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Abstract. As the northern high latitude permafrost zone experiences accelerated warming, permafrost has become vulnerable
to widespread thaw. Simultaneously, wildfire activity across northern boreal forest and Arctic/subarctic tundra regions impact
permafrost stability through the combustion of insulating organic matter, vegetation and post-fire changes in albedo. Efforts
to synthesise the impacts of wildfire on permafrost are limited and are typically reliant on antecedent pre-fire conditions. To
address this, we created the FireALT dataset by soliciting data contributions that included thaw depth measurements, site
conditions, and fire event details with paired measurements at environmentally comparable burned and unburned sites. The
solicitation resulted in 52,466 thaw depth measurements from 18 contributors across North America and Russia. Because thaw
depths were taken at various times throughout the thawing season, we also estimated end of season active layer thickness
(ALT) for each measurement using a modified version of the Stefan equation. Here, we describe our methods for collecting
and quality checking the data, estimating ALT, the data structure, strengths and limitations, and future research opportunities.
The final dataset includes 47,952 ALT estimates (27,747 burned, 20,205 unburned) with 32 attributes. There are 193 unique
paired burned/unburned sites spread across 12 ecozones that span Canada, Russia, and the United States. The data span fire
events from 1900 to 2022. Time since fire ranges from zero to 114 years. The FireALT dataset addresses a key challenge: the
ability to assess impacts of wildfire on ALT when measurements are taken at various times throughout the thaw season
depending on the time of field campaigns (typically June through August) by estimating ALT at the end of season maximum.
This dataset can be used to address understudied research areas particularly algorithm development, calibration, and validation
for evolving process-based models as well as extrapolating across space and time, which could elucidate permafrost-wildfire
interactions under accelerated warming across the high northern latitude permafrost zone. The FireALT dataset is available
through the Arctic Data Center.

1 Introduction

Permafrost, defined as ground that remains at or below 0°C for two or more consecutive years, has become vulnerable to
widespread thaw in response to rapid climate warming at high latitudes. Permafrost temperatures have increased over the last
30 years (Romanovsky et al., 2010, Smith et al., 2022, Calvin et al., 2023) resulting in the thickening of the active layer, which
is the uppermost, seasonally thawed layer (Harris and Permafrost Subcommittee, Associate Committee on Geotechnical

Research, National Research Council of Canada, 1988, Bonnaventure and Lamoureux 2013). Widespread permafrost thaw and
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increases in active layer thickness are expected under future climate conditions (Smith and Burgess 2004, Zhang et al., 2008,
Derksen et al., 2019, Peng et al., 2023), and these processes are expected to release large amounts of soil carbon to the
atmosphere as greenhouse gas emissions (Schaefer et al., 2014, Gasser et al., 2018, Knoblauch et al., 2018, Yokohata et al.,
2020, Natali et al., 2021, Schuur et al., 2022, See et al., 2024). Changes to permafrost, particularly near-surface permafrost
and the active layer, have important implications for ecology, forestry, hydrology, biogeochemistry, climate feedbacks,
engineering, traditional livelihoods, and community safety (Anisimov and Reneva 2006, O’Donnell et al., 2011b, Rocha and
Shaver 2011, Bret-Harte et al., 2013, Hugelius et al., 2014, Jones et al., 2015, Li et al., 2019, Turetsky et al., 2020, Gibson et
al., 2021, Huang et al., 2024).

Climate change is also intensifying high-latitude wildfire regimes (Kasischke et al., 2010, de Groot et al., 2013, Zhang et al.,
2015, Wotton et al., 2017, Hanes et al., 2019, McCarty et al., 2021, Descals et al., 2022, Phillips et al., 2022, Scholten et al.,
2022, Zheng et al., 2023, Byrne et al., 2024). Wildfire activity shows interannual variability that is predominantly controlled
by subseasonal drying and climate, where prolonged warm and dry conditions in conjunction with fuel accumulation may alter
fire regimes and the seasonality of fire (York et al., 2020). The interaction between wildfire and permafrost results in both
immediate and long-term effects on the surface energy balance and ground thermal regimes, as well as hydrologic cycling and
soil and aquatic biogeochemistry (O’Donnell et al., 2011b, Rocha and Shaver 2011, Bret-Harte et al., 2013, Jones et al., 2015,
Li et al., 2019, Hollingsworth et al., 2020, Holloway et al., 2020). These interactions also result in second-order greenhouse
gas emissions (O’Donnell et al., 2011c, Jiang et al., 2015, Smith et al., 2015, Jones et al., 2015, Gibson et al., 2018, Li et al.,
2019) by making stored soil carbon available for mineralization (O’Donnell et al., 2011c, Rocha and Shaver 2011, Bret-Harte
et al., 2013, Hugelius et al., 2014, Jones et al., 2015, Li et al. 2019). Biomass combustion during fires removes the insulating
surface vegetation (i.e., moss, lichen, low growing shrubs) and soil organic matter, typically reduces evapotranspiration (Rouse
1976, Amiro 2001, Chambers and Chapin 2002, Chambers et al., 2005, Amiro et al., 2006), and reduces short-term albedo
(i.e., the surface reflectance), resulting in increases in the ground heat flux and the expansion of the active layer (Rocha et al.,
2012, Jafarov et al., 2013, Nossov et al., 2013, Jiang et al., 2015, Douglas et al., 2016, Fisher et al., 2016, Gibson et al., 2018).
Similarly, tree canopy removal reduces shading in the summer and results in more snow on the ground in the winter, both
leading to higher surface soil temperatures and expansion of the active layer into near-surface permafrost (Rocha et al., 2012,
Jafarov et al., 2013, Jiang et al., 2015, Zhang et al., 2015, Douglas et al., 2016, Fisher et al., 2016, Gibson et al., 2018). In
contrast, across Arctic tundra, shrub removal from wildfire results in thinner snow due to increased wind exposure, which

causes a reduction of the active layer (Wang et al., 2012, Jones et al., 2024).

