
are assumed to be fixed.

The FE Model of the OWT structure consists of 61 nodes and 88 el-
ements. The tower is divided into 32 elements along the vertical height
to consider changes in the cross-section, see Fig. 3. The substructure is
modeled as a frame structure, including 48 elements. The wind loads
consist of concentrated forces and moments and are applied to the tower
top. The wave loads are distributed over the jacket substructure and are
applied as equivalent nodal forces in the finite element model (Bathe,
2006).

The main parameters of the OWT structure for creating the FE model
are summarized in Table 2. Some of the parameter values are not dis-
closed because of confidentiality and reserving the rights of the turbine
owner and manufacturer. The RNA mass and moments of inertias are
calculated about the local coordinate system, which is described in
Section 2.3.1. The jacket and tower element properties including mass,
length, cross-section area, and second moment of area are calculated
based on the design drawings.

2.3. Wind and wave loads applied on the OWT structure

2.3.1. Wind load

This study uses OpenFAST platform (NREL, 2022) to simulate the
wind loads to be applied to the structural model. Wind load can be
calculated based on the Blade Element Momentum (BEM) theory, in
which a wind turbine blade is divided into small elements acting aero-
dynamically as a two-dimensional (2D) airfoil (Moriarty and Hansen,

A window-based Bayesian inference method for joint input loads and parameter estimation.

1. Setting the window properties and initial values for the first estimation window

1.1 Set the window counter m = 1.
1.2 Define the estimation window length t; and sliding stride t;.

- . . . ~ AT T o s
1.3 Set the initial values of prior mean and covariance matrix of the parameter vector as §,,, = {90 TR } , where 0y is the initial value of the unknown model parameters and
X 1,

~ . Py . . . . . s+
Uggois the initial value of unknown input loads at the first estimation window, and (P B )m.O = [ ~t

model parameters and (P, ) dat
14

(Po)o 0 ~
, where (Py), is the prior covariance matrix of the unknown
0 (Pu )‘1‘ .0

o is the prior covariance matrix of unknown input loads at the first estimation window.

1.4 Define the perturbation covariance matrix Q and measurement error covariance matrix R.

2. Updating the parameter vector and covariance matrix at m™" window
2.1 Set the iteration counteri = 1.

2.2 Set §; =G q and (P,), . = (P,),.. , + Q.

2.3 Run the model with @,,; to find the predicted response: ?g]n o = he (‘Pm,i~ ﬁ“:]v- 14,)'(0,)(0).

1

2.4 Compute the response sensitivity: C = ohgep (‘I’m‘ .1, %o, xo> /0@y,

wm:u},;,.

. . ~-1 ae -1\l 1
2.5 Compute the Kalman gain matrix: G = (CTR c+(B,), ) C'R .
2.6 Compute the parameter vector and associated covariance matrix:

~4 ~— ~ =+ 3 =
D= B+ G(yﬁln,t,zn ~ Yoy ) and (B,),,, = (1~ GO)(B,),, (1 - GC)" + GRG.

2.7 Check the convergence criteria H(]i,:i — @il < €l|@,;ll, and if it is satisfied, go to step 3, otherwise, set i = i+ 1 and repeat from step 2.2.

3. Setting the initial values of the parameter vector and covariance matrix for (m + 1

3.1 Setm =m+ 1.

)th

estimation window

3.2 Compute the initial parameter vector: @, (see Ref. (Ebrahimian et al., 2018) for more details).

3.3 Compute the covariance matrix: (f);,)m0 (see Ref. (Ebrahimian et al., 2018) for more details).

3.4 Return to Step 2.
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Fig. 2. Block Island Wind Farm, in Rhode Island, United States (Photo credit: Gary Norton, DOE).

Wind loads (Moments, Forces)

RNA lumped mass

- Element node

 Tower model

- Rigid beam link
' Derckrlreg Bésé

- Jacket model |

Fig. 3. Schematics of the FE model of the OWT structure.

