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Abstract

In collaborative additive manufacturing (AM), sharing process data across multiple users can
provide small to medium-sized manufacturers (SMMs) with enlarged training data for part
certification, facilitating accelerated adoption of metal-based AM technologies. The aggregated
data can be used to develop a process-defect model that is more precise, reliable, and adaptable.
However, the AM process data often contains printing path trajectory information that can
significantly jeopardize intellectual property (IP) protection when shared among different users.
In this study, a new adaptive AM data deidentification method is proposed that aims to mask the
printing trajectory information in the AM process data in the form of melt pool images. This
approach integrates stochastic image augmentation (SIA) and adaptive surrogate image generation
(ASIG) via tracking melt pool geometric changes to achieve a tradeoff between AM process data
privacy and utility. As a result, surrogate melt pool images are generated with perturbed printing
directions. In addition, a convolutional neural network (CNN) classifier is used to evaluate the
proposed method regarding privacy gain (i.e., changes in the accuracy of identifying printing
orientations) and utility loss (i.e., changes in the ability of detecting process anomalies). The
proposed method is validated using data collected from two cylindrical specimens using the

directed energy deposition (DED) process. The case study results show that the deidentified dataset
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significantly improved privacy preservation while sacrificing little data utility, once shared on the

cloud-based AM system for collaborative process-defect modeling.

Keywords: Additive manufacturing, cloud manufacturing, deidentification, intellectual property,

process-defect modeling, privacy-preserving data sharing.
1 Introduction

Additive manufacturing (AM) technologies have demonstrated their unprecedented capacity
and flexibility in new product prototyping, component repair, and product fabrication [1].
Unfortunately, process uncertainty is still a major challenge in AM adoption, and various machine
learning-based process-defect modeling methods have been developed for process monitoring and
anomaly detection [2], [3]. Due to the high complexity and large variety of part designs and process
parameters, a large amount of training data is usually needed to develop reliable machine learning
models for anomaly detection [4]-[6]. Nevertheless, it is prohibitively expensive for a lot of AM
users, especially small-to-medium manufacturers (SMMs), to gather a large dataset to train the
machine learning algorithms [7]-[9], which is especially true for metal-based AM processes (e.g.,

directed energy deposition (DED)).

A collaborative manufacturing platform poses an unprecedented opportunity for connecting
multiple AM resources with various AM users, which will naturally promote training data
availability [10]. This platform integrates multiple physical AM machines and their AM process
data to meet the needs of demographically diverse AM users for component fabrication and in-situ
process monitoring and part certification. This is accomplished by the cloud technology which
allows for AM data sharing, storage, and modeling [11], [12]. As illustrated in Figure 1, a cloud-
based AM platform may provide AM machine access to all users [7],[13]. More specifically, users

may send their component designs and g-codes to the networked machines for fabrication, with

2
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process data being collected and aggregated for process-defect modeling [10], [14]. The
aggregated data and the resulting models can be subsequently shared, providing anomaly detection

solutions to all AM users, especially ones with limited data availability and AM process knowledge

[4], [5].
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Figure 1: Overview of AM data sharing for collaborative modeling

However, some AM process data (such as thermal imaging data) also contains critical product
design information [8], that must be carefully protected when shared on the data-sharing platform.
Otherwise, as demonstrated in Figure 1, malicious attackers or users can extract confidential
information related to the product intellectual property (IP) from AM process data, leading to
severe consequences for both manufacturers and their clients [15]-[17]. Two prime examples of
cyber-attacks which may occur during the AM data sharing include: (i) Privacy breaches: a
reidentification attack [18], [19] targeting process data may lead to severe privacy breaches [20],
[21], allowing unauthorized access to the product IP information, including manufacturing
parameters and design specifics. Such breaches pose a significant risk, potentially compromising

proprietary processes and unique manufacturing techniques; (ii) /nsider threats: malicious insiders

3
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with access to the process data may intentionally disclose product IP or design information for
personal gain or sabotage [22]. To address these risks, it is essential to develop a tool for privacy-
preserving AM process data sharing to facilitate knowledge exchange while masking product
design information in the shared data [23]. To be more specific, data privacy and utility are defined

as follows in the context of AM process data:

AM Process Data Privacy refers to the capability in masking the printing trajectory
information in the thermal image data shared with external collaborators, and thus preventing the
re-identification of product design. It can be measured by the accuracy of a machine learning model
in identifying the printing path orientation, conditioned on a specific type of machine learning

models. The higher the accuracy is, the lower the data privacy will be.

AM Process Data Utility denotes the overall usability of the dataset for specific modeling
purposes (e.g., process-defect modelling) once shared and aggregated. It is assessed by a machine
learning model's ability to accurately detect anomalies using the process data, conditioned on a
specific type of machine learning models. The higher the accuracy is, the higher the data utility

will be.

It is important to note that the outcomes of data privacy and data utility are dependent on the
specific machine learning model used for evaluating the AM datasets. Once the process data are
processed to achieve a balanced level of privacy and utility, the combined dataset can be shared
and utilized for collaborative process-defect modeling. In addition, the data heterogeneity caused
by different original equipment manufacturers (OEMs) and other AM system specifications may
be addressed by transfer learning techniques, which are widely used in learning across various yet

relevant domains [8].
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The objective of this study is to deidentify the product design information (manifested as the
printing path orientation) in the AM thermal history, while simultaneously retaining the attributes
for process-defect modelling. An adaptive AM data deidentification methodology is proposed to
achieve this goal. The proposed method will generate surrogate thermal images to secure the
sensitive printing path orientation information in AM thermal history data, and thus facilitate

privacy-preserving and utility-aware process-defect modelling on the collaborative AM platform.

It is worth noting that a commonly used approach of protecting sensitive data and improving
data privacy is the use of a multi-layered protection framework, where a variety of complimentary
protection techniques are integrated to provide more robust protections against data privacy
breaches and IP theft [24]-[26]. Our research specifically aims to develop one layer of protection
focused on using deidentification for enhanced IP protections in AM process data sharing. This
topic is relatively underrepresented in current literature focused on IP protections, and it provides
a potential way to remove confidential design information from AM process data while

simultaneously working to ensure that the data is still usable for quality control purposes.

