iSpLib: A Library for Accelerating Graph Neural Networks
using Auto-tuned Sparse Operations

Md Saidul Hoque Anik
Department of Intelligent Systems Engineering
Indiana University Bloomington
Bloomington, Indiana, USA
mdshoque@iu.edu

Rohit Gampa
Department of Intelligent Systems Engineering
Indiana University Bloomington
Bloomington, Indiana, USA
rgampa@iu.edu

ABSTRACT

Core computations in Graph Neural Network (GNN) training and
inference are often mapped to sparse matrix operations such as
sparse-dense matrix multiplication (SpMM). These sparse opera-
tions are harder to optimize by manual tuning because their per-
formance depends significantly on the sparsity of input graphs,
GNN models, and computing platforms. To address this challenge,
we present iSpLib, a PyTorch-based C++ library equipped with
auto-tuned sparse operations. iSpLib expedites GNN training with
a cache-enabled backpropagation that stores intermediate matrices
in local caches. The library offers a user-friendly Python plug-in
that allows users to take advantage of our optimized PyTorch oper-
ations out-of-the-box for any existing linear algebra-based PyTorch
implementation of popular GNNs (Graph Convolution Network,
GraphSAGE, Graph Inference Network, etc.) with only two lines of
additional code. We demonstrate that iSpLib obtains up to 27x over-
all training speedup compared to the equivalent PyTorch 2.1.0 and
PyTorch Geometric 2.4.0 implementations on the CPU. Our library
is publicly available at https://github.com/HipGraph/iSpLib'.

CCS CONCEPTS

« Software and its engineering — Software libraries and repos-
itories; - Mathematics of computing — Graph algorithms; .
Computing methodologies — Learning latent representations.

KEYWORDS

Graph Neural Network, Autotuning, Parallel Computing, Sparse-
dense Matrix Multiplication, Autodiff, Backpropagation

https://doi.org/10.5281/zenodo.10806511

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 24 Companion, May 13-17, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0172-6/24/05

https://doi.org/10.1145/3589335.3651528

Pranav Badhe
Department of Intelligent Systems Engineering
Indiana University Bloomington
Bloomington, Indiana, USA
pbadhe@iu.edu

Ariful Azad
Department of Intelligent Systems Engineering
Indiana University Bloomington
Bloomington, Indiana, USA
azad@iu.edu

ACM Reference Format:

Md Saidul Hoque Anik, Pranav Badhe, Rohit Gampa, and Ariful Azad. 2024.
iSpLib: A Library for Accelerating Graph Neural Networks using Auto-tuned
Sparse Operations . In Companion Proceedings of the ACM Web Conference
2024 (WWW °24 Companion), May 13-17, 2024, Singapore, Singapore. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3589335.3651528

1 INTRODUCTION

Over the last decade, graph neural networks (GNNs) have demon-
strated remarkable effectiveness in learning from graph-structured
data. This success has led to the development of several prominent
libraries for GNNS, such as PyTorch Geometric (PyG)[2], DGL[10],
and CogDL [1], among others. Across these libraries, the funda-
mental computations for GNN forward and backward propagation
primarily rely on two sparse operations: (a) sampled dense-dense
matrix multiplication (SDDMM) and (b) sparse-dense matrix multi-
plication (SpMM). Consequently, the overall performance of these
libraries is often influenced significantly by the efficiency of SD-
DMM and SpMM. To enhance the speed of these sparse operations,
we developed a general-purpose C++ library known as iSpLib. This
library can be seamlessly integrated into the backend of PyTorch-
based GNN training, facilitating accelerated GNN training and
inference on various multi-core processors.

iSpLib takes advantage of the insight that high-level operations
within GNNs, such as graph convolutions and message passing, can
be mapped to sparse linear algebra. Consequently, the library opti-
mizes backend computations while preserving the familiar Python
interface for users. iSpLib is designed with four key objectives:

(a) General-purpose: iSpLib supports various GNN models,
including GCN[5], GraphSAGE [3], and GIN [11], utilizing oper-
ations such as SpMM, SDDMM, and their combination known as
FusedMM [8]. To accommodate a broad spectrum of GNNs, we
break down the overall computation into smaller matrix and vec-
tor kernels. These micro kernels allow users to define their own
operations.

(b) Fast and scalable GNN training and inference: iSpLib
significantly accelerates GNN training compared to existing sparse
libraries like PyTorch-sparse [9]. This speed is achieved through a

https://github.com/HipGraph/iSpLib
https://doi.org/10.5281/zenodo.10806511
https://doi.org/10.1145/3589335.3651528
https://doi.org/10.1145/3589335.3651528

WWW ’24 Companion, May 13-17, 2024, Singapore, Singapore

harmonious combination of efficient parallelization, thread sched-
uling, loop unrolling, register blocking, and data caching during
backpropagation.