2005). In this paper, the turbulence wind regime is considered, and
Kaimal spectrum (Jonkman and Buhl, 2005) is selected to determine the
turbulence component of the wind velocity as

4L
(1 + 6fL/%)"

where S, (f) denotes wind speed power spectral density, f is wind

Table 2
The main parameters of the OWT structure.

Components Parameters (geometrical and physical)
Names Values
Nacelle RNA mass Confidential
RNA mass moments of Confidential
inertias
Tower Length 78 m
Inner and outer radiuses Confidential
Moments of area Confidential
Modulus of elasticity and 200 GPa, and
Poission’s ratio 0.25
Density 7850 Kg/m®
Deck and jacket (including legs ~ All geometrical parameters Confidential
and braces) Modulus of elasticity and 200 GPa, and
Poission’s ratio 0.25
Density 7850 Kg/m3

frequency in Hz, I denotes the turbulence intensity. Also, L is an integral
scale parameter such that, L = 20z for z < 30 m and L = 600 m for >
30 m, where z is the height from sea level. In Eq. (8) ¥ is the mean wind
velocity, which can be computed using the logarithmic wind profile as

_ Vlog(z/2)
- log(H/z)

where V is the mean wind speed at the turbine reference height H at
which the speed V is known, and 2, is the roughness length of the ocean
surface. In this study, mean wind speed is considered as 12m/s,
roughness of sea surface is 10~* m, and turbulence intensity is 10%.

W(z) ©

x: fore-aft direction

y: side-to-side direction

y: yaw angle of wind turbine with respect to X axis

Fig. 4. Local and global coordinate systems of the OWT.
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Wind loads are computed and represented in the local coordinate
system (side-to-side as local y direction and fore-aft as local x direction)
of the turbine as shown in Fig. 4. The simulated wind loads in OpenFAST
are applied on the FE model along the fore-aft and side-side directions in
this study. For FE model updating, the loads are projected to a global
coordinate system, i.e., X-Y-Z in Fig. 4, where Z denotes upright direc-
tion. The wind loads at the local coordinate system are projected to the
global coordinate system as

Fx yz= TFx—y—m My yz= TMx—y—z (10)
where the transformation matrix is
cosy —siny O

T=|siny cosy O an
0 0 1

) ) AT
[ F;de F;de FZde ] and My_y_z =

" N N T . 3
[ M)V(de MYyind M}Vl"d] are wind force and moment vectors in the

In Eq. (10), the terms Fx y z =

global coordinate system, respectively, and Foy,=

) ) AT ) ) 1T
[ F)l:de F;V"'d F:/md} and Mx—y—z _ [ M;Vl"d M;de M;de] are wind

force and moment vectors in the local coordinate system, respectively.

2.3.2. Wave load

As can be seen in Fig. 2, the jacket substructure is made of four cy-
lindrical legs, and wave load is distributed over each leg. Morison’s
equation can be used to calculate the wave load acting on a slender
cylindrical structure (Faltinsen, 1993), see Fig. 5. The wave load dF
acting on a strip of length dz of the substructure can be expressed as

1 N | ,
dF:5 pDCqltifudz + ch,,,szudz 12)

where p = 1025 kg/m? is the density of the water, D = 1.6 m is the
diameter of the substructure, and C; = 1.2 and C,, = 2 represent the
drag and mass coefficients, respectively. Moreover, the acceleration and
velocity of water wave particles (ii and u) can be determined using
JONSWAP spectrum (IEC 61400-3-1:2019) as follows

S(f _—H2 ({) a(1-0.287 Iny)y” 3)

where f is frequency of the spectrum, T,, = 10 s is the wave period,
fo = 1/T, is the wave frequency, H; = 3m is the significant wave height,

y denotes the peakedness parameter (IEC 61400-3-1:2019), a = exp( -

202f2

1.25(f/f“,)’4), and g = exp( (ff“z), where parameter ¢ can be
computed as

_f007 F<f,
= { 0.09 f>Ff, a4

w

77

Fig. 5. Cylindrical substructure with wave load.
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According to the JONSWAP spectrum, water particles velocity and
acceleration can be determined as

