

A New Mode of Subseasonal Predictability Over the US: Boreal Summer

Paul Buchmann,^a, and Timothy DelSole^{a,b}

^a *George Mason University, Fairfax, VA 22030, USA*

⁵ ^b *Center for Ocean-Land-Atmospheric Studies, George Mason University, Fairfax, VA 22030, USA*

⁶ Corresponding author: Timothy DelSole, tdelsole@gmu.edu

7 ABSTRACT: This study identifies the most predictable modes of subseasonal temperature over
8 the United States during boreal summer for weeks 1-2 and, separately, for weeks 3-4. Surprisingly,
9 Granger Causality tests reveal that these modes are unrelated to standard indices of subseasonal
10 predictability, such as El Niño or the Madden-Julian Oscillation. Lagged regression analysis
11 indicates that the leading week 1-2 mode is driven by western Pacific precipitation and exhibits
12 enhanced persistence due to interactions with soil moisture. Similarly, the leading week 3-4 mode
13 is linked to western Pacific precipitation. While these modes share features with the Boreal Sum-
14 mer Intraseasonal Oscillation (BSISO), the resemblance is not exact, and the chain of mechanisms
15 leading to predictability over the U.S., particularly involving soil moisture, appears to be new.
16 NOAA's Climate Forecast System v2 (CFSv2) successfully captures the leading week 1-2 mode
17 but fails to represent the leading week 3-4 mode. The lagged relationships identified here may pro-
18 vide insights into model adjustments that could enhance subseasonal predictability. These modes
19 were identified using Canonical Correlation Analysis (CCA), which is capable of uncovering pre-
20 dictability without prior assumptions about its source. While CCA is a well-established statistical
21 method, its application to climate data has been limited due to challenges in significance testing
22 and feature selection. This study addresses these limitations by employing a recently developed
23 Mutual Information Criterion (MIC) to optimize feature selection, using Monte Carlo techniques to
24 establish rigorous significance tests for small samples, and formulating a comprehensive procedure
25 for validating predictability in independent datasets.

26 SIGNIFICANCE STATEMENT: Accurate subseasonal forecasts, covering the 2- to 8-week time
27 frame, would provide significant societal benefits in areas such as public health, agriculture,
28 water resource management, energy, utilities, and early warnings for extreme events. This paper
29 integrates rigorous statistical procedures into a framework with the potential to uncover new
30 sources of predictability. The underlying idea is that if weather and climate are predictable on
31 subseasonal time scales, there ought to be some correlation between events separated in time. Such
32 correlations can be identified with no pre-conceived notion as to their source. After identifying
33 these correlations, known sources of predictability may be removed statistically one-by-one. Any
34 predictability that remains after this sifting process indicates a new source of predictability.

35 **1. Introduction**

36 Predictions of temperature and precipitation on subseasonal time scales have been made for
37 at least a decade. These predictions typically forecast one- or two-week means up to six weeks
38 in advance (Johnson et al. 2014). Subseasonal predictions are generally less skillful than either
39 weather or seasonal forecasts because the lead time is long enough for information from atmospheric
40 initial conditions to degrade, yet the averaging period is short enough that not all weather noise is
41 smoothed out. Despite these challenges, accurate subseasonal forecasts could provide significant
42 benefits to water management, agriculture, disaster preparedness, and health (White et al. 2017).
43 Case studies have shown that subseasonal forecasts can support decision-making in areas such
44 as public health, agriculture, water resource management, energy, and utilities, as well as early
45 warnings for extreme events (White et al. 2021; Domeisen et al. 2022). The importance of
46 subseasonal forecasting led to subseasonal forecast competitions, with substantial cash prizes, by
47 the U.S. Bureau of Reclamation in 2017 (Hwang et al. 2019) and 2019 (Nowak et al. 2020), and
48 by the United Nations' World Meteorological Organization in 2021 (Vitart et al. 2022).

