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Eye tracking measures of bicyclists’ behavior and perception: a systematic 12 

review 13 

Abstract 14 

With improved portability and affordability, eye tracking devices have facilitated an 15 

expanding range of cycling experiments, offering valuable insights into cycling gaze behaviors 16 

and states of mind. Given the complexity of cyclists’ visual behavior and gaze measurements, the 17 

field would benefit from a comprehensive review. We aim to bridge this gap with three key 18 

focuses: 1) the adoption and interpretations of various gaze metrics derived from cycling 19 

experiments, 2) a summary of the findings of those experiments, and 3) identifying areas for 20 

future research. A systematic review of three databases yielded thirty-five articles that met our 21 

inclusion criteria. The review results show eye tracking technology aided cycling experiments 22 

can provide cyclist-center perspectives to understand the impact of factors, including built 23 

environment, human factors, mode comparison, and methodology assessment, on navigation 24 

behavior and mental workload and/or stress levels. The results suggest the selection of eye-25 

tracking devices, cycling experiment design, and gaze metrics adoption/interpretation vary by 26 

research objectives. A variety of general gaze metrics and gaze measurements related to Areas of 27 

Interest (AOI) are applied to infer cyclists’ mental workload/stress levels and attention allocation 28 

respectively. The diversity in gaze metrics design and interpretation, however, highlights the 29 

need for standardization to facilitate cross-study comparisons. Areas for future research, 30 

especially potential integration with latest computer vision and digital twin technologies, are also 31 

discussed. 32 

Keywords: eye-tracking, cycling experiments, gaze metric, safety, stress  33 
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1. Introduction  34 

Mobile eye tracking devices are a powerful tool to capture cyclists’ vision in naturalistic 35 

cycling experiments. Cyclists are subject to many external stimuli while cycling, such as motor-36 

vehicles, pedestrians, potholes, and other things that may be a safety hazard. But they are also 37 

sensitive to positive features of the road environment that make cycling more pleasant and safer. 38 

Mobile eye-tracking devices are one technique for capturing what features of their environment 39 

cyclists are watching as they ride. Our objective is to review the literature on eye-tracking device 40 

instrumented cycling experiments to determine how these devices have been used, what metrics 41 

are typically analyzed, and how this information can be used to enhance understandings in 42 

cycling safety and comfort.  43 

Visual cues trigger emotions and how people look at objects in their environment has 44 

been used as a way to decipher emotional responses (Strange & Dolan, 2006; Lu & Pesarakli, 45 

2023). Eye tracking devices provide information on what cyclists look at, which can be linked to 46 

various biomarkers, for example galvanic skin response and heart rate, to measure feelings and 47 

stress. Cyclists’ perceptions of safety and comfort (PSC) is a major determinant of travel 48 

satisfaction and a key component in evaluating low-stress bicycling facilities (Mekuria et al., 49 

2012). Perceived safety and comfort are mainly measured by stated preference (SP) and revealed 50 

preference (RP) surveys, which are subject to response biases and challenges in data resolution 51 

(Bigazzi et al., 2022). To address this limitation, collecting data with eye tracking devices, have 52 

been proposed as objective, in situ, and high-resolution alternatives for cyclists’ stress.  53 

This lit review, with its focus on cyclists, is embedded in the broader literature of vision 54 

study and eye tracking device applications. Understanding types of oculomotor event and their 55 

functions is important for the use and interpretation of eye tracking. We use the term 56 

“oculomotor event” to include distinct eye movements, eyelid movements (blink), and changes 57 
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in pupil size. According to (Duchowski, 2017), there are five distinct types of eye movements 58 

that involves repositioning fovea (moving the eyes to see clearly). Three are gaze-orienting 59 

movements: saccades are rapid eye movements repositioning the fovea to visual targets; smooth 60 

pursuit is involved when visually tracking a moving target; vergence movement involves depth 61 

detection when focusing on distant targets. The other two types of eye movements function as 62 

gaze-stabilizing: vestibule-ocular (VOR) stabilizes gaze during head rotation; opto-kinetic 63 

nystagmus (OKN) stabilizes gaze in a moving scene. Other relevant oculomotor events include 64 

fixation, blink, and pupil dilation. Fixations are periods when eyes are relatively stationary, with 65 

the retina stabilized over objects of interest. Blink is the closing and reopening of eye lids, and 66 

involuntary reflexive blinks is a form of protection from external stimuli. Pupil dilation is the 67 

change of pupil size in response low-light and emotional stimuli.  68 

For the interest of cycling study, we will focus on oculomotor events that could infer 69 

cognition, attention, and internal state. Literature suggests that fixation, saccade, and smooth 70 

pursuit are considered as “the only three types of movements need be modeled to gain insight 71 

into the overt localization of visual attention” (Duchowski, 2017 p.45). Fixation-based metrics, 72 

such as fixation count and fixation duration, could infer cognitive processing and attention 73 

engagement (Duchowski, 2017). Metrics on fixation variability correlate to workload, stress 74 

level, and emotions (Shiferaw et al., 2019). Saccade metrics, such as saccade velocity and scan 75 

path, reveal changing focuses of attention and the amount of processed information (Berto et al., 76 

2008). Changes in pupil sizes are used to indicate arousal levles to visual stimuli and intensity of 77 

attention (Pedrotti et al., 2014). Blink duration and eye openness indicators reveal cognitive load 78 

and visual attention, especially helpful in detecting driver’s drowsiness (Siegle et al., 2008).  79 
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In the field of transportation, researchers first used eye trackers to study drivers dating 80 

back to the 1970s (Mourant & Rockwell, 1972). The application of eye tracking in driver studies 81 

covers topics such as understanding hazard detection, detecting distraction and fatigue, 82 

enhancing human-machine interface, evaluating the impacts of infrastructure, and assessing 83 

automation monitoring (Acerra, Lantieri, et al., 2023; Ahlstrom et al., 2013; Benedetto et al., 84 

2011; Brome et al., 2021; Hergeth et al., 2016). With the rising awareness on promoting active 85 

travel and protecting vulnerable road users, studies on pedestrians using eye tracking devices 86 

started to emerge in early 2000s. Research topics on pedestrian study focused on the effects of 87 

urban design and infrastructure, safety and risk assessment, and distractions and cognition load 88 

(Gruden et al., 2021; Jiang et al., 2018; Simpson et al., 2019). Comparing with drivers and 89 

pedestrians, cyclists have distinct visual characteristics. Cyclists typically move faster than 90 

pedestrians and slower than auto vehicles. The speed affects cyclists’ field of views and renders 91 

them more vulnerable to injuries in cases of distractions. Often sharing the road or riding 92 

adjacent to vehicles, the road composition and infrastructure put higher attentional requirements 93 

on bicyclists for traffic monitoring. Moreover, maintaining balance while travelling is a 94 

cognition load unique to cyclists. Due to cyclists’ distinct attentional requirements and visual 95 

behaviors, a targeted review on the application of eye trackers in cyclist study is deemed 96 

necessary.   97 

Using mobile eye tracking devices in naturalistic cycling experiments is a relatively new 98 

method. The first study of this kind dated to 2013 in Belgium (Vansteenkiste et al.). Over the 99 

past decade, the field has witnessed significant growth in both quantity and diversity. The 100 

selection and interpretations of oculomotor metrics are essential parts of data analysis that affect 101 

the understanding of cyclist’s behavior and perception. Owing to the complexity of oculomotor 102 
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events and eye tracking data, a proliferation of metrics have been adopted in the cycling studies 103 

and there is need for aggregated knowledge. (Kapitaniak et al., 2015) reviewed the application of 104 

eye tracking in drivers, emphasizing on drivers’ visual strategies and the conspicuity 105 

phenomenon. (Mahanama et al., 2022) reviewed various measures of eye movement and 106 

pupillary activities and their applications in neuroscience, human-computer interaction, and 107 

psychology. Our review uniquely contributes to the literature with a special focus naturalistic 108 

cycling experiments, with detailed reviews on experiment characteristics, specific AOIs 109 

annotations related to cycling task, gaze metrics and their interpretations for cycling behavior. 110 

Our aim is to answer the following three research questions: (1) What gaze metrics are used to 111 

interpret bicyclists’ behavior and perception? (2) What cycling treatments have been studied with 112 

eye tracking and what are the findings? (3) Where are the needs for further research?  113 

The remainder of our paper is organized as follows: In the “Search method” section we 114 

describe the eligibility criteria, search procedures, and search results to refine our literature 115 

review. In the “Experiment characteristics” section we summarize key features of the experiment 116 

designs, including the eye tracking devices, routes, and participants based on our review of the 117 

literature. In the “Gaze metrics” section we present a systematic and critical review of gaze 118 

metrics, examining how they are defined and interpreted and used. We then synthesize 119 

experimental findings grouped by four major research topics. Finally, we discuss the limitations 120 

and identify areas that merit future research. 121 

2. Search method 122 

We specify four criteria for inclusion in our review. Firstly, they need to be peer-123 

reviewed journal papers published in English. Secondly, the cycling experiment must involve 124 

participants actively riding a bike such that participants’ sight and motion are synchronized to 125 
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emulate a natural cycling experience. Studies that only investigate cyclists’ gaze behavior from 126 

watching videos on screens are excluded from the review. Thirdly, mobile eye-tracking devices, 127 

either head-mounted or integrated with glasses, must be utilized for data collection. Finally, 128 

quantitative gaze metrics must be employed to describe eye movements. Studies that discuss 129 

gaze location heatmaps without incorporating quantitative analysis are excluded.  130 

