

1

2 **Insights into phosphoethanolamine cellulose synthesis and secretion**

3 **across the Gram-negative cell envelope**

4

5

6 Preeti Verma¹, Ruoya Ho¹, Schuyler A. Chambers², Lynette Cegelski*², Jochen Zimmer^{*1,3}

7

8

9

10 **Affiliations**

11 1 Department of Molecular Physiology and Biological Physics, University of Virginia School of
12 Medicine, Charlottesville, VA 22903, USA

13 2 Department of Chemistry, Stanford University, Stanford, CA 94305, United States

14 3 Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

15

16 **Contact**

17 * Email: cegelski@stanford.edu, jochen_zimmer@virginia.edu

19 **Abstract**

20 Phosphoethanolamine (pEtN) cellulose is a naturally occurring modified cellulose produced by
21 several Enterobacteriaceae. The minimal components of the *E. coli* cellulose synthase complex
22 include the catalytically active BcsA enzyme, a hexameric semicircle of the periplasmic BcsB
23 protein, and the outer membrane (OM)-integrated BcsC subunit containing periplasmic
24 tetratricopeptide repeats (TPR). Additional subunits include BcsG, a membrane-anchored
25 periplasmic pEtN transferase associated with BcsA, and BcsZ, a periplasmic cellulase of unknown
26 biological function. While cellulose synthesis and translocation by BcsA are well described, little
27 is known about its pEtN modification and translocation across the cell envelope. We show that
28 the N-terminal cytosolic domain of BcsA positions three BcsG copies near the nascent cellulose
29 polymer. Further, the semicircle's terminal BcsB subunit tethers the N-terminus of a single BcsC
30 protein in a trans-envelope secretion system. BcsC's TPR motifs bind a putative cello-
31 oligosaccharide near the entrance to its OM pore. Additionally, we show that only the hydrolytic
32 activity of BcsZ but not the subunit itself is necessary for cellulose secretion, suggesting a
33 secretion mechanism based on enzymatic removal of translocation incompetent cellulose. Lastly,
34 protein engineering introduces cellulose pEtN modification in orthogonal cellulose biosynthetic
35 systems. These findings advance our understanding of pEtN cellulose modification and secretion.

36

37 **Introduction**

38 Bacterial biofilms have major impacts on our healthcare, industrial, and infrastructure systems.
39 In a biofilm community, bacteria are encased in and protected by a complex biopolymer
40 meshwork including protein polymers, polysaccharides, and nucleic acids^{1,2}. Cellulose is a
41 common bacterial biofilm component produced by a variety of prokaryotes, such as *Escherichia*
42 *coli* (*Ec*), *Salmonella enterica*, and *Gluconacetobacter/Komagataeibacter xylinus* (*Gx*)³. These
43 Gram-negative bacteria synthesize cellulose and secrete it across the cell envelope via the
44 Bacterial cellulose synthase (Bcs) complex. The Bcs complex consists of components located in
45 the inner and the outer membrane (IM and OM, respectively), as well as the periplasm⁴. Its core
46 machinery contains the catalytically active cellulose synthase BcsA enzyme that forms a
47 functional complex with the periplasmic but IM-anchored BcsB subunit^{5,6}. A third component,

48 BcsC, likely creates a cellulose channel in the OM^{7,8}. In the periplasm, the conserved cellulase
49 BcsZ has been shown to be important for cellulose production *in vivo*⁹⁻¹².

50 BcsA is a processive family-2 glycosyltransferase (GT) that synthesizes cellulose, a linear glucose
51 polymer, from UDP-activated glucosyl units. Additionally, the enzyme also secretes the nascent
52 cellulose chain across the IM through a channel formed by its own transmembrane (TM)
53 segment⁵. Thereby, cellulose elongation is directly coupled to membrane translocation. The
54 periplasmic BcsB subunit is required for BcsA's catalytic activity⁶. It contains two structural
55 repeats consisting of a region resembling a carbohydrate-binding domain (CBD) that is fused to
56 a flavodoxin-like domain (FD)⁵. Lastly, the C-terminal segment of BcsC forms a 16-stranded β -
57 barrel in the OM⁸. This pore is preceded by 19 predicted periplasmic tetratricopeptide repeats
58 (TPR), which consist of a pair of anti-parallel α -helices connected by a short loop. BcsC's TPRs
59 likely form an α -helical solenoid structure bridging the periplasm¹³.

60 *E. coli* and other Enterobacteriaceae can modify cellulose with lipid-derived phospho-
61 ethanolamine (pEtN) at the sugar's C6 position^{1,14}. This modification promotes biofilm cohesion,
62 is required for hallmark biofilm macrocolony wrinkling phenotypes, and enhances cell-
63 association of curli amyloid fibers and adhesion to host tissues¹⁴⁻¹⁷. Transfer of pEtN is catalyzed
64 by the membrane-bound pEtN transferase BcsG¹⁵, Fig. 1a. Recent cryogenic electron microscopy
65 (cryo-EM) studies of the *Ec* Bcs complex provided the first insights into the organization of the
66 pEtN cellulose biosynthesis complex, Fig. 1b and c¹⁸⁻²⁰. Importantly, a single BcsA subunit
67 associates with six BcsB copies that form a semicircle at the periplasmic water-lipid interface.
68 BcsA sits at one end of the semicircle where it steers the secreted cellulose polymer towards the
69 circle's center. The open half of the semicircle has been proposed to accommodate multiple BcsG
70 copies²⁰.

71 Here, we have addressed important aspects of pEtN cellulose formation and translocation across
72 the periplasm and the OM. We demonstrate that BcsA recruits three copies of BcsG via its N- and
73 C-terminal domains. These domains are sufficient for BcsG binding, allowing the introduction of
74 the pEtN modification in orthologous cellulose biosynthetic systems, wherein BcsG modifies
75 cellulose using pEtN groups derived from lipids. Further, we show that the OM BcsC subunit binds

76 the sixth subunit of the BcsB semicircle via its extreme N-terminus to establish an envelope-
77 spanning Bcs complex. The cryo-EM structure of BcsC reveals that its periplasmic domain is
78 flexibly attached to the β -barrel. Further, BcsC binds a putative cello-oligosaccharide at its TPR
79 solenoid, likely to facilitate translocation across the periplasm. Lastly, *in vivo* cellulose secretion
80 assays reveal that the cellulase activity of BcsZ is critical for cellulose secretion. While cellulose
81 export is dramatically reduced in the absence of BcsZ, the conserved enzyme can be functionally
82 replaced with an off-the-shelf cellulase. Our data suggest periplasmic translocation of cellulose
83 along the BcsC solenoid and trimming of translocation incompetent cellulose by BcsZ to restore
84 translocation to the cell surface.

85

86 **Results**

87 The *Ec* pEtN cellulose biosynthesis machinery catalyzes the synthesis, secretion, and pEtN
88 modification of cellulose (Fig. 1a and b). The mechanism of cellulose synthesis and translocation
89 across the IM has previously been addressed using the BcsA and BcsB components from
90 *Rhodobacter sphaeroides* (*Rs*), producing unmodified cellulose^{21,22}.

91

92 *BcsA associates with three copies of the pEtN transferase BcsG*

93 BcsG is a membrane-bound pEtN transferase containing five N-terminal TM helices, followed by
94 a periplasmic catalytic domain, Fig. 1d and S1a²³⁻²⁵. The homologous enzymes EptA and EptC
95 catalyze pEtN modification of lipid A and N-glycans, respectively^{26,27}. Mechanistically, BcsG likely
96 employs a catalytic triad involving Ser, His and Glu residues. The conserved Ser residue (Ser278)
97 is assumed to serve as the nucleophile to attack the electrophilic phosphorous of a
98 phosphatidylethanolamine (PE) lipid to form a covalent reaction intermediate with pEtN and
99 releasing diacylglycerol, Fig. 1a and S1b²⁵. The pEtN group is then subject to attack by the glucose
100 C6 hydroxyl oxygen, resulting in transfer of the pEtN group to cellulose and release of the
101 phospho-enzyme intermediate. This transfer reaction requires the reorientation of BcsG's
102 catalytic pocket away from the membrane towards the translocating cellulose polymer.
103 Approximately half of cellulose's glucosyl units are modified by pEtN in *Ec* and *Salmonella* species
104 under normal growth conditions¹⁴.

105
106 Previous intermediate-resolution cryo-EM analyses of the *Ec* Bcs macro-complex suggested the
107 presence of two BcsG subunits associated with BcsA²⁰. Although only the TM regions were
108 resolved, the subunits were located ‘in front’ of BcsA near the periplasmic exit of its cellulose
109 translocation channel. Taking advantage of recent improvements in 3-dimensional variability
110 analyses and classifications implemented in the cryoSPARC data processing workflows²⁸, we
111 reprocessed the previously published cryo-EM data (EMD-23267)²⁰ focusing on the BcsA-BcsG
112 complex, Fig. S2. Although still lacking well resolved periplasmic domains, this analysis generated
113 improved maps for BcsA together with a trimeric complex of BcsG at approximately 5.7 Å
114 resolution, Fig. 1e and S2, S3a and Table S1.

115 Each BcsG subunit contains five TM and two periplasmic interface helices that connect TM helices
116 3 and 4, Fig. 1e and f and S1a. The TM and interface helices form a ring-shaped periplasmic corral
117 with an opening towards the phospholipid head groups. An AlphaFold2 prediction of full-length
118 BcsG places its periplasmic domain on top of the corral, with the catalytic Ser278 facing the
119 membrane beneath, Fig. 1d and Fig. S1a. The predicted BcsG structure suggests an arched acidic
120 tunnel from the membrane surface, through the corral, and towards Ser278 that could position
121 the PE headgroup for nucleophilic attack, Fig. 1d.

122 In the Bcs complex, the three BcsG subunits are arranged along a slightly curved line, Fig. 1e and
123 f. Interprotomer contacts within the BcsG trimer are mediated by TM helix 4 of one subunit and
124 TM helices 2 and 5 of a neighboring subunit, suggesting that BcsG is prone to self-polymerize.
125 Except for BcsA, no additional density is observed within the TM region that could correspond to
126 other Bcs subunits, such as the single spanning subunit BcsF that has been shown to interact with
127 BcsG and BcsE *in vivo*^{14,18}. Indeed, as reported in a recent bioRxiv manuscript, a dimer of BcsF
128 interacts with the N-terminal and membrane associated domains of a BcsE dimer at a position
129 roughly across from BcsA in the *Ec* Bcs macro-complex²⁹.

130

131 *BcsA’s N-terminus recruits the BcsG trimer*

132 Compared to the homologous enzymes from *Rs* and *Gx*, BcsAs encoded by pEtN cellulose
133 producers contain about 140 additional N-terminal residues of unknown function (referred to as

134 the NTD) as well as a diverging C-terminus, Fig. S4a. To test whether the NTD mediates
135 interactions with BcsG, we performed AlphaFold2^{30,31} complex predictions using either the full-
136 length BcsA sequence or its NTD alone, together with three copies of BcsG's TM region. The
137 predictions reproducibly suggest the coordination of a BcsG trimer via BcsA's NTD, Fig. 1f and Fig.
138 S4b, which is predicted to fold into five short helices (α 1- α 5). In addition, helices α 4 and α 5 are
139 likely stabilized by BcsA's extreme C-terminus, Fig. 1f.

140 Our refined cryo-EM map experimentally validates the AlphaFold2-generated BcsA-BcsG₃ model,
141 Fig. 1e and f. The model was docked into the experimental map based on the location of BcsA.
142 Its NTD as well as the three BcsG subunits were fit into the corresponding densities as rigid bodies
143 to account for a different angle of the NTD-BcsG trimer relative to BcsA, Fig. S4c.

144 All BcsA NTD helices proposed to interact with the BcsG trimer are resolved in this map. Further,
145 BcsA's C-terminal helix is observed in contact with the NTD's α 4 and α 5 helices, as predicted. In
146 contrast to an earlier model that assumed a segment of the NTD to form a proper TM helix²⁰, the
147 NTD resides on the cytosolic water-lipid interface with all of its helices running approximately
148 parallel to the membrane surface, Fig. 1e.

149 Although only resolved at the backbone level in the cryo-EM map, the BcsG subunits interact with
150 the NTD via their cytoplasmic loops connecting TM helices 4 and 5 (TM4/5-loop, residues 123-
151 125), Fig. 1f. Starting with the BcsG protomer farthest away from BcsA, AlphaFold2 predicts that
152 the TM4/5-loop forms backbone interactions with NTD residues 8-10 connecting its α 1 and α 2
153 helices. Similarly, the TM4/5-loop of the next BcsG subunit interacts with residues 47-50 between
154 NTD's α 3 and α 4 helices, and the protomer closest to BcsA contacts NTD residues 92-93 following
155 α 5 via its TM4/5-loop. Past this interface, the NTD is connected to a predicted amphipathic
156 interface helix (α 6) that is only partially resolved in the cryo-EM map, Fig. 1e and f. This helix
157 leads into BcsA's first TM helix. No direct interactions are observed or predicted between BcsG
158 and BcsA TM segments. The BcsG TM helices fit seamlessly into the opening of the BcsB semicircle,
159 between the first and sixth subunit, Fig. 1e.

160 The C-terminal helical region of *Ec* BcsA runs roughly in the opposite direction as the preceding
161 amphipathic helix, which is present in BcsA from *Rs* and other species. This segment is resolved

162 in our cryo-EM map and interacts with helix α 5 of the NTD via an SxxPRxP motif (residues 850-
163 856), Fig. 1e and f and Fig. S4a. The motif is predicted to interact with residues 81 through 88 (α 5)
164 of the NTD, with possible hydrogen bonds between Arg81 and Ser850 as well as Gln85 and
165 Arg854, Fig. 1f. A similar interaction between BcsA's NTD and a BcsG trimer was recently reported
166 on bioRxiv²⁹.

167

168 *BcsA's NTD is sufficient for BcsG recruitment*

169 To test whether BcsA's NTD is sufficient to recruit BcsG, we co-expressed the Strep-tagged NTD
170 with poly-histidine tagged BcsG. A tandem affinity purification using Ni-NTA resin followed by
171 Strep-Tactin beads and size exclusion chromatography indeed isolated an NTD-BcsG complex, Fig.
172 1g. The identities of the co-purified protein components were confirmed by Western blotting and
173 tandem MS sequencing, Fig. S5a-c.

174

175 Except for the NTD and the C-terminal region, *Rs* BcsA is structurally homologous to *Ec* BcsA, Fig.
176 S5d-f. *R. sphaeroides* does not encode a BcsG homolog or the other pEtN-cellulose specific Bcs
177 components BcsE and BcsF. We sought to evaluate whether the pEtN cellulose modification could
178 be introduced in the *Rs* cellulose biosynthetic system via BcsA engineering and inclusion of the
179 pEtN transferase BcsG. To this end, a 'BcsA chimera' was generated containing the *Rs* BcsA
180 sequence N-terminally extended with the *Ec* NTD (residues 1-149). In addition, the C-terminal *Rs*
181 BcsA region (residues 729 to 788) was replaced with the corresponding *Ec* BcsA sequence
182 (residues 828 to 872), followed by a poly-histidine tag for purification, Fig. 2a and Fig. S4a and
183 S5f (see Methods).