The technical contribution of this paper is developing a novel, adaptive AM thermal process
data deidentification algorithm. The proposed method can adaptively enhance the privacy of the
dataset by deidentifying thermal images while maintaining the utility of the AM process data for
anomaly detection. This can be achieved through two iterative steps: stochastic image
augmentation (SIA) and adaptive surrogate image generation (ASIG). SIA involves random
rotations of melt pool images to obscure the printing path trajectory and sensitive design
information based on the validated premise that melt pool orientation is key to inferring AM
process directions. ASIG then generates a surrogate image by averaging the SIA-generated images,

with adaptiveness enabled by monitoring changes in melt pool geometric features (such as melt
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pool area) compared to the original image. These geometric features are crucial for anomaly
detection, allowing the surrogate images to retain the necessary utility for process-defect modeling.
By dynamically tailoring the deidentification process to the sensitivity of the melt pool image’s
geometric features, the method ensures that critical attributes essential for anomaly detection are
preserved while simultaneously enhancing privacy. The impacts of the proposed method are two-
fold. For the AM quality control area, this method opens the venue for privacy-preserving data
sharing for AM process-defect modelling. For industrial practices, using shared process data
facilitates the development of cross-system in-sifu process-defect models. As a result, the
enhanced in-situ quality control tools can promote optimized resource allocation for post-
manufacturing inspection, which is usually very costly and sometimes cumbersome for AM
components [27], [28]. These will collectively lead to accelerated adoption of AM technologies in

various industrial practices.

The remainder of the paper is organized as follows. In section 2, the relevant state-of-the-art
studies are summarized, and the research gaps are identified. In section 3, the proposed adaptive
deidentification methodology is introduced, and in section 4, a case study based on the directed
energy deposition (DED) process is used to evaluate the effectiveness of the proposed

methodology. Finally, the conclusion and future work are introduced in section 5.

2 Literature Review

This section summarizes the complexities of data privacy and IP protection within AM. Section
2.1 highlights the state-of-the-art strategies and remaining challenges in protecting confidential
information in AM. The specific IP protection needs in AM data are analyzed in Section 2.2.
Advancements in image data deidentification for enhancing privacy in AM data sharing are

discussed in Section 2.3. Finally, through a research gap analysis (Section 2.4), opportunities for
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further investigation and development are identified to advance knowledge and practices in data

privacy in the field of AM.

2.1 Current Solutions and Challenges of Data Privacy and IP Protection in AM

The data security and privacy preservation in cloud-based manufacturing systems is becoming
increasingly important for individual users who are participating and sharing information in these
frameworks. In terms of data privacy, IP is a closely related aspect [29], especially within AM
applications. When sharing AM process data (e.g., thermal history), IP theft can occur through re-
identification and reverse engineering attacks, where critical design related information is
embedded into the process data. From there, the sequential print trajectories and layer-wise
patterns can be directly leveraged to extract the product design geometry [9]. The connection
between the AM process data (especially thermal process data) and printing path trajectories has
been highlighted in several recent works [9], [30], [31]. These works have highlighted this critical
vulnerability, emphasizing the need to review and develop IP protections for AM process data.
These protections must be tailored to the unique needs of AM applications. Both data-level and

model-level strategies have been used for [P protection.

Various data-level operations used in IP artifacts protection include watermarking, access
control, cryptography-based methods, and anonymization. For these four commonly used
methods, their characteristics, working mechanisms and corresponding limitations are summarized
below. Firstly, watermarking and access control measures are indirect approaches of IP protection
[32]-[35]. For example, watermarking generally embeds a unique mark on the digital or physical
artifact that identifies the source and ownership of the product IP [33], [35]. This ensures that
ownership of the design and information is clearly identifiable; however, this method does not

prevent the information from being accessed or used in a malicious manner. In addition, access
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control aims to prevent unauthorized access to the data by controlling access and managing the
storage of sensitive data [36]. However, access control does not add any direct protection to the
data. Several limitations and challenges for access control include compromised credentials,
malicious insiders, and even human errors [37], [38]. Secondly, cryptography- and anonymization-
based approaches aim to provide data-level protection by directly manipulating the data in an either
reversible or irreversible manner. For example, cryptography-based methods, most employed as
encryption methods, cover a family of different approaches aimed at obscuring information into
an unrecognizable state using an encryption key. After encryption, the intended party is able to
access the original information only if they have the corresponding decryption key [39]-[42]. This
allows the data to be transformed into a protected state, where it can be difficult for someone to
maliciously access the data and re-identify IP embedded in the data. Despite of the increasing
popularity of encryption methods, such as homomorphic encryption [43], they demonstrate a few
notable limitations. Firstly, the use of encryption and decryption keys presents an added security
vulnerability to the system [44], [45]. If the right decryption key is obtained through an attack,
such as a brute-force attack [46], [47], the protected data can be directly accessed and the IP
information stolen. Furthermore, encryption algorithms can be highly complex, which requires a
large pool of resources, and can also potentially limit computational capabilities on the encrypted

data [48].

An alternative method for enhancing IP protections is anonymization, also referred to as
deidentification. The objective of anonymization is to remove or obscure the confidential
information contained within the dataset in a non-reversible manner [49], [50]. This approach has
been leveraged in a wide range of privacy-related applications, including in healthcare and facial

image anonymization [51], [52]; however, it also provides a strong potential to provide direct IP
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protections for AM data sharing applications. Through anonymization, the sensitive information
is obscured so that the availability of sensitive, IP-related information is severely limited, while
simultaneously maintaining the original structure and usability of the data [52]. In general, there
are two key limitations to the use of anonymization, including (1) the balance and tradeoff between
improved protections and decreased data usability, where anonymization can lead to potentially
degraded performance of the data in downstream tasks [53], [54], and (2) the threat of re-
identification attacks [55], [56], which can potentially identify compromising data post-

anonymization.

In addition to the data-level approaches, there are also model-level techniques to ensure data
privacy and IP protection, including federated learning (FL) and differential privacy (DP). FL
methods offer additional layers of security by enabling collaborative learning without sharing raw
data [57], [58]. Specifically, FL allows multiple entities to collaboratively train a model without
sharing raw data, significantly reducing the risk of data breaches and maintaining privacy by
keeping data decentralized [57], [59]. However, FL can be challenged by the heterogeneity of data
across different entities, leading to potential biases and discrepancies in model performance.
Additionally, the communication overhead between entities can be significant, affecting the
efficiency and scalability of the approach [60], [61] .

On the other hand, DP introduces noise to the data or the learning process to prevent the
extraction of sensitive information from the outputs [62]. This technique ensures that individual
data points cannot be distinguished from aggregate data, providing strong privacy guarantees even
if the model outputs are accessed [63], [64]. DP, while providing strong privacy guarantees, can
impact the accuracy of the ML models due to the added noise, making it critical to balance privacy

and utility effectively [65],[64].
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2.2 IP Protection Needs in AM Data

There are diversified data streams generated in the AM production. Properly categorizing
these data according to their relevance to the product IP information is essential for effective data
management and IP protection in AM [9], [66]. The key AM data can be categorized into three
different types of attributes, as summarized in Table 1. More information regarding this
categorization of the AM attributes can be found in [9].

