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Refractory high entropy alloys (RHEASs) are a subset of high entropy alloys (HEAs) composed
primarily of refractory metals such as niobium, molybdenum, tantalum, titanium, hafnium [1, 2].
These alloys have attracted considerable interest for their remarkable ability to maintain strength
at high temperatures [3]. However, only a few RHEA compositions are known to exhibit
significant strain resistance exceeding 10% at room temperature [4, 5]. TiIHfZrNbx is one example.
With Nb in non-equimolar proportions, this alloy can improve the ductility with the hexagonal
close-packed (HCP) phase transformation-induced plasticity (TRIP) [6, 7, 8]. This alloy also has
a high density of fine o particles that are often observed in conventional Ti alloys. However, the
role of hexagonal ® phase in ductility is not clear.

In this study, two TiZrHfNbo3 samples were examined using advanced electron microscopy,
including four-dimensional scanning transmission electron microscopy (4D-STEM) [Shao, Haw-
Wen]. One of the samples is an as-cast alloy, which exhibits both high strength and great ductility,
and the other is annealed at 1000°C for 6 hours and brittle. Microstructural analysis revealed a
predominant body-centered cubic (BCC) phase in both specimens, with minor peaks indicative of
the formation of ® phase in neutron diffraction. Electron diffraction patterns recorded from the
two samples using 4D-STEM reveal the characteristic diffraction spots belonging to the o phase
between the brighter principal spots of the BCC structure (Figs. 1a, d). The distribution of the ®
phase is mapped using the 4D-STEM datasets. The diffraction patterns are first transformed into
difference cepstra using the method described by Shao et al. [ref]. The harmonic peaks belonging
to the o phase are identified and used to form images. These images show the distribution of nano-
scaled o phases within the BCC matrix (Figs. le, f). In the annealed sample, we observed the
aggregation of ® phases compared to the random distribution in the as-cast sample.

Atomic-resolution analysis of the @ phase were carried out using an aberration corrected STEM
and a high-angle annular detector for Z-contrast. These images shown in Fig. 2 reveal regions of
the o phase formation embedded in the BCC matrix. Within the BCC matrix, the atoms are also
distorted. Fourier analysis of these regions also show the diffuse-like signals belonging to the ®
phase. These diffuse features can be attributed to the transformation induced lattice distortion.
The heat treatment reduces the sizes of the observed o phase (Fig. 2). The change in the ® phase
phase size and distribution can be correlated with the tensile experiments, which were conducted
on the as-cast and heat-treated samples, which demonstrate the ductile to brittle transition.

Together, the above results demonstrate the critical role of the @ phase in the ductile to brittle
transition in the RHEAs, the challenges, and opportunities for electron microscopy
characterization, especially by combining 4D-STEM and atomic resolution imaging-based lattice
distortion analysis.
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Fig. 1. (a,d) Averaged 4D-STEM diffraction pattern from as-cast and annealed sample along
[110] zone, respectively. (b,e) Averaged difference Cepstral (dC)) transformed electron nano-
diffraction pattern. (c, f) C-STEM images used the ® phases signal in (b, €) to show the
distribution of @ phase within the BCC matrix from two samples.
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(¢) Intensity profile for as cast sample (d) Intensity profile for annealed sample
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Fig. 2. Atomic resolution HAADF STEM images to show the atomic arrangement of the
interface between the o phase (red box) and BCC matrix (orange box) on Nbo.3 samples under
different treatment.
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