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Abstract 10 

In collaborative additive manufacturing (AM), sharing process data across multiple users can 11 

provide small to medium-sized manufacturers (SMMs) with enlarged training data for part 12 

certification, facilitating accelerated adoption of metal-based AM technologies. The aggregated 13 

data can be used to develop a process-defect model that is more precise, reliable, and adaptable. 14 

However, the AM process data often contains printing path trajectory information that can 15 

significantly jeopardize intellectual property (IP) protection when shared among different users. 16 

In this study, a new adaptive AM data deidentification method is proposed that aims to mask the 17 

printing trajectory information in the AM process data in the form of melt pool images. This 18 

approach integrates stochastic image augmentation (SIA) and adaptive surrogate image generation 19 

(ASIG) via tracking melt pool geometric changes to achieve a tradeoff between AM process data 20 

privacy and utility. As a result, surrogate melt pool images are generated with perturbed printing 21 

directions. In addition, a convolutional neural network (CNN) classifier is used to evaluate the 22 

proposed method regarding privacy gain (i.e., changes in the accuracy of identifying printing 23 

orientations) and utility loss (i.e., changes in the ability of detecting process anomalies). The 24 

proposed method is validated using data collected from two cylindrical specimens using the 25 

directed energy deposition (DED) process. The case study results show that the deidentified dataset 26 
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significantly improved privacy preservation while sacrificing little data utility, once shared on the 27 

cloud-based AM system for collaborative process-defect modeling.  28 

Keywords: Additive manufacturing, cloud manufacturing, deidentification, intellectual property, 29 

process-defect modeling, privacy-preserving data sharing. 30 

1 Introduction 31 

Additive manufacturing (AM) technologies have demonstrated their unprecedented capacity 32 

and flexibility in new product prototyping, component repair, and product fabrication [1]. 33 

Unfortunately, process uncertainty is still a major challenge in AM adoption, and various machine 34 

learning-based process-defect modeling methods have been developed for process monitoring and 35 

anomaly detection [2], [3]. Due to the high complexity and large variety of part designs and process 36 

parameters, a large amount of training data is usually needed to develop reliable machine learning 37 

models for anomaly detection [4]–[6]. Nevertheless, it is prohibitively expensive for a lot of AM 38 

users, especially small-to-medium manufacturers (SMMs), to gather a large dataset to train the 39 

machine learning algorithms [7]–[9], which is especially true for metal-based AM processes (e.g., 40 

directed energy deposition (DED)). 41 

A collaborative manufacturing platform poses an unprecedented opportunity for connecting 42 

multiple AM resources with various AM users, which will naturally promote training data 43 

availability [10]. This platform integrates multiple physical AM machines and their AM process 44 

data to meet the needs of demographically diverse AM users for component fabrication and in-situ 45 

process monitoring and part certification. This is accomplished by the cloud technology which 46 

allows for AM data sharing, storage, and modeling [11], [12].  As illustrated in Figure 1, a cloud-47 

based AM platform may provide AM machine access to all users [7],[13]. More specifically, users 48 

may send their component designs and g-codes to the networked machines for fabrication, with 49 
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process data being collected and aggregated for process-defect modeling [10], [14]. The 50 

aggregated data and the resulting models can be subsequently shared, providing anomaly detection 51 

solutions to all AM users, especially ones with limited data availability and AM process knowledge 52 

[4], [5].  53 

 54 

Figure 1: Overview of AM data sharing for collaborative modeling 55 

However, some AM process data (such as thermal imaging data) also contains critical product 56 

design information [8], that must be carefully protected when shared on the data-sharing platform. 57 

Otherwise, as demonstrated in Figure 1, malicious attackers or users can extract confidential 58 

information related to the product intellectual property (IP) from AM process data, leading to 59 

severe consequences for both manufacturers and their clients [15]–[17]. Two prime examples of 60 

cyber-attacks which may occur during the AM data sharing include: (i) Privacy breaches: a 61 

reidentification attack [18], [19] targeting process data may lead to severe privacy breaches [20], 62 

[21], allowing unauthorized access to the product IP information, including manufacturing 63 

parameters and design specifics. Such breaches pose a significant risk, potentially compromising 64 

proprietary processes and unique manufacturing techniques; (ii) Insider threats: malicious insiders 65 
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with access to the process data may intentionally disclose product IP or design information for 66 

personal gain or sabotage [22]. To address these risks, it is essential to develop a tool for privacy-67 

preserving AM process data sharing to facilitate knowledge exchange while masking product 68 

design information in the shared data [23]. To be more specific, data privacy and utility are defined 69 

as follows in the context of AM process data:  70 

AM Process Data Privacy refers to the capability in masking the printing trajectory 71 

information in the thermal image data shared with external collaborators, and thus preventing the 72 

re-identification of product design. It can be measured by the accuracy of a machine learning model 73 

in identifying the printing path orientation, conditioned on a specific type of machine learning 74 

models. The higher the accuracy is, the lower the data privacy will be. 75 

AM Process Data Utility denotes the overall usability of the dataset for specific modeling 76 

purposes (e.g., process-defect modelling) once shared and aggregated. It is assessed by a machine 77 

learning model's ability to accurately detect anomalies using the process data, conditioned on a 78 

specific type of machine learning models. The higher the accuracy is, the higher the data utility 79 

will be.  80 

It is important to note that the outcomes of data privacy and data utility are dependent on the 81 

specific machine learning model used for evaluating the AM datasets. Once the process data are 82 

processed to achieve a balanced level of privacy and utility, the combined dataset can be shared 83 

and utilized for collaborative process-defect modeling. In addition, the data heterogeneity caused 84 

by different original equipment manufacturers (OEMs) and other AM system specifications may 85 

be addressed by transfer learning techniques, which are widely used in learning across various yet 86 

relevant domains [8].  87 
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The objective of this study is to deidentify the product design information (manifested as the 88 

printing path orientation) in the AM thermal history, while simultaneously retaining the attributes 89 

for process-defect modelling. An adaptive AM data deidentification methodology is proposed to 90 

achieve this goal. The proposed method will generate surrogate thermal images to secure the 91 

sensitive printing path orientation information in AM thermal history data, and thus facilitate 92 

privacy-preserving and utility-aware process-defect modelling on the collaborative AM platform.  93 

It is worth noting that a commonly used approach of protecting sensitive data and improving 94 

data privacy is the use of a multi-layered protection framework, where a variety of complimentary 95 

protection techniques are integrated to provide more robust protections against data privacy 96 

breaches and IP theft [24]–[26]. Our research specifically aims to develop one layer of protection 97 

focused on using deidentification for enhanced IP protections in AM process data sharing. This 98 

topic is relatively underrepresented in current literature focused on IP protections, and it provides 99 

a potential way to remove confidential design information from AM process data while 100 

simultaneously working to ensure that the data is still usable for quality control purposes.  101 

The technical contribution of this paper is developing a novel, adaptive AM thermal process 102 

data deidentification algorithm. The proposed method can adaptively enhance the privacy of the 103 

dataset by deidentifying thermal images while maintaining the utility of the AM process data for 104 

anomaly detection. This can be achieved through two iterative steps: stochastic image 105 

augmentation (SIA) and adaptive surrogate image generation (ASIG). SIA involves random 106 

rotations of melt pool images to obscure the printing path trajectory and sensitive design 107 

information based on the validated premise that melt pool orientation is key to inferring AM 108 

process directions. ASIG then generates a surrogate image by averaging the SIA-generated images, 109 

with adaptiveness enabled by monitoring changes in melt pool geometric features (such as melt 110 
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pool area) compared to the original image. These geometric features are crucial for anomaly 111 

detection, allowing the surrogate images to retain the necessary utility for process-defect modeling. 112 

