
Received: 24 January 2024 Accepted: 4 June 2024 Published online: 14 August 2024

DOI: 10.1002/saj2.20729

OR IG INAL ART ICLE

Fun d am e n t a l S o i l S c i e n c e

Estimates of soil taxonomic change due to near-surface
permafrost loss in Alaska

N. A. Jelinski1 N. J. Pastick2 A. L. Kholodov3 M. J. Sousa4

J. M. Galbraith5

1Department of Soil, Water and Climate,

University of Minnesota Twin-Cities, Saint

Paul, Minnesota, USA

2U.S. Geological Survey, Earth Resources

Observation and Science Center, Sioux

Falls, South Dakota, USA

3Permafrost Laboratory Geophysical

Institute, University of Alaska-Fairbanks,

Fairbanks, Alaska, USA

4USDA Natural Resources Conservation

Service, Wasilla, Alaska, USA

5School of Plant and Environmental

Science, Virginia Polytechnic Institute and

State University, Blacksburg, Virginia, USA

Correspondence
Nicolas Jelinski, Department of Soil, Water

and Climate, University of Minnesota

Twin-Cities, 1991 Upper Buford Circle,

Saint Paul, MN 55108, USA. Email:

jeli0026@umn.edu

Assigned to Associate Editor Dylan

Beaudette.

Funding information
USDA Natural Resources Conservation

Service Award, Grant/Award Number:

NR223A750025C013; National Science

Foundation Award, Grant/Award Number:

ICER-2129363

Abstract
Gelisols (permafrost-affected soils in US Soil Taxonomy) are extensive in Alaska,

currently occurring on ∼45% of the land area of the state. Gelisol taxonomic criteria

rely on the presence of near-surface (less than 2 m deep) permafrost, but ongo-

ing climatic and environmental change has the potential to affect the presence of

near-surface permafrost across much of Alaska throughout the 21st century. In this

study, we utilized scenarios of near-surface permafrost loss and active layer deep-

ening through the 21st century under low (SRES B1, RCP 4.5), mid- (SRES A1B),

and high (SRES A2, RCP 8.5) emissions scenarios, in conjunction with the statewide

STATSGO soil map, to generate spatially explicit predictions of the susceptibility of

Gelisols and Gelisol suborders to taxonomic change in Alaska. We find that 15%–

53% ofAlaskanGelisols are susceptible to taxonomic change bymid-century and that

41%–69% of Alaskan Gelisols are susceptible to taxonomic change by the end of the

century. The extent of potential change varies between suborders and geographic

regions, with Gelisols in Northern Alaska being the most resilient to taxonomic

change and Western and Interior Alaskan Gelisols most susceptible to taxonomic

change. The Orthel suborder is likely to be highly restricted by the late 21st century,

while Histels and Tubels are more likely to be of greater extent. These results should

be taken into consideration when designing initial survey and re-mapping efforts in

Alaska and suggest that Alaskan Gelisol taxa should be considered threatened soil

taxa due to the proportional extent of likely loss.

Abbreviations: CMIP, Coupled Model Intercomparison Project; CV, coefficient of variation; DOS-TEM, Dynamic Organic Soil version of the Terrestrial

Ecosystem Model; GCM, global climate model; GIPL, Geophysical Institute Permafrost Laboratory; gNATSGO, Gridded National Soil Survey Geographic

Database; LRR, land resource region; NSP, near-surface permafrost; QTP, Qinghai-Tibet Plateau; RCP, Representative Concentration Pathway; SNAP,

Scenarios Network for Alaska Planning; SRES, Special Report on Emissions Scenario; SSP, Shared Socioeconomic Pathway; SSURGO, soil survey

geographic database; STATSGO2, State Soil Geographic Dataset.
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1 INTRODUCTION

Alaska is experiencing widespread climatic and environmen-

tal change, which is predicted to accelerate throughout the

21st century (Grosse et al., 2016) and lead to significant

increases in permafrost temperatures, deepening of seasonal

thaw depths, and decreases in permafrost extent (Pastick et al.,

2015, 2019; Romanovsky et al., 2017). These changes may

have profound impacts on infrastructure stability (Hjort et al.,

2022), engineering design (Harris et al., 2018), terrestrial car-

bon storage (Hugelius et al., 2014), agricultural management

(Peplau et al., 2022), and ecosystem services (Schuur&Mack,

2018). For these reasons, the identification and classification

of soils with permafrost are critically important in soil survey

(Bockheim et al., 2006; Rieger, 1983).

The classification of permafrost-affected soils at the highest

level (soil order) in US Soil Taxonomy relies on a single diag-

nostic feature—the presence of permafrost (material which

remains at 0˚C for at least 2 consecutive years; van Everdin-

gen, 2005)—within 1–2 m of the soil surface (Soil Survey

Staff, 2022a). This is a practical boundary due to limitations

of observation depth in soil survey (Moore & Ping, 1989) and

is reasonable with regard to predicting the most severe and

significant impacts on land use, management, and ecological

systems (Osterkamp et al., 2009). Permafrost at these depths is

best characterized as “near-surface” permafrost (NSP; Pastick

et al., 2015) because the depth to and thickness of permafrost

in much of Alaska may exceed tens to hundreds of meters

(Jorgenson et al., 2008).

The need to group and communicate the properties of

soils with NSP for interpretive purposes was the motivat-

ing factor behind the creation of permafrost-affected soil taxa

(Ahrens et al., 2004; Moore & Ping, 1989; Ping, 2013b;

Tarnocai & Bockheim, 2011). These taxa elevate the presence

of NSP above all other soil properties and are given pri-

macy at the highest levels of US Soil Taxonomy (Soil Survey

Staff, 2022a), the Canadian Soil Classification System (Cana-

dian Soil ClassificationWorking Group, 1998), and theWorld

Reference Base for Soil Resources (WRB, 2022). Grouping

permafrost-affected soils into a single class has allowed the

generalized prediction of soil and landscape behavior and

the comparison, extrapolation, and exchange of soil infor-

mation across multiple scales (Hugelius et al., 2013; Jones

et al., 2009; Tarnocai et al., 2002). Therefore, permafrost-

affected soil taxa serve as a bridge connecting NSP extent

to interpretations and land-use limitations and have impor-

tant implications for soil mapping and soil data use efforts

in Alaska, where permafrost-affected soils are currently esti-

mated to cover ∼40%–50% of the total area of the state (Soil

Survey Staff, 2022b).

Users of soil survey depend on the information contained in

the major components within soil map units (USDA-NRCS,

2023) and therefore upon the reliability of the soil properties,

Core Ideas
∙ Fifteen to fifty-three percent of Alaskan Gelisols

are susceptible to taxonomic change by 2050–

2059.

∙ Forty-one to sixty-nine percent of AlaskanGelisols

are susceptible to taxonomic change by 2090–

2099.

∙ Extent of taxonomic change is the highest in the

Interior and lowest in Northern Alaska.

∙ Susceptibility to change differs by land resource

region and Gelisol suborder.

taxonomic classifications, and the interpretations that flow

from them (Aandahl, 1958; Soil Survey Staff, 2017). If the

properties of a map unit change on the ground, interpretations

and classification would undergo important changes that have

real-world implications on decision-making. Due to inter-

annual, inter-decadal, and century scale variability in heat

transfer and active layer thickness, depth to permafrost is best

conceptualized as a dynamic soil property that responds to cli-

matic and environmental forcings (French & Shur, 2010; Soil

Survey Staff, 2017). Therefore, because depth to permafrost

is a dynamic soil property, permafrost-affected soils, by def-

inition, are a dynamic taxonomic entity (Ping, 2013b). Thus,

the ongoing degradation of NSP in Alaska due to climatic

change will have a widespread impact on permafrost-affected

soil classification at the highest levels, and understanding

taxonomic change in permafrost-affected soils is therefore

important for the planning, ultimate longevity, and usefulness

of existing, in-progress, and future soil surveys in Alaska.