N cos hlk(z + Hy)]| .
= ; Jmsm(mjt —kix + ¢;)
(15)
< cos hlk(z + H,) | ke
=2 AT sinhem,) (R )

where w is the wave frequency in rad/s, k is the wave number in 1/m
and can be related to wave frequency @ and water depth z by the
dispersion equation, k tanh(kz) = w®/g where g = 9.8 m/s?, ¢; repre-
sents the uniform random phase angle distributed over [0, 2z], H, =
2S(wj) Aw where Aw = o /N in

which o, represents the upper cut-off frequency and N denotes the
number of frequency data points.

27.75 m is the water depth, and A; =

3. Case studies

In this section, the effect of sensor type, the number of sensors, and
modeling errors on the accuracy of input loads and model parameter
estimation are investigated through three case studies described in
Table 3. In Case 1, assume that only wind forces as input and RNA mass
as model parameters are unknown. In this case, the FE model used for
simulation is the same as the model used for input/parameter estima-
tion. Objective here is to investigate the effect of sensor type on input/
parameter estimation, and to this end, only wind forces are considered.
In Case 2, wind-induced moments are also included in the models to
increase the number of unknown input loads, and the goal is to inves-
tigate the number of sensors on input/parameter estimation. Case 3 is
considered to investigate the effect of input load assumptions and
parameter errors on input/parameter estimation, so it is divided into
two subcases (Case 3-1 and Case 3-2). In Case 3-1, the module of elas-
ticity in the simulation model is different from the estimation model. In
Case 3-2, wave load is included in the simulation model while neglected
in the estimation model to understand the potential effects of various
modeling errors on the model updating process in offshore wind turbine
applications.

In the simulation model, the wind and wave loads generated from

Table 3
Summary of case studies.
Case Objective Loads in the Unknown Remarks
name simulation Loads in the
model estimation
model
1 Investigating the Wind forces Wind forces No modeling
effect of sensor only only error
type on input/
parameter
estimation
2 Investigating the Wind forces Wind forces No modeling

effect of number of  and moments and moments  error

sensors on input/

parameter
estimation
3-1 Investigating the Wind forces Wind forces Model of
effect of model and moments  and moments elasticity in the
parameter error on simulation
input/parameter model is
estimation different with
the estimation
model
3-2 Investigating the Wind and Wind forces Inputs in the
effect of model wave forces, and moments simulation
input load erroron  and wind model is
input/parameter moments different with
estimation the estimation

model




M. Valikhani et al.

OpenFAST and Morrison’s equation, respectively, are applied to the FE
model of the wind turbine. Then, responses of the structure are recorded
and artificially polluted with Gaussian white noise, where noise to signal
ratio is 1% for each measurement channel, i.e., RMS(noise) = 0.01 x
RMS(measurement). The noisy responses are considered as synthetic
measurement data. In the estimation model, wind loads and model pa-
rameters are unknown. The synthetic measurement data are integrated
into the FEM model of the tower using the Bayesian inference method to
estimate unknown wind loads and model parameters.

Fig. 6 (a) illustrates the top view of the tower, the local and global
coordinate systems, and the wind and wave directions. Fig. 6 (b) shows
the cross section of the tower top and the wind loads, and Fig. 6 (c) il-
lustrates the cross section of the deck leg base and the wave loads. Fig. 7
shows the synthetic wind loads and their frequency spectra applied to
the tower top in the local coordinate system. Fig. 8 displays the synthetic
wave loads and their frequency spectra at deck leg base, which is located
at sea level as shown in Figs. 3 and 6 (a) with a green color node. The
wave loads are distributed over the substructure, and nodal forces and
moments are accordingly calculated and applied to the FE model. The
wave loads shown here are only in one direction, and they are assumed
to be zero in other directions. The wind and wave loads are assumed to
be in the same direction. While the interaction of wind and blades cre-
ates loads with different components in x and y directions, and the
interaction of wave and substructure only creates a distributed force in
one direction.