By dynamically tailoring the deidentification process to the sensitivity of the melt pool image’s 113 

geometric features, the method ensures that critical attributes essential for anomaly detection are 114 

preserved while simultaneously enhancing privacy. The impacts of the proposed method are two-115 

fold. For the AM quality control area, this method opens the venue for privacy-preserving data 116 

sharing for AM process-defect modelling. For industrial practices, using shared process data 117 

facilitates the development of cross-system in-situ process-defect models. As a result, the 118 

enhanced in-situ quality control tools can promote optimized resource allocation for post-119 

manufacturing inspection, which is usually very costly and sometimes cumbersome for AM 120 

components [27], [28]. These will collectively lead to accelerated adoption of AM technologies in 121 

various industrial practices. 122 

The remainder of the paper is organized as follows. In section 2, the relevant state-of-the-art 123 

studies are summarized, and the research gaps are identified. In section 3, the proposed adaptive 124 

deidentification methodology is introduced, and in section 4, a case study based on the directed 125 

energy deposition (DED) process is used to evaluate the effectiveness of the proposed 126 

methodology. Finally, the conclusion and future work are introduced in section 5.   127 

2 Literature Review 128 

This section summarizes the complexities of data privacy and IP protection within AM. Section 129 

2.1 highlights the state-of-the-art strategies and remaining challenges in protecting confidential 130 

information in AM. The specific IP protection needs in AM data are analyzed in Section 2.2. 131 

Advancements in image data deidentification for enhancing privacy in AM data sharing are 132 

discussed in Section 2.3. Finally, through a research gap analysis (Section 2.4), opportunities for 133 
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further investigation and development are identified to advance knowledge and practices in data 134 

privacy in the field of AM. 135 

2.1 Current Solutions and Challenges of Data Privacy and IP Protection in AM 136 

The data security and privacy preservation in cloud-based manufacturing systems is becoming 137 

increasingly important for individual users who are participating and sharing information in these 138 

frameworks. In terms of data privacy, IP is a closely related aspect [29], especially within AM 139 

applications. When sharing AM process data (e.g., thermal history), IP theft can occur through re-140 

identification and reverse engineering attacks, where critical design related information is 141 

embedded into the process data. From there, the sequential print trajectories and layer-wise 142 

patterns can be directly leveraged to extract the product design geometry [9]. The connection 143 

between the AM process data (especially thermal process data) and printing path trajectories has 144 

been highlighted in several recent works [9], [30], [31]. These works have highlighted this critical 145 

vulnerability, emphasizing the need to review and develop IP protections for AM process data. 146 

These protections must be tailored to the unique needs of AM applications. Both data-level and 147 

model-level strategies have been used for IP protection.  148 

Various data-level operations used in IP artifacts protection include watermarking, access 149 

control, cryptography-based methods, and anonymization. For these four commonly used 150 

methods, their characteristics, working mechanisms and corresponding limitations are summarized 151 

below. Firstly, watermarking and access control measures are indirect approaches of IP protection 152 

[32]–[35]. For example, watermarking generally embeds a unique mark on the digital or physical 153 

artifact that identifies the source and ownership of the product IP [33], [35]. This ensures that 154 

ownership of the design and information is clearly identifiable; however, this method does not 155 

prevent the information from being accessed or used in a malicious manner. In addition, access 156 



8 
 

control aims to prevent unauthorized access to the data by controlling access and managing the 157 

storage of sensitive data [36]. However, access control does not add any direct protection to the 158 

data. Several limitations and challenges for access control include compromised credentials, 159 

malicious insiders, and even human errors [37], [38]. Secondly, cryptography- and anonymization-160 

based approaches aim to provide data-level protection by directly manipulating the data in an either 161 

reversible or irreversible manner. For example, cryptography-based methods, most employed as 162 

encryption methods, cover a family of different approaches aimed at obscuring information into 163 

an unrecognizable state using an encryption key. After encryption, the intended party is able to 164 

access the original information only if they have the corresponding decryption key [39]–[42]. This 165 

allows the data to be transformed into a protected state, where it can be difficult for someone to 166 

maliciously access the data and re-identify IP embedded in the data. Despite of the increasing 167 

popularity of encryption methods, such as homomorphic encryption [43], they demonstrate a few 168 

notable limitations. Firstly, the use of encryption and decryption keys presents an added security 169 

vulnerability to the system [44], [45]. If the right decryption key is obtained through an attack, 170 

such as a brute-force attack [46], [47],  the protected data can be directly accessed and the IP 171 

information stolen. Furthermore, encryption algorithms can be highly complex, which requires a 172 

large pool of resources, and can also potentially limit computational capabilities on the encrypted 173 

data [48].  174 

 An alternative method for enhancing IP protections is anonymization, also referred to as 175 

deidentification. The objective of anonymization is to remove or obscure the confidential 176 

information contained within the dataset in a non-reversible manner [49], [50]. This approach has 177 

been leveraged in a wide range of privacy-related applications, including in healthcare and facial 178 

image anonymization [51], [52]; however, it also provides a strong potential to provide direct IP 179 
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protections for AM data sharing applications. Through anonymization, the sensitive information 180 

is obscured so that the availability of sensitive, IP-related information is severely limited, while 181 

simultaneously maintaining the original structure and usability of the data [52]. In general, there 182 

are two key limitations to the use of anonymization, including (1) the balance and tradeoff between 183 

improved protections and decreased data usability, where anonymization can lead to potentially 184 

degraded performance of the data in downstream tasks [53], [54], and (2) the threat of re-185 

identification attacks [55], [56], which can potentially identify compromising data post-186 

anonymization.  187 

In addition to the data-level approaches, there are also model-level techniques to ensure data 188 

privacy and IP protection, including federated learning (FL) and differential privacy (DP). FL 189 

methods offer additional layers of security by enabling collaborative learning without sharing raw 190 

data [57], [58]. Specifically, FL allows multiple entities to collaboratively train a model without 191 

sharing raw data, significantly reducing the risk of data breaches and maintaining privacy by 192 

keeping data decentralized [57], [59]. However, FL can be challenged by the heterogeneity of data 193 

across different entities, leading to potential biases and discrepancies in model performance. 194 

Additionally, the communication overhead between entities can be significant, affecting the 195 

efficiency and scalability of the approach [60], [61] .  196 

On the other hand, DP introduces noise to the data or the learning process to prevent the 197 

extraction of sensitive information from the outputs [62]. This technique ensures that individual 198 

data points cannot be distinguished from aggregate data, providing strong privacy guarantees even 199 

if the model outputs are accessed [63], [64]. DP, while providing strong privacy guarantees, can 200 

impact the accuracy of the ML models due to the added noise, making it critical to balance privacy 201 

and utility effectively [65],[64].  202 
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2.2 IP Protection Needs in AM Data  203 

There are diversified data streams generated in the AM production. Properly categorizing 204 

these data according to their relevance to the product IP information is essential for effective data 205 

management and IP protection in AM [9], [66]. The key AM data can be categorized into three 206 

different types of attributes, as summarized in Table 1. More information regarding this 207 

categorization of the AM attributes can be found in [9]. 208 

Table 1: Key categorizations for AM attributes 209 

Attribute Description Example AM Features 

Sensitive 

Attribute 

Attributes that directly relate to 

compromising design data and pose a 

significant risk of IP disclosure.  

• Design Files (CAD) 

• G-code Files 

• Print Trajectory Information 

• Complete Thermal History 

Quasi-identifier 

Attributes that do not pose a 

significant IP disclosure risk, but 

compromise product IP information 

when used with other attributes. 

• Single Thermal Images 

• Individual Pixels 

• Layer Location 

• Image Index 

Insensitive 

Attribute 

Attributes that do not relate to the 

design information in any capacity. 