Moreover, due to the imminent 21st-century loss of NSP

across the circumpolar region (Guo & Wang, 2016), some

or all permafrost-affected soil taxa may become threatened

or extinct (Drohan & Farnham, 2006). Because permafrost-

affected soils and NSP are critical for ecosystem functioning

in cold regions and are of extremely high scientific interest,

they alsowarrant investigation into the potential extent of their

loss and subsequent implications for their recognition as rare

or threatened soils (Drohan & Farnham, 2006).

The objective of this study was therefore to generate

spatially explicit estimates of the potential extent of major

permafrost-affected soil classes (the Gelisol order and His-

tel, Orthel, and Turbel suborders) in US Soil Taxonomy

across the state of Alaska throughout the 21st century due

to NSP loss. We accomplished this objective by integrat-

ing a suite of published models of active layer thickness

and NSP change from 2000 to 2099 under low (Special

Report on Emissions Scenario [SRES] B1, Representative

Concentration Pathway [RCP]4.5), moderate (SRES A1B),
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1628 JELINSKI ET AL.

TABLE 1 Near-surface permafrost (NSP) input data sources, references, emission scenarios, temporal span, modeled properties, and spatial

resolutions.

Data source
Future change
scenario Year range Modeled property

Derived diagnostic
feature

Spatial
resolution

Pastick et al.,

2015

SRES: A2, A1B,

B1

2000–2009, 2050–2059,

2090–2099

Probability of NSP within 1 m

of soil surface

(presence/absence)

Permafrost within 1 m 30 m

Jafarov et al.,

2012

SRES: A1B 2000–2009, 2050–2059,

2090–2099

Active layer thickness to 2 m Permafrost within 2 m 2 km

Aalto et al.,

2018

RCP: 4.5, 8.5 2000–2014, 2041–2060,

2061–2080

Active layer thickness to 2 m Permafrost within 2 m 30 arc seconds

(∼1 km)

Yi & Kimball,

2020

N/A 2000–2015 Active layer thickness to 2 m Permafrost within 2 m 1 km

Genet et al.,

2016

N/A 2000–2015 Active layer thickness to 2 m Permafrost within 2 m 1 km

Abbreviations: N/A, not available; RCP, Representative Concentration Pathway; SRES, Special Report on Emissions Scenario.

and high (SRES A2, RCP 8.5) emission scenarios with the

current distribution of Gelisol orders and suborders across

the state of Alaska (STATSGO2; Soil Survey Staff, 2022b).

These spatially explicit estimates of Gelisol order and subor-

der taxonomic change can then be integrated into the design of

futuremapping, re-mapping, or re-correlation efforts and used

to assess the future status of Gelisol taxa as rare or threatened

soils in the United States.

2 MATERIALS AND METHODS

2.1 Estimates of 21st-century near-surface
permafrost extent

2.1.1 Baseline (early-century) estimates of
near-surface permafrost extent

We utilized five different data sources to estimate early

21st-century “baseline” NSP extent across Alaska (Table 1).

Pastick et al. (2015)—referred to as “Pastick”—utilized

machine learning (boosted regression tree) to generate binary

presence/absence probabilities for NSP within 1 m of the soil

surface at 30-m resolution on a statewide basis using 17,000

mid-late season (post-July) observations from 1990 to 2013 of

NSP presence or absence. Aalto et al. (2018)—referred to as

“Aalto”—utilized 303 site-specific active layer depth datasets

in combination with adjusted WorldClim data (Hijmans et al.,

2005), digital elevation model (DEM)-derived incoming solar

radiation estimates, and soil organic carbon (SOC) concen-

trations (Hengl et al., 2014) as inputs to multiple statistical

modeling and machine learning (random forest) approaches

to generate active layer thickness estimates to a depth of 2 m

at 30 arc second resolution for the entire northern circumpolar

region. Yi and Kimball (2020)—referred to as “Yi”—utilized

remote sensing data fromModerate Resolution Imaging Spec-

troradiometer (MODIS) land surface temperature and snow

cover extent, and Soil Moisture Active and Passive satellite

data from 2001 to 2015 to drive a soil process model (Yi et al.,

2015) at 1-km resolution across the state of Alaska to esti-

mate active layer thickness based on the soil depth at which

the 0C threshold is crossed (Yi et al., 2018). For the Yi dataset,

the average modeled active layer thickness from 2001 to 2015

was utilized as our baseline input (Yi & Kimball, 2020).

Jafarov et al. (2012)—referred to as “GIPL” (Geophysical

Institute Permafrost Laboratory)—utilized the process-based

GIPL2-MPI numerical model (a one-dimensional numerical

heat flow model that simulates active-layer thickness and soil

temperatures) driven by the Scenarios Network for Alaska

Planning (SNAP) dataset (Walsh et al., 2008), downscaled

to 2 km using PRISM climate data (PRISM Climate Group

at Oregon State University, n.d.) and modified by soil types

and organic layer thickness. Finally, Genet et al. (2016) gen-

erated statewide predictions of active layer thickness using the

DOS-TEMmodel—referred to as “DOS-TEM”—a numerical

model that simulates biophysical processes in permafrost-

affected ecosystems (Genet et al., 2016). Together, these

five datasets represent independently derived estimates of

early 21st-century statewide NSP distribution with an aggre-

gate temporal resolution (based on input data) of 2000–2015

(Table 1).

Each of these data sources were converted to binary NSP

presence/absence rasters by “hardening” the raw values either

by ≥50% NSP probability (in the case of the Pastick dataset),

or by assigning all raster cells that had active layer thickness

values of 2 m or less (in the case of the Yi, DOS-TEM, GIPL,

and Aalto datasets) a value of 1 and all other cells a value

of 0 (Figure 1). It is important to note that although 50%

thresholds are often used to arbitrarily “harden” probabilities

into binary presence-absence information, in the case of the
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Pastick dataset this was the threshold that also maximized cor-

respondence between historic field observations and model

estimates of the presence-absence of permafrost at 1-m depth,

which is described in the original study (Pastick et al., 2015).

Both the Jafarov et al. (2012) and Aalto et al. (2018) datasets

were simply converted to binary format for any cells meet-

ing the criteria of active layer thickness ≤2.0 m because there

were no associated probabilities assigned to the active layer

thickness estimates that were represented on a continuous

scale.

2.1.2 Mid- to late century estimates of
near-surface permafrost extent under varying
emissions scenarios

Three of the five data sources utilized to estimate early-

century baseline NSP extent also projected corresponding

mid- and late 21st-century NSP extent estimates under dif-

fering emissions scenarios (Table 1). Pastick et al. (2015)

utilized SNAP (Walsh et al., 2008) global climate model

(GCM) ensemble climate projections for SRES B1 (low emis-

sions), A1B (moderate emissions), and A2 (high emissions)

at mid- (2050–2059) and late (2090–2099) 21st-century time

periods. The SNAP projections were produced using an iden-

tical ensemble of outputs from the five top ranked GCMs

from the Fourth Assessment Report of the Intergovernmen-

tal Panel on Climate Change (Walsh et al., 2008). Jafarov

et al. (2012) also utilized SNAP GCM ensemble climate pro-

jections but for SRES A1B only, at mid- (2050–2059) and

late (2090–2099) 21st-century time periods. Finally, Aalto

et al. (2018) utilized Coupled Model Intercomparison Project

(CMIP) ensemble projections (Moss et al., 2010) for three

RCP scenarios RCP 2.6 (low emissions), RCP 4.5 (mod-

erate emissions), and RCP 8.5 (high emissions), at mid-

(2040–2060) and late (2061–2080) century time periods.

Several of the SRES and RCP scenarios are broadly anal-

ogous, and therefore for the purposes of our analysis, we

grouped them into low emission (B1 ∼540 ppm 2100; RCP

4.5 ∼550 ppm 2100), moderate emission (A1B ∼710 ppm

2100), and high emission (A2 ∼860 ppm 2100; RCP 8.5

∼940 ppm 2100) pathways (Snover et al., 2013). Note that

although Aalto et al. (2018) utilized the RCP 2.6 scenario (an

aggressive mitigation scenario with 420 ppm by 2100), we

did not use this scenario in our analysis here because there

is no corresponding SRES scenario with the same aggressive

mitigation. Similarly, the RCP scenario that corresponds most

closely to SRES A1B is RCP 6.0 (∼670 ppm 2100); how-

ever, this was not a scenario utilized by Aalto et al. (2018).