Post-fire changes in the energy balance and subsequent increases in the active layer thickness have historically recovered to
pre-fire conditions as vegetation succession occurred (Rouse 1976, Amiro 2001, Liu et al., 2005, Amiro et al., 2006), with a
maximum active layer thickness often observed 5-10 years post-fire (Rocha et al., 2012, Holloway et al., 2020) but may extend

up to 30 years post-fire (Gibson et al., 2018). However, this pattern of recovery may be changing alongside climate warming

3
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and shifting fire regimes (Brown et al., 2015), and may be further impacted by secondary disturbances (Hayes and Buma,
2021). For example, as wildfire burns across permafrost peatlands, not only is there a thicker and warmer active layer but an
expansion of year-round unfrozen ground (i.e., taliks) and thermokarst bogs (Gibson et al., 2018). These changes in active
layer thickness and hydrologic dynamics can constrain regeneration by prolonging vegetation recovery and inducing shifts in
vegetation composition and structure (Baltzer et al., 2014, Dearborn et al., 2021). Further, near-surface permafrost degradation
can lead to ground subsidence, which alters surface hydrology, often leading to water inundation and further degradation
(Brown et al., 2015). Where wildfires burn across permafrost landforms (e.g., thermokarst, ice rich areas), deep and irreversible
thawing could permanently alter the landscape (Burn and Lewkowicz 1990, Lewkowicz 2007, Sannel and Kuhry 2011,
Liljedahl et al., 2016, Rudy et al., 2017, Borge et al., 2017, Mamet et al., 2017, Fraser et al., 2018), releasing long stored soil
carbon into the atmosphere (Schuur et al., 2015). Currently, emissions from fire-induced permafrost thaw are underestimated
by the scientific community and climate models (Natali et al., 2021, Treharne et al., 2022, Schidel et al., 2024), an issue that
is exacerbated by modelling challenges and uncertainties associated with permafrost carbon stocks (Hugelius et al., 2014,
Turetsky et al., 2020). The change in active layer thickness over time is a critical diagnostic indicator of permafrost conditions
(Brown et al., 2000, Shiklomanov et al., 2010) and a vital component of modelling carbon emissions from fire and non-fire

related permafrost thaw.

To provide critical data that can be used for understanding and modelling impacts of wildfire on permafrost, we compiled a
dataset of thaw depth measurements from paired burned and unburned sites across the northern high-latitude permafrost zone.
This dataset is the first of its kind to focus on paired burned and unburned sites providing a circumpolar/boreal perspective.
Climate and ecosystem conditions including drainage, vegetation, and soil characteristics control near-surface permafrost
characteristics, and thus in order to detect an influence of wildfire it is necessary to have measurements either pre- and post-
fire, or unburned control and burned nearby sites with otherwise similar ecosystem properties. Measuring ALT for paired
unburned control and nearby burn sites is more realistic due to the stochasticity of wildfire. Further, unburned control sites
provide a benchmark for understanding the impact of wildfire in these dynamic systems. Thaw depth increases over the course
of the thawing season until it reaches its maximum depth, i.e., active layer thickness (ALT). This means that early to mid-
season measurements do not capture the full depth of the thawed active layer. As such, the variability in thawing season and
measurement timing makes it difficult to compare across space and time. Therefore, we standardised thaw depths taken at
different times throughout the thawing season, which resulted in an estimated dataset of ALT. Further, capturing the maximum
ALT aids in establishing the full scope of permafrost change because it is a critical indicator of thaw dynamics. Depending on
the location ALT could occur anywhere from August through November. This paper provides a description of the data
solicitation and compilation, the process for standardising the measurements, and general descriptive statistics on the dataset.
Finally, we describe the strengths and limitations of the dataset, future research directions, and protocols for accessing and

using this dataset.



151

152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170

Earth System
Science

Data

https://doi.org/10.5194/essd-2024-526
Preprint. Discussion started: 3 December 2024
(© Author(s) 2024. CC BY 4.0 License.

Open Access
suoIssnasIqg

2 Data and Methods
2.1 Data Solicitation and Quality Screening

To assemble a dataset capable of widely characterising the influence of wildfire on permafrost, we solicited field measurements
of thaw depth from paired burned and unburned sites from researchers working in boreal forest and tundra ecosystems. Thaw
depth refers to depth or thickness of the unfrozen surface soil layer anytime during the thawing season, and is typically obtained
by measuring depth to refusal using a graduated steel probe. A critical component of the data required an ecologically
appropriate unburned site(s) within close proximity that shared similar dominant vegetation, drainage, and climatic conditions
to be paired with one or more burned sites, meaning the burned site would have had similar pre-fire conditions to the unburned
site. We began by soliciting data from members of the Permafrost Carbon Network and their collaborators and then used
literature review to identify additional contributors. Data contributors were required to submit metadata (Table S1) and data
via a Google form with required attributes that included their last name, country where data were collected, latitude, longitude,
biome, vegetation cover class, site identifier, plot identifier, year data were collected, month data were collected, day data was
collected, fire identifier, fire year, whether the site was burned or unburned, organic layer depth, thaw depth, whether the probe
hit rocks, whether the depth was greater than the probe, contributors assigned a designation of ‘thaw’ or ‘active’ to indicate
early-mid or late season measurements respectively, slope, topographic position, pairing, and whether surface water was
present. The solicitation resulted in the contribution of 18 datasets with 52,466 thaw depth measurements covering portions of

the northern high-latitude permafrost zones in Canada, Russia, and the United States (Table 1, Fig. 1).

