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e Plant phenology, the timing of recurrent biological events, shows key and complex
response to climate warming, with consequences for ecosystem functions and services. A key
challenge for predicting plant phenology under future climates is to determine whether the
phenological changes will persist with more intensive and long-term warming.

¢ Here, we conducted a meta-analysis of 103 experimental warming studies around the globe
to investigate the responses of four phenophases —leaf-out, first flowering, last flowering,
and leaf coloring.

e We showed that warming advanced leaf-out and flowering but delayed leaf coloring
across herbaceous and woody plants. As the magnitude of warming increased, the
response of most plant phenophases gradually leveled off for herbaceous plants, while
phenology responded in proportion to warming in woody plants. We also found that the
experimental effects of warming on plant phenology diminished over time across all phe-
nophases. Specifically, the rate of changes in first flowering for herbaceous species, as
well as leaf-out and leaf coloring for woody species, decreased as the experimental dura-
tion extended.

o Together, these results suggest that the real-world impact of global warming on plant phe-
nology will diminish over time as temperatures continue to increase.
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Alexander & Levine, 2019), plant—animal interactions (Post
et al., 2009; Thackeray et al., 2016; Richert et al., 2021), and

land-atmospheric exchanges of carbon, water, and energy

Introduction

Global temperatures are expected to rise by 3.3-5.7°C by the

end of this century, with far-reaching consequences for terrestrial
ecosystems around the world (IPCC, 2023). In particular, plant
phenology — the timing of recurrent life history events—is
expected to be a key element of changing ecosystem dynamics
(Piao et al., 2019; May ez al., 2020; Collins et al., 2021). Shifts in
plant phenology under climate warming, such as earlier leaf-out
and flowering, may affect several ecological attributes, including
plant species fitness and distributions (Sherry ez al, 2007;
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(Pefiuelas er al., 2009; Jespersen ez al., 2018; Wang ez al., 2020).
It is therefore imperative that we continue to monitor and
research plant phenology as the global environment changes.
Much of the current knowledge of plant phenology shifts
comes from experimental warming studies, where plot-level
manipulations typically enhance temperatures by 1-4°C often
resulting in earlier spring leaf-out and flowering, as well as
delayed leaf coloring in temperate, boreal, and Arctic ecosystems
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Fig. 1 Geographical distribution (a) and climatic conditions (b) of the warming experimental sites in the meta-analysis. Circles and triangles indicate the
sites focusing on herbaceous and woody species, respectively. Symbols with different colors indicate different plant phenophases. The number of sites

corresponding to specific phenophases is shown in the boxes.

(Arft et al., 1999; Wolkovich et al., 2012; Collins et al., 2021).
However, there is disagreement on whether the phenological
responses will gradually level off as the magnitude of warming
increases (Morin et al., 2010; Richardson et al., 2018). For exam-
ple, previous experiments have reported that the advancement of
leaf-out in temperate species plateaus as the magnitude of warm-
ing intensifies (Morin ez al., 2010; Fu ez al., 2015). It is likely that
other factors may interact with temperature increase to cause such
nonlinear response, such as photoperiod and chilling require-
ments for breaking endodormancy (Luedeling ez al., 2013; Piao
et al., 2019). It may also be due to warm temperatures being
beyond maximum thresholds that a plant can capitalize upon
(Elmendorf & Hollister, 2023). By contrast, the leaf-out stage in
boreal forests advanced linearly with the magnitude of warming
from 0°C to 9°C in a whole-ecosystem warming experiment
(Richardson et al, 2018). The uncertainty regarding whether
plant phenological responses level off along warming gradients
poses a significant challenge for predicting plant dynamics.

Another key issue affecting our understanding of future
changes is whether the warming effects on plant phenology
decrease over time. Photosynthesis and plant respiration can
acclimate to warming over time (Reich er al, 2016; Smith &
Keenan, 2020), possibly because of changes in resource availabil-
ity, phenotypic plasticity, and genetic adaptation (Luo ez al,
2001; Leuzinger er al., 2011). However, whether plant phenology
exhibits similar behavior is still unclear. Moreover, the temporal
trends in phenological response to warming may vary between
plant types, because herbaceous species possess larger proportions
of belowground biomass stores and shorter generation times than
woody species (Shaver & Laundre, 1997; Arft ez al., 1999; Smith
& Donoghue, 2008; Chmura et al., 2019).