Table 1: Key categorizations for AM attributes

Attribute Description Example AM Features

e Design Files (CAD)

e G-code Files

e Print Trajectory Information
e Complete Thermal History

Attributes that directly relate to
compromising design data and pose a
significant risk of IP disclosure.

Sensitive
Attribute

Attributes that do not pose a e Single Thermal Images
.. . significant IP disclosure risk, but e Individual Pixels
Quasi-identifier : . . i
compromise product IP information e Layer Location
when used with other attributes. e Image Index
Insensitive Attributes that do not relate to the ¢ Quality Control Labels
Attribute design information in any capacity. o Extracted Descriptive Features

Given this categorization, the complete thermal history is considered as a sensitive attribute
and thus needs to be protected before sharing with other users. Otherwise, the product IP can be
disclosed to external users. For instance, during part fabrication using DED process, the in-situ
thermal history can be collected in the form of thermal images for process monitoring and anomaly
detection [27], [28]. As shown in Figure 2, the sensitive attributes of thermal history data include
the printing trajectory that can be extracted from the images, as this information can be used to
reversely decipher the global print path and part design. This is similar to the idea of side-channel
attacks in AM, which can be used to infer critical design and process information, leading to
significantly compromised IP [46], [67]. As thermal history data are highly informative for defect
detection and process monitoring, there is an urgent need in effective masking and deidentification

10
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of the thermal history data before sharing for modelling purposes [68]-[70]. Moreover, during the
deidentification to mask the IP information, it is important to note that there is usually a tradeoff
between data privacy and the resulting data utility [71]. This tradeoff is very important, as thermal
history plays a significant role in metal-based AM process monitoring. In general, applying a naive
or too obstructive deidentification method, such as pixilation or blurring, can result in a drastic
loss in AM process data utility for anomaly detection [72], [73]. Therefore, there is a critical need
to ensure a balance between AM process data privacy and AM process data utility during

deidentification.

Figure 2: Printing path trajectories that can be derived from the melt pool images, where 6,
represents the instantaneous printing direction inferred from each image (t = 1,2, ...,8).

2.3 Image Data Deidentification for Privacy-preserving Data Sharing in AM

The deidentification, commonly known as anonymization, is an attractive solution that has the
potential to achieve the goal of data privacy and IP protection [74]. In general, image data
anonymization methods transform the original images to remove the sensitive information while
retaining the useful features of interest to preserve user data privacy [75]. It depends on the
information that should be removed/anonymized, and on the information that should remain.

11
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However, balancing utility with anonymity presents significant challenges. Considering this, to
promote data privacy while maintaining data utility, various image data (i.e., face) deidentification
algorithms have already been developed [50], [72], [76]-[80]. Moreover, the deidentification
methods exhibit unique strengths of (i) non-reversibility in traditional applications with less
impacts on data usability [79],[81]; (ii) providing data privacy without necessitating the complex
structures and systems (i.e., encryption keys) [82]. Furthermore, deidentification can be
strategically employed as part of a layered approach to security, alongside other traditional security
measures, to enhance its effectiveness [74], [83], [84]. Ultimately, the utility-awareness and
privacy-preserving nature of data deidentification makes it a compelling solution, especially in
collaborative environments.

Recently, a novel adaptive design deidentification method was developed to deidentify AM
process thermal images by integrating AM process knowledge to isolate and combine the most
similar images to better mask the printing path trajectory while simultaneously preserving data
usability [9]. This method demonstrates good performance; however, it leverages a pre-defined
reference dataset to perform deidentification. Because of the use of this external reference set, the
privacy gain is directly proportional to the diversity, quality and size of the reference data set [9].
Even though there has been advancement in this field, further study is required to develop effective
AM process data deidentification methods, and reliable methods to incorporate them into the AM

workflow in cloud-based AM systems.

2.4 Research Gap Analysis

Considering the limitations of different data privacy and IP protection techniques, applying a
multi-layered approach is generally more advantageous [25], [85]. In the AM domain, most

research has focused on techniques like encryption-based approaches. However, less research has

12
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been conducted to developing de-identification-based methods. Exploring de-identification for
AM applications can fill this research gap and enhance IP confidentiality protections. The proposed
work aims to develop de-identification-based data privacy measures, offering an additional layer
of security for AM process data shared in cloud-based systems. Specifically, de-identification-
based techniques are well-suited for thermal image data sharing, as they can mask sensitive IP
information embedded in the dataset [63]. Despite progress, gaps remain in protecting sensitive

information in AM process images, summarized as follows:

1) The dynamic properties of thermal images make implementing global de-identification
methods extremely difficult.

2) Limited data availability and recurring angular identities in thermal images challenge the
application of existing de-identification methods.

3) Evaluating AM-based de-identification methods is challenging due to their dependency on

the quality of the reference image set.

Therefore, developing a new adaptive thermal history de-identification method that better
balances data privacy and utility without requiring a reference dataset is essential. This method
can ultimately enhance the privacy of printing path-related design information, reinforcing the

protection of sensitive information in the AM data sharing platform.

3  Proposed Methodology

The proposed method can adaptively deidentify the instantaneous printing path from each
individual image to enhance AM process data privacy, creating a surrogate melt pool image for
each original image. More specifically, the generation of the surrogate melt pool image involves
stochastic image augmentation (SIA) and adaptive surrogate image generation (ASIG) which are

coordinated by the monitoring mechanism of the melt pool geometric feature. The rationale of the
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proposed method is based on the process knowledge of DED processes where the printing direction
governs the melt pool orientation. Therefore, the random rotation operations in SIA directly
perturb the angular orientation of each melt pool, significantly enhancing the obfuscation of the
printing path trajectory. Subsequently, ASIG adaptively averages the multiple randomly perturbed
melt pool images to generate the surrogate image, where the melt pool geometric features are
leveraged as a stopping criterion for the perturbation. Both SIA and ASIG significantly raise the

barrier for extracting sensitive design information in the original melt pool images.