Table 1. Brief description of the data contributions. Table includes the last name of the contributor, geographic location of the data,
fire years that were sampled and relevant citations associated with the data.

Contributor | Country | Location description | Biome Ecozone Fire years Citations
. United Yukon Kuskokwim . Baillargeon et
Baillargeon States Delta, AK, USA Tundra Beringia lowland tundra 1972, 2015 al., 2022
. Kougarok Tundra fire .
United . 1971, 1982, Hollingsworth et
Breen States complex on the Seward | Tundra Beringia upland tundra 2002, 2011 al., 2020, 2021
Peninsula, AK, USA
B. Buma,
University of
United Central Alaska black Interior Alaska-Yukon lowland Colorado
Buma Boreal . 2005
States spruce forest taiga (Denver),
unpublished
data, 2005
Delcourt Russia Noﬁheast Siberia, Boreal East Siberian taiga 2018 Delcourt et al,,
Russia 2024
L.R. Diaz, Vrije
. . . Universiteit
Diaz United Alaska, USA Boreal; In.ter%or A}aslfa-Yukon lowland 2022 Amsterdam,
States Tundra taiga; Beringia lowland tundra .
unpublished
data, 2022
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1940, 1960,
. 1969, 1971,
Bgltzer, Northwest Territories, Muskwa-Slave Lake ta}lga, . 1972, 1973, Dieleman et al.,
Dieleman, Canada Boreal Northern Canadian Shield taiga;
Turetsk Canada Northwest Territories taiga 1980, 1981, 2022
Y & 2011, 2013,
2014
Douglas, United Interior Boreal near Boreal Interior Alaska-Yukon lowland 2005-2020 Douglas et al.,
Jorgenson States | Fairbanks, AK, USA ore taiga 2020
United central Yukon- 1971, 1972,
Frost Stat Kuskokwim Delta, Tundra Beringia lowland tundra 1985, 2006, Frost et al., 2020
ates western Alaska 2007, 2015
The Noatak watershed,
. which drains the ..
Gaglioti United 1 thwestern flank of | Tundra Arctic foothills tundra 1972, 1984 | Gagliotietal,
States . 2021
the Brooks Range in
northwestern Alaska
Taiga Plains and Taiga Muskwa-Slave Lake taiga; Holloway ot al
Holloway Canada | Shield ecozones near Boreal Northern Canadian Shield taiga;| 2014, 2015 2024 Y ”
Yellowknife, Canada Northwest Territories taiga
o Loranty, et al.
. Northeastern Siberia . . > ’
Loranty Russia Larch forests Tundra Chukchi Peninsula tundra 1972 h014
. United Interior Alaska, black Interior Alaska-Yukon lowland Harden et al.,
Manies Boreal . 1999
States spruce forests taiga 2006
Bonanza Creek, Alaska Interior Alaska-Yukon lowland .
Natali United USA; Anaktuvuk River | Boreal; taiga; Interior Yukon-Alaska éggi’ ;88;’ 12\151 ltzh 2e (t) la 51;"
States fire, AK USA; Yukon | Tundra alpine tundra; Arctic foothills 201 5’ > Na tafi 201 8,
Kuskokwim Delta, AK tundra; Beringia lowland tundra
) O’Donnell et al.,
’ United Interior Boreal, AK. Boreal: ln.ten.or Algska-Yukon lowland | 1966, 1967, 2009, 2011a,
O’Donnell taiga; Interior Yukon-Alaska 1990, 2003, 2011b. 2013
States USA Tundra > >
alpine tundra 2004
1964, 1967,
1975, 1982,
. 1984, 1995, .
Olefeldt Canada | Western Boreal Canada | Boreal Muskwa-Slave L ak.e talga, 2000, 2006, Gibson et al.,
Northwest Territories taiga 2018
2007, 2008,
2012, 2013,
2014, 2019
o 1983, 1984,
Paulson, . Northeastem Slberlq East Siberian taiga; Northeast 1990, 2001, Alexander et al.,
Russia near Cherskiy, Russia, | Boreal o .
Alexander and Yakutsk. Russia Siberian taiga 2002, 2003, 2020
i 2010, 2015
United . . 1977, 1993, Rocha and
Rocha States North Slope of Alaska | Tundra Arctic foothills tundra 2001, 2007 Shaver, 2011
Northwestern Russia, 2016
Sizov Russia Nadym region of the Tundra Yamal-Gydan tundra Sizov et al., 2020
Yamal-Nenets
Autonomous Okrug
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Permafrost
172 . Continuous - Discontinuous Sporadic
173 Figure 1. Map of the northern high latitude permafrost zone showing the percent of thaw depth measurements by ecozones (circle
174 colour, Dinerstein et al., 2017) with the extent of continuous, discontinuous, and sporadic permafrost shown in shades of blue (Brown
175 et al., 1998). Points are sized and labelled with the percent of measurements within each ecozone. The Arctic circle is shown with the

176 thick dashed black line.
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We screened the data for issues with units, sign convention, coordinates, and data type (e.g., factor, integer). Where we required
categorical variables, we ensured these were spelled in a consistent manner and that the correct unique number of variables
were returned. We mapped the data to check inaccurate site coordinates and checked discrepancies, such as missing negative
signs from longitude, with contributors. We used histograms of measurement depths to identify any outliers in the data, several
of which were removed after confirming with the contributors that they were the result of typographic errors. Data contributors

were asked to note if any measurements hit rock, and, when noted, these observations were excluded from the final dataset.