184 The BcsA chimera was co-expressed with *Rs* BcsB as well as *Ec* BcsG and BcsF. Metal affinity and
185 size exclusion chromatography purification of the expressed complex demonstrated the co-
186 purification of the BcsA chimera with BcsB (the native binding partner of *Rs* BcsA) as well as *Ec*
187 BcsG, Fig. 2b. The presence of co-purified BcsA and BcsG was confirmed by Western blotting, Fig.
188 S5g, while BcsF was not detected in the purified sample. BcsG did not co-purify with the wild type

189 (WT) *Rs* BcsAB complex, suggesting that the interaction is indeed mediated by the introduced *Ec*
190 BcsA NTD, Fig. S5h.

191 The purified chimeric BcsAB-BcsG complex is catalytically active *in vitro*. Similar to previous
192 reports on the wild type *Rs* BcsAB complex⁶, the BcsA chimera synthesizes cellulose *in vitro* from
193 UDP-glucose in a cyclic-di-GMP (ci-di-GMP) dependent reaction, Fig. 2c. The obtained product is
194 readily degraded by a cellulase, as expected for a cellulose substrate.

195 Cryo-EM analysis of the purified complex revealed the association of the BcsA chimera with BcsG
196 in a curved micelle, Fig. 2d and e and Fig. S6 and Table S1. Refinements of either the chimeric
197 BcsAB complex alone or in association with BcsG resulted in maps of approximately 4.6 and 6 Å
198 resolution, respectively, Fig. 2e and Fig. S3b and c, S6. The maps resolve the BcsAB complex
199 associated with a nascent cellulose polymer in a conformation similar to the previously reported
200 crystal structure⁵, as well as the TM domains of three BcsG subunits, Fig. 2e. The BcsG trimer is
201 assembled as observed in the *Ec* Bcs complex described above, Fig. 1e, and interacts with short
202 interface helices corresponding to the engineered *Ec* BcsA NTD. The also introduced *Ec* C-terminal
203 extension is flexible and insufficiently resolved, likely resulting in the tilting of the BcsG trimer
204 relative to BcsAB in the detergent micelle (Fig. 2d and e).

205 To test whether the engineered chimeric cellulose synthase complex produces pEtN cellulose *in*
206 *vivo*, we isolated cellulosic material from the periplasm of the expression host (see Methods)
207 where it accumulates in the absence of the OM subunit BcsC (this subunit has not been identified
208 in *Rs* yet). The production of pEtN cellulose by the chimeric complex was validated through direct
209 detection of material isolated from cell lysates using ¹³C cross-polarization magic-angle spinning
210 (CPMAS) solid-state NMR spectroscopy. Compared to a reference sample of pure pEtN cellulose
211 from *Ec*¹⁴ and unmodified cellulose, the cellulosic material produced by the BcsA chimera is highly
212 enriched in pEtN cellulose, Fig. 2f and S7a. Isolation of unmodified cellulose for comparison was
213 facilitated by addition of Congo red (CR). The co-purified CR contributes an additional peak
214 centered at 128 ppm resulting from its aromatic carbons. A change in intensity at the C6 region
215 observed between the pEtN enriched cellulose and unmodified cellulose is attributable to the
216 presence of a phosphate moiety in pEtN modified cellulose (Fig S7a).

217

218 As an additional pEtN cellulose detection assay, we analyzed the synthesized product by
219 polysaccharide carbohydrate gel electrophoresis (PACE)³². To this end, inverted membrane
220 vesicles (IMVs) were prepared from cells expressing either the wild type *Rs* BcsAB complex alone,
221 or the chimeric or wild type BcsAB complex together with *Ec* BcsG and BcsF. The presence of BcsA
222 and BcsG (when applicable) in the IMVs was confirmed by Western blotting, Fig. 2g. *In vitro*
223 cellulose biosynthesis reactions were then performed with the IMVs with the expectation that
224 BcsG would modify cellulose using PE lipids as pEtN donors. Following synthesis, the water-
225 insoluble material was isolated after SDS denaturation and any pEtN units were subjected to
226 modification at the amino nitrogen with N-hydroxysuccinimide (NHS)-conjugated Alexa Fluor 647.
227 This reaction was followed by digestion with cellulase to release water-soluble cello-
228 oligosaccharides, and the released material was analyzed by PACE and imaged (see Methods).
229 Control reactions with either unmodified phosphoric acid swollen cellulose or purified pEtN
230 cellulose from *Ec* only show the release of fluorescently labeled cello-oligosaccharides by
231 cellulase from pEtN cellulose, Fig. S7b and c. This confirms the reliable detection of pEtN cello-
232 oligosaccharides by PACE.

233

234 As shown in Fig. 2h and S7d, fluorescently labeled cello-oligosaccharides are readily released by
235 cellulase from the reaction product of the chimeric BcsAB complex in the presence of BcsG. No
236 labeled oligosaccharides are obtained from products produced by wild type *Rs* BcsAB alone.
237 Minor weaker bands are detected when the wild type *Rs* BcsAB complex is co-expressed with
238 BcsG and BcsF. This likely results from modification of cellulose accumulating or precipitating on
239 the membrane surface by the abundantly expressed BcsG. While all three IMV samples produce
240 cellulose *in vitro* based on ³H-glucose incorporation (Fig. 2i)^{6,33}, the expression level of the
241 chimeric BcsAB complex is higher, giving rise to approximately two-fold greater cellulose yields,
242 Fig. 2g. To account for limitations in detection levels by PACE, loading approximately twice the
243 amount of the product obtained from the wild type BcsAB complex co-expressed with BcsG and
244 BcsF did not result in stronger PACE signals, Fig S7e. Combined, our NMR and PACE analyses
245 suggest that the close association of BcsG with the BcsA chimera greatly facilitates pEtN cellulose
246 formation.

247

248 *The BcsB semicircle tethers a single BcsC subunit*

249 Upon pEtN modification by BcsG, cellulose crosses the periplasm and the OM. This step requires
250 BcsC, a ~130 kDa protein consisting of a C-terminal β -barrel domain preceded by 19 predicted
251 TPR motifs. To investigate the interactions of the IM-associated Bcs complex (IMC) with BcsC by
252 cryo-EM, the purified IMC was incubated with the separately purified N-terminal 18 TPRs of BcsC
253 for 1h prior to cryo grid preparation (see Methods), Fig. S8 and Table S1.

254 Cryo-EM analysis of this Bcs complex revealed the previously observed BcsB hexamer
255 architecture associated with one BcsA subunit, Fig. 3a. Viewed from the periplasm and counting
256 clockwise, the first BcsB subunit interacts with BcsA, while the sixth sits at the opposite end of
257 the semicircle (Fig. 1c and 3a). At low contour levels, additional density at the membrane distal
258 tip of the sixth BcsB copy is evident, roughly extending along the perimeter of the semicircle
259 towards the first BcsB protomer, Fig. 3a. The extra density, likely belonging to BcsC's periplasmic
260 domain, is located between BcsB's N-terminal CBD (CBD-1) and the following FD region (FD-1)
261 (referred to the 'TPR binding groove') (Fig. 3a and b). At this contouring, fragmented density at
262 the open side of the semicircle likely representing BcsG's periplasmic domain is also evident near
263 the newly identified BcsC density, Fig. 3a.

264 Similar to the approach employed for interrogating the BcsA-BcsG interaction, we utilized
265 AlphaFold2 to predict the interactions of BcsB with BcsC's N-terminal TPRs. Using a single copy
266 of BcsB and BcsC's N-terminal TPRs #1-4, AlphaFold2 positions BcsC's TPR#1 with high confidence
267 into BcsB's TPR binding groove, Fig. S8d and e. The predicted model is in excellent agreement
268 with the cryo-EM map. AlphaFold2 did not generate consistent models for a truncated BcsC
269 construct lacking TPR#1, suggesting that the interaction with BcsB indeed depends on the N-
270 terminal region. We conclude that the apical tip of BcsB establishes the interaction with BcsC's
271 TPR#1.

272 To improve the resolution of the BcsB-BcsC complex map, BcsC's TPR #1-4 were fused to the N-
273 terminus of BcsB, after its N-terminal signal sequence and separated by a linker (see Methods).
274 This fusion construct was co-expressed with all other Bcs components, followed by purification

275 and cryo-EM analyses as described for the wild type Bcs complex. As also observed for the wild
276 type Bcs complex, cryo-EM analysis identified a fully assembled Bcs complex together with (likely
277 dissociated) partial subcomplexes containing three to five BcsB protomers. Although additional
278 BcsC density similar to the one described above was also observed in a fully assembled complex,
279 the highest quality map revealing the BcsB-BcsC interaction was obtained for a tetrameric BcsB
280 assembly. Non-uniform and focused local refinements generated a map of about 3.2 Å resolution
281 that delineates the specific interactions of BcsB and BcsC, Fig. 3a and Fig. S3d, S8b and c (see
282 Methods).

283 The BcsC density associated with BcsB accommodates four α -helices, corresponding to BcsC's N-
284 terminal two TPRs, Fig. 3b. TPR#1 mediates all interactions with BcsB and is best resolved. TPR#2
285 is rotated by about 45 degrees relative to TPR#1 and extends away from BcsB.

286 In complex with BcsB, TPR#1 is oriented with its interhelical loop pointing towards the center of
287 the BcsB semicircle. It interacts extensively with one side of CBD-1's jelly roll, as well as the region
288 connecting the jelly roll with FD-1 (residues 208 – 220), Fig. 3b. This interface contains
289 hydrophobic, polar and charged residues. In particular, TPR#1's N-terminal helix (helix-1) rests
290 on a short helical segment of a CBD-1 loop, such that its Gln30, Gln34 and Leu37 stack on top of
291 BcsB's Leu162, Phe163, and Ile164. The side chains of Gln30 and Gln34 form hydrogen bonds
292 with the backbone carbonyls of Val108 and Ile164, respectively. The following C-terminal helix of
293 TPR#1 (helix-2) contacts BcsB primarily via polar interactions, including Gln49 and Arg53 that
294 interacts with Ser165 and Asp166 of CBD-1, respectively. The helix's C-terminal end fits into a
295 hydrophobic pocket formed by the CBD-1/FD-1 connection. Here, Leu56 and Ile57 stack against
296 BcsB's Leu207 and Val209, with a backbone hydrogen bond between Leu56 and Lys210 (Fig. 3b).

297 The following TPR#2 extends from TPR#1 towards the opening of the BcsB semicircle. Due to this
298 arrangement, the observed BcsB-BcsC interaction is only possible with the last subunit of the
299 BcsB hexamer. Modeling a similar complex with any other subunit of the BcsB semicircle creates
300 substantial clashes between TPR#2 and the FD domains of the neighboring subunit, Fig. S9. This
301 explains why, although present, the fused TPRs of the other BcsB subunits are not resolved.

302

303 *BcsC is an outer membrane porin with a periplasmic cellulose-binding solenoid extension*

304 The crystal structure of a C-terminal BcsC fragment containing the β -barrel, a linker, and TPR#19
305 revealed the porin architecture and its connection with the periplasmic TPR solenoid⁸. Further,
306 crystallographic analysis of the N-terminal six BcsC TPRs from *Enterobacter CJF-002* resolved their
307 solenoid organization¹³. Lastly, the AlphaFold2-predicted model of full-length BcsC supports the
308 solenoid arrangement of its TPR#7-19, forming roughly two helical turns that extend by about
309 130 Å into the periplasm, Fig. 4a.

310 To gain experimental insights into the architecture of full-length BcsC and its interaction with
311 cellulose by cryo-EM, we reconstituted the protein into a lipid nanodisc in the absence and the
312 presence of cellotetraose. The obtained cryo-EM maps underscore the high flexibility of BcsC's
313 periplasmic domain. At lower contour levels and for the sample devoid of cellotetraose, the cryo-
314 EM map confirms the solenoid architecture of TPR #9-19, while the N-terminal eight TPRs are
315 insufficiently resolved or absent in the experimental map, Fig. 4a. Under both conditions, high
316 resolution refinements (to about 3.2 Å) were only possible for a C-terminal portion of BcsC,
317 beginning with TPR#15 and #16 for the ligand-bound and apo BcsC datasets, respectively, Fig. 4a-
318 c and Fig. S3e and f, S10, S11, and Table S1.

319 The refined BcsC structure is consistent with the AlphaFold2-model, with only minor rigid body
320 translations of TPR#15 towards the solenoid axis, Fig. 4a. Close inspection of the cryo-EM map
321 obtained in the presence of cellotetraose revealed additional elongated density close to the
322 solenoid axis, contacting TPR #16-19, Fig. 4a-b and S10 and S11. Although the density cannot be
323 identified unequivocally as a cello-oligosaccharide at the current resolution, its shape and
324 interaction with BcsC are consistent with it representing a cellotetraose molecule, perhaps bound
325 in different binding poses. Supporting this interpretation, no additional density at this site or
326 elsewhere is observed in the absence of cellotetraose in a map of similar quality, Fig. 4b and Fig.
327 S10. Therefore, we refer to the observed molecule as a 'putative cellulose ligand'.

328 The most prominent interaction of the putative cellulose ligand with BcsC is mediated by Trp766
329 at the N-terminus of the linker region, Fig. 4b. The ligand stacks against this aromatic side chain,
330 similar to the cellulose coordination by cellulose synthases and hydrolases^{5,34,35}. From here,

331 additional sugar units extend towards the solenoid axis and contact TPR#18 and #16. Although
332 the putative cello-oligosaccharide is not aligned with the center of the porin channel, Fig. 4a and
333 c, tilting of the glucan chain towards the porin or a different orientation relative to Trp766 could
334 direct it into the OM channel, as described further in the Discussion.

335

336 *Cellulase activity is necessary for cellulose secretion*

337 The cellulase BcsZ is a conserved subunit of Gram-negative cellulose biosynthetic systems^{3,11}.
338 Similarly, plant and tunicate cellulose synthases are also associated with cellulases for unknown
339 reasons^{36,37}. Deleting BcsZ in *Gx* substantially reduces cellulose production *in vivo*^{10,11}, while BcsZ
340 has been proposed to reduce biofilm phenotypes on *Salmonella enterica typhimurium*³⁸.

341 Accordingly, we sought to delineate whether BcsZ is of similar importance to pEtN cellulose
342 production in *Ec*. To this end, pEtN cellulose secretion from our transformed *Ec* cells was
343 monitored based on CR fluorescence of cells grown on nutrient agar plates, as previously
344 described²⁰. This assay takes advantage of substantially enhanced CR fluorescence in the
345 presence of pEtN cellulose, compared to unmodified cellulose³⁹.

346 When grown on CR agar plates, *Ec* C43 cells expressing the complete *Ec* Bcs system together with
347 the cyclic-di-GMP producing diguanylate cyclase AdrA, give rise to strong fluorescence, indicative
348 of pEtN cellulose secretion, Fig. 5a. Cells expressing the IMC only, however, reveal background
349 staining, similar to cells producing unmodified cellulose due to the Ser278 to Ala substitution in
350 BcsG²⁵, Fig. 5a. Consistent with previous observations in *Gx*, CR staining of *Ec* lacking BcsZ
351 indicates substantially reduced pEtN cellulose secretion in the absence of the cellulase, similar to
352 control cells expressing the IMC only, Fig. 5a.