Synthetic measurement data include acceleration and strain re-
sponses at different locations along the tower as shown in Fig. 9. The
green nodes represent accelerometers placed at heights of 26 m, 52 m,
and top of the tower. The accelerometers are assumed to be biaxial,
measuring acceleration responses in X and Y directions. The red nodes
indicate the strain gauges placed at the base and middle height of the
tower. There are four strain gauges at each section in order to estimate
wind loads in X and Y directions. Each strain gauge can record axial
strain only in the Z direction.

In system identification and model updating applications, identifi-
ability or observability analysis can be utilized to decide about the most
identifiable parameter sets, especially when dealing with large number
of unknown parameters. However, most of the assessment frameworks
are either for model parameters (Ebrahimian et al., 2019; Shi et al.,
2021) or input loads (Martinelli, 2019), and a joint input-parameter
identifiability assessment framework has not been developed for
generic models (Maes et al., 2019). For a model parameter to be iden-
tifiable, the model response at measurement locations should be sensi-
tive enough to the parameter, and the parameter should not have
correlation or dependence on other unknown parameters. Adjusting the
measurement locations, i.e., optimal sensor placement (Ercan et al.,
2023; Ercan and Papadimitriou, 2023), can help with the identifiability
problem. Regardless of the number of unknown parameters, as long as

P
/////////
% Wind and wave direction
7 @
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the unknown parameters remain identifiable, they can be estimated
through the model updating process. In the current problem, for the
given sensor array shown in Fig. 9, it was found that only RNA mass and
wind loads applied to the tower top can be jointly estimated accurately.

Characterizing the aerodynamic damping in wind turbine modeling
can often be challenging (Hansen, 2015; Hansen et al., 2006; Stablein
et al.,, 2017). Aerodynamic damping stems from the wind-blade inter-
action and it can affect the blade dynamics, which is transferred to the
tower top as force components. In this study, the estimated input wind
loads embody both the interactions of wind-blades and tower-blades;
thus, they will include the effects of aerodynamic damping.

To implement the window-based Bayesian inference approach for
joint input loads and model parameter estimation, window parameters,
and filter hyperparameters should be selected carefully. Tunning the
hyperparameter was investigated in previous studies (Ebrahimian et al.,
2015, 2018). Here the effects of different hyperparameters are discussed
briefly.

o The window length and sliding stride are set to 100- and 80-time
steps, respectively. It was founded in Ebrahimian et al. (2018) that
large window length improves the input load estimation accuracy
but increases the computational cost. On the other hand, small
window length does not embody enough system responses, i.e., the
short window is not informative enough to estimate the input loads
accurately. There is a trade-off between estimation accuracy and
computational cost to select proper window length.

The initial value of the model parameters and associated covariance

matrix at the first window is set as 60 :0.86mw and (}A’,,»)0 =

diag(pgao)z, where Em is the true value of the model parameter
(RNA mass), and py = 0.3 is the coefficient of variation (CoV) of the
initial parameter estimate. Generally, the covariance matrix (ﬁg)o
quantifies the uncertainties in the initial parameter estimate. It is a
diagonal matrix, which indicates the parameters are statistically
uncorrelated. Increasing CoV, py, introduces more uncertainty to the
initial value of the model parameters. In this condition, the Bayesian
filtering process relies more on the discrepancies between the pre-
dicted and measured responses than the initial values to update the
parameters. Higher value of py may accelerate the parameter esti-
mation process but may also destabilize the estimation process
(Ebrahimian et al., 2015; Hoshiya and Saito, 1984; Simon, 2006).