2.2 Estimating Active Layer Thickness

Over the course of the growing season, the depth of the thawing front increases as the active layer expands to its maximum.
Therefore, measurements taken throughout the thaw season are not directly comparable with one another. Therefore, we
standardised thaw depths taken at different times throughout the thawing season, which resulted in an estimated dataset of
ALT. To do so, we estimated ALT using a modified version of the Stefan equation, used by Holloway and Lewkowicz (2020)
and described by Riseborough et al. (2018) and Bonnaventure and Lamoureux (2013). Estimating ALT (Fig. 2) allows thaw
depth measurements collected during different times in the growing season to be comparable and used to understand the full
effects of wildfire on the active layer across paired sites in a given measurement year and for some of the sites across multiple

years.

» Measured

Estimated
ALT

Frozen Activeg Thawed Active

Layer : i et : T _— Layer
el m‘af_fs‘*sm%‘\i\&‘\ \“"’i\"%’i\'\}{ \ MW* e

Spring Fall

Figure 2. Diagram of early season thaw depth measurement versus late season active layer thickness. The active layer expands
during the thawing season reaching its maximum thickness between August and November depending on the location.
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ALT was estimated based on air thawing degree days (TDD; i.e., days above zero degrees Celsius during the thawing season).
Daily mean air temperatures were extracted from ERAS5-Land daily aggregates (Muifloz Sabater 2019) accessed through
Google Earth Engine (Gorelick et al., 2017). Instrumental air temperature data are sparse across the northern high-latitude
regions. We selected the ERAS5-Land (Mufioz Sabater, 2019) dataset since it is available for the full region and time series,
accessible through Google Earth Engine, and has been evaluated against meteorological station data (Rantanen et al., 2023,
Clelland et al. 2024). Across the circum-Arctic and Asian boreal ERA5-Land validation studies indicate a warming bias in
winter months of a half a degree Celsius (Rantanen et al., 2023, Clelland et al. 2024), whereas validation studies in summer
indicate a slight cooling trend of ~0.2 degrees Celsius (Rantanen et al., 2023). Due to the scarcity of meteorological stations
across the Northwestern Territories, we provide additional validation for air temperature data from ERAS5-Land using shielded
air temperatures at a height of 1.5 m that were measured at six sites using Onset Corporation (USA) Hobo Pro U23-003 loggers
(accuracy +0.21°C; precision £0.02°C). All air temperature data were aggregated from 2-hour samples to daily averages and
sites included thaw depth measurements (Holloway 2020). We calculate Pearson’s correlation coefficient (R), bias (defined as
the summation of modelled minus measured divided by the number of data points), and the root mean square error (RMSE).

The correlation is ~0.99, with a warming bias of 0.54 degrees Celsius, and a RMSE of 2.23 degrees Celsius (Fig. S2).

First, we defined the end of the thaw season for each measurement location and year based on when the five-day mean daily
air temperature shifted from above- to below-freezing. We then subtracted 14 days from the end-of-season date to account for
the lag between surface freezing and the refreezing of the bottom of the active layer. Typically, the active layer begins to freeze
upward while the air temperature is still above zero, requiring approximately 7-14 days until the surface freezes (Osterkamp
and Burn 2002). Following the Stefan equation (Freitag and McFadden, 1997), we calculate (A) as the square root of the sum
of daily mean air temperature TDD prior to the day of year of the field measurement (i.e., thaw depth), as in Eq. (1):

A= \/Z;"IDD thaw depth=1 TDD Thaw depth > (1)

We calculate (B) as the square root of the sum of daily mean air temperature TDD (i.e., days above zero degrees Celsius) prior

to the end of thaw season day of year (i.e., ALT) Eq. (2):

B = \/Z%D ar=1 IDD ALT )

Finally, we multiplied the field measured depth by the ratio of the first two equations to calculate the estimated ALT Eq. (3):
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estimated ALT = field measured depth X (B + A), 3)

An example of the calculation for two sites is provided in Table 3 and shown in Fig. 3.

A

15
e

o

o 5
5 0 0g
© =3
() —~
Q (@}
E 32
L 15 ® 30
£

100 200 300
Day of year
B
—~ 15
o
e g
2 0 0 T
E =
()] —
3 3
2 15 75
< [
-30 150
100 200 300
Day of year

@ Measured thaw depth () Estimated ALT

Figure 3. An example of estimating active layer thickness from two ir situ thaw depth measurements using seasonal air temperature.
Air temperature through the thawing season (green line) for two separate sites, one with an early-season thaw depth measurement
(A) and a second with an end-of-season thaw depth measurement (B). For each site, we show the measured thaw depth (blue point)
and estimated ALT depth (orange point) for the day of year either measured or estimated. The right y-axis shows thaw depth (cm),
the left y-axis shows air temperature and the x-axis shows the day of the year.
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Table 3. An example of estimating ALT using Equations 1-3 from two in situ thaw depth measurements at two sites (A and B) using
the same data as in Fig. 3.