49 Several known phenomena contribute to subseasonal predictability in the United States, in-
50 cluding the El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), the
51 Pacific-North American teleconnection pattern (PNA), the North Atlantic Oscillation (NAO), Sud-
52 den Stratospheric Warming events (SSWs), and land-atmosphere coupling (Robertson and Vitart
53 2019; National Research Council 2010; National Academies of Sciences Engineering and Medicine
54 2016). A more recently identified source, which plays a significant role in this study, is the Boreal
55 Summer Intraseasonal Oscillation (BSISO). The BSISO is a summer mode of the MJO charac-
56 terized by northward-propagating precipitation anomalies extending from India to the western
57 Pacific. Most studies on the BSISO focus on its influence on the Asian summer monsoons or on
58 tropical cyclones. Few studies examine its effects on the United States' 2m temperature. One such
59 study by Krishnamurthy et al. (2021) describes an oscillation in tropical winds over the eastern
60 Pacific related to the BSISO, with the response of 2m temperature over the U.S. quantified through
61 regression maps. Jenney et al. (2019) also assessed the seasonal impact of the MJO and BSISO
62 on surface temperatures in the U.S and concluded that its impact on summer predictability is small
63 compared to the MJO's influence on winter predictability.

64 All of the above phenomena influence U.S. temperatures on subseasonal timescales. However,
65 in each case, the phenomenon was identified first, and its impact on temperature was determined
66 afterward. This raises the question of whether there might be other mechanisms driving subseasonal
67 predictability that have gone unnoticed simply because they have not yet been identified. If an
68 unknown source of predictability exists, how would we discover it? Our goal is to identify
69 subseasonal predictability without requiring prior knowledge or a hypothesis about the source.

70 A mechanism that produces predictability on subseasonal time scales should produce a temporal
71 dependence between a pattern at time t and a (potentially different) pattern at time $t + \tau$. Accord-
72 ingly, we employ methods that identify temporal correlations in multivariate time series. Several
73 approaches exist for this, including multichannel singular spectrum analysis (MSSA, Ghil et al.
74 2002; Krishnamurthy et al. 2021), coherence spectrum analysis (Madden and Julian 1971), lead-lag
75 regression between leading EOFs, Canonical Correlation Analysis (CCA, Barnett and Preisendor-
76 fer 1987; Barnston and Smith 1996; Huth 2002; DelSole and Tippett 2022), and machine learning
77 approaches (McGovern et al. 2014; Hwang et al. 2019; He et al. 2021; Trenary and DelSole 2023).
78 However, each method has limitations in its current form. MSSA does not explicitly maximize
79 a measure of predictability. Coherence spectrum analysis is univariate and thus does not capture
80 multivariate dependencies. Lead-lag regression assumes that individual EOF patterns represent
81 the full response to a mechanism, a highly restrictive assumption. Machine learning approaches,
82 while powerful, require large datasets for training and validation, which poses a challenge for
83 subseasonal prediction due to the relatively small sample sizes involved.

84 Among the available statistical methods, we adopt Canonical Correlation Analysis (CCA) for this
85 study. While CCA has its own limitations—such as the need to select the number of EOFs for analysis
86 and the reliance on asymptotic significance tests—these issues are addressable. First, a relatively
87 new selection criterion, the Mutual Information Criterion (MIC), has been developed specifically
88 for CCA (DelSole and Tippett 2021). Second, Monte Carlo techniques can be employed to derive
89 small-sample significance tests (DelSole and Tippett 2022). The goal of this work is to leverage
90 these tools to develop CCA into a rigorous and objective procedure for identifying predictability
91 in multivariate time series. Once predictability is detected, lagged regression maps can be used to
92 describe its temporal evolution and its relationship to other physically relevant variables. To ensure
93 that the predictability identified by CCA is not the result of overfitting, we verify the findings using

94 independent datasets. This is done by projecting the predictable components onto an independent
95 dataset and comparing the correlation in that data to the correlation determined by CCA. A key
96 contribution of this work is the development of a comprehensive and rigorous validation procedure
97 in independent datasets. Interestingly, this process may yield uncertainty ranges that do not contain
98 either the in-sample or out-of-sample correlations, which may surprise some readers.