Figure 3 illustrates the framework of the proposed methodology and the visualization of the
results at each step. The key components of Figure 3 are summarized as follows: (a) illustrates a
step-by-step workflow of the proposed method; and (b) through (f) illustrate the visualization of
the results obtained at each step, respectively. In Figure 3, It and X¢ (t = 1,2, ...n) denote the
original and centered image collected at time t, respectively. X¢(8,,) denotes the rotated images

with the randomly generated target orientation 6,, (m = 1,2,...9), and ng) denotes the surrogate
thermal image. The absolute geometric feature change can be calculated as | g(S(tO)) — g(ng)) |
where g(+) denotes the function to compute the melt pool geometric feature of Sfm). m; represents

the optimal number of artificial images used for generating the surrogate image for X¢, and the 2
value is a predetined threshold that governs the maximum allowable geometric feature change,
balancing privacy and utility. A larger A improves privacy by incorporating more SIA-generated

images, but excessive values can cause significant changes in melt pool geometry.
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Figure 3: Overall workflow of the proposed methodology.
3.1 Preprocessing of Melt Pool Images

Let I' € R™¢ denote the original melt pool image captured at time t, which is an 7 X ¢
dimensional matrix with the temperature measurement stored at each pixel. Each melt pool images
are firstly pre-processed through the centering operation, where the melt pool of each image is
shifted to the center of the field of view. Essentially, this centering operation removes the peak
temperature location variability and thus reduces its impact on the geometric attributes of melt
pool. In this sense, the geometric features of the surrogate images will have a shared baseline and
are only determined by the adaptive image deidentification. Specifically, the centering operation
is illustrated in Figure 3(c), and the resulting image (denoted as X*) can be obtained using the

Equation (1),
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where Xt € R"™¢ denotes the centered image and the function C(+,) denotes the image translation

operation [86] with the corresponding image and translating vector of ((l%tj - p,'f) , ([%tJ —pt ))

t t
Here, l%J and [%J denotes the row and column coordinates for center point of the field of view,

which is the target coordinates that the peak temperature location of the melt pool is moved to. In
addition, pt and p! denotes the row and column coordinates of the original peak temperature

location in IY.
3.2 Adaptive Image Deidentification

The proposed adaptive image deidentification algorithm is accomplished by integrating two
iterative steps, 1.e., stochastic image augmentation (SIA) and adaptive surrogate image generation
(ASIG). Specifically, SIA technique is implemented through random rotation to change the
orientation of the melt pool within an image, making it difficult to identify the nominal printing
path trajectory or infer any sensitive design information based on its orientation. This SIA scheme
is under the premise that the melt pool orientation is the major feature to infer the instantaneous
printing directions of the AM process. This premise has been validated in the literature for layer-
wise thermal image time series analysis [27], [87]. Moreover, the ASIG is applied to generate a
surrogate image by averaging the multiple SIA-generated images. The adaptiveness of ASIG is
enabled by monitoring the melt pool geometric feature changes in the surrogate image from its
original counterpart. The geometric features of melt pools, such as melt pool area, are critical

process features for anomaly detection without AM design information. Therefore, monitoring the
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change in the geometric features for each melt pool will assure the surrogate thermal image

maintain comparable utility related information for process-defect modeling.

Definition 1. Stochastic image augmentation (SIA): The SIA procedure is proposed to
stochastically generate artificial melt pool images which share identical melt pool geometric
features with the original image by the image rotation operation. This is based on the engineering
knowledge that the orientation of the melt pool is the major feature that discloses the printing

trajectory information in the thermal history. The formulation of SIA is illustrated in Equation (2).
SIA: Xt (6,,) = R(X4, 6,,) 0, ~Unif(0, 2m) 2)

where X(6,,) € R"™*¢ denotes the SIA generated image in the m-th iteration. The function
R(:) denotes the image rotation operation given the original image X!, and the randomly
generated target orientation 6,, with (m = 1,2, ...9), sampled from a uniform distribution ranging

from O to 2.

In the proposed algorithm, the ASIG is established to iteratively synthesize the SIA generated
images one by one, as illustrated in Equation (3). The stopping criteria for image synthesis is based

on the similarity of the melt pool geometric features of the synthesized image Sfm) compared with

the original image S{y), as illustrated in Equation (4).

, Xt, m=0
ASIG: Stm) = J(m-1)st 3
(m) = )(m 1)S<mr—n1>+xt(9m), m=1273.. @
Stopping Criteria: m; = min {m || g(SfO)) — g(Sfm)) | = A} 4)

where Sfm) € R"*€ represents the surrogate thermal image, which takes an average of the m SIA

generated images X‘(6,,), obtained in Equation (2). As the m value increases, more diversely
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rotated images are averaged to generate Sfm), resulting a better masking of the original printing

orientation in X¢. In the meantime, an excessively high value of m may lead to a significant change
in the melt pool geometry. This will affect the process data utility, since the melt pool geometric
features, especially the melt pool area, are strongly correlated with the anomaly related information
[8], [88], [89]. Therefore, a melt pool geometry-based stopping criterion is incorporated in

Equation (4), where g(-) denotes the function to compute the melt pool geometric feature of Sfm),

such as area, eccentricity, major axis length, and minor axis length. The geometric properties of
melt pool images are determined through a two-step process. First, the melt pool images undergo
binarization to distinguish between the two regions above and below the melting temperature of
the feedstock material. This binary transformation identifies the melt pool region in the image, and
the specific geometric features of the melt pool region can be calculated using methods in [90].

The flow diagram of melt pool geometric feature extraction is demonstrated in Figure 4.

Melt Pool Melt Pool

Images Region
Binarization

»

Geometric
Features

)

Figure 4: Flow diagram of melt pool geometric feature extraction.

Figure 3 (d) and (e) also demonstrate the workflow involved in image augmentation and
surrogate image generation. The first row includes the original image (when m = 0), followed by
SIA generated images (m = 1, 2, 3). During SIA, the randomly generated 6,,, values change with
each iteration m, altering the printing path trajectory. Subsequently, the surrogate images are
generated by averaging the SIA generated image series. Combining more SIA generated images

in the surrogate image can better hide the original printing trajectory, but it may also alter the
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geometric attributes of the melt pool from its original form, which have impact on data usability.
To address this, a stopping criterion is introduced to specify the maximum allowable change in

the geometric attributes of the melt pool.

Furthermore, in Equation (4), m; denotes the optimal number of artificial images used to
generate the surrogate image for X*. In addition, the A value is a pre-defined threshold or stopping
criteria that provide the maximum allowable value of the geometric feature change. Proper
selection of the A value can achieve the trade-off between AM process data privacy and utility. For
a better privacy gain, a larger A value is usually preferred, as it allows for more SIA generated
images being incorporated into the surrogate image. However, a larger A value may lead to a
dramatic change in the melt pool area compared to the original melt pool, and therefore it cannot
be too big in order to avoid significant change in the melt pool geometric features. In the case

study, we examined the impacts of the A value on the resulting average m;.

The proposed iterative method will assure effective use of the SIA generated images, since it
will guarantee that (m; — 1) SIA generated images are used in the final surrogate melt pool image.
The ASIG method is designed under the working hypothesis that the series of the absolute

geometric feature change, i.e.,

g(SEO)) - g(Sfm)) |, will be non-decreasing as m gets larger (as
illustrated in Figure 3(d)). This hypothesis is realistic since the more SIA generated images

involved in ASIG, the more different Sfm) will be from X*.