A further complication to future predictions is the fact that the
impact of climate warming depends highly on local climate and
plant types (Liu ez al, 2021; Stuble ez al., 2021). For instance,
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plants may benefit more from warming in wetter regions because
they are not additionally constrained by water availability (Gao
et al., 2020; H. Liu et al., 2022). The response of phenology to
warming may also vary between species because; for example,
herbaceous plants have shallower root distributions and more
flexible morphology than woody species (Shaver & Laundre,
1997; Simovd et al, 2018). Thus, further investigation is
required to understand how these factors mediate the warming
effect on plant phenology across various magnitudes of
warming and over prolonged periods.

For this meta-analysis, we compiled a dataset on four pheno-
phases (leaf-out, first flowering, last flowering, and leaf coloring)
recorded from 103 experimental warming studies (Fig. 1). We
hypothesize that (1) the magnitude of phenological response to
warming will level off as greater degrees of warming are reached
because larger phenological shifts are more likely be constrained
by water or nutrient availability (Shen ez 2/, 2015); (2) the mag-
nitude of phenological responses will decline over time because
of depletion of the plant belowground resources or plant acclima-
tion (Fu er al, 2014; Duputié ez al., 2015); and (3) prevailing
regional climate factors may modulate the response of phenology
to warming magnitude and experimental duration. For example,
the decelerated rate of phenological response with increasing
warming may be more pronounced in dry regions, as plants in
these regions are more vulnerable to water stress caused by warm-
ing Xu ez al., 2013).

Materials and Methods

Data compilation

Peer-reviewed literature published before January 2021 was
searched using Google Scholar, Web of Science, and China
National Knowledge Infrastructure. The search keywords

© 2024 The Author(s).
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included are as follows: (warming OR heat* OR increase* tem-
perature OR elevate* temperature OR climate change) AND
(bud* OR “bud burst” OR leaf-out OR “leaf unfold*” OR
“growing season” OR phenolog* OR reproducti* OR flowering
OR senescence OR anthesis OR “leaf color” OR “leaf colour”)
AND (experiment* OR treatment® OR control*). Studies were
included in our meta-analysis if they met the following criteria:
(1) The temperature difference between experimental treatments
was achieved by warming rather than cooling; (2) control and
warming plots had the same initial conditions including vegeta-
tion structure, microclimate, and soil type; and (3) experiments
were focused on species in natural terrestrial ecosystems. Overall,
we identified 103 published articles that met these criteria (Sup-
porting Information Fig. S1).

We gathered data from each publication, focusing specifi-
cally on the average timing of phenophase occurrence (mea-
sured in days of the year) and the phenological differences (in
days) observed between the warming and control treatments.
Phenological data were either obtained directly from tables or
extracted from figures by using GetData Graph Digitizer
(v.2.24). The sample sizes and the species names associated
with each study were also compiled. Additionally, we obtained
relevant data on the phenological responses of alpine or arctic
plants to warming directly from researchers. In total, we com-
piled 8023 phenology observations in warming experiments
and paired control plots, mainly distributed in the northern
hemisphere, and focused predominately in deciduous forests
and on short-lived herbs (https://doi.org/10.6084/m9.figshare.
25460665.v1). To identify the key predictors for the response
of phenology to experimental warming, we gathered data on
experimental variables, including warming magnitude, dura-
tion, and method, as well as ecological variables such as lati-
tude and ecosystem types, based on Whittaker’s biome
classification (Whittaker, 1975; Fig. 1; Table S1).

Climatic variables, such as mean annual temperature (MAT),
mean annual precipitation (MAP), potential evapotranspiration,
and monthly climate values (2001-2014), were extracted from
the Centre for Environmental Data Analysis according to the
geographic coordinates of the reported study sites (version
CRUTS 4.00, https://catalogue.ceda.ac.uk). The monthly and
annual aridity index was calculated as the ratio of potential eva-
potranspiration to precipitation. We also calculated the tempera-
ture, precipitation, and aridity index during the preseason. We
defined the preseason as the 3 months preceding the average
month in which the phenophase occurs at each respective site in
our study (Fu ez al., 2015). Following commonly used criterion
(Knapp ez al., 2015; X. Liu et al., 2022), we classified regions as
warm or cold based on a threshold of 0°C of MAT, and as wet or
dry based on a threshold of 500 mm of MAP.