We combined phrases incorporating two key search terms to search for pertinent studies. 131 

The first key term is "cycling", “bicycling”, "cyclist", or “bicyclist” to state the topic of cycling-132 

related studies. The second key term is "eye tracking" or "gaze” to filter the search to studies that 133 

used eye tracking devices.  134 

The search was conducted in January 2024 using three databases. The first database is the 135 

Transportation Research International Documentation (TRID), which specializes in 136 

transportation research literature covering all modes of transportation1. The initial search using 137 

our specific phrases yielded 60 articles, of which 12 met the inclusion criteria. The second 138 

database is ScienceDirect, which provides scientific, technical, and medical research literature. 139 

We narrowed down the search to transportation-related journals and reviewed 432 articles. After 140 

screening titles and abstracts, 14 additional articles were included. The third database is Google 141 

Scholar, which covers scholarly literature across various disciplines. The search generated 142 

64,420 results, and we screened the first 400 records sorted by relevance. Eight more articles 143 

were added for review. Finally, the reference lists of the included full-text studies were screened, 144 

 

 

1 https://trid.trb.org 
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and one additional article was identified to be included. In total, 35 articles were selected for this 145 

review. 146 

The earliest study we identified was conducted in 2013 in Belgium. As eye-tracking 147 

devices became more available and more affordable in subsequent years, the field witnessed 148 

consistent growth from 2013 to 2020 and rapid growth after the COVID-19 pandemic. Eleven 149 

studies were published in 2023, indicating increased research interest. Most early studies were 150 

conducted in Western and Northern Europe, especially Belgium and Sweden. Studies in Eastern 151 

Asia and the United States are more recent. As the geographic diversity of studies increases, 152 

researchers will be able to assess how different visual cues associated with different road 153 

characteristics, built environments, and cultural perceptions interact and affect bicycling 154 

behavior.  155 

3. Experiment characteristics  156 

Studies in our review have a variety of different designs and characteristics associated 157 

with the eye-tracking devices used, the selected routes, and the sample of participants. We 158 

summarize these differences in this section.  159 

3.1 Eye tracking devices 160 

A total of six brands (SMI, ASL, Tobii, Pupil Labs, HoloLens, and FOVE) and 12 161 

models of eye tracking devices are employed in the reviewed studies, among which eight models 162 

are used for naturalistic cycling experiments, three models for Virtual Reality experiments, and 163 

one model for an Augmented Reality experiment. These are listed in Table 1 along with 164 

specifications for each instrument. Six models are currently available on the market, two have 165 

been updated to newer versions, and four have been discontinued. Older eye tracking devices are 166 
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mounted on headwear or glasses frame, whereas more recent devices increasingly resemble 167 

regular glasses. All the devices track eyes with three key components: infrared illuminators, eye 168 

cameras, and a scene camera. The infrared illuminators emit infrared light which generates 169 

corneal reflections. Pupils are rendered dark due to the reflections and pupil locations are 170 

recorded by eye cameras. The scene camera is positioned to face forward and records the road 171 

scene. These data are processed in proprietary software with varied eye movement detection 172 

algorithms that add fixation points onto the scene video. Figure 1 is an example of an eye 173 

tracking device (a) and a frame of processed video showing the fixation in the red point and 174 

saccade path in the red line (b). 175 

 176 

Figure 1 Example of an eye tracking device and a processed video frame 177 
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Table 1. Summary of eye tracking devices, their specifications, and the studies that used them 178 

ET 
devices Use Status Accuracy 

(degree) 
No. eye 
camera 

Eye 
camera 
(Hz) 

Scene 
camera 
(fps) 

Calibration 
(point) 

Weight 
(g) Software Studies applied 

Pupil 
Invisible Naturalistic O 4 2 200 60 0 46.9 

Pupil Player 
& Pupil 
Capture 

Aasvik & Fyhri, 2022;  
Gadsby et al., 2022; 
Kircher & Ahlström, 
2023 

Pupil Core Naturalistic O 0.6 2 200 30/60/120 5 22.75 
Pupil Player 
& Pupil 
Capture Acerra et al., 2023 

Pupil Labs 
VR Add-
ons + 
HTC Vive 

VR O 1 2 120 90 8 470 
Unity & 
Pupil Labs 
software 

Zeuwts et al., 2021, 
2023 

Tobii Pro 
add ons + 
HTC Vive 

VR O 0.5-1.1 4 120 90 1 550 
Unity & 
Tobii XR 
SDK 

Bishop et al., 2023;  
Guo et al., 2023;   
Ramirez Juarez et al., 
2023 

HoloLens 
2 HMD AR O 1.5 2 30   several 566 Python and 

Unity Zhao et al., 2023 
FOVE VR 
Headset VR O 1.15 2 120 70 1 520 FOVE 

Unity SDK van Paridon et al., 2021 

Pupil Pro Naturalistic U 0.6 1 30 30 9 22.75 
Pupil Player 
& Pupil 
Capture 

Stelling-Konczak et al., 
2018 

Tobii Pro 
Glasses 2  Naturalistic U NA 4 100 25 1 45 Tobii Pro 

Lab 

Gay et al., 2023; 
Jang & Kim, 2019; 
Jiang et al., 2021;  
Pashkevich et al., 2022; 
Pfeifer et al., 2023 
Ryerson et. al, 2021;   



11 
 

ASL 
Mobile 
Eye-XG 

Naturalistic D 0.5-1 1 30 30 10/15 76 EyeVision 

Abadi et al., 2022;  
Jashami et al., 2023; 
Mantuano et al., 2017;  
Rupi & Krizek, 2019; 
Scott-Deeter et al., 2023 

SMI 
iView 
ETG v1 

Naturalistic D 0.5 2 60 30 3 47 BeGaze 
van Paridon et al., 
2019&2021;  
von Stülpnagel, 2020; 

SMI 
iView 
ETG v2 

Naturalistic D 0.5 2 50/60 30 5 47 BeGaze  

Ahlstrom et al., 2016; 
Kircher & Ahlström, 
2020; 
Nygårdhs et al., 2018; 
Vansteenkiste et al., 
2017; 
Zeuwts et al., 2016; 

SMI 
iViewX 
HED 

Naturalistic D 1 1 50 25 5 79 BeGaze 
Vansteenkiste et al., 
2013, 2014a, 2014b, 
2015a, 2015b 

O: On Market; U: Updated; D: Discontinued. 179 
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Critical specifications that affect device reliability include accuracy rate, number of 180 

illuminators and eye cameras, and camera sampling rate. Most of the manufacturer-reported 181 

accuracy rates have a deviation of less than 1.5 degrees from the real fixation points. These 182 

reported accuracy rates are tested during indoor sedentary tasks, the precise accuracy rates 183 

remain untested for outdoor and motion-based tasks (Onkhar & Dodou, 2023). Having at least 184 

two sets of illuminators and eye cameras and recording the movements of both eyes reduces the 185 

likelihood of data loss. Regarding the eye camera, a higher sampling rate enables the capture of 186 

shorter-duration fixations and reduces errors in the detected fixation time. As for the scene 187 

camera, the sampling rate determines the length of frame duration and the number of frames used 188 

for subsequent frame-by-frame fixation analysis. Currently available or upgraded devices offer 189 

eye camera sampling rates above 100 Hz and scene camera sampling rates above 50 Hz. The 190 

discontinued devices have eye cameras below 60 Hz and scene cameras below 30 Hz. Prior 191 

literature suggests that the eye trackers’ sampling frequency should be twice the speed of the 192 

particular eye movement, ideally reaching 120 Hz for studying fixation and approximately 600 193 

Hz for micro-saccade (Andersson et al., 2010). When a high-frequency eye tracker is 194 

unavailable, quadrupling the collected data is equivalent to doubling the device sampling 195 

frequency (Andersson et al., 2010).  196 

Other factors that influence experiment implementation are weather limitations, 197 

calibration method, battery life, and weight of the head unit. As sunlight contains large amount 198 

of infrared radiation and eye tracking devices use infrared light to illuminate the eyes, direct 199 

sunlight causes interference and makes it difficult for eye camera to properly record the pupils. 200 