Additionally, we grouped the projected time periods into two

major categories of mid-century (2040–2060) and late cen-

tury (2061–2099) based on the time periods spanning the

projections of the original data sources. Therefore, the two

mid- and late-century projection time periods, in combina-

tion with early-century baseline estimates (2000–2015) for

these three datasets (early-, mid-, and late century), alongwith

three emissions categories (low, moderate, and high emis-

sions) each containing two independent estimates of NSP

extent, resulted in a set of nine potential NSP extent projec-

tions across all time periods and emissions categories (Figures

S1–S4).

2.2 Permafrost-affected soil taxa
definitions, prevalence, and extent

2.2.1 Permafrost-affected soil taxa criteria
and definitions in US Soil Taxonomy

We focused our analysis on permafrost-affected soil taxa

defined at the order and suborder level in US Soil Taxon-

omy: the Gelisol order and three corresponding suborders.

To be classified as a Gelisol in US Soil Taxonomy, a soil

must have permafrost within 1 m of the soil surface or within

2 m of the soil surface if the soil contains gelic materials

within 1 m of the soil surface (Soil Survey Staff, 2022a;

Figure 2). The gelic material concept in US Soil Taxonomy

was designed to provide quantitative and objective criteria

to identify morphological markers of cryogenic processes

(Bockheim & Tarnocai, 1998), which may include cryoturba-

tion (in the form of irregular/broken horizons, organic matter

accumulation near the permafrost, oriented rock fragments)

and/or evidence of ice segregation (in the form of platy or

blocky cryogenic structures in the active layer or ice lenses

and vein ice in the permafrost) among other characteristics

(Ahrens et al., 2004; Soil Survey Staff, 2022a).

Orthels, Turbels, and Histels are the three recognized

Gelisol suborders in the US taxonomic system (Soil Sur-

vey Staff, 2022a). Orthels are non-cryoturbated mineral soils

with thin organic materials at the surface; Turbels are cry-

oturbated mineral soils and are the most widely distributed

Gelisol suborder in the state of Alaska and the northern cir-

cumpolar region (Soil Survey Staff, 2022a; Tarnocai et al.,

2002), and Histels are organic soils characterized by greater

than 40 cm of organic surface materials in most cases (Soil

Survey Staff, 2022a). The extent and prevalence of these

permafrost-affected soil classes across Alaska are repre-

sented in both the gridded National Soil Survey Geographic

Database (gNATSGO; Soil Survey Staff, 2022c) and the

Alaska State Soil Geographic (STATSGO2) dataset (Soil

Survey Staff, 2022b).

2.2.2 gNATSGO

The gridded National Soil Survey Geographic Database

(gNATSGO) product for Alaska is delivered as a compos-

ite raster database that combines Soil Survey Geographic
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Database (SSURGO)-compliant data (mapped at scales rang-

ing from 1:12,000 to 1:63,360) where it is available (Figure

S5) and the Alaska State Soil Geographic (STATSGO2)

dataset to provide seamless coverage (Soil Survey Staff,

2022c) at 10-m resolution. Detailed soil survey data for

Alaska in the gNATSGO dataset, as would be provided by

SSURGO, are currently only available for less than 20%

of the state of Alaska (Figure S5). Due to the limited

spatial extent of SSURGO data in the gNATSGO dataset,

gNATSGO was used in a limited manner as an alignment

template (see Section 2.3.2) and as the primary source

of SSURGO-compliant data to compare and contextualize

permafrost-affected soil taxa distributions and extent from

STATSGO2 within currently published SSURGO-compliant

survey areas (Section 2.2.3, Figure S5).

2.2.3 STATSGO2

We utilized the Alaska State Soil Geographic (STATSGO2)

dataset (Soil Survey Staff, 2022b)—the only currently avail-

able statewide soils dataset for Alaska—as a representation of

the spatial distribution and prevalence of permafrost-affected

soil taxa. The STATSGO2 dataset is currently delivered as a

vector dataset, with polygons and tabular data linked through

unique map unit key (𝑚𝑢𝑘𝑒𝑦) values (Soil Survey Staff,

2022c).

The Alaska STATSGO2 dataset is mapped at a smaller

scale (1:500,000) than the STATSGO2 dataset for the con-

tiguous United States (1:250,000), with a standard minimum

delineated area of 2500 ha (25 km2), except in the case

of off-shore islands, which may be smaller (Clark, 2012).

STATSGO2 was designed for regional, multi-county, river

basin, or statewide analysis and thus is appropriate for the

analysis scale applied in this study. Alaska STATSGO2 map

units were manually delineated based on existing soil sur-

veys, landforms, life zones, and existing vegetation types; and

delineations were field verified with a limited dataset of 207

point and transect data (Clark, 2012). There are 2252 map

unit delineations in the Alaska STATSGO2 map—covering

an area of 1,507,830 km2, the mean delineation size is 669

km2, the median delineation size is 26 km2, the minimum

delineation size is less than 1 km2 (offshore islands), and the

maximum delineation size is 63,312 km2. Ignoring offshore

island delineations in STATSGO2, the mean and median

delineation sizes for STATSGO polygons (1131) across AK

are 1330 and 404 km2, respectively.

Every unique map unit has a unique key (𝑚𝑢𝑘𝑒𝑦), which is

associated with a number of components (entities which are

classified to the great group level in the Alaska STATSGO2

dataset) for the map unit in the STATSGO2 and gNATSGO

tabular data. In the AK STATSGO2 dataset, the average

number of components per map unit is 6.4 ± 3.3, with a
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minimum of 1 and maximum of 18. Unique soil components

(classified to the great group level in US Soil Taxonomy)

are assigned, with representative percentages (comp pctr), to
every delineated map unit in the Alaska STATSGO2 dataset.

Minimum and maximum (low and high) map unit component

percentages—typically assigned in the SSURGO database—

are not available in the Alaska STATSGO2 dataset. The

component soil classes assigned to each delineated map unit

and their properties are contained in tabular form in the com-

ponent table of STATSGO2. There are 260 unique map units

and 1664 unique components in the AK STATSGO database.

2.2.4 Calculation of permafrost-affected
soil taxa prevalence in STATSGO and
gNATSGO

The distribution and prevalence of each permafrost-affected

soil taxon to the suborder level (the Gelisol order and the

Turbel, Histel, and Orthel suborders) were calculated for each

map unit in the STATSGO and gNATSGO datasets map unit

by utilizing the STATSGO and gNATSGO component tables.

The prevalence (𝑝𝑟𝑒𝑣, or proportion of the raster cell) of each

permafrost-affected soil taxa 𝑦 in the map unit can be calcu-

lated as the sum of comp pctr) for all components assigned to

the map unit matching taxon. The representative percentages

of components in each unique map unit must add up to 100%.

