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Refractory high entropy alloys (RHEAs) are a subset of high entropy alloys (HEAs) composed 
primarily of refractory metals such as niobium, molybdenum, tantalum, titanium, hafnium [1, 2]. 
These alloys have attracted considerable interest for their remarkable ability to maintain strength 
at high temperatures [3]. However, only a few RHEA compositions are known to exhibit 
significant strain resistance exceeding 10% at room temperature [4, 5]. TiHfZrNbx is one example. 
With Nb in non-equimolar proportions, this alloy can improve the ductility with the hexagonal 
close-packed (HCP) phase transformation-induced plasticity (TRIP) [6, 7, 8]. This alloy also has 
a high density of fine ω particles that are often observed in conventional Ti alloys. However, the 
role of hexagonal ω phase in ductility is not clear.  

In this study, two TiZrHfNb0.3 samples were examined using advanced electron microscopy, 
including four-dimensional scanning transmission electron microscopy (4D-STEM) [Shao, Haw-
Wen]. One of the samples is an as-cast alloy, which exhibits both high strength and great ductility, 
and the other is annealed at 1000°C for 6 hours and brittle. Microstructural analysis revealed a 
predominant body-centered cubic (BCC) phase in both specimens, with minor peaks indicative of 
the formation of ω phase in neutron diffraction. Electron diffraction patterns recorded from the 
two samples using 4D-STEM reveal the characteristic diffraction spots belonging to the ω phase 
between the brighter principal spots of the BCC structure (Figs. 1a, d). The distribution of the ω 
phase is mapped using the 4D-STEM datasets. The diffraction patterns are first transformed into 
difference cepstra using the method described by Shao et al. [ref]. The harmonic peaks belonging 
to the ω phase are identified and used to form images. These images show the distribution of nano-
scaled ω phases within the BCC matrix (Figs. 1e, f). In the annealed sample, we observed the 
aggregation of ω phases compared to the random distribution in the as-cast sample.  

Atomic-resolution analysis of the ω phase were carried out using an aberration corrected STEM 
and a high-angle annular detector for Z-contrast. These images shown in Fig. 2 reveal regions of 
the ω phase formation embedded in the BCC matrix. Within the BCC matrix, the atoms are also 
distorted. Fourier analysis of these regions also show the diffuse-like signals belonging to the ω 
phase. These diffuse features can be attributed to  the transformation induced lattice distortion.  
The heat treatment reduces the sizes of the observed ω phase (Fig. 2). The change in the ω phase 
phase size and distribution can be correlated with the tensile experiments, which were conducted 
on the as-cast and heat-treated samples, which demonstrate the ductile to brittle transition. 

Together, the above results demonstrate the critical role of the ω phase in the ductile to brittle 
transition in the RHEAs, the challenges, and opportunities for electron microscopy 
characterization, especially by combining 4D-STEM and atomic resolution imaging-based lattice 
distortion analysis.  



  

 

 

Fig. 1. (a,d) Averaged 4D-STEM diffraction pattern from as-cast and annealed sample along 
[110] zone, respectively. (b,e) Averaged difference Cepstral (𝑑𝑑𝐶𝐶𝑝𝑝) transformed electron nano-
diffraction pattern. (c, f) C-STEM images used the ω phases signal in (b, e) to show the 
distribution of ω phase within the BCC matrix from two samples. 

 



Fig. 2. Atomic resolution HAADF STEM images to show the atomic arrangement of the 
interface between the ω phase (red box) and BCC matrix (orange box) on Nb0.3 samples under 
different treatment.  
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