Scalable Node Embedding Algorithms using
Distributed Sparse Matrix Operations

Isuru Ranawaka*, Ariful Azad®
* Indiana University, Bloomington, IN, USA (isjarana@iu.edu)
§ Indiana University, Bloomington, IN, USA (azad@iu.edu)

Abstract—We introduce a distributed memory parallel algo-
rithm for force-directed node embedding that places vertices of a
graph into a low-dimensional vector space based on the interplay
of attraction among neighboring vertices and repulsion among
distant vertices. We develop our algorithms using two sparse ma-
trix operations, SDDMM and SpMM. We propose a configurable
pull-push-based communication strategy that optimizes memory
usage and data transfers based on computing resources and
asynchronous MPI communication to overlap communication
and computation. Our algorithm scales up to 256 nodes on
distributed supercomputers by surpassing the performance of
state-of-the-art algorithms.

I. INTRODUCTION

The node embedding problem aims to map graph vertices
into lower dimensional vector space by preserving the struc-
tural properties of the graph. Node embedding is used in graph
visualization and machine-learning tasks like link prediction
and node classification. We use force-directed node embed-
ding, which is generally applicable to both visualization tasks
and machine learning tasks. We model embedding operations
with two linear algebra operations: sample dense-dense matrix
multiplication (SDDMM) and sparse-dense matrix multipli-
cation (SpMM). Their combination of SDDMM and SpMM
(called FusedMM) can also be used [1]. This linear algebra
formulation contributes to faster computations and reduced
communication. As a result, our algorithm scales to thousands
of processors and runs significantly faster than state-of-the-
art (SOTA) distributed algorithms such as DistGER[2], and
PyTorch-BigGraph (PGB)[3] with improved accuracy.

Distributed memory implementations such as DistGER,
PGB, DistDGL[4], and KnightKing[5] were proposed to ex-
pedite the embeddings of large graphs. However, they scale
well up a few tens of processors due to unnecessary data
transfers, reliance on a central server, or preprocessing steps.
Our main contribution is to develop a distributed-memory
node embedding algorithm designed to scale effectively to
thousands of processors. We achieved this goal through a
cohesive optimization strategy spanning three interconnected
aspects: (1) reduction of inter-process communication, (2)
acceleration of local computations within each process, and
(3) effective utilization of partitioned memory.

The graph’s sparsity and patterns influence communication,
computation, and memory optimization in force-directed al-
gorithms in force calculations [6], [7]. In distributed-memory
systems, retrieving embeddings from remote vertices in force-
directed algorithms can lead to communication costs, partic-

ularly in mini-batch stochastic gradient descent. The pull-
based strategy blindly fetches remote embedding vectors in
each minibatch irrespective of their updated status. Hence,
it leads to higher communication overhead. The push-based
strategy, which involves updating and sending information to
remote processes, is less memory-efficient than the pull-based
approach but reduces communication overhead. An adaptive
push-pull algorithm is proposed to minimize communication-
based on available memory to address this trade-off. Addi-
tionally, shared-memory parallel operations accelerate local
embedding calculations, and computation and communication
are overlapped to mitigate communication overhead.

II. FORCE DIRECTED GRAPH EMBEDDING

Let G(V,E) be a graph where V is a set of vertices and
E is a set of edges with |V| = n and |E| = m. Let
A € R™ ™ be the sparse adjacency matrix of the graph where
A;; = 1if {v;,v;}€E, otherwise A,;; = 0. We consider a
graph embedding problem where every vertex v is mapped
to a vector z, in d-dimensional vector space. We store the
embeddings of all vertices in a dense matrix Z € R"*? where
d < n. When the embedding dimension is 2 or 3, graph
embedding can be used to visualize a graph on a screen.

let 6 : R? x R — R be a function that computes the
similarity between embeddings of two vertices. Let N(u) be
the set of vertices adjacent to u and S(u) be a subset of
vertices that are not adjacent to . In this context, S(u) is
called negative samples. Then, embedding algorithms define
the loss function for vertex u as the negative log likelihood
with respect to N(u) and S(u):

Lw)=— Y logd(zu,z,) — > log(l—(2u,2w)).

vEN (u) weS (u) 0

We can then minimize the loss function using the Stochastic
Gradient Descent (SGD) algorithm, where the embedding of
vertex u is updated as follows:

OL(u)
0z, ’

Zyy =2y —) 2)
where 7 is the learning rate or step size. This calculates the
coordinates of the vertices in lower dimensions such that it
minimizes the energy of the entire graph. We use minibatch
SGD for embedding calculation [8].