The devices are not water-resilient, and the outdoor experiment cannot be carried out in rainy 201 

days. Overcast weather is most ideal for outdoor experiments, and the use of shaded glasses and 202 
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hat is recommended to shield from glares. Due to the natural variations in the shape of each 203 

person’s eye and various other properties, eye tracking devices require calibration to optimize 204 

gaze estimation for each user. During the calibration procedure, the participant views a card with 205 

a varying number of points, and the eye tracking device collects data on participant’s gaze at 206 

those points. The number of calibration points varies across devices, ranging from 10 to 15 207 

points to zero points. Most devices are calibrated at the start of the experiment, while studies 208 

utilizing SMI iView ETG reported calibrating the device at the beginning, during the middle of 209 

the ride, and after the completion. Simplifying the calibration process can expedite the 210 

experiment and minimize sample exclusion due to calibration failure. Battery life limits the 211 

length of routes and duration of the experiments. The ASL device offers a recording time of 1 212 

hour, while SMI, Pupil, and Tobii devices provide 2 hours and more recording time, enhancing 213 

flexibility for more extended experiments. The device’s comfort is crucial for participants to 214 

cycle naturally during the experiments. Most eye tracking devices are designed to be lightweight, 215 

with the headset weighing approximately 50g. Pupil Core features a no-lens design, which 216 

weighs only 22.75g but also looks different from conventional glasses. When combined with VR 217 

or AR headsets, the overall weight of the device increases to about 500g, posing challenges for 218 

prolonged experiment duration. 219 

Based on the specifications mentioned above, devices with higher sampling frequency, 220 

more eye cameras and illuminators, a streamlined calibration procedure, longer battery life, and 221 

lighter weight tend to reduce data loss and capture shorter fixations. This likely improves 222 

experimental implementation and the ecological validity of results. While the data collection 223 

device is critical, successful research also requires a good experimental design, sufficient 224 
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recruitment of participants, and the valid interpretation of gaze metrics. We discuss these issues 225 

next. 226 

3.2 Experimental settings and route selection 227 

The reviewed studies showcased five types of experiment settings: indoor, naturalistic 228 

without routes, naturalistic with routes, immersive virtual environment (IVE), Virtual Reality, 229 

and Augmented Reality. Three early experiments were conducted inside a gymnasium. Among 230 

the 19 experiments that had participants cycle in a naturalistic outdoor environment, 16 assigned 231 

specific cycling routes and three without routes. Six studies used the IVE setting, where 232 

participants rode a stationary bike simulator facing a large screen on which the synchronized 233 

virtual cycling scenes are projected. The field of view (FOV) available from the screens 234 

depended on the screen size and distance from the simulator. To achieve a wider FOV, 235 

researchers designed concave screen and combined multiple screens laterally (Acerra, Shoman, 236 

et al., 2023; Gay et al., 2023). Virtual Reality experiments have people wearing VR headsets 237 

while riding a bike simulator. Although VR headsets like the HTC Vive (110 degrees) and 238 

FOVE (100 degrees) have a narrower FOV than the peripheral vision (210 degrees horizontally), 239 

they provide the flexibility to expand horizontal search through head and eye rotation, and “over 240 

the shoulder" checks. Augmented Reality experiments have participants wear AR headsets while 241 

cycling in the real world. Six studies used VR and one used AR. The IVE, VR and AR settings 242 

are all affected by motion sickness, which exclude individuals with severe symptoms from 243 

participating, also limiting each cycling session to less than 10 minutes. 244 

The routes of early experiments conducted inside gymnasiums and the latest Augmented 245 

Reality experiment were under 60 meters in length. In the naturalistic experiments, the routes 246 

typically ranged from 2.5 to 5 kilometers or 15 to 30 minutes in duration. Routes for young 247 
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cyclists were generally shorter, around 1.5 to 2 kilometers, to accommodate their energy levels 248 

and cycling capabilities. These route lengths and durations are comparable to typical real-world 249 

trips, which average 16 minutes or 1 mile (National Household Travel Survey, 2017) and provide 250 

sufficient time for participants to become familiar with the experimental settings and apparatus. 251 

Those studies that examined built environment features required route lengths long enough to 252 

encompass a diverse range of features, such as a variety of different intersections, pavement 253 

conditions, and bike infrastructure. Those focusing on the impact of phone use and detection of 254 

hazards required longer durations. In these latter studies participants would ride the same route 255 

multiple times and were instructed to carry out multiple distraction or hazard detection tasks.  256 

In addition to the use of eye tracking devices, the reviewed cycling experiments also 257 

applied other instruments, including cycling behavior detection sensors, such as speed, braking, 258 

and head movement, as well as physiological signal sensors, such as heart rate and Galvanic Skin 259 

Response (GSR). It is also common to supplement objective sensor data with stated preference 260 

surveys to understand cyclists’ subjective perceptions of safety and comfort.  261 

3.3 Participant recruitment and sample sizes 262 

Convenience sampling is the most common recruiting method used in the research 263 

reported in the reviewed studies. Eligibility criteria generally include some level of cycling 264 

competence to ensure the participant can safely ride a bicycle during an on-road experiment. If 265 

participants are put in more challenging situations a higher level of self-reported cycling 266 

experience are required (von Stülpnagel, 2020). Secondly, participants must have normal or 267 

corrected-to-normal vision (e.g., wearing contact lenses) to ensure compatibility with the eye 268 

tracking devices. The convenience sampling method and the eligibility criteria introduce 269 

sampling biases. University students, university affiliated personnel, and experienced cyclists are 270 
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likely overrepresented. Framed lenses are incompatible with the eye tracking glasses and people 271 

who wear them are excluded from the sample. The challenges of calibrating the device with 272 

seniors’ eyes, combined with the difficulty of recruiting senior cyclists, result in a lower 273 

representation of this group.  274 

The number of participants recruited is dependent on experimental design. Notably, 275 

experiments with IVE and VR that mitigate real-world riding risks while maintaining the 276 

authenticity of naturalistic cycling experiences, recruited the most participants. Generally, recent 277 

studies have recruited more than 20 participants for naturalistic experiments and 40 participants 278 

for experiments with IVE and VR settings. Larger and more diverse groups of participants can 279 

help reduce bias, increase generalizability, and enhance statistical power of any analyses 280 

(Stelling-Konczak et al., 2018; von Stülpnagel, 2020). However, many studies need to omit some 281 

participants due to failure of calibration, low eye tracking rates, and withdrawal due to motion 282 

sickness, a particular problem with VR, AR, and IVE settings.  283 

The studies we reviewed recruited participants of different genders and a range of ages, 284 

though most studies focused on adults, a few recruited young children. Twenty-eight studies on 285 

adult cyclists reported mean ages mostly under 30 years, with an age range to up to 75 years 286 

(Scott-Deeter et al., 2023). Seven studies of child cyclists report participant mean ages around 10 287 

years old, with an age range between 6 to 18 years. Twenty-seven studies reported participants’ 288 

gender distribution, half of which have male-to-female ratios between 0.75 and 1.25.   289 

4. Gaze metrics 290 

In the Introduction section, we reviewed the taxonomy and roles of various oculomotor events. 291 

Among these, fixation, saccades, smooth pursuit, blink, and pupil dilation have been 292 

instrumental in revealing cognition processes and attention. In our review of the 35 articles, 293 
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measures of oculomotor events are predominately limited to fixation and saccades. This limited 294 

scope may stem from device capabilities and experimental constraints. All reviewed eye-tracking 295 

devices can detect fixation and saccades but identifying the other three types requires specific 296 

algorithms to analyze eye imagery.  297 

Smooth pursuit, which reveals how eyes follow on moving objects, is particularly pertinent for 298 

cyclist to monitor traffic cues. However, without dedicated algorithm, this activity is usually 299 

classified as fixations interspersed with short saccades (Mital et al., 2011). Accurate detection of 300 

smooth pursuit typically necessitates clinical level high frequency eye trackers, such as the 1250 301 

HZ devices used by (Larsson et al., 2015), significantly higher than the mobile eye tracking 302 

devices reviewed(up to 200 Hz by Pupil Invisible and Pupil Core).  303 

Blinks can be both voluntary and involuntary, and those particularly reflexive and spontaneous 304 

are robustly affected by mental workload and level of attention (Cori et al., 2019). Without 305 

algorithms specialized at identifying blink, the event is recorded as missing data or noise. Tobii 306 

developed the eye openness (EO) signal based on the sphere between upper and lower eyelids 307 

but is only applicable to their screen-based products not mobile wearables (Miseviciute, n.d.). 308 

Pupil Labs’s Blink Detector plugin, which uses onset and offset thresholds associated with 2D 309 

pupil confidence to detect blink, is applicable to their Core and Invisible products ("Blink 310 

Detector”, n.d.). One article mentioned about the Pupil Blink Detector feature (Zeuwts et al., 311 

2021), and another reported the percentage of blink time during an predefined event for one 312 

participant as an example (van Paridon et al., 2021). No other blink parameters have been 313 

assessed.  314 
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Changes in pupil size is another metric that can indicate cognition processes and emotion, but is 315 

also affected by ambient light conditions. Where user manuals are available, devices from Pupil 316 

Labs and Tobii are capable of reporting pupil sizes. However, outdoor naturalistic cycling 317 

experiments present changing light conditions along the route which affect pupil sizes. Though 318 

the environmental lighting could potentially be controlled for with an illuminance sensor, none 319 

of the reviewed articles have used pupil measures. 320 

As we focus solely on fixation and saccades measures in the subsequent session, we will refer to 321 

these collectively as “gaze metrics”. Table 2 summarizes the category, type, definition, and 322 

interpretations of gaze metrics. 323 

Shiyu Ma
https://www.tobii.com/resource-center/learn-articles/eye-openness
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Table 2. Summary of gaze metrics 324 

Category Type Measure Definition Interpretation Studies applied 

General 
metrics 

Fixation 
Count 

Total number of 
fixations 

The total number of 
fixations during a ride 

Compared between participants to examine 
different visual search strategy. 