353 We next investigated whether BcsZ is only required for its cellulose degrading activity or whether
354 it could be a structural component of the pEtN cellulose secretion system. In the latter case a
355 catalytically inactive enzyme may still facilitate pEtN cellulose export. To this end, we generated
356 two inactive BcsZ mutants by substituting the catalytic residues Glu55 and Asp243 with Ala⁴⁰. To
357 confirm that the generated BcsZ variants are indeed catalytically inactive, we employed an agar
358 plate-based carboxymethylcellulose digestion assay, as previously described⁴⁰. Here, cellulose

359 digestion by cellulase secreted by plated cells is detected upon CR staining. As expected, *Ec* cells
360 expressing the wild type or the generated BcsZ mutants only show cellulase activity for the wild
361 type enzyme, Fig. S12a, confirming that the generated BcsZ mutants are inactive within the
362 sensitivity limits of the assay. Accordingly, analyzing pEtN cellulose secretion by these cells based
363 on CR fluorescence shows much reduced fluorescence in the presence of the BcsZ:D243A mutant
364 in comparison to the cells expressing *Ec* complex with wild type BcsZ, while no CR staining above
365 background is observed in the presence of the E55A or double BcsZ mutant, Fig. 5a.

366 Lack of cellulose secretion in the absence of cellulase activity indicates that BcsZ plays a
367 modulating rather than structural role during cellulose export. Accordingly, we probed whether
368 unrelated bacterial cellulases could functionally replace BcsZ. To this end, the *Ec* BcsZ enzyme
369 was replaced in the Bcs expression system with either its *Gx* homolog CMCax (*Gx* produces
370 unmodified fibrillar cellulose)¹², or the Cel9M cellulase domain from the *Clostridium*
371 *cellulolyticum* cellulosome⁴¹. Co-expressing the cellulases with the remaining *Ec* Bcs components
372 resulted in detectable cellulase activity in the periplasmic fraction, suggesting that the cellulases
373 were functionally expressed and translocated into the periplasm, Fig. 5b. Monitoring pEtN
374 cellulose secretion by these cells based on CR fluorescence revealed that both cross-species
375 complementations restored secretion by the *Ec* Bcs complex, comparable to wild type levels, Fig.
376 5c and S12b. Further, ¹³C CPMAS NMR was used to evaluate the extent of pEtN modification of
377 cellulose produced in the presence of Cel9M instead of BcsZ. Compared to products obtained in
378 the presence of BcsZ, the Cel9M sample reveals reduced modification with pEtN, Fig. S12b.
379 Reduced pEtN modification could impact biofilm stability, which will be addressed in the future.
380 Collectively, our results indicate that cellulase activity is critical for cellulose export.

381
382

383 *BcsZ assembles into a tetramer*

384 We failed to detect direct interactions of BcsZ and BcsC biochemically or by cryo-EM analysis. To
385 our surprise, however, we discovered homo-oligomerization of the cellulase. Single particle cryo-
386 EM analysis at a resolution of about 2.7 Å revealed the presence of BcsZ tetramers, in addition
387 to small monomeric particles, Fig. 5d-f and Fig. S3g, S12e and Table S1. The tetramers are dimers

388 of homodimers in which the protomers are rotated by about 180 degrees relative to each other,
389 Fig. 5e. The homodimer interface is formed by helices 11 and 12 of the glycosylhydrolase-8 fold.
390 It is rich in ionic interactions, including Asp344 and Arg318 of one protomer and the equivalent
391 residues in the symmetry-related subunit. Similarly, Asp312 interacts with Arg349 across
392 protomers and so does the Asp323 and Arg347 pair. In addition, Gln319 in helix #11 of one
393 protomer hydrogen bonds to the backbone carbonyl oxygen of Gln345 following helix #12 of the
394 symmetry related subunit.

395 Two homodimers interact via the N-terminal regions of opposing BcsZ protomers, involving the
396 loop connecting helix 1 and 2 (residues 37-53) as well as a β -strand hairpin connecting helices 3
397 and 4 (residues 86-114), Fig. 5e and f. This interface also contains several ionic and polar
398 interactions. In particular, Ser104 and Lys105 of the helix3/4 loop are in hydrogen bonding
399 distance to Asn82 in helix 3 of the opposing subunit. Arg41 interacts with Glu39 via a salt bridge,
400 while Gln38 hydrogen bonds to Lys50 across the dimer interface.

401 Combined, these interactions create a square-shaped tetrameric assembly with the cellulose
402 binding clefts of BcsZ subunits at opposing corners facing in the same direction. However,
403 because BcsZ binds cellulose in a defined orientation⁴⁰, the 2-fold symmetry related subunits bind
404 their polymeric substrate in opposing directions, Fig. 5e. Of note, the same tetrameric complex
405 was previously observed but not functionally interpreted in apo and cellopentaose-bound BcsZ
406 crystal structures, where the described tetramer either represents the crystallographic
407 asymmetric unit or is generated by symmetry mates, Fig. S12c and d⁴⁰.

408

409 **Discussion**

410 Cellulose is a versatile biomaterial with countless biological and industrial applications. In Gram-
411 negative bacteria, the polysaccharide is secreted across the cell envelope in a single process.
412 Considering cellulose's amphipathic properties, its periplasmic secretion likely requires a
413 shielded translocation path to prevent nonspecific interactions.

414 Our cryo-EM analysis of the IM-associated Bcs complex reveals a single BcsA cellulose synthase
415 associated with a trimer of the pEtN transferase BcsG. Although present as the full-length enzyme

416 in the analyzed sample, only its membrane-embedded region is resolved in the cryo-EM map.
417 This suggests that the periplasmic catalytic domain is flexibly attached to the TM helices. It is
418 connected to the preceding TM helices via a linker of about 45 residues. In an extended
419 conformation, the linker would allow the TM and periplasmic regions to separate by more than
420 80 Å, about the height of the BcsB semicircle. However, AlphaFold2 predictions of full-length
421 BcsG reproducibly pack the catalytic domain against the periplasmic corral formed by its interface
422 helices. In this conformation, the catalytic Ser278 points toward the membrane surface where it
423 could receive a pEtN group. The corral may help to position a PE lipid to facilitate this reaction.
424 The *in vitro* reconstituted pEtN cellulose biosynthesis indeed confirms that *Ec* lipids can serve as
425 the pEtN donor. We hypothesize that following formation of the phosphor-enzyme intermediate
426 with Ser278-bound to pEtN, the catalytic domain disengages from the TM region to access the
427 translocating cellulose polymer. Accordingly, pEtN transfer to cellulose requires an
428 approximately 90-degree rotation and substantial translation of BcsG's catalytic domain away
429 from the membrane and towards the nascent polysaccharide.

430 It is possible that the catalytic domains of the BcsG trimer operate independently, perhaps
431 resulting in stochastic cellulose modification. Previously, it was proposed that two BcsG subunits
432 are necessary to result in pEtN modification of cellulose's C6 hydroxyl groups located on opposing
433 sides of the cellulose polymer²⁰. Yet, our cryo-EM maps reveal that three copies are present. A
434 higher copy number could compensate for limiting transfer efficiency.

435 We also note that the three BcsG periplasmic domains, albeit flexible, essentially close the
436 semicircle formed by the BcsB hexamer. This may facilitate access of BcsG to the cellulose
437 polymer and steer it towards BcsC in the OM. We anticipate that the grafting of *Ec* BcsA's NTD to
438 an unrelated cellulose synthase, allowing it to associate with a BcsG trimer, will unlock the
439 potential to modify cellulose in different systems for the generation of novel biomaterials.

440 Because the Bcs complex produces only one cellulose polymer at a time, a single copy of the OM
441 porin BcsC suffices to guide cellulose across the periplasm and the OM. Indeed, the arrangement
442 of BcsC's N-terminal TPRs and steric constraints within a BcsB hexamer ensure that only the
443 terminal BcsB subunit interacts with BcsC. Based on the AlphaFold2-predicted model of full-

444 length BcsC, its 19 TPRs extend by approximately 150 Å into the periplasm. BcsB's periplasmic
445 domain is about 70 Å tall. Combined, BcsB and BcsC suffice to span the periplasm and the OM,
446 Fig. 6.

447 The requirement of cellulase activity for efficient cellulose secretion suggests a model in which
448 cellulose hydrolysis facilitates polymer translocation. This could either be by degrading cellulose
449 that is mislocalized to the periplasm, or by overcoming stalling, Fig. 6. Our putative BcsC-
450 cellobetraose complex suggests cellulose translocation along the solenoid, consistent with recent
451 insights into poly N-acetylglucosamine interactions with the TPR of PgaA⁴². Cellulose migrating
452 away from the solenoid helix would likely be irreversibly mislocalized, thereby preventing its
453 proper translocation. In this case, hydrolytic trimming of polymers accessible from the periplasm
454 could reset the translocation process, Fig. 6. The resulting cello-oligosaccharides may either
455 remain in the periplasm or be imported for degradation to avoid osmotic destabilization, as
456 observed in *Pseudomonas aeruginosa* upon accumulation of periplasmic alginate⁴³. Similarly,
457 stalling of cellulose secretion due to interactions with other surface polymers could be alleviated
458 by polymer cleavage in the periplasm, followed by diffusion into the extracellular matrix.
459 Oligomerization of BcsZ may optimize the enzyme's ability to interact with and digest cellulose
460 to increase catalytic efficiency, as frequently observed for carbohydrate active enzymes⁴⁴.

461 Taken together, our analyses suggest the synthesis and translocation of a single cellulose polymer
462 by the *Ec* Bcs complex. The positioning of the first BcsB subunit 'above' the cellulose secretion
463 channel steers the nascent chain towards the center of the BcsB semicircle, past the BcsG trimer,
464 Fig. 6 and S13. Flexibility of BcsG's catalytic domains enable contacts with membrane lipids to
465 recognize and attack a pEtN group as well as accessing the translocating cellulose polymer at
466 different distances from BcsA. The modified cellulose polymer likely migrates along the TPR
467 solenoid until reaching the OM channel. Polymers 'escaping' into the periplasm or jamming the
468 secretion system would be cleaved by BcsZ, Fig. 6. This model explains why BcsZ's hydrolytic
469 activity is necessary to facilitate cellulose secretion and why the enzyme can be replaced with
470 off-the-shelf cellulases. Hydrolytic clearance of roadblocks may also assist cellulose microfibril
471 formation in other kingdoms of life.

473 **Methods**474 **Construct design and mutagenesis**

475 *BcsA-NTD* and *BcsG* – The N-terminal region of *BcsA* corresponding to the first 94 residues (NTD)
476 was amplified from the existing pETDuet_Ec_Bcs_A-12His_nSS-Strep-B_AdR-6His plasmid
477 (pETDuet_Ec_Bcs_AB-AdR)²⁰ with a primer-encoded C-terminal Strep-tag II (Table S2) and
478 cloned into a pETDuet-1 vector using Ncol and Xhol restriction sites. *BcsB* has its native signal
479 sequence (nSS) in this plasmid. The *BcsG* gene was amplified from an existing
480 pACYCDuet_Ec_Bcs_PelB-8His-C-FLAG_Z_F_G-FLAG construct (pACYCDuet_Ec_Bcs_CZFG)²⁰
481 with a C-terminal dodeca-histidine tag (primers listed in Table S2) and cloned into the vector
482 pACYCDuet-1 using Ncol and Xhol restriction sites.

483

484 *BcsA chimera* – The *Rs-Ec* (R/E) *BcsA* chimera was engineered by fusing the N-terminus of *Ec BcsA*
485 (1-149) with *Rs BcsA* (17-728) and replacing the *Rs-BcsA* C-terminus (729-788) with the *Ec BcsA*
486 extended C-terminus (828-872). The *BcsA* chimera was synthesized by Gene Universal and cloned
487 into the pETDuet-1 vector using Ncol and HindIII restriction sites, which inserted an additional
488 Gly residues after the N-terminal Met. Next, *Rs BcsB* was inserted into the second cloning site of
489 the pETDuet-1 vector using Ndel and KpnI restriction sites, generating plasmid
490 pETDuet_Rs_Ec_Bcs_A-12His_Rs_Bcs_B.

491

492 *AdrA* – For the purification of *in vivo* synthesized cellulose, c-di-GMP generating enzyme, *AdrA*
493 was amplified from the pETDuet_Ec_Bcs_ABAdrA²⁰ using primers listed in Table S2 and inserted
494 into the empty pCDFDuet-1 vector using restriction enzyme digestion and ligation cloning
495 (pCDFDuet_AdrA).

496

497 *BcsB-BcsC fusion* – For generating the *BcsB-BcsC* fusion construct, the pETDuet_Ec_Bcs_AB-AdrA
498 plasmid was used. The N-terminal four TPRs of *BcsC* (residues 21-179) followed by a GSGSGSG
499 linker were inserted by polymerase incomplete primer extension (PIPE) cloning after the N-
500 terminal signal sequence and Strep-tag II of *BcsB*, followed by residues 55-779 of *BcsB*. This
501 generated plasmid pETDuet_Ec_Bcs_A-12His_nSS-Strep-TPR1-4_(GS)₃_B_AdR.

502

503 *BcsC* – *BcsC* 's periplasmic domain (TPR #1-18; residues 24-709) was amplified from the existing
504 full-length *BcsC* plasmid⁸ using primers listed in Table S2 and cloned into a pET20b vector
505 between Ncol and Xhol restriction sites. The full-length construct contained an N-terminal and
506 the periplasmic domain a C-terminal deca His-tag respectively.

507

508 *BcsZ* – Mutagenesis of *BcsZ* was done in pACYCDuet_Ec_Bcs_C_ZFG construct using the
509 QuikChange approach (primers listed in Table S2). Deletion of *BcsZ* was also done using the same
510 pACYCDuet_Ec_Bcs_CZFG construct by PIPE cloning. To replace *Ec BcsZ* with other cellulases, the
511 *Gx BcsZ* (CMCAx) and *C. cellulolyticum* Cel9M genes were synthesized with the DsbA and wild
512 type *Ec BcsZ* signal sequences, respectively. The genes were inserted into the previously
513 described pACYCDuet_Ec_Bcs_CZFG vector using PIPE cloning. This resulted in the generation of
514 pACYCDuet_Ec_Bcs_C_SS-Cel9M/CMCAx_FG plasmid respectively.