3.3 Surrogate Image Post-processing

The resulting surrogate images St(m;) may possess some undesirable image artifacts due to
the 1mage rotation operation in SIA. Those artifacts usually present in the background of the melt

pool images with lower temperature measurements. Therefore, the image thresholding technique
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can be employed to remove these artifacts. Therefore, the S¢(m}) is processed with the soft
thresholding operation to obtain the final deidentified surrogate images based on the Equation (5)

as follows;

t *) : t *

0, ifSt(m;) <0

where Z' € R"™*¢ denotes deidentified surrogate melt pool images thresholded [27],[91] using a
specified temperature range of interest R,, = [Ty, +0) with a tunable lower bound of T,. This
post-processing step can also reduce the variation in the background of the melt pool images, which
will accelerate the training of machine learning algorithms for process-defect modeling.

The algorithm of the proposed methodology is illustrated in Algorithm 1. Each melt pool
image is firstly processed through Algorithm 1 for deidentification to generate a surrogate image,

which will be shared on the platform for collaborative process-defect modeling.

Algorithm 1: SIA-ASIG Melt Pool Image Deidentification
Input: Original image set {I* € R"*}, stopping criteria A
Step 1: Initialization.
1.1 Center I to obtain X*
1.2Setm =20
Step 2: Adaptive Image Deidentification.
while [9(Sy)) — 9(S()) | < 2 do
20Setm=m+1
2.1 Perform SIA to obtain X*(8,,) € R"*¢ based on Equation (2).
2.2 Perform ASIG to generate Sfm) based on Equation (3) - (4), and

end while

Store the surrogate image St(m;).
Step 3: Surrogate Image Post-processing. Post-process St (m}) to obtain the deidentified
image Z! using Equation (5).
Output: Deidentified surrogate image set {Z* € R™ ¢}

3.4 Evaluation of Deidentification Method

It is essential to examine the privacy-utility trade-off in the deidentification of AM process
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data. Two critical deidentification performance measures based on classification metrics are used
to evaluate the design attribute deidentification performance. To assure a fair comparison, the same
classifier is selected to compare the performance changes before and after the deidentification.

A convolutional neural network (CNN) is used for performance evaluation to establish the
classification models for predicting anomalies and the angular identities of printing path
trajectories. During evaluation, angular identities are treated as a multi-class classification
problem, while anomalies are considered a binary classification task. CNN is selected for the
following reasons [92]-[95]: (1) It can automatically learn spatial hierarchies of features, which is
essential for capturing the intricate details in melt pool images. (2) It offers robustness to variations
in image properties, such as scale and orientation. (3) CNNs can effectively handle large datasets
and complex patterns, making them suitable for image analysis. (4) CNNs are capable of feature
extraction and classification in a single integrated framework, simplifying the model architecture.
Furthermore, CNNs have demonstrated proven success in numerous image processing applications

[96], [97].

The AM data privacy performance is measured before and after deidentification using the
accuracy of a CNN model in identifying the printing path orientation. Higher accuracy indicates
lower data privacy. In this study, the privacy gain (PG) can be computed to evaluate the
performance of deidentification by assessing the improvement in data privacy compared to the
original dataset. This assessment is based on the CNN model's classification accuracy of printing

orientations. Thus, the equation for AM data privacy gain can be derived as follows:

PG = Zjzse — Zgeia (6)
where Z{5c. denotes the printing direction classification accuracy of original images and Z}gy

represents the classification accuracy after deidentification of melt pool images. In cases of PG
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evaluation metric, accuracy is used as the label of interests is balanced, whereas for imbalanced
label information, the Fscore metric can be adopted. On the other hand, AM data utility can be
defined as CNN model's ability to detect anomalies of AM process data accurately. The higher the
accuracy is, the higher the data utility will be. Similarly, the utility loss (UL) can be computed to
evaluate the performance of deidentification by assessing the improvement in AM data utility
compared to the original dataset. The change of the anomaly classification percentage after

deidentification of the melt pool images can be formulated as follows,
UL = Zpgia™ — Zgase™ (7)

where Z53¢9"® denotes the Fscore value based on the anomaly detection results of original images
and Z55$9™ represents the Fscore percentage based on deidentified melt pool images. Here, the
minimized UL is desirable to retain data utility in the surrogate melt pool images. It is worth noting

that due to the imbalanced nature of the anomaly data, the Fscore metric is leveraged [9].

It is worth noting that the evaluation metrics of privacy gain and utility loss find application in
various research domains beyond deidentification methods, particularly in the broader context of
privacy-preserving data analysis and machine learning. In the field of differential privacy, privacy
gain and utility loss serve as essential metrics for assessing the impact of privacy-preserving
mechanisms on data utility[98]. Furthermore, in privacy-preserving data mining, metrics such as
privacy gain and utility loss are commonly used to quantify the compromise between privacy
protection and the usefulness of data for analysis [99]. Recent research also has focused on various
aspects of privacy and utility trade-offs, considering the implications of different deidentification

methods [8], [9], [100], [101].
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4 Case Study

In this section, the proposed method is validated using the data collected from real-world
experiments using the directed energy deposition (DED) process. Both the privacy gain and the

data usefulness are quantified during the validation of the proposed method.

4.1 Experimental Setup and Data Description

An OPTOMEC LENS 750 machine equipped with a co-axial pyrometer camera for thermal
image monitoring, as shown in Figure 5, was used to fabricate two Ti-6Al-4V cylindrical
specimens. Process parameters used to fabricate the specimen are summarized in Table 2. The
dimensions of the fabricated specimens are 8mm (diameter) by 90mm (length). These cylindrical
specimens are commonly employed in material testing and mechanical characterization [102]. A
segment of approximately 30 mm is machined and X-ray scanned for porosity analysis for each
cylinder. Moreover, cylindrical specimens facilitate the exploration of diverse angular identities in
the dataset which are also available in complex AM component fabrication.