(Mantuano et al., 2017; Pashkevich et 
al., 2022) 

Number of 
fixations per 
minute/second 

The number of fixations per 
minute or per second during 
a ride 

Compared between different modes of 
travellers or different experiment settings to 
examine visual search strategy. 

(Gay et al., 2023; Pashkevich et al., 
2022) 

Fixation 
Duration 

Total fixation 
time 

The sum of fixation time, 
measured in seconds 

Compared with total saccade time to examine 
visual search strategy. (Mantuano et al., 2017) 

Mean fixation 
duration 

The average duration of all 
fixations, measured in 
seconds 

Shorter fixation durations infer increased 
visual tasks and higher hazard estimations. 

(Guo et al., 2023; Mantuano et al., 
2017; Stelling-Konczak et al., 2018; 
von Stülpnagel, 2020) 

% Fixation time The percentage of fixation 
time to the total trip time 

Higher total fixation percentage infers 
increased cognitive processes and visual 
workload. 

(Mantuano et al., 2017; Vansteenkiste 
et al., 2013, 2015a) 

Fixation 
Dispersion 

Horizontal and 
vertical 
variability 

The standard deviation of 
the X and Y coordinates of 
gaze locations 

Varied explanations associated with mental 
workload and stress. 

(Guo et al., 2023; Ryerson et al., 2021; 
Vansteenkiste et al., 2013, 2014b; 
Zeuwts et al., 2016) 

Stationary gaze 
entropy 

Defined on uncertainties of 
choices and calculated with 
Shannon's entropy equation 

Larger entropy indicates greater randomness 
in the transition behavior and higher task 
complexity in visual information acquisition. 

(Guo et al., 2023; van Paridon et al., 
2019) 

Gaze transition 
entropy 

A conditional entropy 
considering the temporal 
dependency between 
different fixations 

Increased values from the optimal indicate 
stress and anxiety.  (Guo et al., 2023) 
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Gaze angular 
velocity 

The angular degree of 
fixations between frames, 
measured in degrees per 
second 

Rapid eye movements reflect high cognitive 
workload which could lead to stress and 
error. 

(Ryerson et al., 2021; Zhao et al., 
2023) 

Fixation 
Distance 

Sight vector 
length 

The distance between 
cyclists’ current body 
location and their gaze 
location, measured in meters 

Longer fixation distances indicate cyclists’ 
capability of hazards anticipation. Shorter 
fixation distances indicate cyclists' focus on 
immediate surroundings. 

(von Stülpnagel, 2020) 

Fixation 
Angle 

Gaze angle from 
travel 

The angular degree between 
fixation direction and travel 
direction/face-forward. 

Larger gaze angles indicate higher needs of 
hazard detection from various directions. 

(von Stülpnagel, 2020; Zhao et al., 
2023) 

Saccade 
Count 

Number of 
saccades per 
second 

The number of saccades per 
second during a task 

Scanning frequency reflects cyclists' visual 
search strategies and is influenced by 
different distraction treatments.  

(Jiang et al., 2021) 

Saccade 
Duration 

Total saccade 
time 

The sum of saccade time, 
measured in seconds 

Compared with the total fixation time to 
reflect cyclists' visual search strategy. (Mantuano et al., 2017) 

AOI-
related 
metrics 

Fixation/dwell  
Count 

Number of 
fixations per 
s/min per AOI 

The number of fixations per 
second or minute on a 
specific AOI  

AOIs receiving more fixation counts capture 
more attention. 

(Pashkevich et al., 2022; Vansteenkiste 
et al., 2017) 

% fixation counts 
per AOI 

The percentage of fixation 
on an AOI to the total 
number of fixations 

AOIs with higher percentage of fixation 
counts capture more attention 

(Ahlstrom et al., 2016; Jiang et al., 
2021; Kircher & Ahlström, 2020; 
Mantuano et al., 2017; Nygårdhs et al., 
2018; Pashkevich et al., 2022; Rupi & 
Krizek, 2019; Van Paridon et al., 2019; 
Vansteenkiste et al., 2014b; Zeuwts et 
al., 2021) 

Fixation rate 
The percentage of AOIs 
being fixated on to the total 
number of AOIs. 

Participants with higher fixation rates show 
higher safety awareness and better hazard 
detection skills. 

(Bishop et al., 2023; Gadsby et al., 
2022; Zeuwts et al., 2023) 
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Fixation/dwell  
Duration 

Total fixation 
time per AOI 

The sum of fixation time on 
a specific AOI, measured in 
seconds  

AOIs with longer summed fixation time 
capture more attention 

(Abadi et al., 2022; Acerra et al., 2023; 
Ahlstrom et al., 2016; Gay et al., 2023; 
Jashami et al., 2023; Rupi & Krizek, 
2019; Scott-Deeter et al., 2023; Zeuwts 
et al., 2021) 

% of fixation 
time per AOI 

The percentage of fixation 
time on an AOI to the total 
fixation time 

AOIs with higher percentage of fixation time 
capture more attention 

(Aasvik & Fyhri, 2022; Acerra et al., 
2023; Ahlstrom et al., 2016; Gadsby et 
al., 2022; Guo et al., 2023; Jang & 
Kim, 2019; Mantuano et al., 2017; 
Pfeifer et al., 2023; Ramirez Juarez et 
al., 2023; Rupi & Krizek, 2019; 
Vansteenkiste et al., 2013, 2014a, 
2015a, 2015b, 2017; Zeuwts et al., 
2021; Zhao et al., 2023) 

Mean/ median 
fixation duration 
per AOI 

The average duration of 
fixations on an AOI 

AOIs with longer mean/median fixation time 
capture more attention 

(Ahlstrom et al., 2016; Gadsby et al., 
2022; Gay et al., 2023; Jashami et al., 
2023; Nygårdhs et al., 2018; 
Pashkevich et al., 2022; van Paridon et 
al., 2021; Vansteenkiste et al., 2017; 
Zeuwts et al., 2016, 2023) 

Maximum 
fixation duration 
per AOI 

The maximum duration of 
fixations on an AOI 

Longer maximum fixation durations (on the 
phone) indicate cyclists' possibility to prepare 
and plan ahead. 

(Ahlstrom et al., 2016) 

Fixation 
Distance 

Fixation distance 

The distance between the 
cyclist and the first fixation 
of an AOI, measured in 
meters 

AOIs with longer fixation distances indicate 
higher demand on safety concerns. 

(Pashkevich et al., 2022; Rupi & 
Krizek, 2019) 

Time to arrival 
The duration between the 
first fixation of an AOI and 
arrival, measured in seconds 

AOIs with longer time to arrival indicate its 
visual salience or cyclists' needs for longer 
reaction time. 

(Gadsby et al., 2022; Zeuwts et al., 
2021, 2023) 
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Saccade 
Count 

Total number of 
saccades per AOI 

The total number of 
saccades on an AOI during 
a ride 

AOIs receiving more saccade counts capture 
more attention.  (Ramirez Juarez et al., 2023) 

325 
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4.1 General metrics  326 

After identifying fixations and saccades, descriptive statistics on general gaze metrics are 327 

generated directly by software provided with the eye-tracking glasses. General metrics, also 328 

known as global measures (van Paridon et al., 2019), are gaze indicators that offer an overall 329 

description of visual behaviors without specifying the objects being observed. Thirteen studies 330 

utilized general metrics before specifying the targets of fixations, and three studies used general 331 

metrics only.  332 

Fixation duration and fixation dispersion are the two most commonly used metrics to 333 

infer workload and stress, which are essential proxies for cyclists’ travel satisfaction and 334 

comfort. Measurements of fixation duration and fixation dispersion are applied to a wide range 335 

of research topics, such as the impact of different bike infrastructure, pavement quality, 336 

intersection layout, lane width, experimental settings, and the influence of listening to music 337 

while cycling. Regarding measurements of fixation duration, four studies used mean fixation 338 

duration (i.e., the average duration of all fixations) (Guo et al., 2023; Mantuano et al., 2017; 339 

Stelling-Konczak et al., 2018; von Stülpnagel, 2020) and three used percentage of fixation time 340 