III. DISTRIBUTED MEMORY ALGORITHMS
A. Data distribution and storage

We use 1D row partitioning of the both dense embedding
matrix Z and the sparse adjacency matrix A such that each
process owns Zp € R7*? and A, € R?*™. When A is
unsymmetric, we additionally keep a column partition of ZT
where each process stores Z;f e R™% and its corresponding
column partition AP € R™% of A. This representation
creates a ptimesp virtual partitioning of the sparse matrix,
in which two processes own each non-diagonal block. Local
sparse matrices are stored in the compressed sparse row (CSR)
format.

B. Communication patterns

We employ minibatch SGD for computing embedding vec-
tors, parallelizing the computation of vertex embeddings in
each minibatch. We explore three communication patterns:
pull-based, push-based, and an adaptive pull-push strategy.
Pull-based communication involves fetching remote comput-
ing vectors using two-way communication. We optimize this
to one-round communication by leveraging reverse graph
structure. However, in a minibatch setting, redundant commu-
nication and increased overhead occur due to fetching the same
vectors multiple times. Alternatively, push-based communica-
tion only sends embedding vectors after updating and self-
calculates the remote processes needing updated embeddings
after each minibatch update. This approach reduces commu-
nication overhead at the expense of increased memory usage
for caching. To strike a balance between communication and
memory overhead, we propose an adaptive pull-push strategy
that combines both approaches, categorizing subsets of remote
processes for pull or push-based interactions, allowing for
control over memory and communication overhead.

We enhance computation efficiency by dividing the com-
putation and communication into multiple segments, and con-
currently executing computation and communication through
asynchronous MPI communication.

IV. RESULTS

Experimental platform. We ran all experiments on the
CPU partitions of the Perlmutter supercomputer at NERSC.
Shared memory comparisons with other state-of-the-art meth-
ods were conducted on a single Perlmutter node that has
AMD EPYC CPU with 128 cores and 512GB memory. The
algorithms are written in C/C++ with OpenMP for shared-
memory multi-threading and Cray’s MPI implementation for
inter-process communication. Unless otherwise stated, our
distributed algorithm used 4 MPI processes per node (i.e., 32
OpenMP threads per process).

Datasets. We use arabic-2005, it-2004, GAP-web, uk-2002
and rwitter-7 are used for large scale experiments. flickr,
pubmed, youtube, and com-Orkut are used for small-scale and
medium-scale experiments. We collected these graphs from
SNAP [9] and Suitesparse Matrix Colelction [10]. In addition,
we generated two K-nearest neighbor graphs (KNNGs) from

=@= BIGANN == arabic-2005 == twitter-7
— GAP-web e t-2004 === UK-2002
258
<
o
S 5]
2 2
Q
g 22_
—
Q5
v 2
£
(= | . ‘ :
24 26 28 210
P

Fig. 1. Strong scaling experiments with 16K vertices per process in a mini-
batch. The total number of vertices in a mini-batch across all processes
increases linearly with p.

the MNIST and BIGANN datasets. KNNGs are generated with
10 edges per vertex using the DRPT software [11].

Baselines. We use PBG [3] and DistGER [2] as our dis-
tributed memory baseline models to compare the runtime and
quality of embeddings. Force2vec [6], HARP [12], and Deep-
Walk [13] are used as the baseline for shared memory imple-
mentation, in addition to the PBG and DistGER. Furthermore,
to compare the efficiency of communication, we exploit the
1.5D Dense Shifting algorithm [14] with SpMM.We download
each software from the respective GitHub repositories.