Meta-analysis

We quantified the response of four phenophases of plant phenol-
ogy (leaf-out, first flowering, last flowering, and leaf coloring) by
computing the number of days of shift induced by warming,
which is a commonly used metric in meta-analysis to assess

© 2024 The Author(s).
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phenological responses (Arft ez al, 1999; Liu ez al., 2021; Stuble
et al., 2021):

Warming effect =X, — X

where X, and X_ are the day of the year when the phenophase
occurs in the warming and control treatments, respectively.
Negative values of the effect size indicate an advancement of phe-
nophases under warming, while positive values indicate a delay.

We conducted hierarchical meta-analyses using the ‘rma.mv
function in R package ‘merafor 2.4-0 to control for nonindepen-
dence due to multiple observations per site and species (Viecht-
bauer, 2010; Nakagawa & Santos, 2012; Benitez-Lépez er al.,
2017). All analyses were conducted for overall shifts of the four
phenophases listed above, and separately for herbaceous and
woody species. We included site identity, observation identity
(ID), and species identity as random factors in the hierarchical
models. The random effect structure for herbaceous and woody
species was set as (1ISites/ID) + (1ISpecies) using the syntax for
the R function ‘rma.mv’ (Viechtbauer, 2010). We used a sample
size-based weighting scheme instead of inverse variance weighting
to avoid an undue influence on parameter estimates from a few
studies that showed minimal variation among replicates. The
weights were calculated following previous works (Adams
etal., 1997; Peng et al., 2017; H. Liu et al., 2022):

_ NNy,
“TN N,
where NV, and N, are the sample sizes for control and warming
treatments, respectively. The hierarchical random effect
meta-analysis was used to assess the overall phenological
responses of herbaceous and woody plants to warming across all
studies. If the 95% confidence intervals of the overall responses
did not overlap zero, the warming effects were considered signifi-
cant at the < 0.05 level.

Q-statistics were used to assess the heterogeneity of responses
of phenology explained by each experimental and ecological vari-
able in our dataset, using hierarchical mixed effect meta-analyses
(Hedges & Olkin, 1985; Viechtbauer, 2010). The total heteroge-
neity was divided into the heterogeneity explained by the mod-
erator (Q,,) and residual heterogeneity. When the P value for Q,,
was <0.05, we considered the significant contributions of mod-
erators to the total heterogeneity in effect sizes. Linear and non-
linear models were compared using the Akaike information
criterion (AIC) to determine the most appropriate model struc-
ture to predict the relationships between phenological responses
and warming magnitude/experimental duration.

Finally, we investigated whether the sensitivity of plant phe-
nology to warming (expressed as days per °C) varied with the
duration of the experiments. We calculated the slope coefficients
of warming magnitude as a measure of phenological sensitivity
using meta-regression models, where the experimental duration
was treated as an interaction term. We examined the relationships
between climatic variables, latitude, and phenological responses
by incorporating the magnitude of warming and the duration of
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experiments as fixed terms in the mixed effects model. We
also included MAT and MAP as interaction terms (e.g.
MAT X experimental duration) in our models to test whether the
relationships between phenological responses and warming
magnitude, as well as experimental duration, are influenced by
climatic factors. We used Rosenberg’s fail-safe number and
Trim-and-fill tests to assess the publication bias in our meta-
analysis. All statistical analyses were carried out using the R pro-
gramming environment (R Development Core Team, 2023).

Results

Responses of phenology to warming magnitude and
experimental duration

Despite the fact that all phenophases exhibited large variations
(Fig. S2; Table S2), experimental warming significantly advanced
leaf-out by an average of —3.5d (95% CI —5.0 o —2.0d,
P <0.001), first flowering by —3.9d (95% CI —4.8 to —3.0d,
P<0.001), and last flowering by —3.0d (95% CI —4.1 to
—1.8d, P<0.001). By contrast, experimental warming delayed
leaf coloring by 2.8 d (95% CI 1.1-4.4d, P=0.001) across the
entire dataset (Fig. 2a). This overall trend of phenological
changes was present even when considering the woody and her-
baceous plants separately (Fig. 2b,c). However, the advancement
of leaf-out was nonsignificant for evergreen woody plants (95%
CI —4.6 t0 0.4d, P=0.103), but strongly significant for decid-
uous woody plants (95% CI —6.3 to —2.8d, P<0.001),
(Fig. S3). These results were not affected by publication bias
(Table S3).