(i.e., the percentage of summed fixation time to the total trip duration) (Mantuano et al., 2017; 341 

Vansteenkiste et al., 2013, 2015a). Interpretations of fixation duration measurements are 342 

consistent: shorter mean fixation durations and a larger percent of total fixation time are 343 

associated with higher cognitive workload and higher levels of stress. Fixation dispersion refers 344 

to the variability and randomness of gaze locations. Five studies measured fixation dispersion 345 

using horizontal or vertical fixation variability (i.e., the standard deviation of gaze locations on 346 

the X or Y axis) (Guo et al., 2023; Ryerson et al., 2021; Vansteenkiste et al., 2013, 2014b; 347 

Zeuwts et al., 2016), two studies applied entropy measurements (i.e., Stationary Gaze Entropy 348 

and Gaze Transition Entropy) (Guo et al., 2023; van Paridon et al., 2019), and another two 349 
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studies used gaze angular velocity (i.e., the angular degree of fixations between frames) (Ryerson 350 

et al., 2021; Zhao et al., 2023). There are different interpretations of fixation dispersion 351 

measurements. For example, less horizontal variability is explained as increased workload on 352 

low-quality pavement and narrow lanes (Vansteenkiste et al., 2015a, 2017), but also explained as 353 

decreased workload when cycling on more protected bike facilities (Guo et al., 2023). We 354 

elaborate on these contradictions in our discussion section.  355 

Other types of general metrics used less frequently are fixation counts, saccade counts, 356 

fixation angle, and fixation distance. Fixation and saccade counts are used to describe visual 357 

search patterns, such as scanning a smartphone and switching to look at a cycling lane. 358 

Researchers also normalize the total counts by time to calculate fixation or saccade frequency. 359 

These measurements are often used to compare between transportation modes or different 360 

experimental settings to demonstrate different visual behaviors (Gay et al., 2023; Mantuano et 361 

al., 2017; Pashkevich et al., 2022). In particular, one study uses saccade frequency to examine 362 

how using a phone influences cyclists’ scan of the environment (Jiang et al., 2021). Fixation 363 

distance and fixation angle are used to infer the difficulty of detecting hazards on the road. 364 

Unlike the previous measurements generated from software programs, these entail manual 365 

estimations of the distance and angle between cyclists’ current body location and their fixation 366 

location, as illustrated in Figure 2. The hypothesis is that longer fixation distances and larger 367 

fixation angles are associated with the increasing need to detect safety `hazards from further 368 

away and in varied directions (von Stülpnagel, 2020; Zhao et al., 2023). Fixation distance and 369 

angle are less commonly applied, as these can introduce subjective variation and require manual 370 

estimation. 371 
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 372 

Figure 2 Diagrams of fixation distance and fixation angle 373 

4.2 Area-Of-Interest (AOI) related metrics 374 

Compared with general gaze measurements, AOI-related gaze measurements require the 375 

specification of fixation targets, which is crucial for understanding where attention is allocated. 376 

AOI-related metrics are also more commonly used than general metrics, thirty-two of the thirty-377 

five reviewed papers employed gaze metrics related to specific AOIs. This section will first 378 

review AOI annotations and the metrics applied. 379 

AOIs are identified based on research objectives and could be specific objects or zones of 380 

sight. Studies with object-based AOIs usually extract only the objects of interest, such as traffic 381 

signal lights (Rupi & Krizek, 2019), other road users (Zeuwts et al., 2021), and pavement issues 382 

(Gadsby et al., 2022). Identifying objects that are small in size and short in fixation duration 383 

require higher precision of AOI labelling. Zone-based AOIs are demarcated under the hypothesis 384 

that each zone provides different information needed for cycling. The most frequently applied 385 

AOI zones include "path" as the cycling track for lane keeping and pavement monitoring; "goal" 386 

or “focus of expansion” as the intersection of cycling trajectory and the horizon for navigation 387 



26 
 

and wayfinding; "sides" as areas next to the cycling track with potential hazards from other road 388 

users; "external" as areas outside the cycling path with little cycling-related information; "behind 389 

left" and "behind right" as indications of cyclists checking over shoulders; and “phones” when 390 

smartphone tasks were assigned. The number of zones varies from three (Nygårdhs et al., 2018) 391 

to seven (Kircher & Ahlström, 2020). The more zones and smaller zone sizes, the more a zone 392 

resembles an object. It is also possible to combine zones of AOI and objects of AOI. For 393 

instance, van Paridon et al. (2019) annotated both “path” to indicate general pavement areas and 394 

“pothole” to identify the specific pavement problem. In addition to objects and zones, Kircher & 395 

Ahlström (2023) argued that AOI annotations should be more purposefully related to the 396 

required attention needed for the cycling task, and categorized the fixated areas into “necessary”, 397 

“useful”, and “not required”.  398 

 399 

Figure 3 Examples of object based AOI and Zone based AOI 400 

 401 

In most studies AOIs are delineated and annotated manually. Six studies reported 402 

recruiting two raters for AOI annotation and validated their reliability on a selected portion of the 403 

data. Cohen’s kappa (Kircher & Ahlström, 2020; Stelling-Konczak et al., 2018) and Pearson 404 
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correlation (van Paridon et al., 2019; Vansteenkiste et al., 2013, 2014b, 2015a) are calculated to 405 

indicate agreements between raters. Only one study applied computer vision techniques to 406 

automate the process (Aasvik & Fyhri, 2022). The reliability concerns of the AOI annotation 407 

method are discussed further in Section 6.  408 

AOI-based analysis introduces new terms such as dwell, visit, and glance, which describe 409 

gaze behaviors associated with fixations and saccades within an Area of Interest (AOI). These 410 

terms often include varying definitions concerning the inclusion of the initial saccade into the 411 

AOI, blinks, and invalid data. Such inconsistencies arise mostly from different eye tracking 412 

devices and software but also from researchers adopting varying definitions across publications. 413 

Reporting proprietary metric rather than a standard metric and not offering sufficient technical 414 

details of processing methods can lead to confusion.  415 

For example, “dwell” is defined by SMI BeGaze as the sum of all fixations and saccades 416 

that hit the AOI. However, its usage varies: some follow SMI BeGaze’s definition 417 

(Vansteenkiste et al., 2014); some consider only fixations within the AOI (Rupi & Krizek, 2019; 418 

van Paridon et al., 2019; Zeuwts et al., 2023); others include fixations, saccades and also blinks 419 

(Mantuano et al., 2017; van Paridon et al., 2021). Moreover, (Vansteenkiste et al., 2015b) 420 

proposed a fixation-by-fixation method to calculate dwell, which is argued to be more time 421 

efficient than the classic frame-by-frame analysis and highly correlated with the latter. Although 422 

the term “dwell” is still used, the fixation-by-fixation method essentially only counts fixations, 423 

excluding saccades and blinks. “Visit” is defined by Tobii Pro Lab as “the data from the start of 424 

the first fixation inside and AOI until the last fixation in the AOI, including saccades, blinks or 425 

invalid gaze data”. The same is adopted by (Gay et al., 2023). “Glance” is defined by SMI 426 

BeGaze as dwell plus the first saccade leading to the AOI. Tobii Pro Lab has a similar definition 427 
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but incorporates blinks and invalid data. Researchers using SMI products likely adopt SMI 428 

BeGaze’s definition on glance (Ahlstrom et al., 2016; Kircher & Ahlström, 2020; Nygårdhs et 429 

al., 2018). However, some researchers set thresholds of minimum glance durations based on 430 

fixation studies, causing confusion about whether their glance consist only of fixations (Kircher 431 

& Ahlström, 2023; Stelling-Konczak et al., 2018). Despite differences in whether the first 432 

saccade, subsequent saccades, or blinks are included, the count metric for glance/dwell/visit 433 

remains consistent: all eye movements from entering to leaving the AOI are counted as a single 434 

event. This count differs from the of number of fixations, where two successive fixations within 435 

an AOI are counted as two events, making it inappropriate for quantitative comparison across 436 

studies that use different counting methods. The duration metric, on the other hand, varies with 437 

whether saccades and blinks time are counted in. The impact of these variations on glance/dwell 438 

duration depends on the characteristics of the specific AOI, such as its size and location. The 439 

magnitude of this duration difference is examined to be insignificant in the study by 440 

(Vansteenkiste et al., 2015b) where the sight was divided into 5 AOI zones. Clearer reporting of 441 

the components included in these terms could improve discussions and understanding within the 442 

field. 443 

Count and duration over fixation, dwell, and glance are the most used AOI-related 444 

metrics for indicating attention. Their interpretations remain consistent: more counts and longer 445 

durations on a specific AOI are associated with more attention paid to the AOI. Measurements of 446 

counts include the percentage of event counts per AOI and the number of events per minute per 447 