However, due to the presence of non-soil components in some

STATSGO2map units (“rock outcrop and rubbleland,” “river-

wash,” “water,” “dunes,” “tidal flats,” “cinderland and lava

flows,” “beaches, gravelly,” “ice and permanent snowfields,”

“Urban Land,” and “cinder land”, which are poorly spatially

resolved and not delineated), we used the Pastick dataset as

the single best spatial representation of the soil and non-soil

domain areas across the state of Alaska (see Section 2.3.2,

Figure S6). The raw prevalence values for taxon 𝑦 in each

map unit were subsequently normalized by soil component

percentages (Equation 1). This avoids double counting that

would occur if the soil domain of Pastick was utilized, but

permafrost-affected soil taxa prevalence was not normalized

by soil component prevalence. Therefore, the prevalence of

each permafrost-affected soil taxa in our baseline STATSGO2

data representation was calculated as:

if 𝑗 ≥ 1 ∶ prev𝑦,soil =
∑𝑁𝑦

𝑘=1 𝑜𝑟 0
(
𝑐𝑜𝑚𝑝 𝑝𝑐𝑡𝑟,𝑦

)

∑𝑁soil
𝑗=1 (𝑐𝑜𝑚𝑝 𝑝𝑐𝑡𝑟,soil)

if 𝑗 = 0 ∶ 𝑝𝑟𝑒𝑣𝑦,soil = 0
, (1)

where 𝑗 is the number of soil components in the map unit,

prev𝑦,soil is the prevalence of taxon 𝑦 in the map unit for soil

components only. comp pctr,y is the representative percent-

age of a single component matching taxon 𝑦. Note that the

numerator on the right hand of the equation is summed for all

matching components 𝑘 to 𝑁𝑦, where 𝑘 = 1 and 𝑁𝑦 = the

total number of matching components for multiple match-

ing components, 𝑘 = 𝑁𝑦 = 1 in the case of a single matching

component, or 𝑘 = 𝑁𝑦 = 0 in the case of no matching com-

ponents. Conversely, the denominator on the right hand of the

equation is summed for all soil components 𝑗 to 𝑁soil, where

𝑗 = 1 and𝑁soil = the total number of soil components. If there

are no soil components assigned to amap unit (𝑗 = 𝑁soil = 0),
then prev𝑦,soil is set to 0.

2.2.5 Alaskan land resource regions as
appropriate units of analysis

Land resource regions (LRRs) are defined by a unique set

of topographic, landscape, hydrologic, resource concerns,

resource uses and human considerations affecting use and

soil and water conservation treatment needs (USDA-NRCS,

2022). Currently, the five LRRs in Alaska are Southern

Alaska (LRR W1), comprising much of the south central

and south-eastern portions of the state—south of the Alaska

Range and Wrangell Mountains, including the area surround-

ing the Cook Inlet, the Kodiak Archipelago, the Alexan-

der Archipelago, and the eastern portion of the Alaskan

Peninsula; Aleutian Alaska (LRR W2) including the Aleu-

tian Archipelago and the western portion of the Alaskan

Peninsula; Western Alaska (LRR X2) containing the Yukon-

Kuskokwim Delta, Nulato Hills, portions of the northern

Alaska Peninsula, and the southern Seward Peninsula; Interior

Alaska (LRR X1) containing most of the central and eastern

portions of the state north of the Alaska Range and south of

the Brooks Range, including the Copper River Basin to the

south and Yukon Flats to the east; and Northern Alaska (LRR

Y) comprising the northern Seward Peninsula and north of the

Brooks Range to the Beaufort Sea (Figure S7).

We chose to utilize LRRs as our sub-state spatial unit of

analysis in order to (1) capture taxonomic change across land-

scape units that are relevant to soil survey and ecological

realities and (2) because LRRs are of reasonable size given the

mapping scale and limitations of the STATSGO2 dataset. The

median STATSGO2 delineation size (404 km2) results in an

average minimum of 51 delineation units in the smallest LRR

(X2). Therefore, given the scale of mapping for the Alaska

STATSGO2 dataset, LRRs are appropriate for understanding

large sub-state geographic trends.

2.3 Spatial domain extent and spatial and
temporal resolution

2.3.1 Spatial resolution and data
pre-processing

We chose to utilize a 1-km spatial resolution in this anal-

ysis as a reasonable compromise between the resolutions

of the input datasets (ranging from 30 m (Pastick et al.,
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JELINSKI ET AL. 1633

2015) to 2 km (Jafarov et al., 2012), as well as the scale

for use of the STATSGO2 dataset (Section 2.2.3; Figure 1).

Because the gNATSGO product covers the entire spatial

extent of the state of Alaska, and because it contained out-of-

the-box 10-m resolution, we first aggregated the gNATSGO

dataset to 1-km resolution using a nearest neighbor algo-

rithm implemented in the terra::resample function in R. All

other raster input datasets were resampled (aligned and aggre-

gated or downscaled) to the 1-km gNATSGO dataset using

the terra::resample algorithm in R, using nearest neighbor

resampling for all categorical and binary layers (NSP input

datasets) and cubic convolution resampling for all continu-

ous layers (STATSGO and gNATSGO permafrost-affected

soil taxa prevalence; Figure 1). Because the raw form of the

STATSGO2 dataset is a vector, it was rasterized and resam-

pled to match the aggregated 1-km AK gNATSGO dataset

prior to additional analysis (Figure 1).

2.3.2 Analysis domain and spatial extent

We utilized the extent of the Pastick et al. (2015) dataset

(which excludes St. Lawrence and St. Matthew islands in

the northern Bering Sea and the Aleutian islands west of

Unalaska) as our analysis domain. This domain is 1,488,816

km2 in total, with 252,761 km2 of non-soil area (surfacewater,

ice, rock, and urban areas) and 1,236,055 km2 of soil area.

This domain was chosen for several reasons: (1) the Pastick

et al. (2015) dataset in raw form was the smallest extent and

therefore all other datasets overlapped with it—the same was

not true of any other datasets; (2) it is superior to the other

extents for our display purposes, focusing on permafrost-

affected soils in mainland Alaska; (3) the western Aleutian

islands and St. Matthew and St. Lawrence have essentially no

NSP occurrence and comprise relatively minor overall land

area. Therefore, the exclusion of these portions of Alaska in

our analysis domain has minimal impact on our results. Addi-

tionally, we utilized the aggregated 1-km Pastick et al. (2015)

dataset to mask all non-soil cells from our analysis domain

(Figure S6). The Pastick et al. (2015) dataset is one of the

highest quality statewide datasets available representing the

spatial extent of non-soil land cover (i.e. rock, ice, water,

and urban lands), as the boosted regression tree algorithms

used in the production of this dataset specifically predicted

these land cover types with high accuracy (Pastick et al.,

2015). This non-soil masking integrates with our calculation

of permafrost-affected soil taxon prevalence from gNATSGO

and STATSGO2 on a soil component basis only, as including

non-soil components in these prevalence calculations yields

anomalous results for some regions due to the high prevalence

of small water bodies that are not well spatially represented in

the STATSGO2 database.

2.4 Generating dataset-specific baseline
and mid-late century estimates of
permafrost-affected soil taxa extent and
prevalence

We utilized the 1-km aggregated STATSGO2 soil domain

(Section 2.3.2) as the statewide source of taxon prevalence

information. Gelisols account for 45% (556,833 km2) of

the state soil domain (1,236,055 km2) and are unequally

distributed between LRRs in Alaska (Figure 3, Table 2).

Among LRRs, Interior Alaska (X1) contains the largest area

of Gelisols (264,665 km2), while (with the exception of Aleu-

tian Alaska [W2] at 0 km2 of Gelisols), Southern Alaska (W1)

has the smallest area of Gelisols at 98 km2 (Table 2). North-

ern Alaska (Y) contains the highest proportion of Gelisols as

a percent of land area (73.5%; Table 2). Orthels (45%) and

Turbels (44%) account for the vast majority of Gelisols in the

Alaska followed by Histels (11%; Table 2, Figure 3). Interior

Alaska (X1) contains the greatest extent of Orthels (173,210

km2) among all LRRs (Table S1), while Turbels are domi-

nant in Northern Alaska (140,262 km2) (Table 2, Figure 3).

Histels are nearly evenly distributed between Interior (20,046

km2) and Northern (29,648) Alaska (Table 2, Figure 3).

A permafrost-affected soil taxon prevalence raster was

generated from each NSP input dataset (all five early cen-

tury and three mid- and late-century datasets) by multiplying

the STATSGO taxon prevalence raster by each binary NSP

presence/absence raster using Equation (2) as follows:

𝑝𝑟𝑒 𝑣𝑦,soil,𝑥 = 𝑝𝑟𝑒𝑣𝑦,soil × nspbinary,x, (2)

where 𝑝𝑟𝑒𝑣𝑦,𝑥 is the prevalence of permafrost-affected soil

taxon 𝑦 for NSP dataset 𝑥, 𝑝𝑟𝑒𝑣𝑦,soil is the prevalence of taxon

𝑦 among all soil components derived from the STATSGO2

dataset as described in Equation (1), and nspbinary,𝑥 is the

binary NSP value (1 for present and 0 for absent) from each

of the baseline, mid-, and late century NSP extent rasters

(Table 1, Section 2.2.4). This approach results in estimates

of permafrost-affected soil taxon prevalence, which can then

can be used to generate permafrost-affected soil taxa extent

for each dataset and scenario (by summation).