The initial values of load estimate ﬁtTll:t; o at the first window is zero,

and the covariance matrix of load estimate is a diagonal matrix with
diagonal entries (syp,)%, where s, = 1000 denotes a scaling factor
indicating the order of magnitude of the wind loads, and p, is the
initial standard deviation of the wind loads which are set as p, = 0.5
kN for input forces and p, = 0.5 kN.m for input moments. By setting
the value of p,, we can regularize the estimation process or enforce

(®) (©

Fig. 6. (a) Top view of the wind turbine and coordinate systems, (b) cross section of the tower top and direction of wind loads, and (c) cross section of the deck leg

base and direction of wave loads.
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Fig. 7. Synthetic wind loads applied to the tower top, (a,b) wind force time history and its frequency spectrum in the x direction, (c,d) wind force time history and its
frequency spectrum in the y direction, (e,f) wind moment time history and its frequency spectrum in the x direction, and (g,h) wind moment time history and its

frequency spectrum in the y direction.
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Fig. 8. Synthetic wave loads at deck leg base, (a,b) wave force time history and its frequency spectrum in the x direction, (c,d) wave moment time history and its

frequency spectrum in the x direction.
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Fig. 9. (a) Sensor array on the tower, (b) sensor locations measured from the tower base, (c) biaxial accelerometers, and (d) uniaxial strain gauges.

smoothness on the loads estimate (Aster et al., 2018; Dashti and
Stuart, 2017; Mohammad-Djafari, 2021). The small value of p, re-
sults in smoother input load estimates, and the algorithm trusts more
on prior information; however, the large value of p, makes the al-
gorithm sensitive to the measurement data, and the estimated loads
can become noisy (Ebrahimian et al., 2018).

The covariance matrix of the perturbation term in Eq. (6) is
expressed as a diagonal matrix with two diagonal submatrices Q, and
Q,, where the matrix Q, associated with parameter perturbation is

set as Qp = diag(qeao)2 with the coefficient of variation qg = 1073,
and the matrix Q,, associated with load perturbation is a diagonal
matrix with entries (g,)* and the standard deviation value is set to
gu = 1072. The perturbation term adds perturbation to the iterative
process, whereby the large value of the perturbation variance im-
proves the convergence speed but might cause instability of the al-
gorithm; conversely, the smaller value of perturbation variance
deaccelerates the convergence of the process (Ebrahimian et al.,
2018).

Moreover, the covariance matrix of measurement error R is a diag-

onal matrix with entries (ry x RMS(y) )2, where r; = 1072 is noise-to-
signal ratio (NSR), and RMS(y) denotes root mean square of the
measurement data. The value of NSR depends on the quality of
measurement data. The higher NSR enforces the algorithm to rely
more on the prior information about the parameters than the mea-
surements. It will also slow down the convergence process. However,
small values indicate trustworthy data, and the estimation process
becomes sensitive to the discrepancies between the predicted and
measured responses, which may destabilize the estimation process.
Generally, the statistics of measurement error are unknown but can
be estimated based on the sensor properties. Moreover, adaptive
Bayesian filtering can be employed to estimate measurement error
covariance matrix based on measurement data (Akhlaghi et al.,
2018; Nabiyan et al., 2023).

The estimation process follows the steps described in Table 1.
OpenSees is used to predict the response of the structure in the local
coordinate system given model parameters and input loads, then it in-
terfaces with MATLAB to use the responses for model updating. The
predicted responses are transformed to the global coordinate system in
MATLAB, the model parameters are updated, and wind loads are

estimated in the global coordinate system. Afterward, the estimated
parameter and wind loads are shared with OpenSees in the local coor-
dinate system for the next iteration. In the following case studies, results
are shown in the global coordinate system, which is independent of
turbine orientation or yaw angle.

3.1. Case 1: investigating the effect of sensor types on input load and
model parameter estimation

In this case, the effect of sensor types such as strain gauge and
accelerometer on input wind loads and parameter estimation is inves-
tigated. In this simplest case study, only wind forces are considered as
the source of excitation or input. The tower structure response is
simulated by applying wind forces in X and Y directions in the global
coordinate system. Three sets of measurement are considered in this
case as listed in Table 4. In the model updating process, it is assumed
that wind forces in the X and Y directions and RNA mass are unknown
and to be estimated by employing the Bayesian inference framework.