(c) Performance portability: iSpLib exhibits consistent per-
formance across diverse multi-core processors without requiring
users to manually optimize their code. Automated tuning based on
different hardware features, such as SIMD intrinsics, vector lengths,
and register sizes, enables iSpLib to generate optimized code for
the target platform.

(d) Easy-to-use library: iSpLib seamlessly integrates into PyTorch-

based libraries, such as PyG [2], allowing users to divert computa-
tions to iSpLib with just one or two lines of code. This approach
enables users to leverage efficient and auto-tuned kernels without
explicit modifications to their existing code.

At present, iSpLib exclusively supports CPU-based tuning for
Intel, AMD, and ARM processors. Our testing involved iSpLib’s com-
patibility with PyG and various standalone GNN models, including
the PyTorch-based GCN developed by the authors. We observed
significant performance improvements when iSpLib was integrated
with PyG, resulting in a GNN training speedup of up to 27X for
GCN, 12X for GraphSAGE-sum, 8 for GraphSAGE-mean, and 18X
for Graph Isomorphism Network (GIN). Importantly, these speed
enhancements were achieved while maintaining the same level
of accuracy attained without iSpLib and concealing all low-level
optimizations from the users.

2 RELATED WORKS

Researchers used various approaches to expedite GNN training
time. SparseTIR [12] reports up to 7.45x speedup for sparse convo-
lution using compilation abstraction. Lenadora et al. [6] proposes a
data-driven adaptive strategy and reports up to 1.99x speedup on
graph convolutional networks. You et al. [7] focus on choosing a
suitable sparse matrix storage format to improve the GNN train-
ing performance and report up to 3x performance improvement in
GNN running time. Wang et al. [4] proposes FeatGraph that accel-
erates GNN training by co-optimizing graph traversal and feature
dimension computation and reports up to 32x speedup on CPU.

3 LIBRARY DESIGN

3.1 Overview

The codebase of iSpLib consists of Python, C++, and C code (see
Figure 1). The highly efficient kernels are generated in pure C. A
C++ PyTorch wrapper connects the forward and backward propaga-
tion with the generated sparse kernels and provides the abstraction
between PyTorch Tensors and the C++ array. A Python interface
of iSpLib provides a ready-to-use matmul function for performing
sparse-dense matrix multiplication. iSpLib also includes a PyTorch
Geometric plug-in that allows users to use our matrix multiplica-
tion in popular GNN implementations when the dataset format is
compatible.

3.2 Auto-tuning Mechanism

iSpLib has an auto-tuning mechanism that suggests the optimal
embedding size for a given user environment. iSpLib probes the
hardware to determine SIMD vector length and generates kernels
for various multiples of these vector lengths (VLEN). When the

Md Saidul Hoque Anik, Pranav Badhe, Rohit Gampa, & Ariful Azad

<D Gather System Info
—/ Configure ----------------------oooooooo Custom Makefile

v T
Graph - Auto-tuner <~ _sfi | Invokes
@ Dataset (mtx) |
'
Code Generator

| Generates
v

i
|
I
Suggést Best 1
Embedding Size (K) i
|
|
|
|
|
i

® .
Install

Optimized Sparse
-=4 Kernel Functions
[Static Library]

'
'

'

i

' T

| ! Invokes

i Intercepted by

: U

'

'

Your GNN implementation in
PyTorch or PyG

N Y PyTorch matmul
pip install Invokes
____________ > iSpLib Patch

operator with
efficient
backpropagation

C/C++

Figure 1: Overview of the iSpLib Library

embedding dimension is not a multiple of VLEN, we use a trusted
kernel that is still efficient with balanced multithreading, but it
does not perform loop unrolling. The auto-tuning feature allows
users to tune the library against a given dataset by generating a
comparison chart for speedup on the generated kernels over the
trusted kernels for a sequence of embedding sizes (K). The tuning
graph is typically a bell-shaped curve whose peak corresponds to
the ideal embedding size (K) since it is where the generated kernel
achieved the most speedup compared to the trusted kernel.

3.3 Efficient Backpropagation

Another major source of iSpLib’s speedup is efficient backpropaga-
tion. iSpLib’s intelligent matrix-multiplication kernel is designed
to evaluate common expressions required between training epochs
and cache them locally. The caching mechanism greatly reduces
the time spent in backpropagation especially when the input graph
is large or the number of epochs is high.

3.4 Semiring Support

The sparse-dense matrix multiplication of iSpLib also supports var-
ious semirings. This is particularly useful for training GraphSAGE
that involves aggregation methods other than sum. iSpLib’s matmul
operator provides functionality for min, max, and mean reduction
operations on top of the standard sum operation. Currently, only
the sum reduction operation supports generated kernels in our
library.