• Quality Control Labels 

• Extracted Descriptive Features 

 210 

Given this categorization, the complete thermal history is considered as a sensitive attribute 211 

and thus needs to be protected before sharing with other users. Otherwise, the product IP can be 212 

disclosed to external users. For instance, during part fabrication using DED process, the in-situ 213 

thermal history can be collected in the form of thermal images for process monitoring and anomaly 214 

detection [27], [28]. As shown in Figure 2, the sensitive attributes of thermal history data include 215 

the printing trajectory that can be extracted from the images, as this information can be used to 216 

reversely decipher the global print path and part design. This is similar to the idea of side-channel 217 

attacks in AM, which can be used to infer critical design and process information, leading to 218 

significantly compromised IP [46], [67]. As thermal history data are highly informative for defect 219 

detection and process monitoring, there is an urgent need in effective masking and deidentification 220 
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of the thermal history data before sharing for modelling purposes [68]–[70]. Moreover, during the 221 

deidentification to mask the IP information, it is important to note that there is usually a tradeoff 222 

between data privacy and the resulting data utility [71]. This tradeoff is very important, as thermal 223 

history plays a significant role in metal-based AM process monitoring. In general, applying a naïve 224 

or too obstructive deidentification method, such as pixilation or blurring, can result in a drastic 225 

loss in AM process data utility for anomaly detection [72], [73]. Therefore, there is a critical need 226 

to ensure a balance between AM process data privacy and AM process data utility during 227 

deidentification. 228 

 229 

Figure 2: Printing path trajectories that can be derived from the melt pool images, where 𝜃𝑡 230 

represents the instantaneous printing direction inferred from each image (𝑡 = 1,2, … ,8). 231 

2.3 Image Data Deidentification for Privacy-preserving Data Sharing in AM 232 

The deidentification, commonly known as anonymization, is an attractive solution that has the 233 

potential to achieve the goal of data privacy and IP protection [74]. In general, image data 234 

anonymization methods transform the original images to remove the sensitive information while 235 

retaining the useful features of interest to preserve user data privacy [75]. It depends on the 236 

information that should be removed/anonymized, and on the information that should remain. 237 
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However, balancing utility with anonymity presents significant challenges. Considering this, to 238 

promote data privacy while maintaining data utility, various image data (i.e., face) deidentification 239 

algorithms have already been developed [50], [72], [76]–[80]. Moreover, the deidentification 240 

methods exhibit unique strengths of (i) non-reversibility in traditional applications with less 241 

impacts on data usability [79],[81]; (ii) providing data privacy without necessitating the complex 242 

structures and systems (i.e., encryption keys) [82]. Furthermore, deidentification can be 243 

strategically employed as part of a layered approach to security, alongside other traditional security 244 

measures, to enhance its effectiveness [74], [83], [84]. Ultimately, the utility-awareness and 245 

privacy-preserving nature of data deidentification makes it a compelling solution, especially in 246 

collaborative environments.  247 

Recently, a novel adaptive design deidentification method was developed to deidentify AM 248 

process thermal images by integrating AM process knowledge to isolate and combine the most 249 

similar images to better mask the printing path trajectory while simultaneously preserving data 250 

usability [9]. This method demonstrates good performance; however, it leverages a pre-defined 251 

reference dataset to perform deidentification. Because of the use of this external reference set, the 252 

privacy gain is directly proportional to the diversity, quality and size of the reference data set [9]. 253 

Even though there has been advancement in this field, further study is required to develop effective 254 

AM process data deidentification methods, and reliable methods to incorporate them into the AM 255 

workflow in cloud-based AM systems.  256 

2.4 Research Gap Analysis  257 

Considering the limitations of different data privacy and IP protection techniques, applying a 258 

multi-layered approach is generally more advantageous [25], [85]. In the AM domain, most 259 

research has focused on techniques like encryption-based approaches. However, less research has 260 
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been conducted to developing de-identification-based methods. Exploring de-identification for 261 

AM applications can fill this research gap and enhance IP confidentiality protections. The proposed 262 

work aims to develop de-identification-based data privacy measures, offering an additional layer 263 

of security for AM process data shared in cloud-based systems. Specifically, de-identification-264 

based techniques are well-suited for thermal image data sharing, as they can mask sensitive IP 265 

information embedded in the dataset [63]. Despite progress, gaps remain in protecting sensitive 266 

information in AM process images, summarized as follows: 267 

1) The dynamic properties of thermal images make implementing global de-identification 268 

methods extremely difficult. 269 

2) Limited data availability and recurring angular identities in thermal images challenge the 270 

application of existing de-identification methods. 271 

3) Evaluating AM-based de-identification methods is challenging due to their dependency on 272 

the quality of the reference image set. 273 

Therefore, developing a new adaptive thermal history de-identification method that better 274 

balances data privacy and utility without requiring a reference dataset is essential. This method 275 

can ultimately enhance the privacy of printing path-related design information, reinforcing the 276 

protection of sensitive information in the AM data sharing platform. 277 

3 Proposed Methodology 278 

The proposed method can adaptively deidentify the instantaneous printing path from each 279 

individual image to enhance AM process data privacy, creating a surrogate melt pool image for 280 

each original image. More specifically, the generation of the surrogate melt pool image involves 281 

stochastic image augmentation (SIA) and adaptive surrogate image generation (ASIG) which are 282 

coordinated by the monitoring mechanism of the melt pool geometric feature. The rationale of the 283 
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proposed method is based on the process knowledge of DED processes where the printing direction 284 

governs the melt pool orientation. Therefore, the random rotation operations in SIA directly 285 

perturb the angular orientation of each melt pool, significantly enhancing the obfuscation of the 286 

printing path trajectory. Subsequently, ASIG adaptively averages the multiple randomly perturbed 287 

melt pool images to generate the surrogate image, where the melt pool geometric features are 288 

leveraged as a stopping criterion for the perturbation. Both SIA and ASIG significantly raise the 289 

barrier for extracting sensitive design information in the original melt pool images.  290 

Figure 3 illustrates the framework of the proposed methodology and the visualization of the 291 

results at each step. The key components of  Figure 3 are summarized as follows: (a) illustrates a 292 

step-by-step workflow of the proposed method; and (b) through (f) illustrate the visualization of 293 

the results obtained at each step, respectively. In Figure 3, 𝐈𝑡 and 𝐗𝑡 (𝑡 = 1,2, … 𝑛) denote the 294 

original and centered image collected at time 𝑡, respectively. 𝐗𝑡(𝜃𝑚) denotes the rotated images 295 

with the randomly generated target orientation 𝜃𝑚 (𝑚 = 1,2, … 9), and 𝐒(𝑚)
𝑡  denotes the surrogate 296 

thermal image. The absolute geometric feature change can be calculated as |𝑔(𝐒(0)
𝑡 )  − 𝑔(𝐒(𝑚)

𝑡 ) |   297 

where 𝑔(∙) denotes the function to compute the melt pool geometric feature of 𝐒(𝑚)
𝑡 .  𝑚𝑡

∗  represents 298 

the optimal number of artificial images used for generating the surrogate image for 𝐗𝑡, and the 𝜆 299 

value is a predefined threshold that governs the maximum allowable geometric feature change, 300 

balancing privacy and utility. A larger 𝜆 improves privacy by incorporating more SIA-generated 301 

images, but excessive values can cause significant changes in melt pool geometry. 302 
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 303 