515

516 *BcsG* – The catalytically inactive S278A mutant of *BcsG* was also generated by QuikChange
517 mutagenesis using the pACYCDuet_Ec_Bcs_CZFG construct.²⁰

518

519 **Protein Expression and Purification**

520 The Strep-tagged *BcsA* NTD and His-tagged *BcsG* were co-expressed in *Ec* C43 (DE3) cells in
521 Terrific Broth-M-80155 media (TB-AD)²⁰ containing 100 µg/mL ampicillin and 35 µg/mL
522 chloramphenicol. 11 liter of bacterial cell cultures were grown at 37 °C until the cell density
523 reached OD₆₀₀ of 0.8 at which point the temperature was lowered to 20 °C and growth was
524 continued for another 18 h. Cells were harvested by centrifugation for 20 min at 5,000 rpm and
525 4 °C. Pelleted cells were resuspended in ice-cold Buffer A (25 mM Tris pH 8.0, 300 mM NaCl, 5%
526 glycerol) containing 100 mM PMSF and 1x protein inhibitor cocktail (0.8 mM Aprotinin, 5 mM
527 E64, 10 mM Leupeptin, 15 mM Bestatin-HCl, 100 mM AEBSF-HCl, 2 mM Benzamidine-HCl and 2.9
528 mM Pepstatin A). The cells were lysed using a gas powered microfluidizer (25 kpsi, 3 passes) and
529 the lysates were spun at 20,000 × g for 20 min at 4 °C in a JA-20 rotor (Beckman) to remove cell
530 debris. The membrane containing supernatant was collected and subjected to ultracentrifugation
531 in a Ti45 rotor (Beckman) at 200,000 × g for 2 h at 4 °C. Membrane pellets were flash frozen in
532 liquid nitrogen and stored in -80 °C until used.

533

534 **Tandem purification of *BcsA* NTD and *BcsG***

535 To test the interaction between *BcsA* NTD and *BcsG*, a tandem affinity purification (TAP) scheme
536 was followed. To this end, membranes were first solubilized in Buffer A containing Detergents A
537 [1% lauryl maltose neopentyl glycol (LMNG, Anatrace), 0.2% decyl maltose neopentyl glycol
538 (DMNG, Anatrace) and 0.2% cholesteryl hemisuccinate (CHS, Anatrace)], 40 mM imidazole, 100
539 mM PMSF and 1x protein inhibitor cocktail. After incubation for 1 h at 4 °C with mild agitation,
540 non-solubilized material was removed by centrifugation at 200,000 × g for 40 min at 4 °C. During
541 this time, 7 mL of His-Pur Ni-NTA resin (Thermo Scientific) was equilibrated in Buffer A containing
542 40 mM imidazole. The membrane extract was applied to these pre-equilibrated beads and
543 allowed to gently rock for 1 h at 4 °C. The resin was transferred to a gravity flow column and
544 washed two times with Buffer A containing Detergents B (0.01% LMNG, 0.002% DMNG, 0.002%
545 CHS) supplemented with 40 and 50 mM imidazole respectively. The protein was eluted with 400
546 mM imidazole and the eluent was immediately diluted with Buffer A containing Detergents B to
547 dilute the imidazole to 200 mM. During this Ni-NTA chromatography, Strep-Tactin resin (IBA) was
548 also equilibrated with Buffer A containing Detergents B. The diluted eluent was passed over the
549 Strep-Tactin resin twice at room temperature, followed by 5 column volumes of wash with Buffer
550 A containing Detergents B and eluted with Buffer A containing 3 mM desthiobiotin and
551 Detergents B. The eluent was concentrated and loaded onto Superose 6 increase 10/300 GL
552 column (GE Healthcare) equilibrated with Buffer B (25 mM Tris pH 8.0, 100 mM NaCl) containing
553 Detergents C (0.003% LMNG, 0.0006% DMNG, 0.0006% CHS). Initially the gel filtration fractions
554 were run on SDS-PAGE for Coomassie staining and finally the interactions between these two
555 components were confirmed by Western blotting and tandem mass spectrometry fingerprinting.

556

557 *Chimeric BcsAB-BcsG complex* - To express the *BcsA* chimera protein, freshly transformed *Ec* C43
558 (DE3) cells containing the pETDuet_Rs_Ec_Bcs_A-12His_Rs_Bcs_B along with the

559 pACYCDuet_Ec_Bcs_FG-FLAG construct (pACYCDuet_Ec_Bcs_FG)²⁰ were grown in 4-times 1 L of
560 TB-AD media using the above described protocol. After harvesting the cells, pellets were
561 resuspended to a final volume of 250 mL in Buffer C (25 mM HEPES pH 8.0, 300 mM NaCl, 5 mM
562 cellobiose, 5% glycerol and 5 mM MgCl₂) using a glass dounce homogenizer and lysed using a
563 microfluidizer (25 kpsi, 3 passes) in the presence of 100 mM PMSF and protein inhibitor cocktail
564 (as described above). After pre-clearing the lysates by a low-speed centrifugation step,
565 membranes were collected and stored as described above.

566

567 Membranes were resuspended in solubilization buffer containing Buffer C, mix of Detergents
568 (Detergents A), protease inhibitor cocktail, and 100 mM PMSF for 1 h at 4 °C on a rotating shaker.
569 Insoluble material was removed by ultracentrifugation at 200,000 × g for 40 min and the
570 supernatant was incubated with gentle rocking for 1 h at 4 °C with 5 mL of His-Pur Ni-NTA resin
571 equilibrated in buffer C containing 40 mM imidazole. After batch binding, the resin was packed
572 into a gravity flow column and washed with Buffer C containing Detergents B and 40 mM
573 imidazole. Following this, three more washes were done with Buffer C containing Detergents B
574 supplemented with 50 mM imidazole, 700 mM NaCl or 55 mM imidazole, respectively. Protein
575 was eluted with Buffer C containing Detergents B and 400 mM imidazole. The protein eluent was
576 concentrated to 500 µL and subjected to size-exclusion chromatography on a Superdex 200
577 increase 10/300 GL column (GE Healthcare) equilibrated with Buffer D (25 mM HEPES pH 8.0, 150
578 mM NaCl, 5 mM MgCl₂, 0.5 mM cellobiose) containing Detergents C. The sample quality was
579 evaluated by peak shape, SDS-PAGE and negative stain EM. The same protocol was used to co-
580 express and purify BcsG with the wild type *Rs* BcsAB (pETDuet_Rs_Bcs_A-12His_B,⁶) complex.
581

582

583 *For Congo red binding and fluorescence assays* - For CR assays, the *Ec* Bcs total membrane
584 complex (TMC; including inner and outer membrane components) constituting the functional
585 cellulose synthase machinery was expressed using all three plasmids (pETDuet_Ec_Bcs_AB-AdrA,
586 pACYCDuet_Ec_Bcs_CZFG and pCDFDuet_Ec_Bcs_R_Q_E-HA and the *Ec* Bcs_inner membrane
587 complex (IMC) was expressed using the pACYCDuet_Ec_Bcs_FG construct instead of
588 pACYCDuet_Ec_Bcs_CZFG, along with the other two constructs (pETDuet_Ec_Bcs_AB-AdrA and
589 pCDFDuet_Ec_Bcs_R_Q_E-HA). Different versions of BcsZ or the BcsG mutant in the
590 pACYCDuet_Ec_Bcs_CZFG plasmid generated in this study (as described above in construct
591 design) were also expressed like the TMC complex using the two other pET and pCDFDuet_Ec_Bcs
592 plasmids.

593

594 *Bcs complex purification* - The *Ec* Bcs complex was expressed and purified as described previously
595²⁰. Briefly, the three plasmids used to express TMC complex were transformed into *Ec* C43 (DE3)
596 cells followed by expression in 4 x 1 L of TB-AD media containing the necessary antibiotics. After
597 the membrane preparation, the complex was purified using Ni-NTA affinity chromatography
598 followed by Strep-Tactin resin purification. The strep eluent was loaded onto a Superose 6
599 increase 10/300 GL column and the inner membrane complex (IMC) eluted in a sharp peak
600 roughly at 13 mL elution volume. The fractions containing the *Ec* Bcs complex were pooled and
601 used for reconstitution into nanodiscs at a 1:4:160 molar ratio of IMC: MSP2N2: *Ec* total lipid
602 extract (solubilized in 100 mM sodium cholate). Gel filtration buffer (50 mM HEPES pH 8.0, 150
mM NaCl, 5 mM MgCl₂, 0.5 mM cellobiose containing Detergents C), lipid, sodium cholate (15

603 mM final concentration) and detergent solubilized IMC was combined and incubated for 1h at 4
604 °C with gentle rocking to form the mixed micelles. MSP2N2 was added and incubated for another
605 30 min at 4 °C. BioBeads (Bio-Rad) were added stepwise (three times) in equal mass to remove
606 detergent; first after the MSP2N2 addition, followed by a second addition after 1 h and the third
607 addition 12 h later. Nanodisc-reconstituted IMC complex was purified on a Superose 6 increase
608 10/300 GL column equilibrated in gel equilibration buffer with no Detergents. The reconstituted
609 fractions were screened using SDS-PAGE and negative-stain EM for the presence of MSP and IMC.
610

611 For the *Ec* complex with the engineered BcsB-BcsC fusion, *Ec* C43 cells were co-transformed by
612 electroporation with pETDuet_Ec_Bcs_A-12His_nSS-Strep-TPR1-4_(GS)₃_B_AdA along with two
613 other constructs, namely pACYCDuet_Ec_Bcs_CZFG and pCDFDuet_Ec_Bcs_R_Q_E-HA plasmids.
614 The complex was expressed and purified as described for the wild type *Ec* Bcs complex without
615 the nanodisc formation.
616

617 *BcsC TPR purification* - To purify the periplasmic domain of BcsC, freshly transformed *Ec* Rosetta
618 2 cells were grown in autoinducing TB-AD media for 25 h at 28 °C. The cells were harvested by
619 centrifugation at 5,000 rpm for 20 min. The periplasmic extract was prepared in
620 Tris/EDTA/Sucrose (TES) buffer as described ⁴⁵. The protein was purified from the periplasmic
621 extract via immobilized metal affinity chromatography on Ni-NTA agarose resin. The isolated
622 extract was dialyzed overnight against buffer E (25 mM Tris pH=7.5 and 100 mM NaCl) and loaded
623 onto Ni-NTA beads equilibrated with the buffer E. After batch binding for 1h, the resin was
624 washed with Buffer E and Buffer E supplemented with 30mM imidazole, 500 mM NaCl or 40 mM
625 imidazole. The protein was eluted with 400 mM imidazole and concentrated and applied to
626 Superdex 200 increase 10/300 GL column (GE Healthcare) equilibrated in 0.2 M sodium
627 bicarbonate buffer (pH 7.5), 500 mM NaCl. The peak fraction containing the protein was
628 concentrated and aliquots were flash frozen for future use.
629

630 *BcsC purification* – For full-length BcsC, membranes were prepared and purification was carried
631 out as described previously for the *Ec* BcsC2 porin construct ⁸ with some modifications. Briefly,
632 BcsC membranes were solubilized in Buffer F containing 25 mM Tris pH 8.5, 300 mM NaCl, 5%
633 glycerol, 35 mM imidazole, 30 mM LDAO (lauryl-dimethylamine N-oxide, Anatrace) and 3 mM
634 DDM (dodecyl-β-D-maltopyranoside, Anatrace) for 1h. After removal of the insoluble aggregates
635 by centrifugation at 200,000 × g for 30 min, the supernatant was combined with 5mL Ni-NTA
636 beads equilibrated in Buffer F containing no detergents and allowed to rock for 1h at 4 °C. Resin
637 was collected in a gravity flow column and washed with buffer F without LDAO but substituted
638 with 1 mM DDM and 40 mM imidazole, 1M NaCl, or 50 mM imidazole. Protein was eluted using
639 buffer G containing 25 mM Tris pH 8.5, 100 mM NaCl, 300 mM imidazole and 0.6% C8E4
640 (tetraethylene glycol monoocetyl ether, Anatrace) and concentrated before loading onto a
641 Superdex 200 increase 10/300 GL column (GE Healthcare) equilibrated with buffer G containing
642 no imidazole. The fractions containing BcsC were concentrated and reconstituted into MSPE3D1
643 nanodiscs with *Ec* total lipids (solubilized in sodium cholate) at a final molar ratio of 1:4:100, as
644 described above for the *Ec* Bcs complex, in the absence or presence of 5 mM cellotetraose
645 (Megazyme). After detergent removal, the sample was purified over the Superdex 200 increase
646 size exclusion column equilibrated in 25 mM Tris pH 8.5, 100 mM NaCl. Peak fractions

647 corresponding to BcsC in MSPE3D1 were collected and the sample quality was evaluated by SDS-
648 PAGE and negative stain EM.

649

650 *BcsZ purification* – BcsZ was expressed and purified as described previously using an existing
651 plasmid (pET20b_SS_BcsZ_6His) ⁴⁰. The protein was purified using Ni-NTA and size exclusion
652 chromatography.

653

654 **Cellulose synthase enzyme assays**

655 Cellulose biosynthesis assays were performed as described previously ⁶. This assay measures the
656 incorporation of UDP-[³H]-glucose into insoluble glucan chains. Briefly, 20 µL reaction was
657 performed in the respective gel filtration buffer by incubating the enzyme in the presence of 20
658 mM MgCl₂, 5 mM UDP-glucose (UDP-Glc, Sigma, Cat# U4625), 0.25 µCi UDP-[³H]-Glc (PerkinElmer,
659 Cat# NET1163250UC), 30 µM c-di-GMP at 30 °C for the chimeric BcsAB-BcsG complex for 1 h at
660 an enzyme concentration of 0.5-1 mg/mL. For IMVs, assays were carried out in a similar manner
661 but incubated for 16 h at 37 °C. Following biosynthesis, the reaction mixture was spotted onto
662 the origin of a descending Whatman-2MM chromatography paper, which was developed with
663 60% ethanol. The high molecular weight polymer retained at the origin was quantified on a liquid
664 scintillation counter (Beckman). Control reactions were set up by replacing the c-di-GMP with
665 ddH₂O. To confirm the formation of authentic cellulose, another set of reaction was set up
666 wherein 5U of endo-(1,4)-β-glucanase (E-CELTR; Megazyme) was added at the beginning of the
667 synthesis reaction for the enzymatic degradations of the *in vitro* synthesized glucan. Each
668 condition was performed in triplicate and error bars represent deviations from the means.

669

670 **Cellulase assay**

671 In order to examine the cellulase activity of the BcsZ mutants as well as the new cellulases (Cel9M
672 and CMCax), a cellulase activity assay was performed using Carboxymethyl cellulose agar plates,
673 as described previously ⁴⁰. CMC-agar plates were prepared by dissolving 2% CMC and 1.5% agar
674 in LB medium, followed by autoclaving. The solution was cooled and supplemented with 0.5 mM
675 isopropyl β-D-thiogalactopyranoside (IPTG) and respective antibiotics prior to pouring the plates.
676 To test for cellulase activity of Cel9M and CMCax, these proteins were co-expressed along with
677 the *Ec* Bcs TMC complex in C43 cells using the pACYCDuet_Ec_Bcs_C_SS-Cel9M/CMCax_FG
678 plasmid instead of pACYCDuet_Ec_Bcs_CZFG plasmid and periplasmic fractions were extracted
679 as described above for the purification of BcsC's periplasmic domain. Negative and positive
680 controls were performed by spotting commercially available purified bovine serum albumin (BSA)
681 or *Aspergillus niger* cellulase (Sigma) onto the plates. CMC-agar plates were incubated at 37 °C
682 for 48 h and stained with 2% CR solution for 1 h at room temperature, followed by destaining in
683 1M NaCl for 2 h.