Site A B
Timing of measurement Early End of
season Season
Year 2015 2015
Data contribution Month 6 9
Day 10 11
Day of year 161 254
Measurement depth (cm) 34 127
Day of year first of five consecutive days at zero 299 299
Day of year to estimate ALT 285 285
Calculated from ERAS data extracted based on Eq.1 25.25 45.95
location Eq.2 48.03 48.03
Estimated ALT Eq.3 (cm) 65 133

Estimates were excluded for observations that hit rock, were greater than the depth of the measurement probe, or were missing
the day of month (Table S2). We were unable to convert every early season thaw depth to ALT if the date of measurement
was not preceded by at least one day above zero degrees Celsius, in which case these measurements were removed from the

estimated dataset. Ultimately, 47,952 of the original 52,466 measurements were included in the estimated dataset.

2.3 Quantify uncertainty of estimated ALT

We quantify uncertainty in our estimates of ALT by calculating Pearson’s correlation coefficient (R), bias (defined as the
summation of modelled minus measured divided by the number of data points), and the Root Mean Square Error (RMSE). The
bias indicates whether estimated ALT is over or underestimated, while the RMSE provides an average error regardless of sign.
We used a separate dataset (n=626) that had repeat thaw depth measurements at the same location taken throughout the thaw
season. We used the early season measurements to estimate thaw depths for the date of the late season measurement (as
opposed to the end of the thaw season defined using ERAS5-Land) following the methodology described in Section 2.2, to

quantify the uncertainty in the estimation process.

2.4 Spatial attributes

We added spatial attributes to the data through spatial joins. We generated a point shapefile using the latitude and longitude
coordinates with the coordinate reference system (CRS) 4326 (i.e., WGS 84). We performed a spatial join to add ecozone data
(Dinerstein et al., 2017), retaining the ecozone and biome names. We then performed a second spatial join with permafrost
data (Brown et al., 1998), retaining permafrost extent (e.g., continuous, discontinuous, sporadic). We show the distribution of

estimated ALT measurements by ecozone (Fig. 4).
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Figure 4. Frequency distribution graphs showing estimated active layer thickness (cm) by ecozones split by North America (A) and
Eurasia (B). Map of ecozones for location reference (C; Dinerstein et al., 2017). The y-axis is the count of measurements and the x-
axis is the depth in centimetres. Both x- and y-axis vary by panel and y-axes are adjusted to show low counts.

2.5 Data structure and columns

The resulting dataset includes 32 attributes including attributes from the initial contribution, plus the attributes from the spatial
joins and the derived ALT estimates all described in Table 4. The dataset is shared in comma separated values (csv) format
with 47,952 rows and 32 columns. For missing values, we used ‘NA’ and ‘-9999°, for character and numeric fields,

respectively.

Table 4. Description of data attributes and data format.

Attribute Format | Description

plotld character | A unique identifier assigned by the data contributor to identify the field plot.

siteld character | Site name assigned by the data contributor specific to the fieldwork.

lastNm character | Last name(s) of the person(s) contributing the data provided by the data contributor.

submitNm character | Last name of the data contributor that submitted the form (single name only).

biome character | Boreal (B) or tundra (T) assigned by the data contributor.
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distur character | Categorical variable to identify location as burned or unburned provided by the data contributor.
entryld character Dropdown list of two-digit code: Russia (RU), USA (US), Canada (CA), Finland (FI), Norway (NO), Sweden
Ty (SE), Iceland (IS), Greenland (GL) assigned by the data contributor.
fireYr integer | Four-digit year of when the fire event occurred provided by the data contributor.
fireld character | Unique fire identifier assigned by the data contributor.
atProbe character Permafros_t thaw depth exceeds (i.e., greater than [gt]) the length of probe yes (y) or no (n) provided by the
data contributor.
hitRock character | Probe hit rock yes (y) or no (n) provided by the data contributor.
lat float Latitude in decimal degrees in WGS 84 provided by the data contributor.
lon float Longitude in decimal degrees in WGS 84 provided by the data contributor.
year integer Four-digit year the data were collected provided by the data contributor.
month integer Two-digit month (values 01-12 accepted) the data were collected provided by the data contributor.
day integer | Day of month data were collected values( 1-31) provided by the data contributor.
. Organic layer thickness measured from the ground/moss surface to the organic-mineral interface, as a site
orgDpth integer . . .
mean in cm, provided by the data contributor.
A categorical variable describing if plot locations experience seasonal inundation (i.e., standing surface water
srfH20 character | during the early season but dry by late season). Seasonal inundation (Y: yes) or not (N: no) or unknown (U).
Provided by the data contributor.
A categorical variable of thaw (T) or active (A). Active refers to active layer thickness (i.e., maximum
msrType character | seasonal thaw at the end of growing season), and thaw refers to thaw depth (i.e., less than seasonal maximum
taken earlier than the end of thawing season). Provided by the data contributor.
msrDoy integer | Day of year (DOY) for the day of measurement converted from YYYY-MM-DD.
msrDepth float The field measurement of the thaw depth or ALT in cm. Provided by the data contributor.
Categorical variable describing the topographic position of plot locations as upland (U), midslope (M),
topoPos character lowland (L). Provided by the data contributor.
slope integer Numeric value indicating slope angle provided by the data contributor.
Evergreen needle-leaf (EN); broadleaf deciduous (BD); deciduous needle-leaf (DN); mixed needle-leaf
veaCyr character majority MNM; mixed (M); mixed broadleaf majority (MBM); barrens (B), graminoid tussock dominated
& (GT), graminoid non-tussock dominated (GNT), prostrate shrub dominated (P), erect-shrub dominated (S),
and wetlands (W). Provided by the data contributor.
resBiome character | Biome assigned by spatial join with the Resolve data product ‘BIOME_NAME’ (Dinerstein et al., 2017).
resName character | Ecozone name assigned by spatial join with the Resolve data product ‘ECO_NAME’ (Dinerstein et al., 2017).
ermaExtent | character Permafrost extent assigned by spatial join with permafrost ground-ice map ‘EXTENT’ as C=continuous,
p D=discontinuous, S=sporadic (Brown et al., 1998).
. The day of year used to estimate ALT based on when the five-day mean daily air temperature shifted from
estDoy integer .
above- to below-freezing.
estDepth float The estimated ALT in cm; calculated using air temperature from ERAS5-Land and field measured thaw depth.
paired character | Identifying code to pair unburned measurements to burned measurements provided by the data contributor.
tsf integer | Time since fire calculated by subtracting year from fireYr.
tsfClass character | Binned time since fire (tsf) classes in years as "unburned", "0-3", "4-10", "11-20", "21-40", ">40"
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2.6 Aggregating to compare burned to unburned measurements