Figure 3: Overall workflow of the proposed methodology. 304 

3.1 Preprocessing of Melt Pool Images 305 

Let 𝐈𝑡 ∈ ℝ𝑟×𝑐 denote the original melt pool image captured at time 𝑡, which is an 𝑟 × 𝑐 306 

dimensional matrix with the temperature measurement stored at each pixel. Each melt pool images 307 

are firstly pre-processed through the centering operation, where the melt pool of each image is 308 

shifted to the center of the field of view. Essentially, this centering operation removes the peak 309 

temperature location variability and thus reduces its impact on the geometric attributes of melt 310 

pool. In this sense, the geometric features of the surrogate images will have a shared baseline and 311 

are only determined by the adaptive image deidentification. Specifically, the centering operation 312 

is illustrated in  Figure 3(c), and the resulting image (denoted as 𝐗𝑡) can be obtained using the 313 

Equation (1),  314 
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𝐗𝑡 = 𝐶 (𝐈𝑡 , ((⌊
𝑟𝑡

2
⌋ − 𝑝𝑟

𝑡) , (⌊
𝑐𝑡

2
⌋ − 𝑝𝑐

𝑡))) (1) 

where 𝐗𝑡 ∈ ℝ𝑟×𝑐 denotes the centered image and the function 𝐶(∙,∙) denotes the image translation 315 

operation [86] with the corresponding image and translating vector of ((⌊
𝑟𝑡

2
⌋ − 𝑝𝑟

𝑡) , (⌊
𝑐𝑡

2
⌋ − 𝑝𝑐

𝑡)). 316 

Here, ⌊
𝑟𝑡

2
⌋ and ⌊

𝑐𝑡

2
⌋ denotes the row and column coordinates for center point of the field of view, 317 

which is the target coordinates that the peak temperature location of the melt pool is moved to. In 318 

addition, 𝑝𝑟
𝑡 and 𝑝𝑐

𝑡 denotes the row and column coordinates of the original peak temperature 319 

location in  𝐈𝑡. 320 

3.2 Adaptive Image Deidentification 321 

The proposed adaptive image deidentification algorithm is accomplished by integrating two 322 

iterative steps, i.e., stochastic image augmentation (SIA) and adaptive surrogate image generation 323 

(ASIG). Specifically, SIA technique is implemented through random rotation to change the 324 

orientation of the melt pool within an image, making it difficult to identify the nominal printing 325 

path trajectory or infer any sensitive design information based on its orientation. This SIA scheme 326 

is under the premise that the melt pool orientation is the major feature to infer the instantaneous 327 

printing directions of the AM process. This premise has been validated in the literature for layer-328 

wise thermal image time series analysis [27], [87].  Moreover, the ASIG is applied to generate a 329 

surrogate image by averaging the multiple SIA-generated images. The adaptiveness of ASIG is 330 

enabled by monitoring the melt pool geometric feature changes in the surrogate image from its 331 

original counterpart. The geometric features of melt pools, such as melt pool area, are critical 332 

process features for anomaly detection without AM design information. Therefore, monitoring the 333 
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change in the geometric features for each melt pool will assure the surrogate thermal image 334 

maintain comparable utility related information for process-defect modeling.  335 

Definition 1. Stochastic image augmentation (SIA): The SIA procedure is proposed to 336 

stochastically generate artificial melt pool images which share identical melt pool geometric 337 

features with the original image by the image rotation operation. This is based on the engineering 338 

knowledge that the orientation of the melt pool is the major feature that discloses the printing 339 

trajectory information in the thermal history. The formulation of SIA is illustrated in Equation (2). 340 

SIA: 𝐗𝑡(𝜃𝑚) = 𝑅(𝐗𝑡, 𝜃𝑚 )               𝜃𝑚~Unif(0, 2𝜋)        (2) 

where 𝐗𝑡(𝜃𝑚) ∈ ℝ𝑟×𝑐 denotes the SIA generated image in the 𝑚-th iteration. The function 341 

𝑅(∙,∙) denotes the image rotation operation given the original image 𝐗𝑡, and the randomly 342 

generated target orientation 𝜃𝑚  with (𝑚 = 1,2, … 9), sampled from a uniform distribution ranging 343 

from 0 to 2𝜋.  344 

In the proposed algorithm, the ASIG is established to iteratively synthesize the SIA generated 345 

images one by one, as illustrated in Equation (3). The stopping criteria for image synthesis is based 346 

on the similarity of the melt pool geometric features of the synthesized image 𝐒(𝑚)
𝑡  compared with 347 

the original image 𝐒(0)
𝑡 , as illustrated in Equation (4).   348 

ASIG: 𝐒(𝑚)
𝑡 = {

𝐗𝑡 ,                                  𝑚 = 0
(𝑚−1)𝐒(𝑚−1)

𝑡 +𝐗𝑡(𝜃𝑚)

𝑚
,             𝑚 = 1,2,3 …

  (3) 

Stopping Criteria: 𝑚𝑡
∗ = min {𝑚 ||𝑔(𝐒(0)

𝑡 )  − 𝑔(𝐒(𝑚)
𝑡 ) | ≥  𝜆}  (4) 

where 𝐒(𝑚)
𝑡 ∈ ℝ𝑟×𝑐 represents the surrogate thermal image, which takes an average of the 𝑚 SIA 349 

generated images 𝐗𝑡(𝜃𝑚), obtained in Equation (2). As the 𝑚 value increases, more diversely 350 
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rotated images are averaged to generate 𝐒(𝑚)
𝑡 , resulting a better masking of the original printing 351 

orientation in 𝐗𝑡. In the meantime, an excessively high value of m may lead to a significant change 352 

in the melt pool geometry. This will affect the process data utility, since the melt pool geometric 353 

features, especially the melt pool area, are strongly correlated with the anomaly related information 354 

[8], [88], [89]. Therefore, a melt pool geometry-based stopping criterion is incorporated in 355 

Equation (4), where g(∙) denotes the function to compute the melt pool geometric feature of 𝐒(𝑚)
𝑡 , 356 

such as area, eccentricity, major axis length, and minor axis length. The geometric properties of 357 

melt pool images are determined through a two-step process. First, the melt pool images undergo 358 

binarization to distinguish between the two regions above and below the melting temperature of 359 

the feedstock material. This binary transformation identifies the melt pool region in the image, and 360 

the specific geometric features of the melt pool region can be calculated using methods in [90]. 361 

The flow diagram of melt pool geometric feature extraction is demonstrated in Figure 4. 362 

 363 

Figure 4: Flow diagram of melt pool geometric feature extraction. 364 

Figure 3 (d) and (e) also demonstrate the workflow involved in image augmentation and 365 

surrogate image generation. The first row includes the original image (when 𝑚 = 0), followed by 366 

SIA generated images (𝑚 = 1, 2, 3). During SIA, the randomly generated 𝜃𝑚 values change with 367 

each iteration 𝑚, altering the printing path trajectory. Subsequently, the surrogate images are 368 

generated by averaging the SIA generated image series. Combining more SIA generated images 369 

in the surrogate image can better hide the original printing trajectory, but it may also alter the 370 
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geometric attributes of the melt pool from its original form, which have impact on data usability. 371 

To address this, a stopping criterion is introduced to specify the maximum allowable change in 372 

the geometric attributes of the melt pool. 373 

Furthermore, in Equation (4), 𝑚𝑡
∗ denotes the optimal number of artificial images used to 374 

generate the surrogate image for 𝐗𝑡. In addition, the 𝜆 value is a pre-defined threshold or stopping 375 

criteria that provide the maximum allowable value of the geometric feature change. Proper 376 

selection of the 𝜆 value can achieve the trade-off between AM process data privacy and utility. For 377 

a better privacy gain, a larger 𝜆 value is usually preferred, as it allows for more SIA generated 378 

images being incorporated into the surrogate image. However, a larger 𝜆 value may lead to a 379 

dramatic change in the melt pool area compared to the original melt pool, and therefore it cannot 380 

be too big in order to avoid significant change in the melt pool geometric features. In the case 381 

study, we examined the impacts of the 𝜆 value on the resulting average 𝑚𝑡
∗. 382 

The proposed iterative method will assure effective use of the SIA generated images, since it 383 

will guarantee that (𝑚𝑡
∗ − 1) SIA generated images are used in the final surrogate melt pool image. 384 