3.5 Matmul Interface and Dependency

iSpLib provides a PyTorch-based interface for sparse-dense matrix
multiplication. The matmul function receives a SparseTensor?, a
dense matrix in typical 2-d PyTorch tensor format, and optionally
a reduction operation string having either ‘sum’, ‘min’, ‘max’, or
‘mean’ as parameters. Pytorch_sparse library provides a transform
function to convert existing PyTorch-based datasets into SparseTen-
sor format. After dataset conversion, our matmul function can be
used to develop any GNN that requires sparse-dense matrix multi-

plication.

2A sparse matrix data structure provided by pytorch_sparse Python library

iSpLib: A Library for Accelerating Graph Neural Networks

Table 1: Datasets

Graph Dataset Feature Prediction Node Edge
Length class Count Count
Reddit 602 41 232,965 11,606,919
Reddit2 602 41 232,965 23,213,838
OGBN-mag 128 349 736,389 135,680,469
Amazon Products 200 107 1,569,960 264,339,468
OGBN-Product 100 47 2,449,029 61,859,140
OGBN-Protein 8 112 154,154 159,462

3.6 PyTorch Geometric Integration

Finally, iSpLib provides PyG ‘patch’ and ‘unpatch’ functions, allow-
ing users to seamlessly integrate our auto-tuned matmul function
into existing PyG implementation of GNNs involving sparse-dense
matrix multiplication. This can be done by importing the iSplib
library at the top of the PyG implementation code and invoking the
patch function. The users can also disengage the iSpLib intercep-
tion at any point of code by invoking the ‘unpatch’ method. iSpLib
also provides a decorator for patching a single function in the PyG
implementation.

4 EXPERIMENTAL SETTING

We measure the training time of various implementations of several
two-layer GNNs on node classification tasks and compare them
against iSpLib. For comparison, we test model variants from Py-
Torch 2.1.0 (sparse), PyTorch < 2.0 (sparse), PyTorch 2 non-sparse
(message passing) model, and PyTorch 2 torch.compile method
against iSpLib. We select Graph Convolution Network (GCN), Graph-
SAGE (sum and mean), and Graph Inference Network (GIN) as they
are widely used for benchmarking.

We select six large graph datasets and perform a one-dim node
prediction task for 30-100 epochs while measuring the average
training time. We conduct all experiments in two high-configuration
CPUs: (a) an Intel Skylake CPU with 48 cores and 256GB memory,
and (b) an AMD EPYC 7763 64-core Processor with 527GB memory.
Table 1 presents the datasets used in our experiment.

5 RESULTS

Auto-tuning results. We generate the tuning graph for both Intel
and AMD CPUs and show the result in Figure 2 for embedding sizes
16, 32, 64, 128, 256, 512, and 1024 for all six datasets. These figures
identify the most efficient embedding sizes for the corresponding
CPUs (32 for Intel and 64 for AMD). We use these values to run the
GNN:ss for both CPUs.

GNN training performance. We train three GNN models us-
ing iSpLib and four other settings and show the average per-epoch
training time in Figure 3. Due to the limitation of space, we omit
the results for GraphSAGE-MEAN. Since iSpLib is a drop-in re-
placement of PyTorch SpMM operation, it does not alter the results
found in PyTorch. Thus the training and testing accuracy remains
the same for all GNNS. Figure 3 shows that iSpLib can accelerate
GNN training significantly when compared with other frameworks.
However, the speedup varies across GNN models and datasets.

WWW ’24 Companion, May 13-17, 2024, Singapore, Singapore

Performance across GNN models. Figure 3 shows that iSpLib
achieves better speedup for GCN compared to GraphSAGE and
GIN. This is because GCN typically performs a linear projection
on the feature matrix before running the convolution. This step
projects high-dimensional features into low-dimension space for
which tuned kernels perform better (see Figure 2). GraphSAGE and
GIN do not have the initial projection of the feature matrix and
perform SpMM with original features. This makes iSpLib relatively
less effective for GraphSAGE and GIN. However, for datasets that
originally had a lower feature count in the feature matrix such as
OGBN-Protein (feature size: 8), we observe GCN-like speedup in
GraphSAGE and GIN for both Intel and AMD CPUs.

Comparison with other GNN frameworks. Additionally, we
compare CogDL’s [1] equivalent GCN implementation w.r.t. iSpLib
and observe up to 43x speedup for various datasets. We also com-
pare iSpLib with PyTorch 2.1 on the vanilla implementation of GCN
and observe up to 93x speedup for the Reddit dataset on Intel CPU.