Paired burned and unburned sites are a unique and defining characteristic of this dataset. Data contributors were required to
provide details on how their burned measurements paired with unburned measurements. Site characteristics of unburned sites
were required to be representative of biogeoclimatic conditions prefire and within close proximity to their paired burned site(s).
The dataset includes a code to link burned with unburned sites (‘paired’). To examine the difference between burned and
unburned sites, measurements were aggregated by ecozone (‘resName’), data contributor (‘submitNm’), burned or unburned
(“distur’), pairing code (‘paired’), year of the fire event (‘fireYr’), and can be further grouped by time since fire (‘tsf”) (Table
4).

3 Data summary
3.1 General Characteristics of the data

In total, the final dataset includes 47,952 observations from the original 52,466 observations. Thaw depth measurements are
predominantly from North America, with 35,794 (19,338 burned, 15,434 unburned) in Alaska and 12,587 (7,528 burned, 4,276
unburned) in Canada, and 1,376 (8981 burned, 495 unburned) in Russia. These in sifu measurements were collected within the
continuous, discontinuous, and sporadic permafrost zones (Fig. 1). Data were contributed with both burned and unburned
paired sites with fire years ranging from 1900 to 2022 across 112 fire events. There are 193 unique paired burned/unburned
measures based on pair id (76), fire year (37 unique years), fire events (63 unique events), and time since fire spread across 12
ecozones. There are 22,500 estimated observations across the boreal forests/taiga and 27,257 estimated observations across
the tundra biomes (Fig. 4). There are 27,201 observations from continuous permafrost, 13,798 from discontinuous permafrost,

and 8,758 from sporadic permafrost.
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Figure 5. The distribution for in situ measurements vs. estimated measurements. For day of year (A) and thaw depth (B), we show
the distribution for in situ measurements vs. estimated measurements using violin plots overlain with boxplots with a red diamond
marking the mean. Measured day of year and depths were provided in the raw data contribution. The day of year shows a wide
spread of dates, which is caused by the broad geographic extent of the data. Estimated values were calculated to create a dataset
that characterises maximum thaw depth (i.e., ALT).

3.2 Estimated ALT

The estimated ALT provides a temporally consistent measurement capable of quantifying the effects of wildfire on active layer
dynamics temporally and spatially. The data show the shift from measured thaw depth to estimated ALT characterised by a
narrower range of dates and depth measurements (Fig. SA & 5B). The day of year is condensed for the estimated measures
(Fig. 5A), which was anticipated since the contributed data were collected throughout the thawing season resulting in a wide
spread due to the broad geographic extent of the data whereas the estimated data were truncated to the later part of the thaw
season, resulting in a narrow range of days. The uncertainty in the estimated ALT varies with biome and disturbance (Table 5,
Fig. 6). Boreal burned values tend to underestimate by about five percent, whereas unburned values tend to overestimate by
about 15 percent. For the tundra, burned and unburned values tend to be overestimated by 19.6 and 22.8 percent respectively.

The sample size is much smaller for the tundra biome for estimating uncertainty.

Table 5. Quantifying uncertainty for estimated ALT. We report the root mean square error (RMSE), percent uncertainty, mean
residual error as an indication of bias, and sample size for burned and unburned sites in the validation dataset. Negative values
indicate an overestimation and positive values indicate an underestimation.