The melt pool images were captured by a dual-wavelength pyrometer (Stratonics, Inc.) during
part fabrication. The pyrometer has a nominal image collection rate of about 6.4 Hz. Observed
thermal images are presented as matrices with each pixel recording the temperature value between
1000-2500°C. The original dimension of the thermal images is 752 by 480. To reduce the
dimensions, the irrelevant regions that do not contain the melt pools were first cropped. Moreover,
the g-codes of the two specimens were used to determine the instantaneous printing directions of
each thermal image in both datasets. Also, because the AM thermal process data showed shifting
trends with respect to the building layers, only the data after layer 20 was used to tune and test the
performance of the proposed algorithm. Also, combining both datasets will result in four different

angles and 2,458 images of thermal images to use for experimentation.
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472 Figure 5: Experimental setup and data collected.
473 After the part fabrication, the specimens were inspected using a high-resolution X-ray

474  computed tomography system (Skyscan 1172), which is capable of examining the internal
475  structures of the AM parts with a fine resolution of 1pm. The manufactured specimens were
476  inspected to detect any process-induced porosity. The outputs of the X-ray CT characterization
477  were used to label the normal and abnormal melt pool images. The X-ray CT results contain the
478  size, morphology, and location of the detected defects. It is worth noting that only Part 1, which
479  consists of 1616 images with anomaly label information, has been inspected for internal defect
480  detection, thus providing images for utility-related evaluation. However, both datasets combining
481  Part 1 and Part 2, which consist of 2,458 images with angular orientation label are used to evaluate

482  the privacy related metric.

483 Table 2: Process parameters used for the two parts [9].
484
Process Parameters Part 1 Part 2
Scan speed 40 inch/min 50 inch/min
Powder feed rate 3 rpm 2.5 rpm
Hatch spacing 0.02 inch 0.025 inch
Power 300 W 350 W

24



485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

Layer thickness 0.015 inch 0.015 inch
Number of thermal images utilized 1,616 842
Number of layers in the build 69 55
Number of anomalies 138 (6%) N/A
Infill pattern Unidoirectioonal Un(i)direction%l
(0°/180°) (60°/180/300°)

4.2 Benchmark Method Selection

In this study, two benchmark methods were considered to compare with the proposed method.
Benchmark Method 1, also known as the Adaptive Design De-identification for Additive
Manufacturing (ADDAM) methodology [9], incorporates AM process knowledge into an adaptive
de-identification procedure. This mask the printing trajectory information in the thermal history of
metal-based AM, which would otherwise reveal significant details about the printing path. The
ADDAM method was selected because it has already been compared with the state-of-the-art
method, which uses a global k-anonymization approach. This traditional approach anonymizes
each sample image using a constant number of k-closest neighbours rather than allowing an
adaptive k value for each image. This reflects the conventional global k-anonymization techniques
commonly employed in past methods, particularly in k-same methods [9]. It is also worth noting
that the ADDAM method has demonstrated better performance in both privacy gain and utility
loss than the global k-anonymization approach. Essentially, in the ADDAM method, the
application of vectorized Principal Component Analysis (VPCA) involves extracting key features
from both the sample image and the reference image set. The PCA is a statistical technique widely
used for dimensionality reduction, data compression, and pattern recognition [103]. In the context
of image analysis, PCA helps identify the most significant patterns or features by transforming the
original data into a new set of uncorrelated variables called principal components. These

components capture the variance in the data, allowing for a more efficient representation. In the
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specific case of VPCA-based features, the technique involves vectorizing the image data, which is
essentially flattening each image into a vector format. The resulting vectors are then subjected to
PCA and the principal components are used as features for subsequent analysis. This process
enables the extraction of key information from the images while simultaneously reducing the
dimensionality of the data, making it computationally more manageable, and preserving essential
patterns. Specifically, ADDAM method is developed leveraging constraints related to build layer,
angular identity, and Euclidean distance [9]. These constraints are unique to their adaptive
algorithm and provide two key advantages: (1) provides the ability to be tuned and incorporate
user control on the trade-off of data privacy and usability. (2) works towards ensuring that the

deidentification is balanced across each potential angular identity [9].

Furthermore, Benchmark Method 2, termed Thermal Image Rotation for De-identification
(TIRD), centers the melt pool in the field of view of the thermal images and then rotates all images
of various orientations in the same orientation. The main objective of this process is to effectively
hide the original printing path trajectory information by applying one rotation operation.

For a fair comparison with the proposed method, the same image post-processing method in
Section 3.3 has been applied to the surrogate images generated from both benchmark methods.
After generating the surrogate images, classification techniques are applied for evaluation. The
ADDAM method has been recreated using a representative grid of user-defined parameters and
the same convolutional neural network (CNN) classifier framework as the proposed method to
evaluate performance. Furthermore, the TIRD method applies same CNN classifier for a fair

comparison with the proposed method.

4.3 Evaluation Procedure

As classification-based approach is adopted for quantification of the performance metrics of
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data utility and privacy, the labeling information is essential for supervised machine learning. In
this case, Part 1 consists of both anomaly and printing path related label information whereas Part
2 consists of only instantaneous print orientations label. Therefore, for evaluating the data utility,
the data set of Part 1 was considered whereas for privacy evaluation the combined data of Part 1
and Part 2 were leveraged. In addition, when evaluating the proposed method, the datasets of
before and after deidentification were randomly split into the training (76%), tuning (10%) and
testing sets (14%) in a stratified manner. Basically, the tuning dataset are leveraged to tune the A
value that is also associated with the parameter of optimal number of SIA (m;). On the other
hand, for the benchmark method 1 evaluation, the dataset was randomly split into the reference
(30%), training (42%), tuning (14%) and testing sets (14%). In benchmark method 1, the
independent reference dataset was used for the deidentification process, which basically generates
the difference between the data splitting with the proposed method. While the specific data
splitting may be different between the benchmark 1 and the proposed method, the evaluation
metrics used to compare the performance of the methods can still be comparable. This is because
the evaluation metrics are calculated based on the same percentage of the test set. Similarly, for
benchmark method 2, the same data splitting is performed as in the proposed method. In addition,
five replications of the evaluations for the proposed and benchmark methods were performed to
assess their average performance. For clarity, the data splitting for the proposed and benchmark

methods is demonstrated in Figure 6.

Reference Training Tuning Testing
S B B Tm="""""" !
Benchmark 1 2 i 30% I 42% 0 14% v 14% i
e TS e L 1

Training Tuning  Testing
Proposed Method/ i- ------------ (-, ------------ T“-:)“T““;-“=
Benchmark 2 = e eomemeee 7_ ?_/(i ___________ :__1(_)_/2_1___1_%_/[1__5
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Figure 6: Data splitting for the proposed and benchmark methods [9].