The advancement of leaf-out and first flowering for herbaceous
plants level off with the magnitude of warming (Fig. 3a). The
logarithmic models were better than linear models at predicting
the responses of both leaf-out (AIC: 9468.9 vs 9469.5) and first
flowering (AIC: 15491.1 vs 15494.0) of herbaceous species
(Table S4). Conversely, the advancement of leaf-out, first/last
flowering, and the delay of leaf coloring were linearly correlated
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with rising warming magnitude for woody species (Fig. 3b), and
these models performed better than logarithmic models
(Table S4). The patterns were similar for those experiments that
applied multiple levels of warming (span >4°C) at the same site
(Fig. S4).

The variations in phenological responses to warming could
partly be explained by experimental duration (Table $4). Specifi-
cally, the advancement of herbaceous first flowering under warm-
ing became less pronounced over time (Fig. 3c). The
advancement of woody leaf-out and the delay of leaf coloring also
weakened over time (Fig. 3d). The shifts in plant phenology per
degree warming (sensitivity) also weakened in long-term experi-
ments (Fig. 4). Specifically, the sensitivity of flowering pheno-
phases and leaf coloring to warming for herbaceous species
diminished with increased experimental duration (Fig. 4a—c).
Moreover, the sensitivity of leaf-out to warming for woody spe-
cies diminished with the experimental duration (Fig. 4e).

Other factors influencing responses of phenology to
experimental warming

Besides warming magnitude and experimental duration, several
other variables affected the responses of phenology to warming
(Tables S5-S7). For herbaceous species, the advancement of
leaf-out and the delay of leaf coloring became stronger with
increasing MAT (Fig. 5a), the advancement of leaf-out and first
flowering became stronger with increasing MAP (Fig. 5¢), and
the delay of leaf coloring decreased with latitude (Fig. S5a). For
woody species, the advancement of first flowering became stron-
ger with increasing MAT (Fig. 5b), and the advancement of
leaf-out and last flowering for woody species became stronger
with increasing aridity index (Fig. S5b,c). In addition, the
responses of leaf-out for herbaceous species in boreal forest and
temperate grassland were greater than those located in tundra,
and the responses of first flowering for woody species in tempe-
rate forest were greater than those in other ecosystem types
(Fig. S6). There was also an experimental methodology pattern,

(a) Overall (b) Herbaceous plants (c) Woody plants
Leaf-out - (2393) EE - (1589) EE - (804) e
First flowering 4 (2711) HOH e - (2185) H@H e q (526) @ s
Last flowering 4 (1582) H@H % - (1203) O lxxx - (379) —@— %
Leaf coloring 4 (1337) ok 4 (870) sk - (467) *
Advanced Delayed Advanced Delayed Advanced Delayed
T T T T T T T T T
-12 -6 0 6 12 -12 -6 0 6 12 -12 -6 0 6 12

Shifts of phenological events (days)

Fig. 2 Responses of plant phenology to experimental warming. (a) All terrestrial species. (b) Herbaceous species. (c) Woody species. The weighted average
shifts for different phenophases are presented, with error bars indicating the 95% confidence intervals. The number in parentheses represents the sample
sizes *, P < 0.05; **, P < 0.01; *** P <0.001. The P-values and confidence intervals are generated from Wald-type tests in the hierarchical random-effect

meta-analysis.
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respectively. N represents the number of observations.

with studies using infrared heaters exhibited greater phenological
responses than those using open-top chambers and heater cables
(Fig. S7).

The phenological response to the magnitude of warming var-
ied between climatic regions (Fig. S8; Table S8). In particular,
the advancement of leaf-out for herbaceous plants and first flow-
ering for woody species became more pronounced with increased
warming magnitude in warm regions, but there was no trend in
cold regions (Fig. S8a,c). The delays in leaf coloring for woody
species increased with warming magnitude in wet regions but not
in dry regions (Fig. S8i). Furthermore, warming-induced delays
of leaf coloring in woody plants decreased over time in warm and
wet regions, but not in cold and dry regions (Fig. S9; Table S9).