Biome Disturbance RMSE Percent uncertainty Mean residual error (bias) | Sample size

Boreal Burned 22.8 4.6 5.7 413
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3.3 Difference in estimated ALT between burned and unburned sites

By aggregating the burned and unburned pairings, we show the percent difference in estimated ALT between burned and
unburned sites post-fire (Fig. 7, S3, S4). Most sites show a thickening of the active layer post-fire compared to adjacent
unburned sites. Generally, across boreal sites the mean percent difference shows a thickening of the active layer in the two
decades following fire, followed by a recovery in the subsequent decades (e.g., time since fire 21-40 and >40). The magnitude
of difference varies by biome and permafrost extent. In the boreal forest continuous permafrost region, the means follow this
general trend of expansion followed by recovery, however, there is very limited and no data at 4-10 years and >40 years,
respectively. The boreal forest discontinuous permafrost region follows the general trend, whereas the boreal forest sporadic
permafrost region shows a lower percent difference in the two decades following fire where the active layer does expand but
not to the same extent as seen in the continuous or discontinuous permafrost following a varied recovery at 21-40 and >40
years. The tundra biome follows the same general trend that the boreal sites do where mean percent difference shows a
thickening of the active layer in the two decades following fire, followed by a recovery in the subsequent decades (e.g., time
since fire 21-40 and >40). This trend is most distinct for tundra sites with continuous permafrost, whereas sites with
discontinuous permafrost show a bit more variability for 11-20, 21-40, and >40 years. The tundra sites with discontinuous
permafrost have a sample of one for 21-40 and >40 years, which makes it challenging to fully understand the recovery trend.
The trend of post-fire thickening of the active layer followed by recovery illustrates the effect of climate on permafrost
recovery. The variability in the extent of the thickening of the active layer across permafrost zones might provide insight to
potential future patterns. Specifically, the reduced thickening seen in the warmer boreal sporadic region might be a future

pattern that we see extending to the boreal discontinuous zone as the climate continues to warm.
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Figure 7. Percent difference in estimated ALT between burned and unburned paired sites in the years following wildfire. The percent
difference is calculated (unburned-burned)/((unburned + burned)/2) * 100. Negative values indicate that the burned sites have a
thicker active layer than the unburned site, while values around zero show little difference in ALT, and positive values indicate that
unburned sites have a thicker active layer than the burned ALT. The red diamond indicates the mean based on paired burned-
unburned and then aggregated by time since fire class, permafrost extent, and biome. The box and whisker plots show the split in
quantiles. See Supplemental Materials to see a similar plot by ecozone (Fig. S3 and S4).

4 Strengths, Limitations, and Opportunities
4.1 Strengths

The FireALT dataset (Talucci et al., 2024) offers paired burned and unburned sites that can be aggregated and viewed both
spatially and temporally to provide critical insights for understanding wildfire impacts on ALT, a feature commonly used to
determine permafrost conditions. Field data collection is often spatially and temporally opportunistic, making comparisons of

disparate datasets difficult. For example, several geographically similar sites had depth measurements collected across a wide
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range of dates throughout August and September, but these measurements were not necessarily capturing the maximum ALT
and therefore not comparable. Further, it is challenging to compare early to end of season thaw depth measurements (Holloway
and Lewkowicz 2020). By estimating ALT, the data can be used to extrapolate beyond individual measurements and provide
broader understanding of spatial and temporal feedbacks between wildfires, permafrost, and climate. Additionally, data include
several environment attributes, e.g., organic layer depth, slope, topographic position, and whether surface water was present.
Future analyses could integrate these environmental variables to expound upon the relationship between environmental
variables, ALT, and wildfire. Finally, we show a general expansion of the active layer following fire followed by recovery 40
years post-fire but the magnitude of expansion and recovery vary by biome and permafrost zone, pointing to the role of
vegetation, permafrost conditions, and climate on active layer dynamics in response to wildfire (Brown et al., 2015). Climate
has changed over the time period of the fire events captured within this dataset. Generally, the data indicates that we may
expect the active layer to fully recover 40 years post-fire, but that may change for more recent fires. The boreal sporadic zone
experiences less expansion of the active layer with a less distinct recovery, which demonstrates how climate influences active
layer recovery in warmer regions. This illustrates how climate influences permafrost recovery, and with a warming climate,

we may expect to see patterns more like this in boreal discontinuous permafrost zone.

4.2 Limitations

Estimating ALT is crucial for spatial-temporal evaluations of wildfire-permafrost interactions due to the variability in thaw
depth throughout the thaw season. However, uncertainties arise in the estimated ALT from the data we integrate to make those
calculations. Air temperature can be a reliable metric for calculating maximum ALT (Osterkamp and Burn 2002, Holloway
and Lewkowicz 2020), but the coarse resolution climate data and in situ weather station gaps (Clelland et al. 2024), as well as
the lack of accounting for disturbance effects on air temperature (Kurylyk and Hayashi, 2016, Mufioz-Sabater et al., 2021,
Helbig et al., 2024), all impact the accuracy of the estimated ALT. The Stefan equation assumes negligible soil heat capacity
and thus can overestimate thaw depth, and it also does not account for fire altering the surface energy balance (e.g., reducing
albedo, loss of canopy and shading) and heat fluxes (e.g., loss of above-ground biomass), all of which increase thaw depths
and can contribute to underestimations of ALT (Kurylyk and Hayashi, 2016). Our quantification of uncertainty supports this
underestimation bias for burned sites and over estimation for unburned sites in the boreal biome. Further, the lack of inclusion
of frozen water content in the Stefan equation may affect early season measurements due to the zero curtain, where the rate of
thawing may not scale directly with air temperature (Osterkamp, 1987, Romanovsky and Osterkamp, 2000). These effects
likely vary between tundra and boreal sites. These are dynamic systems with multiple feedbacks that influence the freeze-thaw
cycle and the timing of maximum thaw depth. Interannual variability in ALT is dependent on temperature, precipitation, and
fluctuations in thaw season length, which are a source of uncertainty in our approach (Shur et al., 2005). Although there are