The structure of the CNN is demonstrated in Figure 7. The CNN architecture for the
classification of melt pool images consists of several layers designed to extract and learn
hierarchical features from the input data. The network begins with an input layer, which takes in
melt pool images with a size of 200 by 200. The first convolutional layer comprises 32 filters with
a 3x3 kernel, followed by Batch Normalization (light blue) to normalize the activations and
enhance training stability. Rectified Linear Unit (ReLU) activation (in purple) is applied to
introduce non-linearity, and a subsequent Max Pooling layer with a 2x2 pool size (in green)
reduces spatial dimensions, focusing on important features. The process is repeated in the second
convolutional layer with 64 filters and the third with 128 filters. Each convolutional layer is
followed by Batch Normalization and ReLU activation. After these convolutional layers, the
network employs a Fully Connected (FC) layer depicted in light green, followed by the Softmax
activation function at the output layer for multi-class classification. The input to the FC layer is
obtained by flattening the output from the final convolutional or pooling layer, and the output
consists of multiple neurons corresponding to the number of classes. The use of distinctive colors
such as orange for convolution, light blue for Batch Normalization, purple for ReLU, green for
Max Pooling, and light green for the FC layer provides a visual representation of the flow of
information through the network, aiding in understanding the architecture's structure and
functionality [104]. Customization of hyperparameters and layer configurations is crucial based
on the specific characteristics of the melt pool image dataset and the classification task. The choice
of this architecture is advantageous for several reasons. First, the use of multiple convolutional
layers enables the network to hierarchically learn intricate features, promoting effective

representation of melt pool patterns. Including Batch Normalization [105] enhances training
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stability and accelerates convergence, while ReLU introduces non-linearity crucial for capturing
complex relationships. Furthermore, Max Pooling aids in retaining essential information, while
reducing computational complexity. The final FC layer aggregates the high-level features for
classification, and the Softmax activation function provides normalized class probabilities. This
architecture aligns with the principles of effective feature extraction and hierarchical learning,
making it well-suited for melt pool image classification tasks [106]. Moreover, during training
phase of the CNN classifier, the random oversampling was applied both for anomaly and printing
path identification, where the model learns from the augmented data and adjusts its weights to
better classify the minority class of imbalanced dataset, and the Bayesian optimization technique

was adopted for hyperparameter tuning [107], [108].
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Figure 7: CNN architecture for classification.
4.4 Results and Discussion

All the evaluation used the same CNN model setup (Figure 7) for a fair comparison. Initially,
the performance was determined by considering the dataset before deidentification. These results
demonstrate the non-deidentified performance using the CNN classifier. Based on the non-
deidentified tuning and test dataset, the results along with the standard deviation are presented in

Table 3.

Table 3: Results based on non-deidentified dataset.

Method Tuning dataset Test dataset
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Anomaly Printing Path Anomaly Printing Path
Detection: Identification: Detection: Identification:
Fscore Accuracy Fscore Accuracy
Proposed/
Benchmark 2 84.50 (3.67) 97.98 (0.51) 83.92 (2.64) 97.97 (0.38)
Benchmark 1 82.55(3.73) 96.99 (0.53) 80.76 (4.53) 97.44 (0.65)

In this case study, the change in melt pool areas was leveraged to set the threshold value to
obtain the deidentified images. With the change of the A values, the optimal number of SIA (m;)
also changes, as depicted in Figure 8, which are then leveraged to obtain different deidentified
datasets for evaluation. Specifically, Figure 8 demonstrates the average m; given different
threshold A values. In addition, the error band illustrates the standard deviation of the m; values
for the normal and abnormal image samples, as shown in Figure 8(a) and Figure 8(b), respectively.
Given the same A values, the normal melt pool images have comparatively larger average m; than
the abnormal melt pool images. Here, the standard deviation values of m; of the normal melt pool
images are generally higher than those of the abnormal melt pool images. Moreover, the mean
value and standard deviation for a normal melt pool image can increases higher than those for
abnormal images due to differences in the geometric characteristics of the melt pools. In general,
normal melt pools tend to have a more consistent shape and size, which leads to a larger average
m; with the increase of 4 values. On the other hand, abnormal melt pools may exhibit more
irregular shapes and sizes, which can lead to a comparatively lower mean value of m; and standard

deviation based on different A values.
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Figure 8: Illustration of the average m; value over A for samples of (a) normal and (b) abnormal

thermal images.
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Figure 9: Surrogate images based on the proposed adaptive method.

Using the optimal value of m; for each individual thermal image, the surrogate thermal images
can be generated. A few example surrogate images for both normal and abnormal images are
illustrated in Figure 9. It can be observed that the adaptive method alters the orientation of the melt
pool as well as significantly blurs the printing path trajectory related sensitive information, which
is desirable to protect data privacy. On the other hand, the geometric attributes (i.e., shape and
size) of the melt pool in the deidentified images are maintained at best to preserve the utility

attributes of the normal and abnormal melt pool images, which can fulfill the purpose of process
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defect modeling.

In this study, computing the classification accuracy and Fscore of the non-deidentified and
deidentified datasets, the utility loss (UL) and privacy gain (PG) metrics were determined and
demonstrated for different A values, as illustrated in Figure 10. Regarding the proposed method,
the geometric threshold, A, plays a significant role for data deidentification and the corresponding
performance metrics. Therefore, parameter tuning is very important for the performance of the
proposed method. Since there are two outcomes of interest, this Pareto optimal front chart based
on UL and PG was used to determine the optimal points, as depicted in Figure 10. Specifically, to
generate this pareto optimal front chart, the tuning data were leveraged in the proposed algorithm
to determine which parameters were optimal. As illustrated in Figure 10, each point represents a
user-defined input of either A values or M and Al values for the proposed and benchmark method
1 [9], respectively. Thus, the points that are on the optimal front of the performance evaluation
chart with a higher opacity were determined to be the Pareto optimal points. The additional points
(lower opacity) are the alternative combinations of parameters that do not lie on the Pareto optimal
front. These points reflect parameters that do not perform optimally when utilizing the tuning
datasets and are therefore not selected to evaluate the final test performance. The specific
performance and corresponding parameter values are also demonstrated in Figure 10. From these
optimal points, the corresponding parameter sets were selected and then used to deidentify the
testing dataset. Here, in the Figure 10, Pareto optimal front comparison is also demonstrated during
the parameter tuning for the proposed method and benchmark method 1 for the different
combinations of tuning parameters, which are detailed in the corresponding table. From these
results, the proposed adaptive algorithm outperforms benchmark method 1 in terms of UL and PG,

which are detailed in Figure 10. It is worth mentioning that benchmark method 2 does not require
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any user-defined parameters to be tuned. Therefore, no results need to be included in the optimal
front charts for this method. Furthermore, the results in the Figure 10 demonstrate that the proposed
adaptive algorithm is able to more effectively secure the sensitive design information in the process
data for sharing within an AM platform. In the context of privacy preservation, the adaptive
deidentification method's superior performance implies a more effective means of protecting

sensitive design information while sharing thermal history data with other users.
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P3 12 -1.5 65.83 A3 1.1 1 -16.85 19.03
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P8 80 -12.5 61.38
P9 90 -11.5 63.41

Figure 10: Pareto optimal fronts with parameter tuning based on tuning dataset.