684

685 To probe for BcsZ cellulase activity in the BcsZ mutants, the pACYCDuet_Ec_Bcs_C_Z_{wt/mutants}FG
686 plasmid was transformed in C43 cells and plated on LB-agar plates containing 25 µg/mL
687 chloramphenicol. After an overnight incubation of the plates at 37 °C, a single colony was picked
688 from each plate to inoculate 5 mL LB broth and grown overnight at 37 °C. Next day, all cultures
689 were normalized based on OD₆₀₀ absorbance and 5 µL from each culture was spotted onto the

690 CMC-agar plates. After incubating the agar plates at 37 °C for 48 h, colonies were removed from
691 the plates prior to staining with CR as described above. All cellulase plate assays were performed
692 in triplicates.

693

694 **Congo red binding and fluorescence assays**

695 Starter cultures of *Ec* complex transformed cells were grown overnight at 37 °C in a shaking
696 incubator in LB medium. The overnight cultures were normalized to an optical density at 600 nm
697 (OD₆₀₀) of 1 with sterile fresh LB medium and 5 µL of this diluted culture was spotted onto the LB
698 agar plates lacking NaCl but containing 25 µg/mL CR, 250 µM IPTG and the antibiotics ampicillin,
699 chloramphenicol and streptomycin. The agar plates were kept at room temperature for 48-56 h
700 and the bacterial cells on top of the agar were visualized using G:Box Chemi-XX6 (Syngene,
701 Cambridge, UK). Images were acquired with GeneSys software (Syngene, version 1.8.5.0) based
702 on the excitation and emission wavelength of the CR (497/610 nm). All experiments were
703 performed in triplicate.

704

705 **Purification of *in vivo* synthesized pEtN cellulose**

706 For the purification of *in vivo* synthesized cellulose, *Ec* C43 cells were co-transformed with
707 pETDuet_Rs_Ec_Bcs_A-12His_Rs_Bcs_B together with the pAYCDuet_Ec_Bcs_FG-FLAG and
708 pCDFDuet_AdR_A constructs. Periplasmic cellulose produced by the BcsA chimera was obtained
709 through cell lysis; digestion of DNA, RNA, and protein; and precipitation and purification of
710 polysaccharide. First, four 1-L cell cultures were grown in TB-AD media with slow shaking for 25
711 h at 28 °C. Cells were collected by centrifugation at 5,000 g for 20 min, flash frozen in liquid
712 nitrogen, and stored at -80 °C until processed. To isolate pEtN cellulose, cells were thawed,
713 resuspended in lysis buffer (10 mM Tris pH 7.4, 0.1 M NaCl and 0.5% SDS), sonicated briefly, and
714 treated with lysozyme (final concentration of 5 mg/mL) with rocking at room temperature (RT)
715 for 30 min. This suspension was then subjected to boiling with constant stirring for 1 h and then
716 cooled to room temperature. The suspension was then treated with DNase and RNase (each at
717 final concentrations of 100 µg/mL) and incubated at RT for 1 h. Trypsin and chymotrypsin were
718 then added (each at final concentration of 50 µg/mL), followed by rocking at RT for 4 h. Lastly,
719 Proteinase-K (final conc 100 µg/mL) was added and this suspension was incubated overnight with
720 moderate shaking at 60 °C. The solution was then cooled to RT and diluted with Milli-Q (MQ)
721 water to reduce the final SDS concentration to less than 0.2%. This solution was subjected to
722 dialysis against MQ water for 24 h using 100 kDa cut-off cellulose ester dialysis membranes. Then
723 the solution was subjected to one freeze-thaw cycle. After thawing, CR (25 µg/mL) and NaCl (170
724 mM) were added while stirring to facilitate purification and precipitation of pEtN cellulose from
725 the largely clarified lysate. The solution was transferred to 50 mL falcon tubes and insoluble
726 material was pelleted via centrifugation at 13,000 × g for 1 h to collect the enriched pEtN cellulose.
727 The pellet was further washed with 4% SDS and 10 mM Tris pH 7.4 followed by brief sonication.
728 The solution was allowed to rock at RT overnight, followed by centrifugation for 2 min at 13,000
729 × g to pellet the cellulosic material. The final pellet was washed with MQ water 3-5 times to
730 remove the SDS with pelleting by centrifugation following each resuspension. The final sample
731 was frozen and lyophilized and used for NMR analysis. Unmodified cellulose as a control was
732 purified using CR as a purification aid¹.

733

734 pEtN cellulose was also isolated from C43 cells expressing the *Ec* complex with either wild type
735 BcsZ or BcsZ being replaced with Cel9M, as described previously²⁰. Briefly, four 1 L cell cultures
736 expressing the *Ec* Bcs complex were grown in TB-AD media with slow shaking for 24 h at 28 °C.
737 The cells were harvested by centrifugation, resuspended in 10 mM Tris pH 7.4, and sheared using
738 a homogenizer on ice. Following shearing, the cells were removed by three rounds of
739 centrifugation at 10,000 × *g* for 10 min and the supernatant was dialyzed against MQ water for
740 24 h. The dialyzed solution was then frozen and thawed, and the insoluble material was pelleted
741 by centrifugation at 13,000 × *g*. The obtained pellet was treated with 4% SDS in Tris buffer
742 overnight and subsequently washed to remove the SDS. The resulting cellulose was lyophilized
743 and analyzed via solid-state NMR.

744

745 **Solid-state NMR analysis**

746 ¹³C cross-polarization magic-angle spinning (CPMAS) solid-state NMR was performed at ambient
747 temperature in an 89 mm bore 11.7 T magnet (Agilent Technologies, Danbury, CT) using an HCN
748 Agilent probe with a DD2 console (Agilent Technologies)⁴⁶. Samples were spun at 7143 Hz in 36
749 µL capacity 3.2 mm zirconia rotors. CP was performed with a field strength of 50 kHz for ¹³C and
750 with a 10% linearly ramped field strength centered at 57 kHz for ¹H. ¹H decoupling was performed
751 with two pulse phase modulation (TPPM) at 83 kHz⁴⁷. The experimental recycle time was 2 s. ¹³C
752 chemical shift referencing was performed by setting the high-frequency adamantane peak to
753 38.5 ppm⁴⁸. The enriched pEtN cellulose sample from the *Rs/Ec* chimera was 3 mg and the ¹³C
754 CPMAS spectrum is the result of 40,960 scans.

755

756 Similarly, the sample size for the wild type *Ec* complex with BcsZ was 7.1 mg, while for Bcs
757 complex with Cel9M, the sample size was 3.2 mg and each ¹³C CPMAS spectrum is the result of
758 40,960 scans. The spectra are scaled by the anomeric peak intensity to enable facile comparison
759 of the extent of pEtN modification between samples.

760

761 **Preparation of Inverted Membrane Vesicles**

762 IMV preparation was carried out as described previously⁴⁹ either for the wild type *Rs* BcsAB
763 complex alone, or the chimeric BcsAB or wild type BcsAB complex co-expressed with *Ec* BcsG and
764 BcsF. Briefly, the complex along with AdrA was overexpressed in *Ec* C43 cells in TB media. When
765 the cell density reached 0.8, expression was induced by addition of 0.6 mM IPTG. After 4 h of
766 incubation at 37 °C, cells were harvested and resuspended in buffer H containing 20 mM
767 phosphate buffer (pH 7.5) and 100 mM NaCl. The cells were lysed in a microfluidizer and cell
768 debris was removed by low-speed centrifugation (20,000 × *g*; JA-20 rotor). The supernatant
769 (approx. 22 ml) was layered over a 2 M sucrose cushion and centrifuged in a Ti-45 rotor at 200,000
770 × *g* for 2 h. Following this, the dark brown ring formed at the sucrose interface was carefully
771 collected (approx. 10 ml) and diluted to 65 mL in Buffer H and the membrane vesicles were
772 sedimented by centrifugation at 200,000 × *g* for 90 min. The pellet was then rinsed and
773 resuspended in 1 mL of Buffer H, homogenized using a 2 mL dounce homogenizer, and stored in
774 aliquots at -80 °C. The expression of BcsA and BcsG was detected by Western blotting using Anti-
775 His and Flag antibodies, respectively.

776

777 **Analysis of phosphoethanolamine modification by PACE**

778 IMVs were used for synthesizing cellulose *in vitro*⁴⁹. 500 µL of reactions were set up by incubating
779 IMVs in the presence of 20 mM MgCl₂, 5 mM UDP-Glc, and 30 µM c-di-GMP at 37 °C for 16 h. The
780 amount of IMVs used was standardized based on radiometric cellulose quantification (as
781 described above). Following the incubation, the reaction was terminated with 2% SDS and the
782 insoluble polymer was pelleted by centrifugation at 21,200 g at room temperature. The obtained
783 pellet was washed four times with water to remove the SDS. The resulting pellet was used for
784 labelling with Alexa Fluor 647 NHS ester (succinimidyl ester, Invitrogen, Cat# A20006) in 100 mM
785 sodium bicarbonate buffer pH 8.3. The dye was dissolved in 100% DMSO as per the manufacturer
786 instructions at a concentration of 10 mg/mL. The labelling reaction (100 µL) was carried out for
787 2 h at room temperature with continuous agitation. After the incubation, excess dye was
788 removed by washing 3-4 times in sodium bicarbonate buffer. The resulting pellet was stored in 4
789 °C and next day, one washing was done with MQ. The resulting pellet was digested with 1 mg/mL
790 of purified *Ec* BcsZ cellulase (endo-β-1,4-glucanase, GH-8) in 250 µL reaction volume at 37 °C for
791 4 h in 20 mM sodium phosphate buffer pH 7.2. Control reactions were performed by omitting
792 BcsZ. The digested samples were centrifuged at 21,200 × g for 20 min at room temperature and
793 the soluble oligosaccharides were collected and dried using a centrifugal evaporator at low heat
794 settings. The dried sample was resuspended in 15 µL urea and then analyzed by PACE as
795 described previously³². Briefly, from each sample, 2.5 µL was loaded onto the 240 X 180 X 0.75
796 mm polyacrylamide gel comprising a stacking gel with 10% polyacrylamide and a resolving gel
797 with 20% acrylamide, both containing 0.1 M Tris-borate pH 8.2. Gels were run in 0.1 M Tris-borate
798 buffer in a Hoefer SE660 electrophoresis tank (Hoefer Inc, Holliston, MA, USA) at 200 V for 30
799 min and then 1000 V for 2 h before imaging using a G-Box Chemi-XX6 (Syngene, Cambridge, UK).
800 Images were acquired with the GeneSys software (Syngene, version 1.8.5.0) based on the
801 excitation and emission wavelength of the fluorophore (651/672 nm). A mixture of glucose and
802 cello-oligosaccharides with DP 2-6 [each with 20 µM final concentration; (Glc)₁₋₆ ladder/Standard]
803 was also loaded onto the gel as an internal mobility marker. For visualization, the marker was
804 labeled with 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS, Invitrogen, Cat# A350) as
805 described previously³². The ANTS labelled standard was imaged using the same G-Box equipped
806 with a long-wavelength (365 nm) UV tube, and short pass detection filter (500-600 nm).
807 Additional standard reactions were setup initially to design these experiments wherein pure *Ec*
808 pEtN cellulose (kindly provided by Lynette Cegelski, University of Stanford) or the unmodified
809 phosphoric acid swollen cellulose was labelled with Alexa Fluor 647 NHS ester and digested with
810 BcsZ.

811

812 **Western Blotting**

813 Following SDS-PAGE, the protein was transferred to a nitrocellulose membrane using a BioRad
814 Transfer system. After blocking the membranes with 5% nonfat milk in Tris-buffered saline and
815 0.1% Tween 20 buffer (TBST), the membranes were washed with TBST and incubated with
816 primary antibody at 4 °C overnight. Specific primary antibodies were used, including Penta-His
817 (Qiagen, Cat# 34660; dilution 1:2000) for detecting *Ec* BcsA-NTD, BcsA chimera, *Rs* BcsA and BcsC,
818 and Anti-Flag M2 (Sigma, Cat#3165; dilution 1:10000) for detection of BcsG. The membranes
819 were then washed three times by incubating with fresh TBST for 10 min before incubation with
820 anti-mouse IgG conjugated to a Dylight 800 fluorescent marker (Rockland, Cat# 610-145-002);

821 dilution 1:5000) for 1 h at room temperature. The membranes were washed three times with
822 fresh TBST and visualized using an Odyssey Light scanner at wavelengths 700 and 800 nm.

823

824 **Mass spectrometry**

825 Protein identification of BcsA-NTD by mass spectrometry was performed on Coomassie stained
826 and excised SDS-PAGE gel band. For this purpose, purified *Ec* NTD-BcsG complex from the gel
827 filtration elution peak was loaded onto a 17.5% SDS-PAGE gel. After staining and destaining and
828 rinsing in MQ, the desired band migrating close to the *Ec* BcsA-NTD molecular weight was excised
829 and submitted to Biomolecular Analysis Facility at the University of Virginia.

830

831 The gel pieces were digested in 20 ng/µL trypsin in 50 mM ammonium bicarbonate on ice for 30
832 min. Any excess enzyme solution was removed and 20 µL 50 mM ammonium bicarbonate added.
833 The sample was digested overnight at 37 °C and the released peptides were extracted from the
834 polyacrylamide in a 100 µL aliquot of 50% acetonitrile/5% formic acid. The samples were purified
835 using C18 tips. This extract was evaporated to 20 µL for MS analysis.

836

837 The liquid chromatography-mass spectrometry (LC-MS) system consisted of a Thermo Electron
838 Orbitrap Exploris 480 mass spectrometer system with an Easy Spray ion source connected to a
839 Thermo 75 µm x 15 cm C18 Easy Spray column. 5 µL of the extract was injected and the peptides
840 eluted from the column by an acetonitrile/0.1 M formic acid gradient at a flow rate of 0.3 µL/min
841 over 2 h. The nanospray ion source was operated at 1.9 kV. The digest was analysed using the
842 rapid switching capability of the instrument acquiring a full scan mass spectrum to determine
843 peptide molecular weights followed by product ion spectra (Top10 HCD) to determine amino acid
844 sequence in sequential scans. This mode of analysis produces approximately 25000 MS/MS
845 spectra of ions ranging in abundance over several orders of magnitude. The data were analysed
846 by database searching using the Sequest search algorithm against the *Ec* BcsA protein and
847 Uniprot *Ec*.