Fig. 10 shows time history and frequency spectrum of the nominal/
true forces and those estimated according to the data of three sensor sets.
As can been observed, the estimated forces based on Set 1, including
only accelerations, show low-frequency drifts. These drifts appear
because the dynamic response is not sensitive to low-frequency
component of the input forces, i.e., quasi-static forces (Eftekhar Azam
et al., 2015; Lourens et al., 2012; Valikhani and Younesian, 2019).
Conversely, the estimated forces based on Set 2, including only strain
data have high-frequency oscillations. This effect is due to the reason
that strain data are not sensitive to high frequency forces. However, the
combination of acceleration and strain measurements provide the most
accurate estimation of input forces in a broader frequency range as
shown in Fig. 10 (a)-(d). Fig. 11 shows the convergence history of the
estimated RNA mass (normalized by true value of RNA mass which is not

Table 4
Sensor types and their placement on the tower for Case 1.
Set Sensor types and their placement
Name
Set 1 3 accelerometers located at nodes B, D, and E as shown in Fig. 9
Set 2 4 strain gauges at node A as shown in Fig. 9
Set 3 3 accelerometers at nodes B, D, and E and 4 strain gauges at node A as

shown in Fig. 9
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Fig. 10. Time history and frequency spectrum of true and estimated wind forces for different sensor sets, (a,b) X direction, (c,d) Y direction for Case 1.
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Fig. 11. Convergence history of normalized RNA mass for different sensor sets
for Case 1.

disclosed due to confidentiality) using different sensor sets. The nacelle
mass can be estimated accurately if the dataset includes acceleration
measurements, as in Set 1 and Set 3. Strain data do not include the mid-
and high-frequency responses to which the RNA mass contributes, so Set
2 is not informative to estimate RNA mass.

3.2. Case 2: investigating the effect of the number of sensors on input load
and model parameter estimation

In this case, the effect of the number of sensors on wind load and
model parameter estimation is studied. To this end, the dynamic
response is simulated from the FE model of the tower by applying the
wind loads, including wind forces and moments in X and Y directions.
Two sensor sets are considered to record synthetic data as tabulated in
Table 5. In the model updating process, it is assumed that wind loads, i.
e., forces and moments at the tower top in X and Y directions are un-
known to be estimated.

Fig. 12 compares the estimated forces and moments in X and Y di-
rections at time and frequency domains based on the two sensor sets. As

Table 5
Sensor types and their placement on the tower for Case2.

Set Sensor types and their placement

Name

Set 1 3 accelerometers at nodes B, D, and E and 4 strain gauges at node A as
shown in Fig. 9

Set 2 3 accelerometers at nodes B, D, and E and 8 strain gauges at nodes A and

C as shown in Fig. 9

10

can be seen, the estimated loads based on both sets have high-amplitude
oscillations at the beginning of the time history, which is because of the
effect of non-zero initial conditions. In the beginning of the estimation
window, we assumed at-rest initial condition. This is done to replicate a
real-world monitoring condition. Moreover, the estimated loads based
on the Set 1 display low-frequency drifts. These drifts are because of the
insufficient number of strain gauge sensors. When data are recorded in
one section of the tower, force and moments cannot be estimated
uniquely, so additional strain data in Set 2 improves the load estimation
accuracy.

Fig. 13 shows the convergence history of normalized estimated RNA
mass for the two sensor sets. As can been seen, RNA mass can be esti-
mated accurately for both sets. Each set contains acceleration data,
which are sufficient to estimate the RNA mass.

3.3. Case 3: investigating the effect of modeling errors on input load and
model parameter estimation

In this Section, two different sources of modeling errors are investi-
gated. In Case 3-1, the effect of model parameter error is investigated,
and in Case 3-2, the effect of input load error is investigated.