AOI. Measurements of duration include the percentage of the event time per AOI, mean or 448 

median event duration per AOI, and total event time per AOI. Especially, the percentage of 449 

fixation/dwell/glance time per AOI is the mostly used metrics of all. Nineteen out of the thirty-450 
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five studies used this metric, indicating its acceptance and reliability. When the AOIs are related 451 

to traffic hazards that need to be observed to ensure safety, such as crossing pedestrians and 452 

door-openings of parked cars, researchers apply the measurement fixation rate (i.e., the 453 

percentage of AOIs being fixated on to the total number of safety-related AOIs) to describe 454 

hazard detection capabilities (Bishop et al., 2023; Gadsby et al., 2022; Zeuwts et al., 2023). In 455 

addition, one study used maximum fixation duration on smartphones to indicate how well-456 

prepared cyclists are to perform secondary tasks at preferred locations (Ahlstrom et al., 2016). 457 

Fixation distance is another type of AOI-related metric less commonly applied. Fixation 458 

distance is measured both in terms of the physical distance between the cyclist and the first 459 

fixation of an AOI and the time difference between the first fixation of an AOI and the cyclist 460 

arriving at the AOI. Selected AOIs to apply fixation distance include traffic lights, pavement 461 

issues, and traffic hazards. Interpretations of fixation distance are less consistent. In some studies 462 

it was stated that AOIs fixated from a longer fixation distance lead to more caution and require 463 

longer reaction times (Rupi & Krizek, 2019; Zeuwts et al., 2021, 2023), others ascribe it to how 464 

prominent the AOI is to the cyclist instead of how urgent it is (Gadsby et al., 2022).   465 

5 Findings by research topic 466 

5.1 Built environment features 467 

The built environment is the physical surroundings that cyclists encounter when riding, 468 

such as bike facilities, pavement quality, lane characteristics, and intersection layouts. Its 469 

composition, design, and quality can directly impact cyclists. Eighteen studies investigated the 470 

impact of built environment features. 471 

Studies on bike facilities compared cycling in mixed traffic with various features of bike 472 

lanes, such as painted bike lanes, bike lanes protected from vehicles by bollards or flowerpots, 473 



30 
 

and raised bike lanes alongside sidewalks. Cycling on painted and separated bike lanes, 474 

compared with mixed traffic, is associated with less dispersion in horizontal gazes, less dispersed 475 

fixations, longer mean fixation duration, and higher percentage of fixation count on the road 476 

center, implying an increased focus on the area directly ahead rather than lateral eye movements 477 

to the side (Guo et al., 2023). Cyclists on bike lanes protected by bollards are also found to have 478 

a higher percentage of fixation time on distractions such as street furniture and buildings, likely 479 

due to reduced task difficulty when using more protected bike lanes (Jang & Kim, 2019). When 480 

cycling in mixed traffic, debris and potholes are noticed less, with medium fixation duration, and 481 

shorter fixation time to arrival, indicating the chance of missing safety cues in a less protected 482 

cycling environment (Gadsby et al., 2022). 483 

Pavement conditions were investigated for their general surface quality and specific 484 

pavement problems. Compared to high-quality surfaces, cycling on low-quality surfaces is 485 

associated with significantly higher fixation frequency, a larger percentage of fixation time on 486 

areas surrounding the cycle lane, lower mean fixation duration on the distant environment, and 487 

less dispersed horizontal gaze distributions. These gaze metrics reflect cyclists’ adaptation to the 488 

increased task demands when riding on low-quality pavement, but an increased attention to the 489 

road is at the expense of fewer visual searches for safety hazards in the surrounding area 490 

(Vansteenkiste et al., 2014b, 2017). Uneven pavements tend to have higher fixation rate than 491 

potholes and debris on the road. This implies that uneven pavements attract greater attention 492 

from cyclists. The researchers surveyed their participants and found that uneven pavement is 493 

rated less harmful to cycling safety and suggested that the significance of attention to unevenness 494 

revealed in gaze metrics is likely due to it being very visible and noticeable to cyclists (Gadsby 495 

et al., 2022).   496 
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Studies on lane characteristics examined cycling lane width, cycling lane curvature, truck 497 

loading zone marking type, and loading zone width. Cyclists riding on wider lanes have a larger 498 

percentage of fixation time on the end of lanes and external regions and less on the near pathway, 499 

suggesting that decreased task demand on steering allows for looking more on non-task-relevant 500 

areas (Vansteenkiste et al., 2013, 2015a). When riding on a curvy path, cyclists adjust where they 501 

look to have better steering control. The inside and the center of the curvy lane received a higher 502 

percentage of fixation time when entering the curve and a lower percentage of fixation time 503 

when leaving the curve (Vansteenkiste et al., 2014a). Examining the effects of different 504 

pavement markings of the truck loading zone (i.e., a designated marked area next to the cycling 505 

lane where trucks park), cyclists have a longest total fixation duration on dashed green markings 506 

compared with white lane markings and solid green markings, showing that dashed green 507 

markings are more successful in arousing attention (Abadi et al., 2022). Compared with a wide 508 

truck loading zone, cyclists passing by trucks in a no-loading zone and a minimal loading zone 509 

have a longer total fixation duration on the truck, indicating more alertness (Jashami et al., 510 

2023).  511 

Features associated with intersection layouts include bike lane treatments at intersections 512 

and intersection openness. Cyclists entering intersections without continuous bike lanes fixate on 513 

traffic lights further ahead due to the increased need to anticipate risks (Rupi & Krizek, 2019). 514 

Comparing the effect of bike signals and bike box (i.e., a designated area at the head of a traffic 515 

lane at a signalized intersection that allows cyclists to get ahead of queuing traffic during the red 516 

light), both treatments shorten cyclist’s total fixation time on turning vehicles that pose a 517 

potential conflict for the cyclists. This could be explained by the increased ratings of perceived 518 

safety, but cyclists’ lowered attention may increase crash risk for errant drivers not yielding 519 
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(Scott-Deeter et al., 2023). Cyclists riding at spatially complex intersections with larger visibility 520 

exhibit shorter fixation durations, longer fixation distances, and larger angular differences 521 

between gaze and motion direction, interpreted as an increase in perceived risk (von Stülpnagel, 522 

2020).  523 

5.2 Human factors 524 

Human factors refer to cyclists’ characteristics, capabilities, and interactions with 525 

secondary tasks. Seventeen studies involving human factors examined the impact of age, gender, 526 

cycling experience, route familiarity, cycling speed, mental fatigue, and smartphone distractions.  527 

Cyclist age is studied by comparing children and adults and children of different ages. 528 

When tested over short indoor routes, children show similar gaze patterns as adults on medium 529 

and wide lanes when asked to cycle at their personal preferable and high cycling speeds, 530 

demonstrating that children are able to adopt a similar visual-motor strategy as adults for simple 531 

precision steering tasks (Vansteenkiste et al., 2015a). In outdoor naturalistic settings, children are 532 

found to have more fixations per second and a larger percentage of dwell time on areas not 533 

related to the cycling task such as objects along the side of the road and the surrounding area. 534 

These gaze patterns reveal children’s lower capability to prioritize safety cues and process 535 

information from peripheral sight (Vansteenkiste et al., 2017). Comparing child cyclists aged 536 

between 6 to 12 years old and 13 to 19 years old, the fixation distribution across AOIs does not 537 

vary between age groups, and both age groups manage to monitor more than 80% of the safety 538 

targets (Kircher & Ahlström, 2023).  539 

Two studies examined the impact of gender on cyclists’ visual behavior. One found no 540 

gender difference when riding on different bike facilities (Guo et al., 2023). Another found that 541 

men exhibit longer total fixation duration on the pavement markings of truck loading zones, but 542 



33 
 

both genders show a similar amount of attention on trucks (Abadi et al., 2022). Cyclists more 543 

familiar with the route and with higher levels of skill have longer mean fixation duration, longer 544 

fixation distance, and more gazes to all sides when riding in challenging locations, such as the 545 

end of a cycling track and a complex intersection (von Stülpnagel, 2020). Experienced cyclists 546 

also exhibit longer total fixation duration on traffic lights when crossing intersections (Rupi & 547 

Krizek, 2019). Cyclists with mental fatigue fixate on hazards 1.5 seconds later, indicating 548 

attention deterioration and increased danger (Zeuwts et al., 2021). Cyclists rating the test location 549 

as more dangerous present shorter mean fixation duration, shorter fixation distances, and larger 550 

fixation angles (von Stülpnagel, 2020). 551 

Cycling speed also affects where cyclists fixate on. When asked to cycle at a speed lower 552 

than their personal preference, they had a higher percent of dwell time on the near path and road 553 

canter (Vansteenkiste et al., 2013, 2014b). When cycling at higher speeds, a higher percent of 554 

fixation time is placed on the distant cycling trajectory when the lane is straight (Vansteenkiste et 555 

al., 2013, 2015a) and the inside of the road when riding on a curvy path (Vansteenkiste et al., 556 

2014a). 557 

Studies of secondary tasks provided an analysis of the influence of music, phone calls, 558 

texting, searching websites, checking bike computers, and user interface displays. One study 559 

found that listening to music slightly reduces fixations in the front road area and left area of sight 560 