2.5 Spatial operations and statistical
analysis

All spatial operations described in the methods were per-

formed in R with the exception of export of the gNATSGO

dataset to 1 km (as gNATSGO is delivered as a propri-

etary .gdb format and therefore must be initially manipulated

in ArcGIS prior to exporting as a .tif). Spatial operations and

analysis were performed in the terra package in R (Hijmans
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1634 JELINSKI ET AL.

F IGURE 3 Prevalence (component weighted proportion of map unit, normalized to soil components) of (A) Gelisols, (B) Histels, (C) Orthels,

and (D) Turbels across the state of Alaska in the STATSGO2 dataset (Soil Survey Staff, 2022a).

TABLE 2 General areas of Alaskan land resource region (LRR) total and soil domains included in this analysis (upper); areas of Gelisol order

and suborder taxa by LRR—percentages following numbers refer to the percent of the LRR soil domain occupied by that taxonomic class (middle);

estimated Gelisol area by LRR, derived by multiplying binary near-surface permafrost (NSP) rasters by STATSGO Gelisol presence (Figure 1,

Equation 2).

Land resource region
Area (km2) Southern (W1) Aleutian (W2) Interior (X1) Western (X2) Northern (Y) Total

General
Domain 275,042 148 665,522 223,206 324,898 1,488,816

Soil 176,503 123 583,670 195,059 280,700 1,236,055

Permafrost-affected soil classes (STATSGO)
Orthels 11 (<1%) 0 173,210 (29.7%) 44,062 (22.6%) 36,291 (12.9%) 253,574 (20.5%)

Turbels 76 (<1%) 0 71,410 (12.2%) 31,346 (16.1%) 140,262 (50.0%) 243,094 (19.7%)

Histels 11 (<1%) 0 20,046 (3.4%) 10,461 (5.4%) 29,648 (10.6%) 60,166 (4.9%)

Gelisols 98 (<1%) 0 264,665 (45.3%) 85,869 (44.0%) 206,201 (73.5%) 556,833 (45.1%)

Baseline Gelisol prevalence estimates
Yi 10 0 169,275 12,732 195,795 377,812

Aalto 14 0 176,553 24,108 205,389 406,064

DOS-TEM 3 0 115,146 10,156 153,010 278,315

GIPL 14 0 206,306 42,860 206,029 455,209

Pastick 3 0 123,846 22,865 186,087 332,801

Average ± SD 9 ± 6 0 158,225 ± 38,104 22,544 ± 12,894 189,262 ±
21,841

370,040 ± 67,845
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JELINSKI ET AL. 1635

F IGURE 4 Concurrence of baseline dataset near-surface permafrost (NSP) binary presence/absence predictions and Gelisol presence across

the state of Alaska. (A) Number of models predicting NSP presence by 1-km raster cell, (B) differences in 1-km raster cells containing Gelisols

(regardless of prevalence) between the STATSGO dataset and the gNATSGO dataset—the gNATSGO dataset contains SSURGO data for select

completed survey areas (outlined in black); (C) concurrence between STATSGO Gelisol presence and baseline NSP dataset binary

presence/absence—areas in red have STATSGO Gelisols that are not predicted by any NSP models, areas in gray have Gelisols predicted by

STATSGO and at least one baseline model predicting NSP presence, and areas in blue have no Gelisols predicted by STATSGO but NSP predicted

by at least one or more baseline datasets; (D) same as (C), but for the gNATSGO dataset.

et al., 2023; Team, R Core, 2023). Detailed source code files

containing scripts that implement these operations as well as

the generation of all figures and tables in the manuscript can

be found in the Supporting Information and at the GitHub and

UMN DRUM repositories for this study (https://github.com/

jelinski-lab-pedology/M007-jelinski-gelisol-change-ak).

3 RESULTS

3.1 Early 21st-century baseline estimates of
NSP and Gelisol extent

The five different data sources utilized to estimate early 21st-

century “baseline” NSP and Gelisol extents in Alaska varied

in their predictions and were characterized by important dif-

ferences relative to STATSGO2 (Figure 4, Table S1). The

binary GIPL model resulted in the largest extent of NSP

in the baseline situation (825,666 km2), whereas the binary

DOS-TEM model predicted the lowest extent of NSP in

Alaska (489,427 km2), with an average predicted extent of

641,896 ± 145,699 km2 (Table S1). Concurrence between

these five independent models varied by LRR, with the

greatest variability between models in Southern and West-

ern Alaska (Figure 4). Predicted baseline binary NSP extents

among these five datasets were most uncertain in Southern

(9391 ± 5126, coefficient of variation (CV) = 55%) and

Western Alaska (41,514 ± 23,520 km2, CV = 57%) and

least uncertain in Northern Alaska (252,072 ± 33,693 km2,

CV = 13%), with the greatest absolute aerial uncertainty in

Interior Alaska (338,918± 94,230 km2, CV= 28%) (Figure 4,

Table S1). Note that these binary NSP presence/absence

aerial extents are much higher than actual Gelisol extents

because they assume an entire pixel contains NSP. This is why

permafrost-affected soil taxa prevalence from STATSGO2

provides a critical integration with NSP predictions, as it
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1636 JELINSKI ET AL.

provides aerial estimates permafrost-affected soil prevalence

at the sub-grid scale (Figure 1, Equation 1).

Because STATSGO aerial coverage of Gelisols was more

extensive than any single NSP model estimate, particularly

in Southern and Western Alaska (Figure 4C), all baseline

Gelisol extent estimates (370,040 ± 67,845 km2) were lower

than that from STATSGO dataset (556,833 km2). The fewest

discrepancies between STATSGO Gelisol extent and baseline

Gelisol extent estimates occurred in Northern Alaska, where

NSP estimates were most certain (Figure 4A,C). There were

several small areas in Southern and Interior Alaska where a

limited number of datasets predicted NSP that was not cov-

ered in STATSGO; however, these were extremely limited in

extent (Figure 4C).

Assessing the extent to which STATSGO may over or

under estimate Gelisol extent can be accomplished by com-

paring STATSGO Gelisol estimates with gNATSGO Gelisol

estimates for the limited survey areas where SSURGO qual-

ity data are available (Figure S5, Figure 4B). Most current

SSURGO coverage occurs in Interior and Southern Alaska

(Figure S5, Figure 4B). Among the 21 SSURGO survey areas,

total Gelisol extents are predominantly lower than STATSGO

estimates (Figures S8–S28, Figure 4B); however, in two sur-

vey areas (Denali National Park and Preserve [Figure S11]

and Yukon-Charley National Park and Preserve [Figure S27]),

SSURGO level mapping resulted in no-change (Denali) or

increased Gelisol extents (Yukon-Charley).

Although there is reasonable concurrence between

SSURGO Gelisol extent and NSP baseline predictions,

there are instances where SSURGO level mapping contains

significantly greater (Bristol Bay) or lower (North Star,

Togiak) Gelisol extent than any of the NSP baseline sce-

narios (Figures S8–S28). Across all SSURGO survey areas,

NSP extents from the GIPL and Pastick models were most

closely correlated to Gelisol extent (0.91 and 0.89, p < 0.01,

Pearson’s correlation test), followed by Yi (0.85) and Aalto

(0.77). Notably, the GIPL statewide baseline Gelisol esti-

mates are the highest among all datasets (455,209 km2) and

closest to the STATSGO Gelisol estimate (556,833 km2).

Therefore, based on the differences between STATSGO and

SSURGO, as well as the differences between NSP predictions

and STATSGO (Figure 4), we assume that the STATSGO

represents an upper bound on Gelisol extent across the state

of Alaska.