Case 3-1. The effect of model parameter error

The modulus of elasticity is an important stiffness-related parameter
in the FE modeling of an OWT structure. While the variation of this
parameter is not significant for steel material in practice, deviation from
the nominal values is possible due to, for example, manufacturing de-
fects, corrosion, or other sources of operational deterioration. In previ-
ous case studies, the modulus of elasticity was considered similar
between the simulation and estimation models. This case study in-
vestigates the effect of error in the modulus of elasticity on wind load
and RNA mass estimation. To this end, synthetic data are generated
using the FE model of the tower with the modulus of elasticity E = 190
GPa. In the model updating process, the modulus of elasticity in the FE
model is assumed to be E = 200 GPa, i.e., 5% error is introduced to the
modulus of elasticity. Input loads in the simulation and parameter
estimation models are similar, i.e., they include wind forces and mo-
ments in the X and Y directions. Sensor types and locations are the same
as Set 2 described in Table 5.

Fig. 14 shows the time history and frequency spectrum of true and
estimated loads for this case study. The estimated loads in X and Y di-
rections include low-frequency drifts, which appear as a baseline and are
due to the error in the modulus of elasticity. The wind loads have sig-
nificant energy at the low-frequency band, and the response of the
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Fig. 12. Time history and frequency spectrum of true and estimated wind loads for two sensor sets, (a,b) forces in the X direction, (c,d) forces in the Y direction, (e,f)

moments in the X direction, and (g,h) moments in the Y direction for Case 2.
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Fig. 13. Convergence history of normalized RNA mass according to the data of
two sensor sets for Case 2.

structure subjected to low-frequency loads is mostly controlled by the
stiffness properties of the model. Therefore, the error in the modulus of
elasticity is compensated for by a drift in the estimated wind loads.
Fig. 15 displays the convergence history of the normalized RNA mass. As
can been seen, the estimated RNA mass is higher than the true value,
which is the result of the modeling error in the modulus of elasticity.

Case 3-2. The effect of input load error

11

The dynamic response of an OWT structure to wave loads is often
insignificant compared to wind loads, due to the amplitude and appli-
cation location of wave loads. Nevertheless, wave loads will be a source
of modeling error if not accounted for correctly in the model updating
process. The objective of this case study is to investigate the potential
impacts of neglecting wave loads in the joint wind load and model
parameter estimation. For this purpose, both wind and wave loads are
considered in the simulation model, but only wind loads are considered
and estimated in the model updating process. Sensor type and array are
the same as Set 2 as described in Table 5.

Fig. 16 shows the time history and frequency spectrum of true and
estimated wind loads for the case where the effects of wave loads are
neglected in the model updating process. As can be observed, the esti-
mated wind loads match the true loads. The reason is likely due to the
high stiffness of the jacket substructure and the relatively low amplitude
of wave loads, which cannot excite the system considerably. Fig. 17
displays the convergence history of the estimated RNA mass for the case
having error in input loads. As can be seen, the error in the input loads
has little impact on the RNA mass estimation.

4. Conclusions

Estimation of input loads and mechanics-based model parameters
characterizing the dynamic response of offshore wind turbine (OWT)



M. Valikhani et al.

True
Estimated

30 50 60
Time (s)

(@

20

True
Estimated

Time (s)

True

“E\ 6000 Estimated
=
X 4000
k=]
£
¥ 2000
Time (s)
(e)

True
= Estimated
§ 6000
g
<
2 4000
S >
S

2000
Time (s)
®

Ocean Engineering 313 (2024) 119458

1000
s TG

~N Estimated
<
=2
=< 500
k=]
§
e

0

0 0.1 0.2 0.3 0.4 0.5

Frequency (Hz)
(%)

1000 -
~N Estimated
<
2
=
o 500
£
S >
'Y

0
0 0.1 0.2 0.3 0.4 0.5
Frequency (Hz)
(d)

6000
'g Exomated
§ 4000
g
_’§ 2000

X
S
0 ;
0 0.1 0.2 0.3 0.4 0.5
Frequency (Hz)