Based on the pareto optimal front chart, optimal points are determined. Furthermore, with the
optimal geometric threshold values, the corresponding parameter sets (i.e., m;) were determined
for each image to deidentify the test dataset, which were used for performance evaluation. The test
results are summarized in Table 4. The scale ranges from 0 to a 100 for PG and from 0 to a negative
100 for UL. It is important to note that, in the context of both PG and UL, a higher numerical value
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indicates a desirable outcome. Therefore, these scales provide a clear and intuitive framework for

evaluating and interpreting those performance measures.

The key strength of the proposed adaptive deidentification algorithm is its ability to preserve
data usability through a smaller UL with a significantly improved privacy gain (PG). The
benchmark methods 1, 2, and proposed method can be compared based on the results of the test
datasets, as shown in Table 4. From Table 4, it is observed that the proposed method is able to
achieve a noticeable improvement in privacy gain while maintaining a comparable, and even
slightly better utility loss than the benchmark method 1. Specifically, the proposed method
outperforms benchmark method 1 in terms of PG while achieving comparable performance in
terms of UL. Similarly, when comparing the results of the proposed method with benchmark
method 2, it is observed that the proposed method significantly outperforms in terms of PG, while

demonstrating comparable results in terms of UL.

Table 4: Results summary based on test dataset (standard deviation in the parentheses).

Method Pareto F)ptlmal UL PG
points
P3 -2.40 (9.13) | 57.51(7.77)
Proposed
P4 -6.42 (6.79) | 61.59 (4.00)
Benchmark 1 A2 -6.51(5.62) | 39.18 (4.63)
Benchmark 2 - -1.89 (2.72) 0.70 (1.55)

The improved performance of both the UL and PG of the algorithm can be attributed to the
following reasons. First, in the proposed adaptive deidentification method, each melt pool image
is deidentified using the SIA generated images, which significantly blurs the printing path
trajectory related sensitive information while retaining utility attributes at best. Second, the

benchmark method 1 requires as a large and diverse reference set to facilitate deidentification of
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the thermal images. Therefore, the performance of the deidentification model is highly dependent
on the diversity, size, and quality of the reference image set. In this experimentation, the reference
set is sacrificed from the training data, ultimately reducing the training data set and leading to a
smaller and less diverse reference set. The difference in available training data between the
benchmark 1 and proposed method can also explain the variation in the results of the model, as

model performance is known to be more sensitive to the amount of training data.

Similarly, from Table 4, it is observed that for benchmark method 2, there is little PG with a
smaller UL, failing to fulfill the intended purpose of data deidentification. To demonstrate the
potential reason for this minimal PG, Figure 11 includes images before and after deidentification.
Basically, in this case, the deidentified images are rotated 90 degrees to remove the printing path
trajectory, generating unified orientation images. Despite the intention to create these unified
orientation images, it is evident that each class of images after deidentification retains some
directional patterns with their tail and melt pool. Due to these patterns, the images can be accurately

classified into their associated class labels, explaining the minimal PG for benchmark method 2.

Original Images Benchmark Method 2

Ban
alo|e
alelo

Part 1

Part 2
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Figure 11: Demonstration of images before and after deidentification along with their angular
orientations leveraging benchmark method 2 for Part 1 and Part 2 (the orientations of the images

in a row are denoted in the first image).

Furthermore, leveraging the concept of Benchmark Method 2, the datasets from Part 1 and Part
2 were separately utilized to evaluate PG. The results demonstrate very little PG compared to the
original images. Specifically, for Part 1, the PG is -1.59%, and for Part 2, the PG 1s 2.49%. Even
with separate datasets, the results did not improve. One of the potential reasons for this is that, for
each individual class label, the melt pool region above the melting point temperature and the tail
region of the heat-affected zone exhibit specific identifiable orientations and shapes that differ for
each class label, as demonstrated in Figure 11 for Part 1 and Part 2. Another potential reason is the
very small number of angular classes, which limits the variability and effectiveness of the

deidentification process.

It is worth noting that the design deidentification techniques for AM process data, while
essential for privacy preservation, may face challenges in ensuring complete data security.
Therefore, it should be emphasized on the importance of consistent integration of the proposed
adaptive deidentification method into the existing cloud-based AM framework, such as [10], [109].
Specifically, this integration of the deidentification method serves as an additional layer in
protecting sensitive information during AM process data sharing, leading to a more secured

foundation for data sharing in the cloud-based AM platform for collaborative modeling.

5 Conclusion and Future Research Directions

In this paper, an SIA-ASIG thermal image deidentification method is proposed for design

information deidentification of AM thermal process data. The resulting deidentified data can be
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aggregated from multiple AM users, leveraging a cloud platform for robust in-situ process-defect
modeling. Specifically, the adaptive methodology can achieve a trade-off between privacy and
utility for AM thermal process data that can be shared in a platform for privacy-preserving and
utility-aware process-defect modeling. It is observed that the proposed method can substantially
improve data privacy while sacrificing limited data utility. Moreover, the proposed method
achieves higher privacy gain compared to the benchmark methods and demonstrates comparable
utility loss, which is also associated with the design information deidentification of thermal AM
process data. Overall, the proposed method provides an efficient mechanism to deidentify the
design information in the AM process data, which can be leveraged for data sharing among AM

users within a collaborative platform.

A few research directions are still open for future research. Firstly, incorporation of more
complex printing trajectories can potentially improve the performance of the proposed adaptive
method. This may involve analyzing non-unidirectional infill angles and free-formed components
that can potentially improve image deidentification. These artifacts will introduce variability and
complexity, requiring the deidentification algorithms to adapt and perform reliably under diverse
conditions, ultimately enhancing their robustness. Secondly, with an increased diversity of angular
identities in the training dataset, a potential enhancement to the evaluation method would be to use
a regression-based approach for angular identity (i.e., printing trajectory) prediction. This would
yield continuous-valued results, offering a more precise assessment of angular identity detection
compared to discrete classification. Third, the proposed method provides melt-pool-wise data
privacy while preserving data utility, and future research may provide a layer-by-layer privacy
preservation mechanism to prevent re-identification threats. Furthermore, some privacy-

preserving machine learning methods (i.e., differential privacy) can also be developed to reduce
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the risk of re-identification attacks. Lastly, while deidentification serves as a fundamental
component in the wider domain of information security [110], the incorporation of supplementary
security measures, like digital signatures [111] and cryptography techniques, has the potential to
amplify the overall security of shared information. Therefore, in future iterations, these additional
security measures should be investigated and integrated to establish a more comprehensive and
robust security framework, presenting a layered defense against unauthorized tampering or

alterations.
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