3.2 Estimates of mid- and late century
Gelisol taxonomic change

Low emission scenarios (RCP 4.5, SRES B1) resulted in

significant changes in Gelisol extent across all LRRs. How-

ever, the Aalto low emission models resulted in significantly

greater changes in Gelisol extent in Interior (−72%), West-

ern (−98%), and Northern Alaska (−23%) by mid-century

F IGURE 5 Dumbbell plot of Gelisol area by Alaska land

resource region (LRR) for STATSGO, gNASTGO, Baseline datasets,

and under low (Special Report on Emissions Scenario [SRES] B1,

Representative Concentration Pathway [RCP] 4.5), moderate (SRES

A1B), and high (SRES A2, RCP 8.5) emission scenarios.

than the Pastick model (−24%, −58%, and −4%, respectively,
Table S2, Figures 5 and 6), and thus mid-century loss uncer-

tainty was the greatest in Western and Interior Alaska. Late

century loss predictions were much more similar between

Aalto and Pastick for Interior (−78% and −67%, respec-
tively) and Northern Alaska (−26% and −23%, respectively;
Table S2). Pastick and Aalto shared similar early century

Gelisols extent predictions in Western Alaska (22,865 and

24,108 km2, respectively; Table S2, Figures 5 and 6). How-

ever, future losses in Western Alaska diverged significantly,

with Aalto predicting nearly complete Gelisol loss (−98%
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JELINSKI ET AL. 1637

F IGURE 6 Binary representation of 1-km raster cells that contain Gelisols for early 21st-century baseline scenarios, and under low (Special

Report on Emissions Scenario [SRES] B1, Representative Concentration Pathway [RCP] 4.5), moderate (SRES A1B), and high (SRES A2, RCP 8.5)

emission scenarios. The gray areas contain Gelisols in the STATSGO dataset, while areas in blue have either one or two near-surface permafrost

(NSP) models predicting Gelisol presence (regardless of prevalence). Note that there are exactly two data sources in each emissions scenario

category (Section 2.1.2).

by mid-century and −99% by late century), while Pastick

predicted more moderate losses (−45% by late century).

Mid emission scenarios (SRES A1B) also resulted in sig-

nificant change in Gelisol extent across all LRRs. Similar to

the low emission scenarios, scenarios differed most widely

in Western Alaska, where mid-century losses ranged from

−48% (Pastick) to −87% (GIPL). Mid-century loss predic-

tions in Northern Alaska were much less variable (−10% to

21%) across models. However, regardless of the model, abso-

lute Gelisol losses by mid-century in Interior Alaska were the

greatest among all LRRs (−63,639 km2; Pastick to −89,555
km2; GIPL). Late century relative changes were less variable

between models and the greatest for both Interior (−80% and

−89%) and Western (−71% and −99%) Alaska (Table S3,

Figures 5 and 6). Predicted late century Gelisol loss in North-

ern Alaska was most similar and less extensive than other

LRRs (−37% and −34%; Table S3, Figures 5 and 6).

High emissions scenarios exhibited the greatest variabil-

ity between models but exhibited similar patterns (with

more extensive losses) as low and mid emissions scenarios.

Mid-century Gelisol losses were extremely variable between

models for Interior (−44% and −79%) and Western Alaska

(−56% to −99%; Table S2, Figures 5 and 6). Most critically,

late centurymodel predictions resulted in nearly complete loss

of Gelisols in Southern (100%), Interior (−90% to−98%), and
Western Alaska (−100%). Only Northern Alaska Gelisols are
less susceptible to loss in the high emissions scenarios (−36%
to −47%; Table S4, Figures 5 and 6).

Due to the uneven distribution of Gelisol suborders across

the state of Alaska (Figure 3), Gelisol suborders varied in their

susceptibility to taxonomic change (Figure 7, Figures 8 and 9).

Orthels are predominantly distributed in Interior and Western

Alaska and are thereforemost vulnerable to taxonomic change

due to NSP loss (Figure 8). Most critically, because Orthels

are not widely distributed in Northern Alaska (Figure 3), their

distribution is severely restricted under all emission scenarios

by mid- and late century, with late century statewide losses

ranging from −59% to 54% in the low emissions scenarios
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1638 JELINSKI ET AL.

F IGURE 7 Binary representation of 1-km raster cells that contain Histels for early 21st-century baseline scenarios, and under low (Special

Report on Emissions Scenario [SRES] B1, Representative Concentration Pathway [RCP] 4.5), moderate (SRES A1B), and high (SRES A2, RCP 8.5)

emission scenarios. The gray areas contain Histels in the STATSGO dataset, while areas in blue have either one or two near-surface permafrost

(NSP) models predicting Histel presence (regardless of prevalence). Note that there are exactly two data sources in each emissions scenario category

(Section 2.1.2).

to −74 to −79% in moderate emissions scenarios and −74%
to −90% in high emissions scenarios. In contrast, Turbels

and Histels have a significant proportion of their aerial extent

in Northern Alaska (Figures 7 and 9), and thus they expe-

rience more moderate statewide losses by late century even

under the high emission scenarios (−27% to−42% for Turbels

and −39% to −48% for Histels) and remain relatively widely

distributed in Northern Alaska (Figures 7 and 9).

4 DISCUSSION

4.1 Baselines and projections of
21st-century Gelisol extent in Alaska

Based on the data from SSURGO-certified areas in Alaska,

it is clear that many models have difficulty representing

NSP distribution in Southern, Western, and some portions

of Interior Alaska (Figure 4). Notably, the greatest area of

uncertainty among NSP model baseline Gelisol estimates is

Western Alaska, where SSURGO data are lacking, yet NSP

is known to be reasonably extensive (Jorgenson et al., 2008).

In the baseline scenario, the GIPL and Pastick datasets out-

performed other datasets with respect to SSURGO Gelisol

distributions (Table S2). Other global-scale models not used

in our analysis (Guo & Wang, 2016; Poggio et al., 2021) also

do a poor job of reproducing the distribution of NSP and

Gelisols in Western and Southern Alaska. Resolving these

uncertainties is therefore critical at regional scales (i.e., Whit-

ley et al., 2018) andwill require significant field-based ground

truthing and monitoring efforts in these regions, which are

highly under sampled relative to soils in other parts of Alaska

(Vitharana et al., 2017).

Our results indicate the potential for widespread suscepti-

bility to taxonomic change in Alaskan Gelisols due to NSP

loss in the 21st century across all emissions scenarios. On a
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JELINSKI ET AL. 1639

F IGURE 8 Binary representation of 1-km raster cells that contain Orthels for early 21st-century baseline scenarios, and under low (Special

Report on Emissions Scenario [SRES] B1, Representative Concentration Pathway [RCP] 4.5), moderate (SRES A1B), and high (SRES A2, RCP 8.5)

emission scenarios. The gray areas contain Orthels in the STATSGO dataset, while areas in blue have either one or two near-surface permafrost

(NSP) models predicting Orthel presence (regardless of prevalence). Note that there are exactly two data sources in each emissions scenario category

(Section 2.1.2).

statewide basis, the losses range from 41% to 69% of early

21st-century Gelisol extent across all emissions scenarios.

The greatest reductions in absolute Gelisol extent by mid- and

late century across all scenarios are likely to occur in Interior

Alaska, while the greatest uncertainty in Gelisol taxonomic

change is Western Alaska (Tables S2– S4, Figures 5 and 6).

Gelisol taxonomic change in Northern Alaska is likely to be

most limited in both absolute and relative extent (Figure 6).