© 2024 The Author(s).
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Discussion

Most terrestrial ecosystems have experienced rapid climate warm-
ing over the past decades (IPCC, 2023), and plant phenological
responses to warming have been a central focus of climate change
research (Post et al., 2009; H. Liu et 4l., 2022). However, our
research provides two particularly novel insights that distinguish
it from previous phenological research in this area. First, we
demonstrate that responses of plant phenology for herbaceous
species, but not woody species, level off with the increasing simu-
lated warming magnitude. Second, we show that responses of
plant phenology to warming attenuate with experimental dura-
tion. Short-term responses to warming can likely be attributed to
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Fig. 4 Relationships between the sensitivity of plant phenophases to warming and experimental duration. (a—d) Herbaceous species. (e~h) Woody species.
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plant plasticity (Ramirez-Parada er al., 2024). As we observed a
gradual decrease in the variance of phenological changes with the
extension of experiment duration, this implies that as time passes
and plasticity becomes inadequate, plants may undergo evolu-
tionary responses to better adapt to changing conditions (Wu
et al., 2012; Mathiasen & Premoli, 2016).

Differential trends of plant phenology to increasing
warming magnitude

Our first hypothesis was partially supported as the responses of
leaf-out, first flowering, last flowering, and leaf coloring pla-
teaued with rising warming magnitude for herbaceous species,
but not for woody species (Table S4). The linear responses of
woody species may have occurred because high-level warming
can continuously stimulate mineralization rates and soil nutrient
availability (Schaeffer er al, 2013). In addition, longer growing
seasons caused by high-level warming may produce more photo-
synthate and lead to larger root nutrient reservoirs, which may
support shifts in phenology (Fu ez al., 2014).

Although herbaceous plants can also benefit from increased
resources or nutrients released by warmer temperatures, their
phenological responses may be more constrained by other factors
than woody plants, such as water availability and photoperiod
(Fu er al, 2015; Richardson ez al, 2018). Our analysis results
further support this idea by demonstrating that the responses of
herbaceous plants to warming are constrained by precipitation,
whereas those of woody plants are not (Fig. 5). The shallow root
systems of herbaceous plants, in contrast to the deeper systems of
woody plants, likely make them more susceptible to water stress
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caused by high-level warming, potentially leading to constraints
on the ability to respond phenologically (Schenk & Jack-
son, 2002; Xu et al, 2013; Naumann ez al., 2018). This dimin-
ished response implies a potential reduction in frost damage risk
for herbaceous plants, especially if warming is accompanied by
occasional cold temperature episodes in early spring (Inouye,
2008; Wipf ez al., 2009; Inouye & Wielgolaski, 2013).

The differential responses of woody and herbaceous plants to
high-level warming may lead to greater benefits for woody plants
under warming conditions (Lin ez al, 2010). Previous research
indicates that in communities where both types coexist, woody
plants tended to initiate growth earlier than herbaceous species,
aiding in niche occupation and suppressing herbaceous growth
through shading effects (Castro & Freitas, 2009). This tendency
together with the patterns revealed by our study provides a poten-
tial explanation for the prevalent phenomenon of shrub
encroachment currently observed (Saintilan & Rogers, 2015),
and we encourage long-term monitoring that focuses on
trait-based responses to continued warming.

Decreased phenological responses with long-term
experimental warming

A crucial finding in our study is that responses of plant phenol-
ogy for both woody and herbaceous species became less pro-
nounced over time, supporting our second hypothesis. Our
results were consistent with a previous study that demonstrated
diminished responses of plant reproductive phenology to warm-
ing over several years (Barrett & Hollister, 2016). This long-term
attenuating response can be explained by the fact that accelerated

© 2024 The Author(s).
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changes in plant phenology consume large amounts of nutrients
and nonstructural carbohydrates in underground storage at the
early warming stage (Wu ez al., 2012; Fu ez al., 2014; Naumann
et al., 2018). Furthermore, temperature may not be the most
important contributing factor for plant phenology as the warm-
ing continues, and other constraints may become more important
over longer timescales (Wookey ez al., 1995; Welker ez al., 1997;
Barrett & Hollister, 2016). For instance, previous studies suggest
that the dominant controls of plant phenology gradually shifted
from temperature to soil nutrient availability in infertile ecosys-
tems, or to light availability in forest systems (Ernakovich
et al., 2014; Forkel et al, 2015). All of these mechanisms may
potentially contribute to a decrease in plant phenological

© 2024 The Author(s).
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responses over time, and further experimentation is necessary to
quantify their respective significance.