The ASIG method is designed under the working hypothesis that the series of the absolute 385 

geometric feature change, i.e., |𝑔(𝐒(0)
𝑡 )  − 𝑔(𝐒(𝑚)

𝑡 ) |, will be non-decreasing as 𝑚 gets larger (as 386 

illustrated in Figure 3(d)). This hypothesis is realistic since the more SIA generated images 387 

involved in ASIG, the more different 𝐒(𝑚)
𝑡  will be from 𝐗𝑡 . 388 

3.3 Surrogate Image Post-processing 389 

The resulting surrogate images 𝐒𝑡(𝑚𝑡
∗) may possess some undesirable image artifacts due to 390 

the image rotation operation in SIA. Those artifacts usually present in the background of the melt 391 

pool images with lower temperature measurements. Therefore, the image thresholding technique 392 
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can be employed to remove these artifacts. Therefore, the 𝐒𝑡(𝑚𝑡
∗) is processed with the soft 393 

thresholding operation to obtain the final deidentified surrogate images based on the Equation (5) 394 

as follows;  395 

𝐙𝑡  = {
𝐒𝑡(𝑚𝑡

∗) − 𝑇0,    if 𝐒𝑡(𝑚𝑡
∗) ∈ ℛ𝑢 

0,                      if 𝐒𝑡(𝑚𝑡
∗) ≤ 0

 (5) 

where 𝐙𝑡 ∈ ℝ𝑟×𝑐 denotes deidentified surrogate melt pool images thresholded [27],[91] using a 396 

specified temperature range of interest ℛ𝑢 = [𝑇0, +∞) with a tunable lower bound of 𝑇0. This 397 

post-processing step can also reduce the variation in the background of the melt pool images, which 398 

will accelerate the training of machine learning algorithms for process-defect modeling.  399 

The algorithm of the proposed methodology is illustrated in Algorithm 1. Each melt pool 400 

image is firstly processed through Algorithm 1 for deidentification to generate a surrogate image, 401 

which will be shared on the platform for collaborative process-defect modeling. 402 

Algorithm 1: SIA-ASIG Melt Pool Image Deidentification 

Input: Original image set  {𝐈𝑡 ∈ ℝ𝑟×𝑐}, stopping criteria 𝜆 

Step 1: Initialization. 

1.1 Center 𝐈𝑡 to obtain 𝐗𝑡  

1.2 Set 𝑚 = 0 

Step 2: Adaptive Image Deidentification. 

while |𝑔(𝐒(0)
𝑡 )  − 𝑔(𝐒(𝑚)

𝑡 ) | ≤ 𝜆 do 

2.0 Set 𝑚 = 𝑚 + 1  

2.1 Perform SIA to obtain 𝐗𝑡(𝜃𝑚) ∈ ℝ𝑟×𝑐 based on Equation (2). 

2.2 Perform ASIG to generate 𝐒(𝑚)
𝑡  based on Equation (3) - (4), and  

end while 

Store the surrogate image 𝐒𝑡(𝑚𝑡
∗). 

Step 3: Surrogate Image Post-processing. Post-process 𝐒𝑡(𝑚𝑡
∗) to obtain the deidentified 

image 𝐙𝑡 using Equation (5). 

Output: Deidentified surrogate image set {𝐙𝑡 ∈ ℝ𝑟×𝑐}. 

 403 

3.4 Evaluation of Deidentification Method  404 

It is essential to examine the privacy-utility trade-off in the deidentification of AM process 405 
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data. Two critical deidentification performance measures based on classification metrics are used 406 

to evaluate the design attribute deidentification performance. To assure a fair comparison, the same 407 

classifier is selected to compare the performance changes before and after the deidentification.  408 

A convolutional neural network (CNN) is used for performance evaluation to establish the 409 

classification models for predicting anomalies and the angular identities of printing path 410 

trajectories. During evaluation, angular identities are treated as a multi-class classification 411 

problem, while anomalies are considered a binary classification task.  CNN is selected for the 412 

following reasons [92]–[95]: (1) It can automatically learn spatial hierarchies of features, which is 413 

essential for capturing the intricate details in melt pool images. (2) It offers robustness to variations 414 

in image properties, such as scale and orientation. (3) CNNs can effectively handle large datasets 415 

and complex patterns, making them suitable for image analysis. (4) CNNs are capable of feature 416 

extraction and classification in a single integrated framework, simplifying the model architecture. 417 

Furthermore, CNNs have demonstrated proven success in numerous image processing applications 418 

[96], [97]. 419 

The AM data privacy performance is measured before and after deidentification using the 420 

accuracy of a CNN model in identifying the printing path orientation. Higher accuracy indicates 421 

lower data privacy. In this study, the privacy gain (PG) can be computed to evaluate the 422 

performance of deidentification by assessing the improvement in data privacy compared to the 423 

original dataset. This assessment is based on the CNN model's classification accuracy of printing 424 

orientations. Thus, the equation for AM data privacy gain can be derived as follows: 425 

PG =  𝑍base
acc − 𝑍deid

acc  (6) 

where 𝑍base
acc  denotes the printing direction classification accuracy of original images and 𝑍Deid

acc  426 

represents the classification accuracy after deidentification of melt pool images. In cases of PG 427 
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evaluation metric, accuracy is used as the label of interests is balanced, whereas for imbalanced 428 

label information, the Fscore metric can be adopted. On the other hand, AM data utility can be 429 

defined as CNN model's ability to detect anomalies of AM process data accurately. The higher the 430 

accuracy is, the higher the data utility will be. Similarly, the utility loss (UL) can be computed to 431 

evaluate the performance of deidentification by assessing the improvement in AM data utility 432 

compared to the original dataset. The change of the anomaly classification percentage after 433 

deidentification of the melt pool images can be formulated as follows, 434 

UL =  𝑍Deid
Fscore − 𝑍Base

Fscore (7) 

where 𝑍Base
Fscore denotes the Fscore value based on the anomaly detection results of original images 435 

and 𝑍Deid
Fscore represents the Fscore percentage based on deidentified melt pool images. Here, the 436 

minimized UL is desirable to retain data utility in the surrogate melt pool images. It is worth noting 437 

that due to the imbalanced nature of the anomaly data, the Fscore metric is leveraged [9]. 438 

It is worth noting that the evaluation metrics of privacy gain and utility loss find application in 439 

various research domains beyond deidentification methods, particularly in the broader context of 440 

privacy-preserving data analysis and machine learning. In the field of differential privacy, privacy 441 

gain and utility loss serve as essential metrics for assessing the impact of privacy-preserving 442 

mechanisms on data utility[98]. Furthermore, in privacy-preserving data mining, metrics such as 443 

privacy gain and utility loss are commonly used to quantify the compromise between privacy 444 

protection and the usefulness of data for analysis [99]. Recent research also has focused on various 445 

aspects of privacy and utility trade-offs, considering the implications of different deidentification 446 

methods [8], [9], [100], [101]. 447 
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4 Case Study 448 

In this section, the proposed method is validated using the data collected from real-world 449 

experiments using the directed energy deposition (DED) process. Both the privacy gain and the 450 

data usefulness are quantified during the validation of the proposed method.  451 