(Jiang et al., 2021), while three others found no significant influence of listening to music on 561 

cyclists’ visual behaviors (Ahlstrom et al., 2016; Nygårdhs et al., 2018; Stelling-Konczak et al., 562 

2018). When engaged in phone calls, texting, and web-searching tasks, cyclists allocate fixations 563 

to the phone mainly at the expense of reduced fixations on the regions less relevant to safety 564 

(Ahlstrom et al., 2016) and decreased saccades frequency (Jiang et al., 2021). Tasks initiated by 565 
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cyclists themselves result in longer total fixation duration on the phone and maximum fixation 566 

duration on the phone compared to receiving tasks, as cyclists have more time to plan and choose 567 

preferable locations to interact with their phones (Ahlstrom et al., 2016). Higher complexity in 568 

texting tasks is associated with fewer fixations on the road ahead (Jiang et al., 2021).  Using a 569 

bike computer to monitor power output and cadence does not significantly reduce the percentage 570 

of dwell time on traffic, suggesting little influence on traffic hazard detection (Pfeifer et al., 571 

2023). Compared with reading messages from a smartphone mounted on the handlebar, using 572 

AR interfaces that display the message in a fixed location of the sight or snapped onto moving 573 

objects reduces gaze angular velocity and angular differences between fixation and cycling 574 

directions, indicating calmer gaze patterns and higher chances to detect safety hazards in the 575 

front (Zhao et al., 2023). 576 

5.3 Mode comparison  577 

Attention demand and gaze patterns differ across transportation modes. Two studies 578 

compared the gaze behaviors of cyclists to that of drivers, pedestrians, and E-scooter riders.  579 

Comparing how cyclists and drivers attend to safety-related visual cues at urban 580 

intersections, cyclists have a significantly lower percentage of fixation counts on the road ahead 581 

and a higher percentage to the sides, suggesting that cyclists have place more attention on 582 

monitoring traffic than drivers.  (Kircher & Ahlström, 2020). Comparing the fixation distribution 583 

of pedestrians, cyclists, and E-scooter riders on a shared road, pedestrians frequently look at the 584 

sides (40.3% of fixation counts, compared to 14.6% for cyclists and 15.3% for e-scooter riders), 585 

and cyclists observe the road ahead more (42.5% of fixation counts, compared to 25.2% for 586 

pedestrians and 38.6% for e-scooter riders). This indicates a comparable amount of effort put 587 

into visual attention for cycling and e-scooter riding (Pashkevich et al., 2022). 588 
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5.4 Methodology assessment 589 

Studies on methodology assessed the robustness and validity of using eye-tracking for 590 

assessing cyclist behavior. One study compared two AOI annotation methods, and four studies 591 

investigated the ecological validity of experiment settings.  592 

AOI annotation is a critical step in gaze data analysis requiring labour-intensive manual 593 

labelling. Comparing annotating AOIs frame-by-frame and fixation-by-fixation, it is found that 594 

the latter can reduce the analysis time by a factor of nine while maintaining high consistency 595 

with the classic frame-by-frame method. However, AOIs that are small in size, not frequently 596 

focused on, or inconsistently specified exhibited larger discrepancies between the two methods 597 

(Vansteenkiste et al., 2015b). For instance, when identifying fixations on the curb, which is 598 

narrow and can be specified as part of the sidewalk or part of the bike lane by different people, 599 

the traditional frame by frame method is suggested as more appropriate.    600 

Ecological validity examines whether the simulated environments resemble naturalistic 601 

cycling. Three experiment settings are examined: watching a cycling video (i.e., riding a 602 

stationary bike and facing a big screen, motion, and sight unsynchronized), immersive virtual 603 

environment (IVE) (i.e., riding a stationary bike and facing a big screen, syncing motion and 604 

sight), and Virtual Reality (i.e., riding a stationary bike with VR glasses, syncing motion and 605 

sight). Compared to naturalistic cycling, participants watching a cycling video showed less 606 

vertical fixation dispersion and less dwell time on other pedestrians and cyclists, reflecting 607 

decreased visual search when watching a video. Increasing the cycling task complexity, such as 608 

watching a video of or cycling on low-quality pavement paths, reduces the discrepancy between 609 

the two experiment settings (Zeuwts et al., 2016). Compared with the real world, cyclists in an 610 

immersive virtual environment (IVE) presented longer mean fixation duration and less vertical 611 

fixation dispersion. These less attentive gaze behaviors are likely due to the perceived safety of 612 
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cycling in simulated environments (Acerra et al., 2023; Gay et al., 2023). When cycling past a 613 

parked bus, cyclists in VR settings fixated on the bus for 20% longer than naturalistic cycling, 614 

albeit the traffic volumes were not controlled for in the two scenarios (van Paridon et al., 2021).  615 

Although there is no previous study that directly compares these three experiment settings with 616 

each other, all use stationary bikes to eliminate the risks of cycling in real traffic, which increase 617 

perceived safety of the cycling task. While the effect of less attentive visual search can be 618 

reduced by increasing cycling task complexity (e.g., cycling in more complex traffic), 619 

researchers should also be careful about other aspects of restrictions, including the limited use of 620 

peripheral vision when using the screen, the fidelity of virtual environments and the impact of 621 

motion sickness.   622 

6. Discussion 623 

The increasing use of eye tracking devices in cycling experiments has demonstrated their 624 

usefulness and effectiveness at deciphering cyclist attention and perception. However, we also 625 

uncovered inconsistencies and limitations which we focus on now.  626 

The first issue is the confusion stemming from unclear reporting of terms and definitions. 627 

As noted in section 4.2, there are varied definitions concerning whether first saccade, subsequent 628 

saccades, and blinks are included in terms such as glance and dwell, which especially affects the 629 

duration metric. Furthermore, even when focusing solely on fixations, parameters set to define a 630 

fixation are not always disclosed, and the influence of setting different fixations parameters has 631 

not been adequately explored. Four studies define a fixation as a gaze on an identical location for 632 

at least three consecutive frames. However, due to the sampling rates of different devices, two 633 

studies set the minimum fixation duration at 120ms (Vansteenkiste et al., 2013, 2015a) and the 634 
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other two at 100ms (Mantuano et al., 2017; Rupi & Krizek, 2019). Three studies cited the same 635 

literature on the relationship between fixation duration and attentive processing (Velichkovsky et 636 

al., 2002, 2003) but adopted different values. One study set the minimum fixation duration at 637 

200ms to infer extensive processing (Stelling-Konczak et al., 2018), another used 150ms to 638 

indicate hazard perception (Gadsby et al., 2022), and the third adopted 90ms to include shorter 639 

fixations in the pre-attentive processing phases (Zeuwts et al., 2021). These discrepancies in 640 

fixation parameters pose challenges when comparing findings quantitively between studies. As 641 

standardizing reporting of measures is crucial in enhancing the replicability, applicability, and 642 

comparability of the findings, the definitions and parameters need to be described in sufficient 643 

details that the measure can be replicated (Green, 2012). Future studies could further examine 644 

how different composition of glance/dwell and fixation parameters affect analysis results.  645 

Secondly, the assumption that fixation-related eye movement events indicate attention  646 

deserves careful investigation. Attention is a cognitive process that can be conceptualized from 647 

multiple perspectives. Overt attention refers to directing fixations toward the AOI, whereas 648 

covert attention indicates processing information from peripheral vision without making 649 

accompanying eye movements (Posner, 1980). Evidence from driver studies suggests that 650 

peripheral vision without direct fixation is sufficient for lane-keeping and velocity estimation 651 

(Lamble et al., 1999). Studies of smartphone treatments also discuss the role of peripheral vision 652 

in navigation when cyclists fixate on phones (Ahlstrom et al., 2016; Nygårdhs et al., 2018). The 653 

excessive focus on fixations, neglecting insights from peripheral visual information, overlooks 654 

chances to explore covert attention. Additionally, attention can be classified as bottom-up or top-655 

down. Bottom-up attention corresponds to the object’s salience (i.e., the quality of being visible 656 

or noticeable), and top-down attention refers to conscious deliberations affected by subjective 657 
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experience and evaluations (Aasvik & Fyhri, 2022; Connor et al., 2004). This distinction affects 658 

how gaze metrics are interpreted. For instance, pavement unevenness is fixated on earliest and 659 

for the longest time compared to potholes and cracks, which is explained by the size and 660 

visibility of unevenness instead of higher perceived danger (Gadsby et al., 2022). One method to 661 

assess fixation and top-down attention allocation is adopting the thinking-aloud verbal protocol 662 