Northern Alaskan Gelisols will likely be less sensitive to

taxonomic change in the 21st century because they lie pre-

dominantly in the zone of climate-driven permafrost and the

NSP is more stable (Jorgenson et al., 2010). This does not

mean, however, that Gelisols in Northern Alaska will not

experience significant active layer deepening or the forma-

tion of taliks (unfrozen zones between the seasonally frozen

active layer and permafrost), as these changes are already

being observed at a much more rapid pace than predicted in

some Arctic soils (Farquharson et al., 2019). Due to the differ-

ing spatial distribution of Gelisol suborders across the state of

Alaska, the greatest uncertainty in 21st-century Gelisol subor-

der extent lies in theOrthels ofWestern and Interior Alaska, as

Histels and Turbels are widely distributed in Northern Alaska,

where NSP is expected to remain late into the 21st century

regardless of the emission scenario (Figures 7–9).

It is important to note that not all of the emission sce-

narios investigated here are equally likely. It now appears

that the low-to-moderate emissions scenarios (represented in

our work by SRES B1 and A1B and RCP 4.5) are more

likely “business as usual” outcomes than the high emissions

scenarios (SRES A2 and RCP 8.5; Hausfather et al., 2022;

Hausfather & Peters, 2020). Therefore, our high emission

scenarios should be viewed as a conservative estimate of max-

imum change, while the low and moderate emission scenarios

represent current most probable change over the 21st century.

There are several important limitations to the potential

outcomes we report here. First, scenarios of either more

aggressive (SRES A1F1) or more subdued (RCP 2.5) emis-

sions or concentration pathways would change the results
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1640 JELINSKI ET AL.

F IGURE 9 Binary representation of 1-km raster cells which contain Turbels for early 21st-century baseline scenarios, and under low (Special

Report on Emissions Scenario [SRES] B1, Representative Concentration Pathway [RCP] 4.5), moderate (SRES A1B), and high (SRES A2, RCP 8.5)

Emission scenarios. The gray areas contain Turbels in the STATSGO dataset, while areas in blue have either 1 or 2 near-surface permafrost (NSP)

models predicting Turbel presence (regardless of prevalence). Note that there are exactly two data sources in each emissions scenario category

(Section 2.1.2).

of the analysis conducted here. Nevertheless, the scenarios

in our analysis span the most likely 21st-century outcomes

(Hausfather & Peters et al., 2020). Additionally, the methods

utilized to generate predictions of mid- and late 21st-century

NSP loss in our input datasets (Pastick, GIPL, and Aalto)

are driven by climate forcing over the 21st-century and do

not include dynamic ecosystem properties or factors (such

as fires, organic layer thickness, or vegetation type), which

can have a major influence on soil thermal regimes (Ander-

son et al., 2019; Li et al., 2022). For example, the thickness

of surficial organic materials exerts a primary control on

the response of soil temperature and is an important factor

in protecting NSP even as air temperatures increase (Koven

et al., 2009; Jafarov & Schaefer et al., 2016). When unfrozen,

organic materials are excellent thermal insulators relative

to mineral soil materials, reducing the magnitude of down-

ward heat transfer during the growing season, while they act

as poor insulators in frozen state (Jorgenson et al., 2010).

The combined effects of these thermal properties in frozen

and unfrozen states (known as “thermal offset”; Kudryavtsev

et al., 1974) dramatically increase effectiveness in protecting

NSP. The dynamic response of organic materials to envi-

ronmental changes will thus also have an impact on Gelisol

classification change. Finally, although the STATSGO dataset

is currently the only available statewide dataset for Alaska that

represents the spatial distribution of Gelisols, improved dig-

ital soil mapping products (such as a 30-m digital soil class

probability map) for Alaska would enable this analysis to be

further resolved spatially.

4.2 NSP loss and permafrost-affected soil
taxonomic change trends in other regions

Due to the direct linkage between NSP and permafrost-

affected soil classes across soil taxonomic systems, 21st-

century NSP loss will also lead to widespread soil taxonomic

change on a global scale. Therefore, although our study is
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JELINSKI ET AL. 1641

restricted to Alaska in the context of US Soil Taxonomy, we

can assess and compare our results to that of potential Cryosol

(WRB, Canadian) taxonomic change due to NSP loss in other

regions.

In early work from Canada, Tarnocai (1999) estimated

changes in Cryosol area based on NSP loss over the 21st

century in Canada under a 2xCO2 scenario (approximately

corresponding to the current moderate-to-high emission

SRES/RCP scenarios (A1B, A2, and RCP 8.5). Under

these assumptions, the authors estimated that ∼51% of the

Cryosols in Canadawould be susceptible to taxonomic change

based on NSP loss projections. Our estimates of propor-

tion change in Gelisols from Alaska for the moderate-to-high

emission scenarios are similar but suggest slightly more

extensive taxonomic change, in excess of 60% of early-

century Gelisols under moderate-to-high emission scenarios.

Tarnocai (1999) predicted this change would affect organic

Cryosols (analogous to Histels in Soil Taxonomy) in Canada

most significantly—due to their geographic distribution in

Canada and strong associationwith the Hudson Bay Lowlands

(Tarnocai & Bockheim, 2011). In Alaska, however, we found

Orthels to be the Gelisol suborder most susceptible to taxo-

nomic change due to their widespread distribution in Western

and Interior Alaska (Figure 3).

Estimates of NSP loss across the entire northern circumpo-

lar region have suggested changes of similar magnitude, but

with important regional variability. Guo and Wang (2016),

from an ensemble prediction of CMIP models, predicted an

average loss of 48%–73% of early-century NSP across the

northern circumpolar region as a whole in moderate-to-high

emissions scenarios (RCP 4.5–RCP 8.5), with significant

reductions in NSP area by 2080–2099. These predictions var-

ied regionally for Russia (49%–76% loss in RCP 4.5–RCP

8.5), Canada (45%–68% loss in RCP 4.5–RCP 8.5), and the

United States (72%–92% loss in RCP 4.5–RCP 8.5). Notably,

the US-based estimates in this global scale work greatly

exceed our estimates for Alaska across all scenarios, perhaps

due to the significantly coarser spatial resolution than the

datasets used in our analysis.

Permafrost-affected soil classes are widely distributed

across the Chinese Qinghai-Tibet Plateau (QTP) or the “third

pole,” in conjunction with ∼1 million km2 of permafrost

(Fang et al., 2015; Zou et al., 2017). In recent work using

CMIP6 projections, Zhang et al. (2022) utilized a set of Shared

Socioeconomic Pathways (SSP) scenarios (SSP 1–2.6, SSP 2–

4.5, and SSP 3–7.0, and SSP 5–8.5, which broadly correspond

to RCP scenarios: RCP 2.6, RCP 4.5, and RCP 8.5; Hausfa-

ther & Peters, 2020) and found the potential for NSP losses

of 44% in the moderate emissions scenario (SSP 2–4.5), and

59%–71% in high emissions scenarios (SSP 3–7.0, SSP 5–

8.5). Thus, NSP and permafrost-affected soil taxa are likely

to become severely restricted across the QTP by the late 21st

century (Zhang et al., 2022).

4.3 Gelisols as threatened soils

The magnitude and extent of late century taxonomic changes

that we have estimated here in the most probable low (136,881

to 213,853 km2) and moderate (195,623–277,691 km2) emis-

sions scenarios is extensive by late century (Tables S2 and

S3, Figures 5 and 6). There are few precedents for taxonomic

change on this scale with the exception of eroded agricul-

tural soils in the conterminous United States (estimated at

greater than 460,000 km2; Fenton, 2012; Veenstra & Bur-

ras, 2012; Jelinski & Yoo, 2016). In their analysis, Amundson

et al. (2003) concluded that only four soil orders in the United

States have had their total undisturbed area reduced by more

than 20%: Mollisols (28), Histosols (24), Vertisols (24), and

Alfisols (22). Our estimates of late century taxonomic change

for Gelisols result in greater proportional losses than these

other soil orders by a factor of approximately 2.

Despite these large changes, by the definitions of Amund-

son et al. (2003), Gelisols as an order would not be considered

rare (less than 10 km2 total area) or endangered (less than 10

km2 and loss of greater than 50% of their land area) in Alaska

by 2100 due to the large extent of NSP and Gelisols that may

remain in Northern Alaska by late century (Figure 6) under all

emissions scenarios. However, the Gelisol order could meet

the non-quantitative definition of threatened soils proposed

by Drohan and Farnham (2006), given that they are undergo-

ing significant proportional losses, as well as transformations

that alter their character and function, provide significant

ecosystem services and are extremely scientifically important.