4.1 Experimental Setup and Data Description 452 

An OPTOMEC LENS 750 machine equipped with a co-axial pyrometer camera for thermal 453 

image monitoring, as shown in Figure 5, was used to fabricate two Ti-6Al-4V cylindrical 454 

specimens. Process parameters used to fabricate the specimen are summarized in Table 2. The 455 

dimensions of the fabricated specimens are 8mm (diameter) by 90mm (length). These cylindrical 456 

specimens are commonly employed in material testing and mechanical characterization [102]. A 457 

segment of approximately 30 mm is machined and X-ray scanned for porosity analysis for each 458 

cylinder. Moreover, cylindrical specimens facilitate the exploration of diverse angular identities in 459 

the dataset which are also available in complex AM component fabrication.  460 

The melt pool images were captured by a dual-wavelength pyrometer (Stratonics, Inc.) during 461 

part fabrication. The pyrometer has a nominal image collection rate of about 6.4 Hz. Observed 462 

thermal images are presented as matrices with each pixel recording the temperature value between 463 

1000-2500°C. The original dimension of the thermal images is 752 by 480. To reduce the 464 

dimensions, the irrelevant regions that do not contain the melt pools were first cropped. Moreover, 465 

the g-codes of the two specimens were used to determine the instantaneous printing directions of 466 

each thermal image in both datasets. Also, because the AM thermal process data showed shifting 467 

trends with respect to the building layers, only the data after layer 20 was used to tune and test the 468 

performance of the proposed algorithm. Also, combining both datasets will result in four different 469 

angles and 2,458 images of thermal images to use for experimentation. 470 
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 471 

Figure 5: Experimental setup and data collected. 472 

After the part fabrication, the specimens were inspected using a high-resolution X-ray 473 

computed tomography system (Skyscan 1172), which is capable of examining the internal 474 

structures of the AM parts with a fine resolution of 1μm. The manufactured specimens were 475 

inspected to detect any process-induced porosity. The outputs of the X-ray CT characterization 476 

were used to label the normal and abnormal melt pool images. The X-ray CT results contain the 477 

size, morphology, and location of the detected defects. It is worth noting that only Part 1, which 478 

consists of 1616 images with anomaly label information, has been inspected for internal defect 479 

detection, thus providing images for utility-related evaluation. However, both datasets combining 480 

Part 1 and Part 2, which consist of 2,458 images with angular orientation label are used to evaluate 481 

the privacy related metric.  482 

Table 2: Process parameters used for the two parts [9]. 483 
 484 

Process Parameters Part 1 Part 2 

Scan speed 40 inch/min 50 inch/min 

Powder feed rate 3 rpm 2.5 rpm 

Hatch spacing 0.02 inch 0.025 inch 

Power 300 W 350 W 
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Layer thickness 0.015 inch 0.015 inch 

Number of thermal images utilized 1,616 842 

Number of layers in the build 69 55 

Number of anomalies 138 (6%) N/A 

Infill pattern 
Unidirectional 

(0°/180°) 

Unidirectional 

(60°/180/300°) 

4.2 Benchmark Method Selection  485 

In this study, two benchmark methods were considered to compare with the proposed method.  486 

Benchmark Method 1, also known as the Adaptive Design De-identification for Additive 487 

Manufacturing (ADDAM) methodology  [9], incorporates AM process knowledge into an adaptive 488 

de-identification procedure. This mask the printing trajectory information in the thermal history of 489 

metal-based AM, which would otherwise reveal significant details about the printing path. The 490 

ADDAM method was selected because it has already been compared with the state-of-the-art 491 

method, which uses a global k-anonymization approach. This traditional approach anonymizes 492 

each sample image using a constant number of k-closest neighbours rather than allowing an 493 

adaptive k value for each image. This reflects the conventional global k-anonymization techniques 494 

commonly employed in past methods, particularly in k-same methods [9]. It is also worth noting 495 

that the ADDAM method has demonstrated better performance in both privacy gain and utility 496 

loss than the global 𝑘-anonymization approach. Essentially, in the ADDAM method, the 497 

application of vectorized Principal Component Analysis (vPCA) involves extracting key features 498 

from both the sample image and the reference image set. The PCA is a statistical technique widely 499 

used for dimensionality reduction, data compression, and pattern recognition [103]. In the context 500 

of image analysis, PCA helps identify the most significant patterns or features by transforming the 501 

original data into a new set of uncorrelated variables called principal components. These 502 

components capture the variance in the data, allowing for a more efficient representation. In the 503 
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specific case of vPCA-based features, the technique involves vectorizing the image data, which is 504 

essentially flattening each image into a vector format. The resulting vectors are then subjected to 505 

PCA and the principal components are used as features for subsequent analysis. This process 506 

enables the extraction of key information from the images while simultaneously reducing the 507 

dimensionality of the data, making it computationally more manageable, and preserving essential 508 

patterns. Specifically, ADDAM method is developed leveraging constraints related to build layer, 509 

angular identity, and Euclidean distance [9]. These constraints are unique to their adaptive 510 

algorithm and provide two key advantages: (1) provides the ability to be tuned and incorporate 511 

user control on the trade-off of data privacy and usability. (2) works towards ensuring that the 512 

deidentification is balanced across each potential angular identity [9].  513 

Furthermore, Benchmark Method 2, termed Thermal Image Rotation for De-identification 514 

(TIRD), centers the melt pool in the field of view of the thermal images and then rotates all images 515 

of various orientations in the same orientation. The main objective of this process is to effectively 516 

hide the original printing path trajectory information by applying one rotation operation. 517 

For a fair comparison with the proposed method, the same image post-processing method in 518 

Section 3.3 has been applied to the surrogate images generated from both benchmark methods. 519 

After generating the surrogate images, classification techniques are applied for evaluation. The 520 

ADDAM method has been recreated using a representative grid of user-defined parameters and 521 

the same convolutional neural network (CNN) classifier framework as the proposed method to 522 

evaluate performance. Furthermore, the TIRD method applies same CNN classifier for a fair 523 

comparison with the proposed method.  524 

4.3 Evaluation Procedure  525 

As classification-based approach is adopted for quantification of the performance metrics of 526 
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data utility and privacy, the labeling information is essential for supervised machine learning. In 527 

this case, Part 1 consists of both anomaly and printing path related label information whereas Part 528 

2 consists of only instantaneous print orientations label. Therefore, for evaluating the data utility, 529 

the data set of Part 1 was considered whereas for privacy evaluation the combined data of Part 1 530 

and Part 2 were leveraged. In addition, when evaluating the proposed method, the datasets of 531 

before and after deidentification were randomly split into the training (76%), tuning (10%) and 532 

testing sets (14%) in a stratified manner. Basically, the tuning dataset are leveraged to tune the 𝜆 533 

value that is also associated with the parameter of optimal number of SIA (𝑚𝑡
∗).  On the other 534 

hand, for the benchmark method 1 evaluation, the dataset was randomly split into the reference 535 

(30%), training (42%), tuning (14%) and testing sets (14%). In benchmark method 1, the 536 

independent reference dataset was used for the deidentification process, which basically generates 537 

the difference between the data splitting with the proposed method. While the specific data 538 

splitting may be different between the benchmark 1 and the proposed method, the evaluation 539 

metrics used to compare the performance of the methods can still be comparable. This is because 540 

the evaluation metrics are calculated based on the same percentage of the test set. Similarly, for 541 

benchmark method 2, the same data splitting is performed as in the proposed method. In addition, 542 

five replications of the evaluations for the proposed and benchmark methods were performed to 543 

assess their average performance. For clarity, the data splitting for the proposed and benchmark 544 

methods is demonstrated in Figure 6. 545 

 546 
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Figure 6: Data splitting for the proposed and benchmark methods [9]. 547 