(Ericsson & Simon, 1980), asking the participants to articulate their thoughts during cycling. The 663 

downside of the thinking-aloud method is that it lengthens cyclists’ fixation duration and 664 

deviates from the natural riding experience (Hertzum et al., 2009). Future research may explore 665 

more on the effect of visual salience, the role of peripheral vision, and the influence of saccade 666 

patterns and gaze sequences.  667 

The third issue is the ambiguity in concepts such as workload and stress. This can be 668 

noted from the inconsistencies of gaze metrics interpretations. Less horizontal variability is 669 

explained as both increased workload when, cycling on low-quality pavement and narrow lanes 670 

(Vansteenkiste et al., 2015a, 2017); and decreased workload, when cycling on more protected 671 

bike facilities (Guo et al., 2023). While both findings could be valid, the conflicted 672 

interpretations of horizontal fixation variability result from lack of distinctions on workload 673 

types. Cycling related tasks can be categorized into navigation, guidance, and control; the 674 

complexity and demand of the tasks are affected by varying factors (i.e., route familiarity affects 675 

navigation demand, traffic complexity affects guidance demand, and pavement smoothness 676 

affects the demand for control) (Bigazzi et al., 2022). As different cycling tasks have different 677 

attentional requirements, increased workload in control and decreased workload in guidance 678 

could lead to the same gaze pattern (i.e., increased concentration on the road). Future studies 679 

would benefit from precise distinctions on workload types when interpreting gaze metrics. 680 
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Furthermore, workload is sometimes used interchangeably with stress in the reviewed studies 681 

(Guo et al., 2023; Ryerson et al., 2021). Workload and stress are two related concepts derived 682 

from different theoretical frameworks. Stress refers to a state of a disorganized physiological 683 

system that hinders well-being, but high workload and increased arousal could also be associated 684 

with enhanced task performance (Gaillard, 1993). According to the Task Capacity Interface 685 

(TCI) model (Fuller, 2005; Fuller et al., 2008), cyclist behavior is related to a balance between 686 

task demand and cyclist’s capabilities. Cyclists adapt their mental workload to cope with task 687 

complexity change. When the task demand is low (e.g., cycling on protected facilities in low 688 

traffic environment), cyclists’ capability exceeds the task demand, and the spared capacity allows 689 

for conducting secondary tasks (e.g., using smartphones or enjoying the surrounding scenery). 690 

When the task complexity rises to a point where cycling task demands exceed the cyclist’s 691 

capacity, stress is triggered as an emotional response. One possible solution to better infer stress 692 

is to combine multiple gaze metrics. For example, complex traffic situations put a higher demand 693 

on traffic monitoring, which could be quantified as both shorter mean fixation durations and 694 

higher horizontal fixation dispersions. In addition, future studies could consider triangulating 695 

eye-tracking data with additional physiological sensors, such as Galvanic Skin Response (GSR), 696 

Skin Temperature (ST), Heart Rate (HR), and Heart Rate Variability (HRV) (Bigazzi et al., 697 

2022; Caviedes & Figliozzi, 2018; Cobb et al., 2021; Lim et al., 2022). By triangulating data 698 

from eye-tracking, physiological sensors, and self-reported surveys, researchers can better 699 

understand cyclists’ emotions and perceptions.   700 

Fourthly, optimization of AOI analysis is needed to address the time-consuming and 701 

reliability challenges regarding the current manual annotation method. Due to the large amount 702 

of data collected by eye-tracking devices, assigning fixation to AOIs remains a labor-intensive 703 
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and time-consuming task despite efforts to streamline the process. The stake of reliability is 704 

especially high when labelling AOIs that are small in size, short in fixation durations, and 705 

intertwined with proximate AOIs (Vansteenkiste et al., 2013). The reliability concern is also 706 

evident in distance-related metrics, as raters subjectively estimated the distance between the 707 

participants' location and the fixated objects based on scene videos and reference maps (von 708 

Stülpnagel, 2020). Optimization in analysis techniques is needed to address these concerns. 709 

Regarding the zone-based AOIs, annotate the zones based on required safety attention, especially 710 

at critical locations such as intersections, would be beneficial to streamline the analysis. For 711 

instance, looking left or right before crossing a street remains crucial regardless of the presence 712 

of other road users. Tracking these areas can ensure safety-relevant behaviors are captured even 713 

when specific objects are absent. Regarding the object-based AOIs, computer vision algorithms 714 

in image segmentation, such as PSPNET and Segment Anything (Kirillov et al., 2023; Zhao et 715 

al., 2017), prove to be of great potential to automate AOI annotation. The automation process not 716 

only saves time but also increases reliability. When applying one algorithm to specify fixation 717 

targets, the AOIs are specified based on the same method without subjective viewpoints. In 718 

addition to annotating the targets of fixations, these algorithms could also be applied to the whole 719 

scene video to recognize all objects appearing in sight, which opens new opportunities to study 720 

peripheral vision.  721 

Lastly, future research could explore innovative ways to leverage the data collected from 722 

the eye-tracking devices. One promising approach involves transforming the existing 2D gaze 723 

metrics analysis into 3D analysis by combining gaze data with other sensor inputs, such as GPS 724 

and gyro sensor data with ground-based LiDAR data. Moreover, as digital twins become 725 

increasingly detailed and realistic, there is a pressing need to incorporate human agents for better 726 
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simulations (Fotheringham, 2023). Researchers can utilize the comprehensive cyclists’ gaze and 727 

behavioral data to address this gap and create more lifelike cycling agents. Furthermore, the data 728 

could be utilized to develop generative artificial intelligence models capable of generating new, 729 

realistic cycling behavior data based on input information. These innovations can potentially 730 

enhance cycling behavior modelling and improve cycling satisfaction. 731 

This review has its limitations. Despite the efforts to conduct a thorough search, some 732 

articles may be missed, given the extensive and multidisciplinary nature of the literature. This 733 

review only included peer-reviewed journal articles published in English, which may have 734 

excluded relevant articles published in other venues and languages. Although caution is 735 

exercised during the extraction and summary of descriptive information, reviewer bias and errors 736 

may still be present. Our review delineates how various eye tracking metrics are used, addressing 737 

the "what" and "how". However, determining which metric performs better or is more 738 

appropriate under specific conditions is complex and falls outside the scope of this review. This 739 

is a crucial question for researchers using eye trackers, and addressing it requires careful 740 

experimental design and direct comparison. Furthermore, although our review highlights the 741 

quantitative capabilities of various gaze metrics, the findings predominantly reflect qualitative 742 

outcomes (i.e., showing directions of correlations rather than magnitudes of intensity). The 743 

considerable diversity in experimental treatments across studies and the absence of standardized 744 

metrics reporting make quantitative conclusions mostly incommensurable. Additionally, our 745 

review does not encompass critical oculomotor events such as pupil dilation, blinking, and 746 

smooth pursuit. These events could offer valuable insights into cyclists’ visual behavior from 747 

angles other than fixations. Unfortunately, they were not featured in the articles available for this 748 

review.  749 
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7. Conclusions 750 

Using eye tracking devices in cycling experiments to study cyclists’ behavior and 751 

perceptions is a relatively novel approach. The experiment design and selection of gaze metrics 752 

are vital for generating insights that can enhance safety measures and inform bicycle 753 

infrastructure planning. We reviewed 35 peer-reviewed studies and summarized experiment 754 

characteristics and gaze metrics. A total of six brands of devices appeared in our review. Apart 755 

from VR and AR headsets, only two brands (Pupil Labs and Tobii) are currently offering mobile 756 

wearables on the market. In addition to outdoor cycling, experiment settings such as immersive 757 

virtual environments (IVE) and virtual reality (VR) circumvent weather restriction and mitigate 758 

the outdoor cycling risk, at the expense of motion sickness over prolonged sessions and restricted 759 

field of view. We introduce a two-category framework to organize the variety of gaze metrics: 760 

general gaze metrics, which reveals cyclists’ cognition workload, and AOI-related gaze metrics, 761 

which help to understand cyclists’ attention allocation to visual cues. Under both categories, 762 

fixation count, duration, and distance comprise major measurements. We investigate the use and 763 

interpretation of these metrics around four areas: built environment features, human factors, 764 

mode comparisons, and methodology assessment. Five research gaps are identified that merit 765 

future endeavors: standardizing the reporting of terms and parameters, cautious interpretations of 766 

fixation and attention, clarifying concepts on workload and stress, optimizing the AOI annotation 767 

method, and applying cyclists’ eye tracking data in innovative fields. 768 

With raising awareness on inclusion and technological advancement, some eye-tracking 769 

devices have been developed to be compatible with prescriptive lenses for people in need of 770 

vision correction, and to be customized for vulnerable demographic groups including children 771 

and seniors. Some articles we reviewed have explored cycling safety factors and methods 772 

especially targeting children and young cyclists (Kircher & Ahlström, 2023; Stelling-Konczak et 773 
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al., 2018; van Paridon et al., 2019; Vansteenkiste, Cardon, & Lenoir, 2015; Vansteenkiste et al., 774 

2017; Zeuwts et al., 2021, 2023). We look forward to learning more from studies that embrace 775 

these advancements to improve the inclusiveness of cycling experiments for more equitable 776 

findings.  777 

778 
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