848

849 **Electron microscopy**

850 ***Grid preparation and data acquisition***

851 Cryo-EM grids for the nanodisc reconstituted sample or the detergent solubilized samples were
852 prepared in a similar manner on Quantifoil R1.2/1.3 Cu 300 mesh or C-Flat 1.2/1.3-4 Cu grids
853 respectively. Grid preparation was optimized for each protein individually in regard to the protein
854 concentration such that cryo-EM grids was prepared with purified chimeric BcsAB-BcsG complex
855 at a concentration of 1.6 mg/mL; *Ec* Bcs complex with BcsB-BcsC fusion at a concentration of
856 about 2.2 mg/mL, and BcsC reconstituted in nanodiscs at a concentration of about 2.5 mg/mL.
857 To explore the interactions between the IMC and the outer membrane porin BcsC, *Ec* Bcs complex
858 reconstituted in nanodisc was incubated with the purified periplasmic domain of BcsC (TPR #1-
859 18) at a molar ratio of 1:5 for 1 h on ice before cryo grid preparation. Likewise for the data
860 collection with BcsZ, BcsC was incubated with the purified BcsZ at a molar 1:1.5. For data
861 collection of BcsC nanodiscs incubated with cellotetraose (CTE), in addition to the 5 mM CTE
862 present during the BcsC nanodisc reconstitution mixture, an additional 10 mM CTE was added to
863 the final sample before grid preparation.

864

865 Grids were glow-discharged in the presence of amylamine and 2-2.5 μ l sample was applied to
866 each grid and blotted and plunge-frozen in liquid ethane using a Vitrobot Mark IV plunge-freezing
867 robot operated at 4 °C and 100% humidity. Blotting force and time was optimized individually for
868 each sample: force of 4 and time 6 sec for both the chimeric BcsAB-BcsG complex and the BcsB-
869 BcsC fusion *Ec* complex; force 4 and blotting time 5 sec for the *Ec* Bcs complex in nanodiscs; and
870 force 4 and 4 sec blotting time for BcsC. Grids were loaded into a Titan Krios electron microscope
871 equipped with a K3/GIF detector (Gatan) at the Molecular Electron Microscopy Core (University
872 of Virginia School of Medicine). Data were collected using EPU in counting mode at a
873 magnification of 81K, pixel size of 1.08 Å and a total dose of 51 e⁻/Å², with a target defocus varying
874 from -1 to -2.4 μ m.

875

876 **Data processing**

877 Data was processed using cryoSPARC v4.0.0 ²⁸ or Relion v3.1.3 ⁵⁰, following similar processing
878 pipelines. Initially, the movies were imported and the images were first normalized by gain
879 reference. Beam induced motion correction was performed using patch motion correction and
880 contrast transfer function (CTF) parameters were estimated using patch CTF estimation.
881 Micrographs were manually curated and those with outliers in defocus value, astigmatism, total
882 full frame motion, ice thickness and low resolution (below 4.5 Å) were removed. From these high-
883 quality micrographs, particles were selected using Blob picker, extracted, and used to generate
884 2D classes for template-based particle picking. After extraction of these particles and 2D
885 classification, *ab initio* models were generated and subjected to several rounds of heterogenous
886 refinement. Selected particles and volumes were subjected to non-uniform refinement. For all
887 datasets except BcsZ, this was followed by local refinement and further 3D classification using
888 model or solvent based masks as described in the workflows. The best 3D class was subjected to
889 local refinement again. Model building was performed in Coot starting with AlphaFold2-
890 predicted models of the complex of BcsB and BcsC's N-terminal TPR #1-4 as well as for BcsC. The
891 cryo-EM structure of the *Ec* BcsB hexamer (PDB: 7L2Z) and the crystal structure of BcsZ (PDB
892 3QXQ) were used as the corresponding initial models. The coordinates were rigid body docked
893 into the corresponding volumes using Chimera. Models were manually refined in Coot (0.9.8.92)
894 ⁵¹ or ISOLDE (1.6.0) ⁵² and real space refined in PHENIX (v1.21.1-5286-000) ⁵³. The model of BcsA
895 in association with the BcsG trimer was predicted by AlphaFold2 and docked into the
896 corresponding map based on BcsA's location. The individual BcsG subunits and BcsA's NTD were
897 then rigid body docked into their densities. The model of the BcsA-BcsG3 complex containing the
898 BcsB hexamer was obtained after rigid body refinement against a composite map generated from
899 the best BcsB and BcsA-BcsG3 volumes. Figure representations were generated using Chimera
900 (v1.17.1) ⁵⁴, ChimeraX (v1.7.1) ⁵⁵ and PyMOL (v3.0.2) ⁵⁶.

901

902 **Data availability**

903 Coordinates of the BcsA-BcsB6_BcsG3 complex have been deposited at the PDB alongside the
904 cryo-EM map with accession codes 9B8V (<https://www.rcsb.org/structure/unreleased/9B8V>)
905 and EMD-44359 (<https://www.ebi.ac.uk/emdb/EMD-44359>). The coordinates for the BcsB-BcsC
906 complex, BcsC in the absence and the presence of celotetraose, and the BcsZ tetramer have been

907 deposited at the Protein Data Bank with accession codes 9B8I
908 (<https://www.rcsb.org/structure/unreleased/9B8I>) and EMD-44346
909 (<https://www.ebi.ac.uk/emdb/EMD-44346>), 9B8A
910 (<https://www.rcsb.org/structure/unreleased/9B8A>) and EMD-44336
911 (<https://www.ebi.ac.uk/emdb/EMD-44336>) and 9B8H
912 (<https://www.rcsb.org/structure/unreleased/9B8H>) and EMD-44345
913 (<https://www.ebi.ac.uk/emdb/EMD-44345>), and 9B87
914 (<https://www.rcsb.org/structure/unreleased/9B87>) and EMD-44334
915 (<https://www.ebi.ac.uk/emdb/EMD-44334>), respectively. Previously published structures used
916 in this study are available in the Protein Data Bank under accession codes 5FGN
917 (<https://www.rcsb.org/structure/5FGN>), 6PD0 (<https://www.rcsb.org/structure/6PD0>), 4P00
918 (<https://www.rcsb.org/structure/4P00>), 7L2Z (<https://www.rcsb.org/structure/7L2Z>), 3QXQ
919 (<https://www.rcsb.org/structure/3QXQ>). AlphaFold predicted structures of full-length *E. coli*
920 BcsG AF-P37659-F1 (<https://alphafold.ebi.ac.uk/entry/P37659>) and BcsC AF-P37650-F1
921 (<https://alphafold.ebi.ac.uk/entry/P37650>) used in this study are publicly available. Source data
922 are provided with this paper.

923
924

References

- 925 1 McCrate, O. A., Zhou, X., Reichhardt, C. & Cegelski, L. Sum of the Parts: Composition and
926 Architecture of the Bacterial Extracellular Matrix. *J. Mol. Biol.* **425**, 4286-4294, (2013).
- 927 2 Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: From the natural
928 environment to infectious diseases. *Nature Reviews Microbiology* **2**, 95-108, (2004).
- 929 3 Romling, U. & Galperin, M. Y. Bacterial cellulose biosynthesis: diversity of operons,
930 subunits, products, and functions. *Trends Microbiol* **23**, 545-557, (2015).
- 931 4 McNamara, J. T., Morgan, J. L. W. & Zimmer, J. A molecular description of cellulose
932 biosynthesis. *Annu Rev Biochem* **84**, 17.11-17.27, (2015).
- 933 5 Morgan, J., Strumillo, J. & Zimmer, J. Crystallographic snapshot of cellulose synthesis
934 and membrane translocation. *Nature* **493**, 181-186, (2013).
- 935 6 Omadjela, O. *et al.* BcsA and BcsB form the catalytically active core of bacterial cellulose
936 synthase sufficient for in vitro cellulose synthesis. *Proc Natl Acad Sci U S A* **110**, 17856-
937 17861, (2013).
- 938 7 Wong, H. C. *et al.* Genetic organization of the cellulose synthase operon in *Acetobacter*
939 *xylinum*. *Proc Natl Acad Sci U S A* **87**, 8130-8134, (1990).

940 8 Acheson, J. F., Derewenda, Z. S. & Zimmer, J. Architecture of the Cellulose Synthase
941 Outer Membrane Channel and Its Association with the Periplasmic TPR Domain.
942 *Structure* **27**, 1855-1861 e1853, (2019).

943 9 Kawano, S. *et al.* Effects of endogenous endo-beta-1,4-glucanase on cellulose
944 biosynthesis in *Acetobacter xylinum* ATCC23769. *J Biosci Bioeng* **94**, 275-281, (2002).

945 10 Koo, H. M., Song, S. H., Pyun, Y. R. & Kim, Y. S. Evidence that a beta-1,4-endoglucanase
946 secreted by *Acetobacter xylinum* plays an essential role for the formation of cellulose
947 fiber. *Biosci Biotechnol Biochem* **62**, 2257-2259, (1998).

948 11 Standal, R. *et al.* A new gene required for cellulose production and a gene encoding
949 cellulolytic activity in *Acetobacter xylinum* are colocalized with the bcs operon. *J
950 Bacteriol* **176**, 665-672, (1994).

951 12 Yasutake, Y. *et al.* Structural characterization of the *Acetobacter xylinum* endo-beta-1,4-
952 glucanase CMCax required for cellulose biosynthesis. *Proteins* **64**, 1069-1077, (2006).

953 13 Nojima, S. *et al.* Crystal structure of the flexible tandem repeat domain of bacterial
954 cellulose synthesis subunit C. *Sci Rep* **7**, (2017).

955 14 Thongsomboon, W. *et al.* Phosphoethanolamine cellulose: A naturally produced
956 chemically modified cellulose. *Science* **359**, 334-338, (2018).

957 15 Hollenbeck, E. C. *et al.* Phosphoethanolamine cellulose enhances curli-mediated
958 adhesion of uropathogenic *Escherichia coli* to bladder epithelial cells. *Proc Natl Acad Sci
959 USA* **115**, 10106-10111, (2018).

960 16 Jeffries, J. *et al.* Variation in the ratio of curli and phosphoethanolamine cellulose
961 associated with biofilm architecture and properties. *Biopolymers* **112**, e23395, (2021).

962 17 Serra, D. O., Klauck, G. & Hengge, R. Vertical stratification of matrix production is
963 essential for physical integrity and architecture of macrocolony biofilms of. *Environ
964 Microbiol* **17**, 5073-5088, (2015).

965 18 Krasteva, P. V. *et al.* Insights into the structure and assembly of a bacterial cellulose
966 secretion system. *Nat Commun* **8**, 2065, (2017).

967 19 Abidi, W., Zouhir, S., Caleechurn, M., Roche, S. & Krasteva, P. V. Architecture and
968 regulation of an enterobacterial cellulose secretion system. *Sci Adv* **7**, (2021).

969 20 Acheson, J. F., Ho, R., Goulart, N., Cegelski, L. & Zimmer, J. Molecular organization of the
970 *E. coli* cellulose synthase macrocomplex. *Nat Struct Mol Biol* **28**, 310-318, (2021).

971 21 Morgan, J. L. *et al.* Observing cellulose biosynthesis and membrane translocation in
972 crystallo. *Nature* **531**, 329-334, (2016).

973 22 Morgan, J. L. W., McNamara, J. T. & Zimmer, J. Mechanism of activation of bacterial
974 cellulose synthase by cyclic di-GMP. *Nature Struct Mol Biol* **21**, 489-496, (2014).

975 23 Sun, L. *et al.* Structural and Functional Characterization of the BcsG Subunit of the
976 Cellulose Synthase in *Salmonella typhimurium*. *J Mol Biol* **430**, 3170-3189, (2018).

977 24 Anderson, A. C., Burnett, A. J. N., Hiscock, L., Maly, K. E. & Weadge, J. T. The *Escherichia
978 coli* cellulose synthase subunit G (BcsG) is a Zn(2+)-dependent phosphoethanolamine
979 transferase. *J Biol Chem* **295**, 6225-6235, (2020).

980 25 Anderson, A. C. *et al.* A Mechanistic Basis for Phosphoethanolamine Modification of the
981 Cellulose Biofilm Matrix in *Escherichia coli*. *Biochemistry* **60**, 3659-3669, (2021).

982 26 Anandan, A. *et al.* Structure of a lipid A phosphoethanolamine transferase suggests how
983 conformational changes govern substrate binding. *Proc Natl Acad Sci USA* **114**, 2218-
984 2223, (2017).

985 27 Scott, N. E. *et al.* Modification of the *Campylobacter jejuni* N-linked glycan by EptC
986 protein-mediated addition of phosphoethanolamine. *J Biol Chem* **287**, 29384-29396,
987 (2012).

988 28 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for
989 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296, (2017).

990 29 Anso, I., Zouhir, S., Sana, T. G. & Krasteva, P. V. Structural basis for synthase activation
991 and cellulose modification in the *E. coli* Type II Bcs secretion system. *bioRxiv*, (2024).

992 30 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*
993 **596**, 583-589, (2021).

994 31 Varadi, M. *et al.* AlphaFold Protein Structure Database: massively expanding the
995 structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids
996 Res* **50**, D439-D444, (2022).

997 32 Goubet, F., Dupree, P. & Johansen, K. S. Carbohydrate gel electrophoresis. *Methods Mol
998 Biol* **715**, 81-92, (2011).

999 33 Purushotham, P. *et al.* A single heterologously expressed plant cellulose synthase
1000 isoform is sufficient for cellulose microfibril formation in vitro. *Proc Natl Acad Sci U S A*
1001 **113**, 11360-11365, (2016).

1002 34 Knott, B. C., Crowley, M. F., Himmel, M. E., Stahlberg, J. & Beckham, G. T. Carbohydrate-
1003 protein interactions that drive processive polysaccharide translocation in enzymes
1004 revealed from a computational study of cellobiohydrolase processivity. *J Am Chem Soc*
1005 **136**, 8810-8819, (2014).

1006 35 Spiwok, V. CH/pi Interactions in Carbohydrate Recognition. *Molecules* **22**, (2017).

1007 36 Vain, T. *et al.* The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex. *Plant
1008 Physiol* **165**, 1521-1532, (2014).

1009 37 Matthysse, A. G. *et al.* A functional cellulose synthase from ascidian epidermis. *Proc Natl
1010 Acad Sci U S A* **101**, 986-991, (2004).

1011 38 Ahmad, I. *et al.* BcsZ inhibits biofilm phenotypes and promotes virulence by blocking
1012 cellulose production in serovar Typhimurium. *Microbial Cell Factories* **15**, (2016).

1013 39 Thongsomboon, W., Werby, S. H. & Cegelski, L. Evaluation of Phosphoethanolamine
1014 Cellulose Production among Bacterial Communities Using Congo Red Fluorescence. *J
1015 Bacteriol* **202**, (2020).

1016 40 Mazur, O. & Zimmer, J. Apo- and Cellopentaose-bound Structures of the Bacterial
1017 Cellulose Synthase Subunit BcsZ. *J Biol Chem* **286**, 17601-17606, (2011).

1018 41 Belaich, A. *et al.* Cel9M, a new family 9 cellulase of the *Clostridium cellulolyticum*
1019 cellulosome. *J Bacteriol* **184**, 1378-1384, (2002).

1020 42 Pföh, R. *et al.* The TPR domain of PgaA is a multifunctional scaffold that binds PNAG and
1021 modulates PgaB-dependent polymer processing. *PLoS Pathog* **18**, (2022).

1022 43 Jain, S. & Ohman, D. E. Role of an alginate lyase for alginate transport in mucoid
1023 *Pseudomonas aeruginosa*. *Infect Immun* **73**, 6429-6436, (2005).