The structure of the CNN is demonstrated in Figure 7. The CNN architecture for the 548 

classification of melt pool images consists of several layers designed to extract and learn 549 

hierarchical features from the input data. The network begins with an input layer, which takes in 550 

melt pool images with a size of 200 by 200. The first convolutional layer comprises 32 filters with 551 

a 3x3 kernel, followed by Batch Normalization (light blue) to normalize the activations and 552 

enhance training stability. Rectified Linear Unit (ReLU) activation (in purple) is applied to 553 

introduce non-linearity, and a subsequent Max Pooling layer with a 2x2 pool size (in green) 554 

reduces spatial dimensions, focusing on important features. The process is repeated in the second 555 

convolutional layer with 64 filters and the third with 128 filters. Each convolutional layer is 556 

followed by Batch Normalization and ReLU activation. After these convolutional layers, the 557 

network employs a Fully Connected (FC) layer depicted in light green, followed by the Softmax 558 

activation function at the output layer for multi-class classification. The input to the FC layer is 559 

obtained by flattening the output from the final convolutional or pooling layer, and the output 560 

consists of multiple neurons corresponding to the number of classes. The use of distinctive colors 561 

such as orange for convolution, light blue for Batch Normalization, purple for ReLU, green for 562 

Max Pooling, and light green for the FC layer provides a visual representation of the flow of 563 

information through the network, aiding in understanding the architecture's structure and 564 

functionality [104]. Customization of hyperparameters and layer configurations is crucial based 565 

on the specific characteristics of the melt pool image dataset and the classification task. The choice 566 

of this architecture is advantageous for several reasons. First, the use of multiple convolutional 567 

layers enables the network to hierarchically learn intricate features, promoting effective 568 

representation of melt pool patterns. Including Batch Normalization [105] enhances training 569 
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stability and accelerates convergence, while ReLU introduces non-linearity crucial for capturing 570 

complex relationships. Furthermore, Max Pooling aids in retaining essential information, while 571 

reducing computational complexity. The final FC layer aggregates the high-level features for 572 

classification, and the Softmax activation function provides normalized class probabilities. This 573 

architecture aligns with the principles of effective feature extraction and hierarchical learning, 574 

making it well-suited for melt pool image classification tasks [106]. Moreover, during training 575 

phase of the CNN classifier, the random oversampling was applied both for anomaly and printing 576 

path identification, where the model learns from the augmented data and adjusts its weights to 577 

better classify the minority class of imbalanced dataset, and the Bayesian optimization technique 578 

was adopted for hyperparameter tuning [107], [108].   579 

 580 

Figure 7: CNN architecture for classification. 581 

4.4 Results and Discussion  582 

All the evaluation used the same CNN model setup (Figure 7) for a fair comparison. Initially, 583 

the performance was determined by considering the dataset before deidentification. These results 584 

demonstrate the non-deidentified performance using the CNN classifier. Based on the non-585 

deidentified tuning and test dataset, the results along with the standard deviation are presented in 586 

Table 3. 587 

Table 3: Results based on non-deidentified dataset. 588 

Method Tuning dataset Test dataset 
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Anomaly 

Detection:  

Fscore  

Printing Path 

Identification: 

Accuracy 

Anomaly 

Detection:  

Fscore  

Printing Path 

Identification: 

Accuracy 

Proposed/ 

Benchmark 2 
84.50 (3.67) 97.98 (0.51) 83.92 (2.64) 97.97 (0.38) 

Benchmark 1 82.55 (3.73) 96.99 (0.53) 80.76 (4.53) 97.44 (0.65) 

In this case study, the change in melt pool areas was leveraged to set the threshold value to 589 

obtain the deidentified images. With the change of the 𝜆 values, the optimal number of SIA (𝑚𝑡
∗) 590 

also changes, as depicted in Figure 8, which are then leveraged to obtain different deidentified 591 

datasets for evaluation. Specifically, Figure 8 demonstrates the average 𝑚𝑡
∗ given different 592 

threshold 𝜆 values. In addition, the error band illustrates the standard deviation of the 𝑚𝑡
∗ values 593 

for the normal and abnormal image samples, as shown in Figure 8(a) and Figure 8(b), respectively. 594 

Given the same 𝜆 values, the normal melt pool images have comparatively larger average 𝑚𝑡
∗ than 595 

the abnormal melt pool images. Here, the standard deviation values of 𝑚𝑡
∗ of the normal melt pool 596 

images are generally higher than those of the abnormal melt pool images. Moreover, the mean 597 

value and standard deviation for a normal melt pool image can increases higher than those for 598 

abnormal images due to differences in the geometric characteristics of the melt pools. In general, 599 

normal melt pools tend to have a more consistent shape and size, which leads to a larger average 600 

𝑚𝑡
∗ with the increase of 𝜆 values. On the other hand, abnormal melt pools may exhibit more 601 

irregular shapes and sizes, which can lead to a comparatively lower mean value of 𝑚𝑡
∗ and standard 602 

deviation based on different 𝜆 values. 603 
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 604 

Figure 8: Illustration of the average 𝑚𝑡
∗ value over 𝜆 for samples of (a) normal and (b) abnormal 605 

thermal images. 606 

 607 

Figure 9: Surrogate images based on the proposed adaptive method. 608 

Using the optimal value of 𝑚𝑡
∗ for each individual thermal image, the surrogate thermal images 609 

can be generated. A few example surrogate images for both normal and abnormal images are 610 

illustrated in Figure 9. It can be observed that the adaptive method alters the orientation of the melt 611 

pool as well as significantly blurs the printing path trajectory related sensitive information, which 612 

is desirable to protect data privacy. On the other hand, the geometric attributes (i.e., shape and 613 

size) of the melt pool in the deidentified images are maintained at best to preserve the utility 614 

attributes of the normal and abnormal melt pool images, which can fulfill the purpose of process 615 
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defect modeling.  616 

In this study, computing the classification accuracy and Fscore of the non-deidentified and 617 

deidentified datasets, the utility loss (UL) and privacy gain (PG) metrics were determined and 618 

demonstrated for different 𝜆 values, as illustrated in Figure 10. Regarding the proposed method, 619 

the geometric threshold, 𝜆, plays a significant role for data deidentification and the corresponding 620 

performance metrics. Therefore, parameter tuning is very important for the performance of the 621 

proposed method. Since there are two outcomes of interest, this Pareto optimal front chart based 622 

on UL and PG was used to determine the optimal points, as depicted in Figure 10. Specifically, to 623 

generate this pareto optimal front chart, the tuning data were leveraged in the proposed algorithm 624 

to determine which parameters were optimal. As illustrated in Figure 10, each point represents a 625 

user-defined input of either 𝜆 values or M and Δl values for the proposed and benchmark method 626 

1 [9], respectively. Thus, the points that are on the optimal front of the performance evaluation 627 

chart with a higher opacity were determined to be the Pareto optimal points. The additional points 628 

(lower opacity) are the alternative combinations of parameters that do not lie on the Pareto optimal 629 

front. These points reflect parameters that do not perform optimally when utilizing the tuning 630 

datasets and are therefore not selected to evaluate the final test performance. The specific 631 

performance and corresponding parameter values are also demonstrated in Figure 10. From these 632 

optimal points, the corresponding parameter sets were selected and then used to deidentify the 633 

testing dataset. Here, in the Figure 10, Pareto optimal front comparison is also demonstrated during 634 

the parameter tuning for the proposed method and benchmark method 1 for the different 635 

combinations of tuning parameters, which are detailed in the corresponding table. From these 636 

results, the proposed adaptive algorithm outperforms benchmark method 1 in terms of UL and PG, 637 

which are detailed in Figure 10. It is worth mentioning that benchmark method 2 does not require 638 
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any user-defined parameters to be tuned. Therefore, no results need to be included in the optimal 639 

front charts for this method. Furthermore, the results in the Figure 10 demonstrate that the proposed 640 

adaptive algorithm is able to more effectively secure the sensitive design information in the process 641 

data for sharing within an AM platform. In the context of privacy preservation, the adaptive 642 

deidentification method's superior performance implies a more effective means of protecting 643 

sensitive design information while sharing thermal history data with other users.  644 