Our embedding generation demonstrates comparable or su-
perior accuracy in node classification and link prediction tasks
compared to the previously mentioned algorithms. It exhibits
remarkable efficiency by operating at a faster pace. Moreover,
our algorithm effortlessly scales beyond 1024 MPI processes,
distinguishing itself from the limitations of PBG and DistGER,
which struggle to scale beyond 32 MPI processes (See Figure
1). This scalability enhancement results in an impressive 8X
speedup, perfectly aligned with an 8X increment in resources.

Incorporating hybrid communication schemes further con-
tributes to our algorithm’s prowess, showcasing superior run-
time for balanced memory and minimizing data transfer over-
head, which is particularly beneficial for minibatch SGD. On
the other hand, the pure pull-based strategy excels in runtime
efficiency when implementing a fullbatch scheme.

The asynchronous communication with computation and
communication overlapping further reduces the runtime of
our algorithm. We implemented the SpMM operation on our
communication kernel and tested it with the STOA 1.5D dense
shifting algorithm. Our algorithm achieved a 5X speedup.

V. ACKNOWLEDGEMENTS

This research is partially supported by the Applied Math-
ematics Program of the DOE Office of Advanced Scien-
tific Computing Research under contracts numbered DE-
SC0022098 and DE-SC0023349 and by NSF grants CCF-
2316234 and OAC-2339607.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

M. K. Rahman, M. H. Sujon, and A. Azad, “FusedMM: A unified
sddmm-spmm kernel for graph embedding and graph neural networks,”
in 2021 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). 1EEE, 2021, pp. 256-266.

P. Fang, A. Khan, S. Luo, F. Wang, D. Feng, Z. Li, W. Yin, and Y. Cao,
“Distributed graph embedding with information-oriented random walks,”
Proc. VLDB Endow., vol. 16, no. 7, p. 1643-1656, 2023.

A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and
A. Peysakhovich, “PyTorch-BigGraph: A Large-scale Graph Embedding
System,” in Proceedings of the 2nd SysML Conference, Palo Alto, CA,
USA, 2019.

D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang,
and G. Karypis, “Distdgl: Distributed graph neural network training for
billion-scale graphs,” in 2020 IEEE/ACM 10th Workshop on Irregular
Applications: Architectures and Algorithms (IA3). Los Alamitos, CA,
USA: IEEE Computer Society, nov 2020, pp. 36—44. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/1A351965.2020.00011

K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang, “Knightking:
a fast distributed graph random walk engine,” ser. SOSP ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
524-537. [Online]. Available: https://doi.org/10.1145/3341301.3359634
M. K. Rahman, M. H. Sujon, and A. Azad, “Force2vec: Parallel force-
directed graph embedding,” in 2020 IEEE International Conference on
Data Mining (ICDM). 1EEE, 2020, pp. 442-451.

H. Lotfalizadeh and M. A. Hasan, “Force-directed graph embedding
with hops distance,” arXiv preprint arXiv:2309.05865, 2023.

M. K. Rahman, M. H. Sujon, and A. Azad, “Scalable force-directed
graph representation learning and visualization,” Knowledge and Infor-
mation Systems, vol. 64, no. 1, pp. 207-233, 2022.

J. Leskovec and R. Sosi¢, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 8, no. 1, pp. 1-20, 2016.

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw. (TOMS), vol. 38, no. 1, pp. 1-
25, 2011.

I. Ranawaka, M. K. Rahman, and A. Azad, “Distributed sparse random
projection trees for constructing k-nearest neighbor graphs,” in 2023
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 1IEEE, 2023, pp. 36-46.

H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical repre-
sentation learning for networks,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence. AAAI Press, 2018.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” ser. KDD ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 701-710. [Online].
Available: https://doi.org/10.1145/2623330.2623732

V. Bharadwaj, A. Buluc, and J. Demmel, “Distributed-memory sparse
kernels for machine learning,” in 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). Los Alamitos, CA, USA:
IEEE Computer Society, jun 2022, pp. 47-58. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPS53621.2022.00014