uncertainties, estimating ALT allows for valuable comparisons between sites that are not feasible with the raw data.
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Burn severity is a critical component of wildfire that impacts ALT and permafrost stability through combustion of the
insulating organic matter, vegetation and post-fire changes in albedo (Rocha and Shaver 2011, Alexander et al., 2018). We do
not account for burn severity in the data, which could strongly influence differences we see between burned and unburned
ALT. Burn severity could be estimated using the organic depth measurement in the data, but the organic depth will be
influenced by time since fire or through the integration of satellite imagery that could be used as a proxy for burn severity.
However, vegetation indices that estimate burn severity (e.g., differenced Normalized Burn Ratio [dNBRY]) are typically better
correlated with aboveground burn severity while less indicative of burn depth (e.g., Delcourt et al., 2021). Recent research
which has shown combinations of remote sensing proxies, dNBR, and land surface temperature could be used in conjunction
with these field measurements to estimate changes in ALT across fire scars (Diaz et al., 2024). Additionally, the ice content of
permafrost may impact the interaction between wildfire and permafrost, with direct effects on ALT particularly where
subsidence is involved or where the increase in ALT contributes to the degradation of ice-rich permafrost (e.g., Yedoma) in

the short-term (Nelson et al., 2021, Strauss et al., 2021, Jones et al., 2024).

4.3 Representativeness of the data

The data included in our dataset are predominantly from North America, and there are large spatial gaps across the northern
high latitude permafrost region (Fig. S5). For example, Russia is underrepresented despite containing 65% of the northern
high-latitude permafrost (Anisimov and Reneva 2006, Streletskiy et al., 2019) and a majority of the burned area within the
northern permafrost region (Loranty et al., 2016). The lack of data for this region is further exacerbated by the Russian invasion
of Ukraine (Lopez-Blanco et al., 2024), which has impacted international collaborations. Additionally, some of the spatial
gaps could be a function of the submission criteria that required a burned/unburned pair. Due to the remoteness of northern
high latitude fires, field campaigns may be constrained spatially and temporally based on accessibility of field sites and timing
of field campaigns. Opportunistic site selection introduces bias into the dataset; however, this is unavoidable for the data

synthesis effort that relies on contributions of existing data.

4.4 Future research opportunities

There is opportunity to expand this dataset to increase the spatio-temporal coverage of the data to better understand impacts
of wildfire on permafrost dynamics. While we touch on how ALT differs across burned and unburned sites across the northern
high latitude permafrost zone, further investigation is warranted on the role of wildfire on permafrost dynamics. We have
identified several understudied research areas that could be augmented with this dataset. First, the dataset could be used to
further investigate the geospatial distribution of permafrost recovery following fire across the northern high latitude permafrost
zone. Second, these data could be used to determine the probability (i.e., likelihood) of permafrost recovery after wildfire as a
function of ecotype or ecoclimatic zone, permafrost classification, fire rotation period, and/or climate. Third, the data could
aid in determining the soil C consequences of temporary or permanent post-fire permafrost degradation. Fourth, investigations

could be structured to identify changes in wildfire activity that affects the likelihood of permafrost recovery/degradation and
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associated soil C vulnerability using predictive mapping. Fifth, the data could be used to develop an organic layer deficit value
that would represent the difference between the organic layer thickness in the burn scar with the organic layer thickness in the
unburned control site. Sixth, this dataset could be augmented with quantification of subsidence and the combination of that
with ALT to understand how much new permafrost is exposed to seasonal thaw as a result of fire. Finally, there is the
opportunity for this dataset to be used in algorithm development, calibration, and validation for evolving process-based models

that are trying to capture the impact of fires on permafrost.

5 Data use guidelines & availability

The FireALT dataset (Talucci et al., 2024) are publicly available for download through the Arctic Data Center under a Creative
Commons Attribution 4.0 International copyright (CC BY 4.0). Data should be appropriately referenced by citing this paper
and the dataset (see Arctic Data Center). Users of the data are invited to ask questions by contacting the dataset developers.
We recommend that researchers planning to use this data as a core portion of their analysis collaborate with the data developers
and relevant individual site contributors. The data are available for download as a csv file through the Arctic Data Center

(https://doi.org/10.18739/A2W9500Q33).

6 Conclusions

The FireALT dataset offers a collection of paired burned and unburned sites with measured thaw depths and estimated ALT.
By estimating ALT, we address a key challenge: the ability to assess impacts of wildfire on ALT when measurements are
taken at various times throughout the thaw season depending on the time of field campaigns (typically June through August).
This dataset can be utilised for future research activities that can expand understanding of the feedbacks between permafrost,
wildfire, and global climate systems. Changes to the active layer serve as an important diagnostic indicator that requires
continuous monitoring under the current dynamic climate conditions to further understand temporary or permanent changes to
permafrost and subsequent losses in carbon storage. These types of data synthesis efforts are crucial for addressing
understudied research areas particularly algorithm development, calibration, and validation for evolving process-based models
as well as extrapolating across space and time, which will elucidate permafrost-wildfire interactions under accelerated warming

across the high northern latitude permafrost zone.

Author contributions

The FireALT dataset was conceptualised during the 2019 Permafrost Carbon Network meeting by ACT, BMR, DO, KLM,
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