Based on theory and previous studies, it can be inferred that
the observed short-term changes in phenology are predominantly
driven by plant plasticity (Ramirez-Parada ez al, 2024). How-
ever, as the experimental duration increased, the variance of phe-
nological changes gradually decreased (Fig. S10), suggesting a
reduction in the level of plant plasticity (Salmela, 2014). The pre-
dictive theory suggests that if a species’ plastic phenological
responses become inadequate, plants may undergo evolutionary
changes to better adapt to shifting conditions. Alternatively, a
shift in reaction norms could lead to the replacement of less adap-
tive species by more suitable ones (Chevin ez af, 2010; Cleland
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et al., 2012; Zeng & Wolkovich, 2024). Herbaceous species, with
their higher evolutionary rates and shorter generation times, are
more likely to exhibit rapid evolutionary responses compared
with woody plants (Smith & Donoghue, 2008). We did not
detect particularly strong differences between the two groups of
species, suggesting that the ability to adapt to new conditions is
inherent for both types. In any case, this finding indicates that
plants may be more phenologically adaptable to climate change
than previously thought and that future long-term studies of cli-
mate warming should consider more abiotic constraints to plant
fitness than just temperature.

Climatic factors that regulate plant phenology in response
to climate warming

Supporting our third hypothesis, we found that the decelerated
rates of phenological response with increasing warming magni-
tude were more pronounced in dry regions compared with wet
regions. Warming increases evapotranspiration, and in more arid
regions, the impact on plant water availability may inhibit the
ability of plants to capitalize on warmer temperatures (Welker
et al., 2004; Dotji er al., 2013; Xu et al., 2013). Furthermore,
changes in plant phenology could be limited by their intrinsic life
cycles (Forrest & Miller-Rushing, 2010; Piao ez al, 2019).
Short-lived plants that inhabit dry locations with brief seasonal
windows have limited opportunities to expand phenophases
under conditions of significant warming (Hereford ez al., 2017).
We also found that the species living in cold regions respond less
to a high magnitude of warming than those in warm areas. This
suggests that the higher magnitudes of warming may exceed the
maximum thresholds that the species can capitalize in under cold
regions (Elmendorf & Hollister, 2023).

Considering warming may increase evapotranspiration and
lead to soil drought, it is plausible that water availability will con-
strain plant phenological responses over time, especially in dry
regions (Welker ez al., 2004; Dorji et al., 2013; Su et al., 2018).
However, we seldom observed significant effects of MAP on tem-
poral trends of the warming effect. This suggests that
warming-induced soil drought may not play a major role in the
attenuation of phenological responses over time. We suggest that
it is necessary to incorporate temporal trends of other indicators,
such as soil nutrients and plant nonstructural carbohydrates, to
accurately assess the drivers influencing plant responses over time

(Wang ez al., 2014).

Concluding remarks

Understanding the trajectory of plant phenology is crucial for
projecting ecosystem dynamics and functioning under future
scenarios of climate warming. Our meta-analysis reveals a com-
pelling correlation between the phenological responses of terres-
trial plant species and the increasing warming magnitude or
experimental duration. Notably, these associations vary across
different plant types and are mediated by climatic factors. How-
ever, most plant phenology models do not consider changes in
phenological responses due to the increasing magnitude of
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warming and the duration of experiments (Chuine &

Régniere, 2017). Our results suggest that next-generation phe-
nology models could be improved by explicitly incorporating
the taxon- and phenophase-specific responses to rising tempera-
tures over longer periods.

We recommend that future experimental investigations priori-
tize regions that are currently underrepresented in our dataset. It
is worth noting that the majority of warming experiments have
been concentrated in North America, Europe, and China, with
only a limited number of experiments conducted in the Southern
Hemisphere. In addition, our dataset lacks sufficient decadal
warming experiments at low latitudes and does not include phe-
nological data for tropical ecosystems. There is an urgent need
for long-term experiments in low-latitude regions to deepen our
understanding of terrestrial plants’ phenological responses to
warming. This will also enable us to improve global predictions
of ecosystem functioning as our climate continues to change.
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