10000
g
Z 5000
o
£
=< >
S

0 e N
0 0.1 0.2 0.3 0.4 0.5
Frequency (Hz)
(h)
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Fig. 15. Convergence history of normalized RNA mass based on the model with
error in modulus of elasticity for Case 3-1.

structures is important for health monitoring, digital twinning, and
remaining useful life prediction of these assets. In this study, a time-
domain Bayesian inference method was presented to estimate input
wind loads and rotor-nacelle assembly (RNA) mass in an OWT based on
the dynamic response of the tower. The objective was to investigate the
potential and limitations of the presented inference approach. Three
fundamental questions pertaining to wind load and model parameter
estimation were investigated through three different case studies using
synthetically simulated data. These cases include the effects of sensor

12

type (Case 1), number of sensors (Case 2), and modeling error (Case 3)
on the estimation results. The first case study showed that the combi-
nation of acceleration and strain measurements are essential for accu-
rate estimation of wind loads and RNA mass. Acceleration response is
sensitive to high-frequency loadings while strain response is sensitive to
low-frequency loading. Their combination yields the best wind load
estimation capacity in broad frequency band. The second case study
demonstrated that sensors should be deployed at different levels of the
tower to enable the estimation of all components of wind loading
including forces and moments. In the studied case, acceleration and
strain data at two cross-sections along the tower height were required
for a unique estimation of the wind forces and moments. In the third case
study, the effect of two modeling errors including model parameter error
(inaccurate modulus of elasticity) and input load error (neglected wave
loads) in the model updating process were investigated. For the model
parameter error case, wind load estimates were affected by the modeling
error, which caused a low-frequency drift in the estimated wind loads. In

the case of model input load error, the studied case results showed that
neglecting wave loads in the model updating process will likely have

negligible effects on the wind load estimation. This is due to the low

impact of the wave loads on the dynamic response of the OWT tower and

the high stiffness of the substructure to which the wave loads were

applied in the considered case study.

The framework proposed in this paper can be used for monitoring
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Fig. 16. Time history and frequency spectrum of true and estimated wind loads based on the model with error in input loads, (a,b) forces in the X direction, (c,d)
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Fig. 17. Convergence history of normalized RNA mass based on the model with
error in input loads for Case 3-2.

and estimating parameters including model parameters and loads that
can affect the structural responses. The marine condition has a stochastic
dynamic nature, and it can cause change in the properties of structures
and loadings. For example, extreme events such as storms in the ocean
can apply significant loads to OWT structures, or temperature variation
might change the properties of composite materials in blades, so it might
affect the blade-tower interaction forces. If the environmental and
operational conditions can be represented by parameters, then the

Bayesian framework can be used to estimate those parameters from the
structural responses. The parameters are identifiable if the measured
responses are informative enough about the parameters, and also the
parameters should be uncorrelated or independent; otherwise, the
environment conditions will result in modeling error.

This study highlighted the importance of instrumentation, including
sensor type and number, and modeling error in input load and model
parameter estimation in OWTs. The combination of different sensors
provides informative data to accurately estimate model parameters and
wind loads in broader frequency band without having low-frequency
drifts or high-frequency oscillations. Moreover, accurate and unique
joint input-parameter estimation is possible with adequate number of
sensors installed at locations where the structural responses are sensitive
to the estimation quantities. Modeling error is a challenging issue in the
model updating process and can result in biased estimations, as seen in
the case of model parameter error. Generally, the effect of modeling
error can be reduced if sources of error can be identified, and error
characteristics can be quantified. The study included two main limita-
tions. First, it has been performed using synthetic data through idealized
case studies. In real-world problems, the data include measurement
noise with unknown statistics. Second, the study did not offer a holistic
and comprehensive approach to find the optimal type, number, and
placement of sensors for different estimation objectives. This can be the
subject of future work. Nevertheless, the study illuminated important
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physical facts about the application of time-domain Bayesian inference
for joint input-parameter estimation in OWTs, which can guide future
research efforts.
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