1024 44 Caveney, N. A., Li, F. K. & Strynadka, N. C. Enzyme structures of the bacterial
1025 peptidoglycan and wall teichoic acid biogenesis pathways. *Curr Opin Struct Biol* **53**, 45-
1026 58, (2018).

1027 45 Pardon, E. *et al.* A general protocol for the generation of Nanobodies for structural
1028 biology. *Nat Protoc* **9**, 674-693, (2014).

1029 46 Schaefer, J. & Stejskal, E. O. Carbon-13 Nuclear Magnetic Resonance of Polymers
1030 Spinning at the Magic Angle. *J Am Chem Soc* **98**, 1031-1032, (1976).

1031 47 Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V. & Griffin, R. G. Heteronuclear
1032 Decoupling in Rotating Solids. *J Chem Phys* **103**, 6951-6958, (1995).

1033 48 Morcombe, C. R. & Zilm, K. W. Chemical shift referencing in MAS solid state NMR. *J*
1034 *Magn Reson* **162**, 479-486, (2003).

1035 49 Verma, P., Kwansa, A. L., Ho, R. Y., Yingling, Y. G. & Zimmer, J. Insights into substrate
1036 coordination and glycosyl transfer of poplar cellulose synthase-8. *Structure* **31**, 1166-+,
1037 (2023).

1038 50 Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure
1039 determination. *J Struct Biol* **180**, 519-530, (2012).

1040 51 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta*
1041 *Crystallogr D Biol Crystallogr* **60**, 2126-2132, (2004).

1042 52 Croll, T. I.: a physically realistic environment for model building into low-resolution
1043 electron-density maps. *Acta Crystallogr D* **74**, 519-530, (2018).

1044 53 Adams, P. *et al.* PHENIX: a comprehensive Python-based system for macromolecular
1045 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221, (2010).

1046 54 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
1047 analysis. *J Comput Chem* **25**, 1605-1612, (2004).

1048 55 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators,
1049 and developers. *Protein Sci* **30**, 70-82, (2021).

1050 56 Pymol. Vol. Version 2.0 (Schroedinger, LLC).

1051

1052 **Acknowledgements**

1053 We are grateful to Michael Purdy and Kelly Dryden of the Macromolecular Electron Microscopy
1054 Facility at UVA for support during cryo-EM data collection and Louis Wilson for help with PACE
1055 analysis. We thank Phillip Stansfeld and Robin Corey for insightful discussions. The work was
1056 supported by NIH grant R35GM144130 awarded to JZ. LC acknowledges support from NSF grant
1057 award 2001189. SAC acknowledges support from the NIH postdoctoral fellowship award
1058 NIH32GM149117. JZ is an investigator of the Howard Hughes Medical Institute. This article is
1059 subject to HHMI's Open Access to Publications policy. HHMI lab heads have previously granted a
1060 nonexclusive CC BY 4.0 license to the public and a sublicensable license to HHMI in their research

1061 articles. Pursuant to those licenses, the author-accepted manuscript of this article can be made
1062 freely available under a CC BY 4.0 license immediately upon publication.

1063

1064 **Author contributions**

1065 P.V. performed all cloning and protein purification procedures, performed all biochemical assays,
1066 *in vivo* pEtN cellulose isolation and processed all new cryo-EM data. P.V. and R.H. performed grid
1067 preparation and cryo-EM data collection. J.Z. processed the BcsG cryo-EM data. S.A.C. developed
1068 the periplasmic pEtN cellulose isolation protocol and performed the ssNMR measurements and
1069 analysis. L.C. assisted in data analysis and preparation of the manuscript. J.Z. generated the initial
1070 manuscript. All authors interpreted the data and revised the manuscript.

1071

1072 **Conflict of interest**

1073 The authors declare no conflict of interests.

1074

1075 **Figure Legends**

1076 **Fig. 1: BcsA coordinates a BcsG trimer.** **a**, Schematic representation of the pEtN transfer reaction
1077 catalyzed by BcsG. PE lipid: Phosphatidylethanolamine, Ser: Ser278 as catalytic nucleophile, pEtN:
1078 Phosphoethanolamine. **b**, Cartoon illustration of the *Ec* cellulose synthase complex. The putative
1079 cellulose secretion path is shown as a dashed line. **c**, Low resolution cryo-EM map of the *Ec* inner
1080 membrane-associated cellulose synthase complex (IMC, EMD-23267). **d**, AlphaFold2-predicted
1081 structure of *Ec* BcsG (AF-P37659-F1) with close-up showing the acidic cavity extending from the
1082 putative membrane surface. **e**, Cryo-EM composite map of the IMC after focused refinements of
1083 the periplasmic BcsB hexamer and the BcsG trimer associated with BcsA, respectively. BcsB
1084 subunits are colored from light grey to pink, BcsA and trimeric BcsG are colored in shades of blue
1085 and yellow, and the associated BcsB transmembrane (TM) helix is colored grey. Contour level: 5 σ .
1086 **f**, AlphaFold2-predicted complex of BcsA, BcsB's TM anchor, and the trimeric BcsG colored as in
1087 panel e. **g**, Co-purification of *Ec* BcsG (His-tagged) with the N-terminal domain of *Ec* BcsA (NTD,
1088 Strep-tagged) by immobilized metal (IMAC) and Strep-Tactin affinity chromatography followed
1089 by size exclusion chromatography (SEC). Source data are provided as a Source Data File.

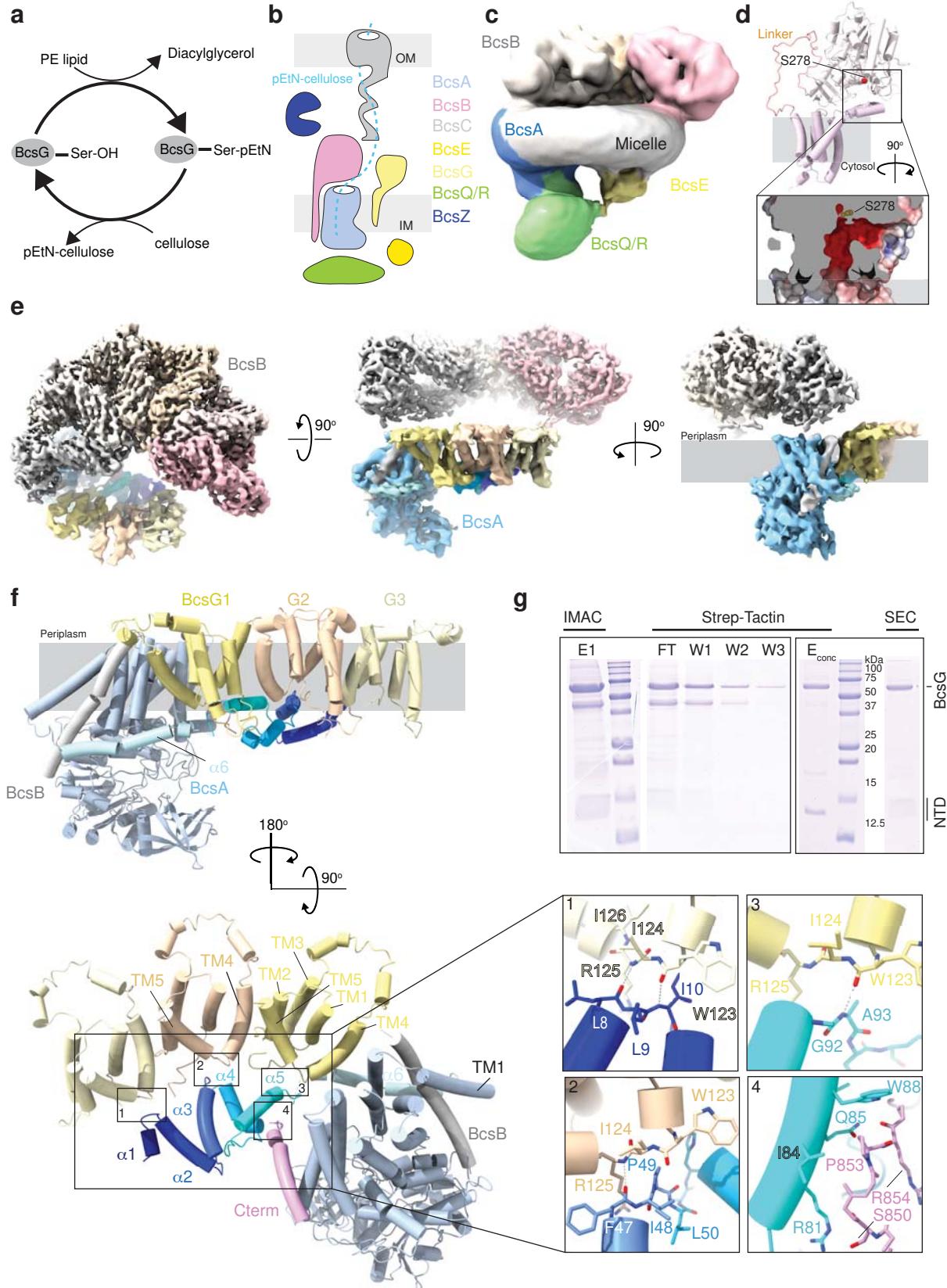
1090

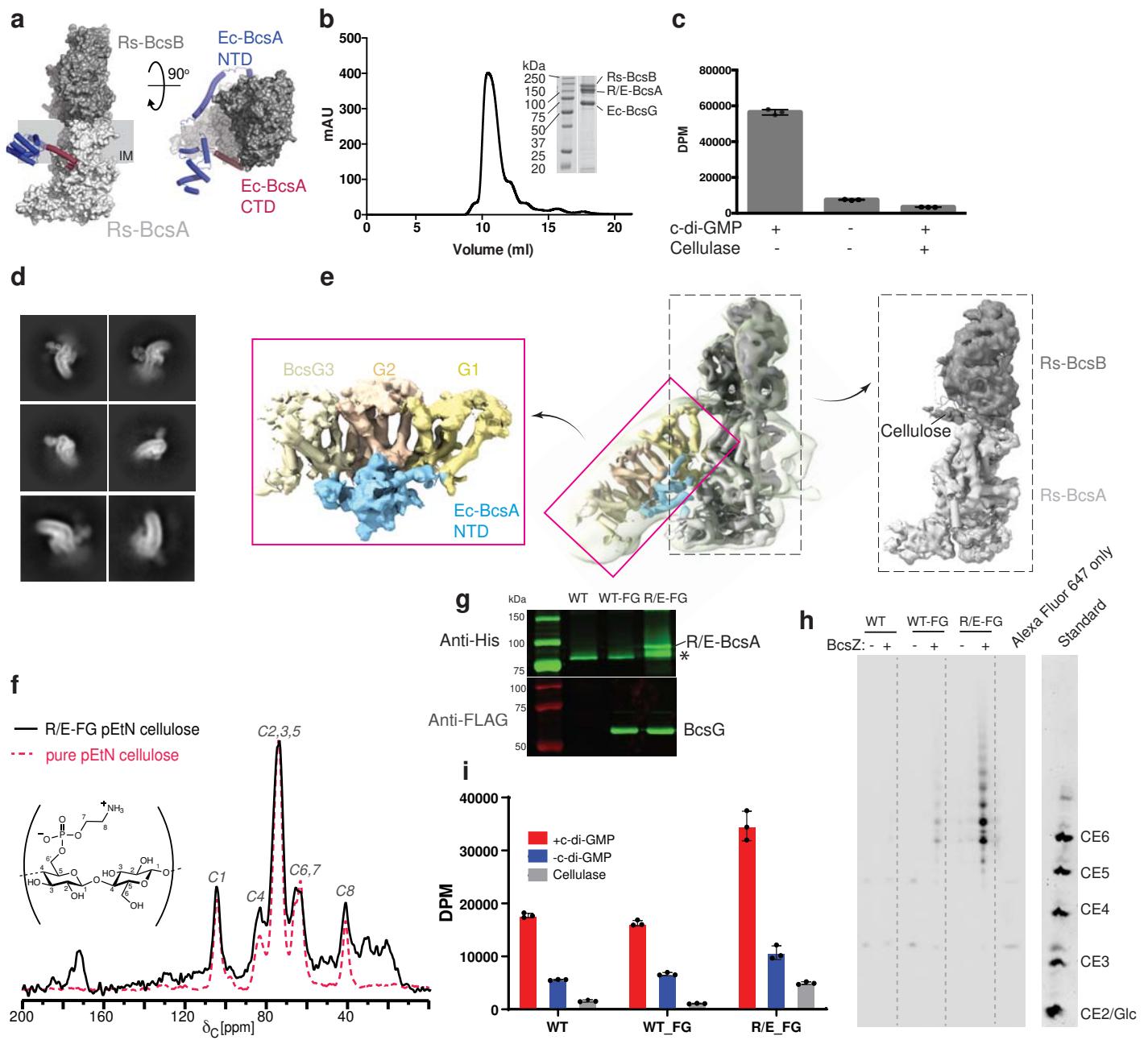
1091 **Fig. 2: Engineering pEtN cellulose biosynthesis.** **a**, Illustration of the *Rs-Ec* BcsA chimera shown
1092 as a light and dark grey surface for BcsA and BcsB, respectively (PDB: 4P00). The introduced *Ec* N-
1093 and C-terminal domains are shown as cartoons colored blue and red, respectively. **b**, Size
1094 exclusion chromatography of the chimeric BcsAB-BcsG complex. Inset: Coomassie-stained SDS-
1095 PAGE of the peak fraction. **c**, *In vitro* catalytic activity of the purified chimeric BcsAB-BcsG
1096 complex. DPM: Disintegrations per minute. **d**, Representative 2D class averages of the chimeric
1097 BcsAB-BcsG complex. **e**, Low resolution cryo-EM map (semitransparent surface, contoured at
1098 4.8σ) of the chimeric BcsAB-BcsG complex overlaid with the refined map. Insets show a carved
1099 map of the chimeric BcsA NTD-BcsG complex as well as a focused refinement of BcsAB,
1100 respectively. *Ec* BcsA-NTD is colored blue and trimeric BcsG is colored in shades of yellow. **f**, Solid
1101 state NMR spectrum of pEtN cellulose produced by the chimeric BcsAB-BcsG complex *in vivo*
1102 (R/E-FG; black line), overlaid with a reference spectrum of pure pEtN cellulose from *Ec* (dashed
1103 red line). Peaks labeled C1-8 correspond to the chemical shifts expected for the indicated carbon
1104 atoms (see inset). The inset represents the chemical structure of a pEtN modified cellobiose unit
1105 with carbon atoms numbered. **g**, Western blots of IMVs containing the wild type (WT) *Rs* BcsAB
1106 complex alone or the WT or chimeric BcsAB complex (R/E) co-expressed with BcsF and BcsG (FG).
1107 BcsA and BcsG are His- and Strep-tagged, respectively. * Indicates an N-terminal degradation
1108 product of the chimeric BcsA. **h**, Polysaccharide analysis by carbohydrate gel electrophoresis
1109 (PACE) of *in vitro* synthesized pEtN cellulose. IMVs shown in panel g were used for *in vitro*
1110 synthesis reactions. Cellulase (BcsZ) released and Alexa Fluor 647-labeled cello-oligosaccharides
1111 are resolved by PACE. Cello-oligosaccharide standards are ANTS (8-aminonaphthalene-1,3,6-
1112 trisulfonic acid) labeled and range from mono (Glc) to hexasaccharides (CE2-6). This experiment
1113 has been repeated twice with similar results. **i**, Quantification of cellulose biosynthesis by the
1114 IMVs shown in panel g containing the indicated BcsA variants and based on incorporation of ^3H -
1115 glucose into the water-insoluble polymer. Error bars in panels c and i represent standard
1116 deviations from the means of three replicas. Source data are provided as a Source Data File.