Additionally, although Gelisols are not currently endemic to

Alaska in the United States (Bockheim, 2015), climate change

is likely to result in the major loss of NSP sensitive high-

altitude soils and thus leaveGelisols only endemic toNorthern

Alaska by the late 21st century (Knight, 2022).

Due to the sporadic and minimal coverage of SSURGO

across Alaska, we cannot assess the aerial coverage of individ-

ual soil series as was done in Amundson et al. (2003), and no

Gelisol orders or suborders rise to the quantitative endangered

criteria of Amundson et al. (2003) at the state level. However,

some Gelisol taxa may be threatened within individual LRRs.

For example, Western Alaska Gelisol suborders could qualify

as rare and endangered by 2100 in the high emission scenar-

ios, with nearly complete projected losses of NSP (Table S4).

Additionally, the 111 Gelisol soil series currently set up in

Alaska are predominantly distributed in Southern and Inte-

rior Alaska and may become rare or extinct with NSP loss

projected to be most severe in those LRRs.

Although previous efforts to identify and conserve rare and

threatened soils have focused on taxa that have been altered

largely due to direct human land use (Amundson et al., 2003;

Drohan & Farnham, 2006), the impacts of 21st-century cli-

mate change on NSP loss and Gelisol taxonomic change have

the potential to be just as widespread and more uncertain.
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1642 JELINSKI ET AL.

Additionally, although other rare or threatened soil taxa may

be conserved by direct land management action, we have lim-

ited tools to stop NSP loss directly in a warming climate at

large scales, despite emerging land management techniques

that may slow the process (Beer et al., 2020) and systematic

efforts to document rare and endemic soils (Shangguan et al.,

2014).

4.4 Whence (taxonomically) go Gelisols
following NSP loss?

The taxonomic disposition of Gelisols following NSP loss

may depend on NSP degradation pathway—under conditions

of gradual NSP loss in situ—without major land surface

disturbance—Gelisols may be distributed into several other

soil orders depending on their properties (Tarnocai, 1999).

Conversely, conditions of severe thermokarsting or fluival and

maritime degradation may lead to severe erosion and result in

newly exposed fresh sediments (Rudy et al., 2017) that would

classify as Entisols.

Determining a comprehensive taxonomic classification of

Gelisols under conditions of in situ NSP degradation at levels

below the suborder is beyond the scope of this study. How-

ever, a few broad examples at the level of suborder can be

explored. With the exception of NSP presence, Histel cri-

teria are analogous to Histosol criteria, so in the absence

of NSP, Histels would become Histosols (Fibrists, Hemists,

or Saprists). Mineral, permafrost-affected soils (Turbels and

Orthels) present additional challenges. Prior to the addition

of Gelisols to US Soil Taxonomy (Ahrens et al., 2004), 65%

of the permafrost-affected soils in Alaska were classified into

only two subgroups of Inceptisols: the Pergelic Cryaquepts

and Ruptic-Histic Pergelic Cryaquepts (Moore & Ping, 1989).

Since that time, numerous changes to non-Gelisol suborder

criteria have been made in US Soil Taxonomy so that there

are currently 30 great groups in five soil orders that have gelic

or cryic soil temperature regimes in their criteria (Soil Sur-

vey Staff, 2022a). Nevertheless, because permafrost restricts

soil drainage and many permafrost and non-permafrost soils

in Alaska have features indicative of saturation and iron reduc-

tion near to the surface, it is likely that most mineral soils

with aquic conditions near the surface but no longer qualify-

ing as Gelisols would move to the Cryic or Gelic great groups

of Aquic suborders of Inceptisols or Entisols. Better drained

Gelisols and those that lack morphological indicators of aquic

conditions near the surface after followingNSP recessionmay

move to the Cryic and Gelic suborders of Andisols, Spo-

dosols, Mollisols, and Inceptisols, or great groups of Entisols

(Gelaquents, Gelifluvents, and Gelorthents; Soil Survey Staff,

2022a).

The addition of “Cyclic” subgroups to the Gelisol subor-

ders, which would include soils in Subgelic soil temperature

regimes that periodically have the properties of Gelisols

and non-Gelisols due to NSP fluctuation, would have the

advantages of providing a consistent taxonomic entity more

reflective of the ecological realities of soils in the zone of

discontinuous permafrost in Interior and Western Alaska. In

these areas, NSP may fluctuate below requisite depths even

in the absence of climatic change due to dynamic environ-

mental factors such as fire and vegetation succession (Ping,

2013a, 2013b). Although this approach has the disadvantage

of separating field morphology and classification from map

unit concepts, it has been used extensively in the mapping of

eroded phases of Mollisols in the central United States, which

was done in order to maintain the genetic thread for users of

the soil survey (Fenton, 2012).

A final taxonomic issue that may affect the reclassification

of these soils following NSP loss is whether or not cryogenic

structures produced when a soil had NSP were subsequently

regarded as pedogenic structure for the purposes of identify-

ing a cambic horizon (Bockheim et al., 2006). Some Gelisols

undergoing NSP loss would likely fall into one of the Turbic

subgroups currently set up within Cryaquepts and Gelaque-

pts, but it is unclear what would happen in the case that a soil

did not qualify for cambic criteria (such as in a sandy soil).

In that case, such a soil could become an Entisol, but there

are no analogous Turbic subgroups set up in the five Gelic

and Cryic great groups of Entisols (Gelaquents, Cryaque-

nts, Gelifluvents, Cryofluvents, and Gelorthents; Soil Survey

Staff, 2022a).

4.5 Implications for mapping and soil
survey in Alaska

Our analysis has important implications for initial soil map-

ping and re-mapping strategies in Alaska. The uneven distri-

bution of Gelisol taxonomic change across the state of Alaska

suggests that any 21st-century remapping efforts should be

focused largely on Southern, Western, and Interior Alaska—

it is likely that soil classes will remain stable in Northern

Alaska regardless of emission scenarios. In a recent study,

Peng et al. (2023) suggested that most permafrost will persist

in deep soils and sediments (greater than 3-m depth) across the

northern circumpolar region by late century even under high

emission scenarios. Given that most permafrost in Alaska

is tens to hundreds of meters deep (Jorgenson et al., 2008),

even under conditions of NSP loss and Gelisol classification

change, it is highly likely that permafrost will persist at some

depth under the landscape. Although this deep permafrost

is beyond the purview of soil survey activities, depending

on ground ice volume, permafrost thaw as deep as 15 m

may threaten infrastructure and other land use and land man-

agement strategies (Hjort et al., 2018), and thus it may be

imperative for soil scientists completing initial mapping or
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re-mapping of permafrost landscapes to construct “deep per-

mafrost” phases of non-permafrost soil taxa. These concepts

could be analogous to “drained” or “eroded” phases com-

monly set up in some soil survey areas (Soil Survey Staff,

2017).

5 CONCLUSIONS

The results of our analysis suggest that a significant propor-

tion of AlaskanGelisols (15%−53% by 2040–2060, 41%–69%

by 2061–2099) is susceptible to classification change in the

21st century. The drivers of much of this taxonomic change

will come from Gelisols in Interior and Western Alaska, with

Gelisols inNorthernAlaska likely retaining permafrost within

the requisite depth to avoid classification change by late cen-

tury. Gelisols in Southern Alaska and Orthels throughout the

state are likely to undergo nearly complete taxonomic change.

Our results have important implications for the completion of

soil survey in permafrost-affected landscapes, particularly for

projects taking place in those landscapes experiencing rapid

change. Mapping units should include both permafrost and

non-permafrost or deep permafrost phases to extend the life-

time and usefulness of soil surveys into the end of the century.

Although our analysis is restricted to Alaska, the results are

relevant across the circumpolar region as continued climatic

and environmental change is likely to affect large changes in

the classification of permafrost-affected soils regardless of the

taxonomic system utilized.
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