Speedup (Trusted vs. Generated)

Dataset
*— Reddit
OGBN-Product
*— OGBN-Protein

P i i Reddit2

+— 0GBN-Mag
»— AmazonProducts

Speedup (Trusted vs. Generated)

Dataset
*— Reddit

+— OGBN-Protein
\ Reddit2
~— OGBN-Mag

OGBN-Product

AmazonProducts

32 64 128 256 512 1024
Embedding Size (K)

(a) Intel

Embedding Size (K)

(b) AMD

Figure 2: Tuning Graph for various CPUs

6 DISCUSSION

We observe that the embedding sizes suggested by the autotuner
are generally low for our experimental environments, i.e., we have
a better chance of seeing an improved performance from generated
kernels for smaller embedding sizes. This is because iSpLib’s gen-
erated kernels perform register blocking to reduce cache misses.
For larger embedding sizes, it has to allocate more values to the
register, causing register spilling and increased cache misses.

We see less overall speedup for OGB-Mag since it is a smaller
graph compared to others. Caching a smaller graph has less impact
on the speedup in backpropagation, thus caching the expressions
does not improve the training time significantly. Nevertheless, we
observe better performance in iSpLib compared to the other frame-
works for most scenarios due to the usage of efficient kernels.

7 CONCLUSION

We develop a user-friendly sparse matrix library called iSpLib that
works as a drop-in replacement for existing PyTorch and PyG equiv-
alent operations. iSpLib provides auto-tuned and customized ker-
nels for target user environments. The library also supports back-
propagation that caches repetitive data during the training phase.
We observe up to 27X speedup w.r.t. equivalent PyTorch 2 imple-
mentation for training larger graphs on popular GNNs.

WWW 24 Companion, May 13-17, 2024, Singapore, Singapore

Md Saidul Hoque Anik, Pranav Badhe, Rohit Gampa, & Ariful Azad

GCN GraphSAGE-SUM GIN
N PT2-MP
. P72
I PT2-Compile
s PT1
N iSpLib
g OGBN-Protein
"
©
®
a
AmazonProducts
0 15 30 45 60
Seconds Seconds Seconds
(a) Intel
GCN GraphSAGE-SUM GIN
N PT2-MP
Reddit2 s P72
N PT2-Compile
Reddit s PT1
Il iSpLib
£ OGBN-Protein
&
©
®
O OGBN-Product
OGBN-Mag
AmazonProducts

0 15 30 45 0 15 30
Seconds

Seconds

60

(b) AMD

75 0 15 30 45 60 75
Seconds

Figure 3: Average per-epoch training time and speedup for iSpLib w.r.t. other frameworks [PT2: PyTorch 2.1, PT1: PyTorch < 2,
PT2-Compile: PyTorch 2 torch.compile, PT2-MP: PyTorch 2 Message Passing paradigm]

ACKNOWLEDGMENTS

This research is supported by the NSF OAC-2112606 and OAC-
2339607 grants and DOE DE-SC0022098 and DE-SC0023349 awards.
We extend our appreciation to the PyTorch_Sparse community for
open-sourcing their project. Our project has significantly benefited
from their coding style and implementation.

REFERENCES

[1] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao,

Aohan Zeng, Shiguang Guo, Peng Zhang, Guohao Dali, et al. 2021. CogDL: An
extensive toolkit for deep learning on graphs. arXiv preprint arXiv:2103.00959 7,
8 (2021).

Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang,
Zhiru Zhang, and Yida Wang. 2020. Featgraph: A flexible and efficient backend
for graph neural network systems. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1-13.

[5]

G

=

7

—

(8]

[9

-

(10]

(11]
[12]

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Damitha Lenadora, Vimarsh Sathia, Gerasimos Gerogiannis, Serif Yesil, Josep
Torrellas, and Charith Mendis. 2023. Input-sensitive dense-sparse primitive
compositions for GNN acceleration. arXiv preprint arXiv:2306.15155 (2023).
Shenghao Qiu, Liang You, and Zheng Wang. 2021. Optimizing sparse matrix mul-
tiplications for graph neural networks. In International Workshop on Languages
and Compilers for Parallel Computing. Springer, 101-117.

Md Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2021. FusedMM:
A unified sddmm-spmm kernel for graph embedding and graph neural networks.
In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 256-266.

Rusty1s. [n.d.]. GitHub - rustyls/pytorch_sparse: PyTorch Extension Library
of Optimized Autograd Sparse Matrix Operations. https://github.com/rusty1s/
pytorch_sparse

Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep
learning on graphs. In ICLR workshop on representation learning on graphs and
manifolds.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze. 2023. SparseTIR:
Composable abstractions for sparse compilation in deep learning. In Proceedings
of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 660-678.

https://github.com/rusty1s/pytorch_sparse
https://github.com/rusty1s/pytorch_sparse

	Abstract
	1 Introduction
	2 Related Works
	3 Library Design
	3.1 Overview
	3.2 Auto-tuning Mechanism
	3.3 Efficient Backpropagation
	3.4 Semiring Support
	3.5 Matmul Interface and Dependency
	3.6 PyTorch Geometric Integration

	4 Experimental Setting
	5 Results
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