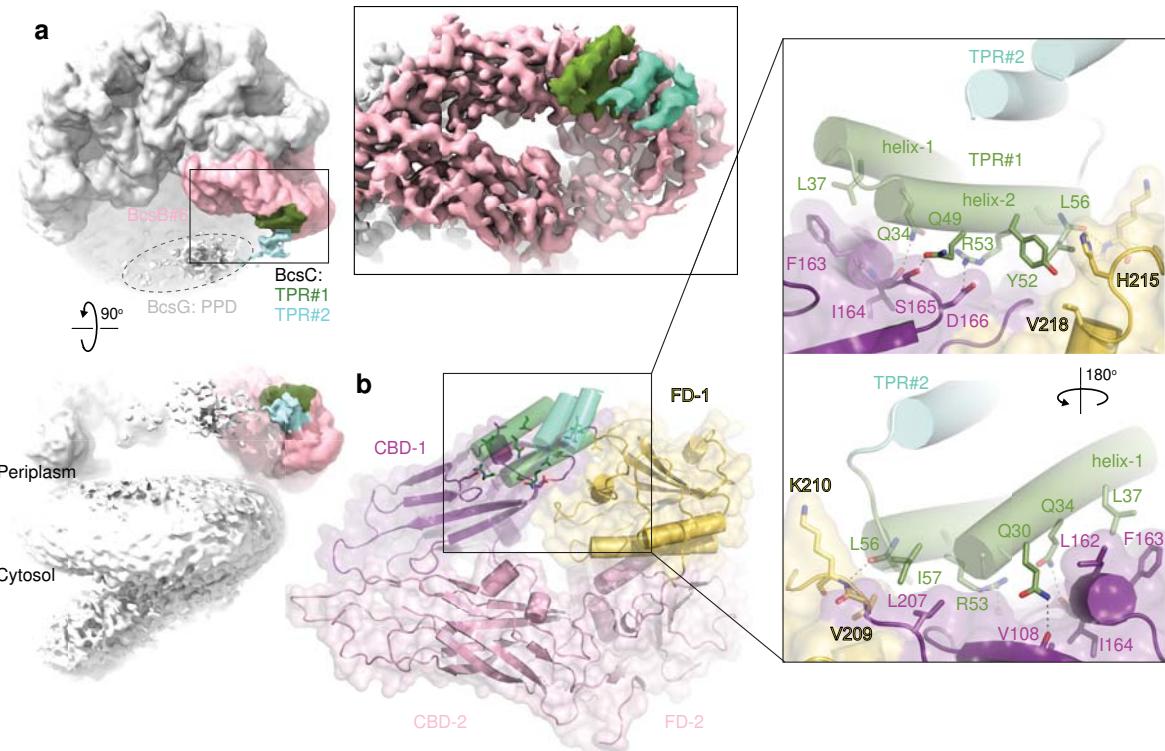
1117

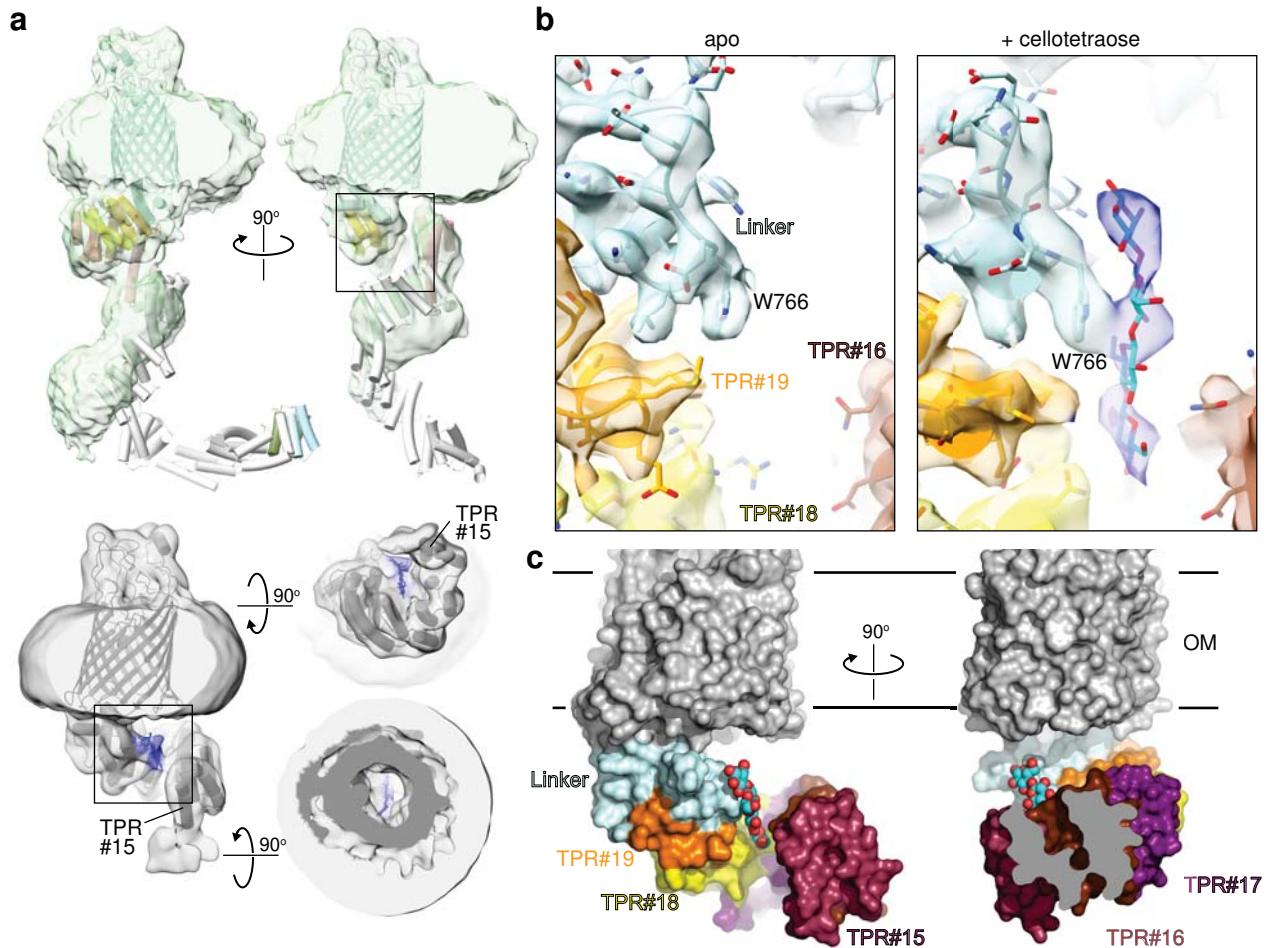
1118 **Fig. 3: Interactions of BcsC with BcsB.** **a**, Low resolution map of the Bcs complex in the presence
1119 of BcsC's periplasmic domain. The terminal BcsB subunit is colored lightpink and BcsC is colored

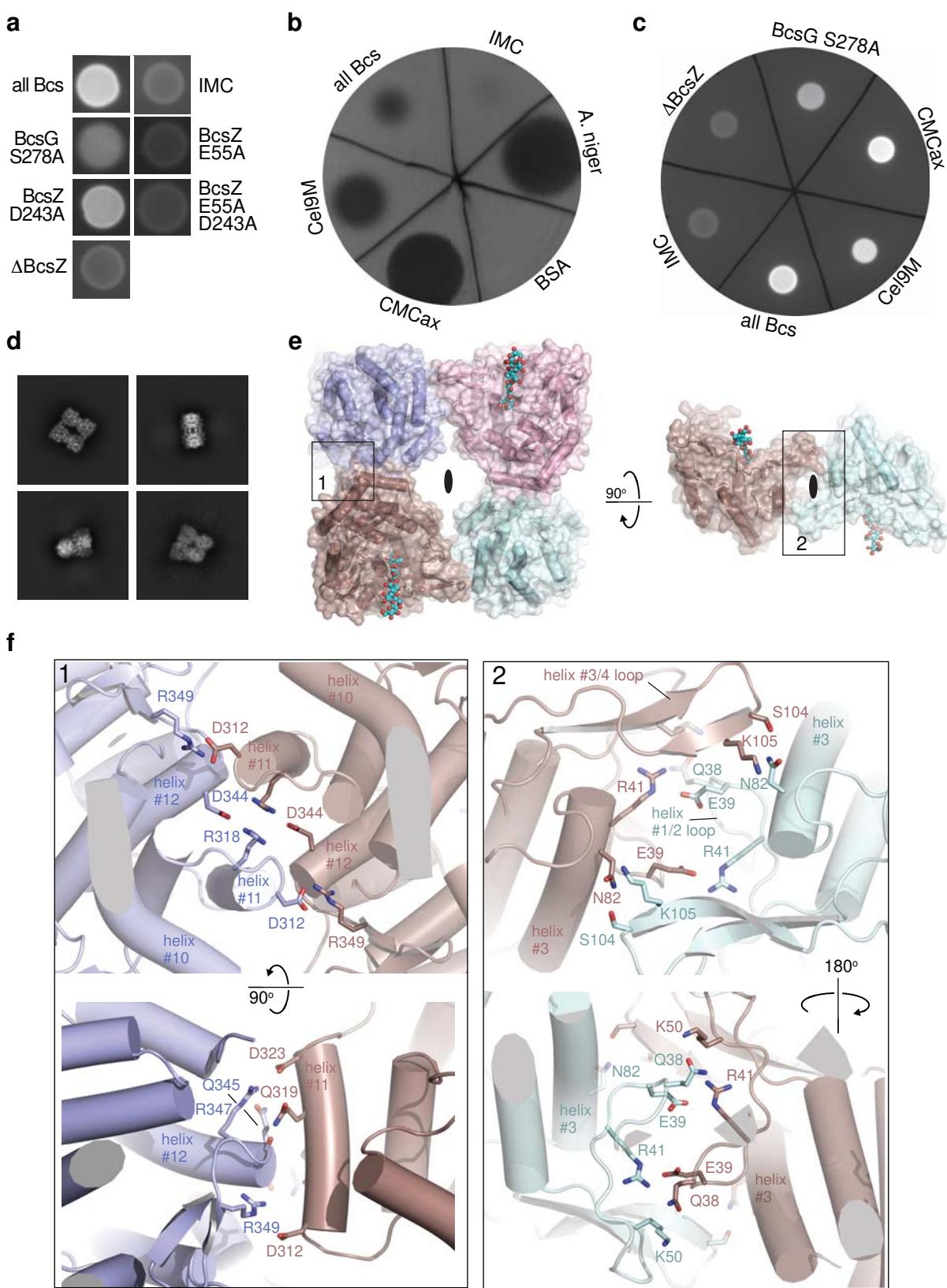
1120 green and lightblue for TPR#1 and #2, respectively. TPR: Tetrastricopeptide repeat. The map is
1121 contoured at 1.2σ . Inset: High resolution map of the BcsB-BcsC complex obtained after fusing
1122 BcsC's TPRs #1-4 to the N-terminus of BcsB and focused refinement of the BcsB subunit bound
1123 to BcsC (contoured at 4.8σ). Density likely representing BcsG's periplasmic domain (PPD) is
1124 encircled. **b**, Detailed interactions of BcsB and BcsC. FD: Flavodoxin-like domain and CBD:
1125 Carbohydrate binding domain.


1126
1127 **Fig. 4: Interactions of BcsC with cellulose.** **a**, Low resolution cryo-EM maps of BcsC. Top panel:
1128 BcsC in the absence of cellotetraose with the full-length AlphaFold2-BcsC model (AF-P37650-F1)
1129 docked into the density. TPR#1 is colored lightblue, TPR#15-19 are colored as in panels b and c
1130 (TPR: Tetrastricopeptide repeat). Bottom panel: BcsC in the presence of cellotetraose. The model
1131 of the refined C-terminal BcsC fragment is docked into the density with the putative ligand
1132 colored blue. **b**, Close-up views of the putative cellulose binding sites of the refined maps in the
1133 absence (apo) and the presence of cellotetraose (shown as sticks colored cyan and red). Both
1134 maps are contoured at 10.5σ . **c**, Surface representation of BcsC bound to the putative
1135 cellotetraose ligand.


1136
1137 **Fig. 5: Cellulase activity is necessary for cellulose secretion.** **a**, Congo red (CR) fluorescence
1138 images of *Ec* macrocolonies expressing the indicating components as part of the Bcs complex.
1139 'All Bcs' express the inner membrane complex (IMC) together with BcsZ and BcsC. Δ BcsZ: no BcsZ.
1140 **b**, Carboxymethylcellulose digestion on agar plates using periplasmic *Ec* extracts. Cel9M and
1141 CMCax: Periplasmic extracts of cells expressing the Bcs components with BcsZ replaced by the
1142 indicated enzyme. BSA and *A. niger*: Controls with purified BSA or *Aspergillus niger* cellulase
1143 spotted on the agar plates. Cellulose digestion was imaged after CR staining, resulting in the
1144 observed plaques. **c**, Evaluation of CR fluorescence exhibited by *Ec* macrocolonies expressing the
1145 indicated components as part of the Bcs complex. **d**, Representative 2D class averages of BcsZ
1146 tetramers. **e**, Model of the BcsZ tetramer shown as a semitransparent surface and cartoon,
1147 overlaid with the cellopentaose-bound crystal structure (PDB: 3QXQ, only cellopentaose is shown
1148 as ball-and-sticks in cyan and red). Two-fold symmetry axes are indicated by black ellipses. **f**,


1149 Detailed views of the boxed regions in panel e. CR and cellulase plate assays were repeated at
1150 least three times with similar results. Source data are provided as a Source Data File.


1151


1152 **Fig. 6: Model of cellulose pEtN modification and secretion.** BcsA recruits three copies of BcsG to
1153 the cellulose biosynthesis site via its N-terminal cytosolic domain. The catalytic domain of BcsG
1154 either faces the lipid bilayer to receive a pEtN group or contacts the nascent cellulose chain for
1155 modification. BcsC interacts with the terminal BcsB subunit of the semicircle to establish an
1156 envelope-spanning complex. Cellulose is guided towards the OM through interactions with the
1157 TPR solenoid. BcsZ may degrade cellulose to prevent stalling of the biosynthetic machinery or
1158 mislocalization of cellulose to the periplasm. The cytosolic BcsE and BcsQR as well as BcsF
1159 components are omitted for clarity. PE: Phosphatidylethanolamine lipid, DAG: Diacylglycerol,
1160 pEtN: Phosphoethanolamine, IM and OM: Inner and Outer membrane, respectively.