 645 

Figure 10: Pareto optimal fronts with parameter tuning based on tuning dataset. 646 

 647 

Based on the pareto optimal front chart, optimal points are determined. Furthermore, with the 648 

optimal geometric threshold values, the corresponding parameter sets (i.e., 𝑚𝑡
∗) were determined 649 

for each image to deidentify the test dataset, which were used for performance evaluation. The test 650 

results are summarized in Table 4. The scale ranges from 0 to a 100 for PG and from 0 to a negative 651 

100 for UL. It is important to note that, in the context of both PG and UL, a higher numerical value 652 
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indicates a desirable outcome. Therefore, these scales provide a clear and intuitive framework for 653 

evaluating and interpreting those performance measures.  654 

The key strength of the proposed adaptive deidentification algorithm is its ability to preserve 655 

data usability through a smaller UL with a significantly improved privacy gain (PG). The 656 

benchmark methods 1, 2, and proposed method can be compared based on the results of the test 657 

datasets, as shown in Table 4. From Table 4, it is observed that the proposed method is able to 658 

achieve a noticeable improvement in privacy gain while maintaining a comparable, and even 659 

slightly better utility loss than the benchmark method 1. Specifically, the proposed method 660 

outperforms benchmark method 1 in terms of PG while achieving comparable performance in 661 

terms of UL. Similarly, when comparing the results of the proposed method with benchmark 662 

method 2, it is observed that the proposed method significantly outperforms in terms of PG, while 663 

demonstrating comparable results in terms of UL. 664 

Table 4: Results summary based on test dataset (standard deviation in the parentheses).  665 

Method Pareto optimal  

points UL PG 

Proposed 
P3 -2.40 (9.13) 57.51 (7.77) 

P4 -6.42 (6.79) 61.59 (4.00) 

Benchmark 1 A2 -6.51 (5.62) 39.18 (4.63) 

Benchmark 2 -- -1.89 (2.72) 0.70 (1.55) 
 666 

The improved performance of both the UL and PG of the algorithm can be attributed to the 667 

following reasons. First, in the proposed adaptive deidentification method, each melt pool image 668 

is deidentified using the SIA generated images, which significantly blurs the printing path 669 

trajectory related sensitive information while retaining utility attributes at best. Second, the 670 

benchmark method 1 requires as a large and diverse reference set to facilitate deidentification of 671 
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the thermal images. Therefore, the performance of the deidentification model is highly dependent 672 

on the diversity, size, and quality of the reference image set. In this experimentation, the reference 673 

set is sacrificed from the training data, ultimately reducing the training data set and leading to a 674 

smaller and less diverse reference set. The difference in available training data between the 675 

benchmark 1 and proposed method can also explain the variation in the results of the model, as 676 

model performance is known to be more sensitive to the amount of training data.  677 

Similarly, from Table 4, it is observed that for benchmark method 2, there is little PG with a 678 

smaller UL, failing to fulfill the intended purpose of data deidentification. To demonstrate the 679 

potential reason for this minimal PG, Figure 11 includes images before and after deidentification. 680 

Basically, in this case, the deidentified images are rotated 90 degrees to remove the printing path 681 

trajectory, generating unified orientation images. Despite the intention to create these unified 682 

orientation images, it is evident that each class of images after deidentification retains some 683 

directional patterns with their tail and melt pool. Due to these patterns, the images can be accurately 684 

classified into their associated class labels, explaining the minimal PG for benchmark method 2. 685 

 686 
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Figure 11: Demonstration of images before and after deidentification along with their angular 687 

orientations leveraging benchmark method 2 for Part 1 and Part 2 (the orientations of the images 688 

in a row are denoted in the first image). 689 

Furthermore, leveraging the concept of Benchmark Method 2, the datasets from Part 1 and Part 690 

2 were separately utilized to evaluate PG. The results demonstrate very little PG compared to the 691 

original images. Specifically, for Part 1, the PG is -1.59%, and for Part 2, the PG is 2.49%. Even 692 

with separate datasets, the results did not improve. One of the potential reasons for this is that, for 693 

each individual class label, the melt pool region above the melting point temperature and the tail 694 

region of the heat-affected zone exhibit specific identifiable orientations and shapes that differ for 695 

each class label, as demonstrated in Figure 11 for Part 1 and Part 2. Another potential reason is the 696 

very small number of angular classes, which limits the variability and effectiveness of the 697 

deidentification process. 698 

It is worth noting that the design deidentification techniques for AM process data, while 699 

essential for privacy preservation, may face challenges in ensuring complete data security. 700 

Therefore, it should be emphasized on the importance of consistent integration of the proposed 701 

adaptive deidentification method into the existing cloud-based AM framework, such as [10], [109]. 702 

Specifically, this integration of the deidentification method serves as an additional layer in 703 

protecting sensitive information during AM process data sharing, leading to a more secured 704 

foundation for data sharing in the cloud-based AM platform for collaborative modeling. 705 

5 Conclusion and Future Research Directions 706 

In this paper, an SIA-ASIG thermal image deidentification method is proposed for design 707 

information deidentification of AM thermal process data. The resulting deidentified data can be 708 
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aggregated from multiple AM users, leveraging a cloud platform for robust in-situ process-defect 709 

modeling. Specifically, the adaptive methodology can achieve a trade-off between privacy and 710 

utility for AM thermal process data that can be shared in a platform for privacy-preserving and 711 

utility-aware process-defect modeling. It is observed that the proposed method can substantially 712 

improve data privacy while sacrificing limited data utility. Moreover, the proposed method 713 

achieves higher privacy gain compared to the benchmark methods and demonstrates comparable 714 

utility loss, which is also associated with the design information deidentification of thermal AM 715 

process data. Overall, the proposed method provides an efficient mechanism to deidentify the 716 

design information in the AM process data, which can be leveraged for data sharing among AM 717 

users within a collaborative platform.  718 

A few research directions are still open for future research. Firstly, incorporation of more 719 

complex printing trajectories can potentially improve the performance of the proposed adaptive 720 

method. This may involve analyzing non-unidirectional infill angles and free-formed components 721 

that can potentially improve image deidentification. These artifacts will introduce variability and 722 

complexity, requiring the deidentification algorithms to adapt and perform reliably under diverse 723 

conditions, ultimately enhancing their robustness. Secondly, with an increased diversity of angular 724 

identities in the training dataset, a potential enhancement to the evaluation method would be to use 725 

a regression-based approach for angular identity (i.e., printing trajectory) prediction. This would 726 

yield continuous-valued results, offering a more precise assessment of angular identity detection 727 

compared to discrete classification. Third, the proposed method provides melt-pool-wise data 728 

privacy while preserving data utility, and future research may provide a layer-by-layer privacy 729 

preservation mechanism to prevent re-identification threats. Furthermore, some privacy-730 

preserving machine learning methods (i.e., differential privacy) can also be developed to reduce 731 
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the risk of re-identification attacks. Lastly, while deidentification serves as a fundamental 732 

component in the wider domain of information security [110], the incorporation of supplementary 733 

security measures, like digital signatures [111] and cryptography techniques, has the potential to 734 

amplify the overall security of shared information. Therefore, in future iterations, these additional 735 

security measures should be investigated and integrated to establish a more comprehensive and 736 

robust security framework, presenting a layered defense against unauthorized tampering or 737 

alterations. 738 
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