99 Since CCA does not require a prior hypothesis about the underlying mechanism, it has the
100 potential to uncover previously unknown forms of predictability. Given our goal of identifying
101 new sources of predictability, we focus primarily on analyzing observational data. There is no
102 doubt that ENSO contributes to subseasonal predictability; any reasonable method will detect
103 ENSO as a dominant influence. To explore additional sources of predictability beyond ENSO, this
104 study removes the seasonal ENSO influence by subtracting the seasonal mean from the temperature
105 data before performing the predictability analysis. Because the mechanisms driving temperature
106 predictability vary by season, we will analyze each season separately. This paper presents the
107 results for boreal summer, while results for other seasons are discussed in Buchmann (2024).

108 For ease of communication, a pair of temperature patterns along with their time series will
109 be referred to as a 'mode.' The leading mode identified by CCA will have the highest possible
110 correlation. The second mode will have the highest possible correlation that is uncorrelated with the
111 leading mode, and so on. After confirming the detection of predictability, we investigate whether
112 it is linked to a known source by regressing that phenomenon out of the data and recalculating
113 CCA. We then compare the resulting modes and correlations to the original ones. If the correlation
114 of a mode becomes insignificant or if the mode disappears entirely, we can conclude that the
115 phenomenon we removed is responsible for that mode. Finally, we assess whether subseasonal
116 dynamical models capture the modes identified by CCA. This is done by projecting the predictable
117 components onto subseasonal temperature forecasts and comparing the resulting correlations with
118 those derived from CCA. If a mode is not well-represented by a model, it may offer a target for
119 model developers to improve the representation of specific features in their models.

120 This paper is organized as follows. The next section reviews our data and methods, particularly
121 CCA and associated selection criteria, significance tests, and connections to Granger Causal-
122 ity Analysis. Section 3 describes a new, comprehensive, and rigorous procedure for validating
123 canonical components in independent data. Section 4 describes our results of applying CCA to

124 June-July-August (JJA) 2m temperature over CONUS. Section 5 discusses results of assessing
125 whether a state-of-the-art climate forecast model captures the predictability identified here from
126 observational data sets. This paper ends with a summary and discussion of our results. This work
127 is a partial summary of a PhD thesis by Paul Buchmann. More comprehensive discussion of these
128 results and other results for other seasons can be found in the thesis Buchmann (2024).

129 **2. Data and Methods**

130 *a. ERA40 Reanalysis*

131 The main dataset used is the daily ERA40 reanalysis. This reanalysis covers September 1957 to
132 August 2002, making it one of the longest reanalysis data sets. The variables are on a 1.25 by 1.25
133 uniform longitude-latitude grid. The following daily variables are used from this reanalysis: 2m
134 temperature, total precipitation, the Nino 3.4 index of SST, and soil moisture in the top layer (0-7cm
135 underground). BSISO indices used are based on Kikuchi (2020); the EOFs of outgoing longwave
136 radiation (OLR) were obtained from the International Pacific Research Center, and intraseasonal
137 OLR from ERA40 was projected onto the EOFs to obtain the time series of the BSISO indices.
138 The 2m temperature data is used to investigate intraseasonal predictability. The other data is used
139 to explore the source of the predictability in 2m temperature.

140 *b. Observed Data*

141 To verify the correlations found from the ERA40 reanalysis, we use observed daily 2m temper-
142 ature over CONUS from the NOAA ESRL. We utilize only the time period September 1, 2002 to
143 February 28, 2022, which does not intersect with the ERA40 dataset. The data was interpolated to
144 the ERA40 grid.

145 To investigate the sources of predictability in the ERA40 2m temperature data, we use the NAO
146 and PNA indices provided by NOAA's Climate Prediction Center (CPC). These indices overlap
147 with the ERA40 data range and are used for convenience rather than being recalculated directly
148 from the ERA40 dataset.

149 *c. Data Preprocessing*

150 Data in ERA40 is output in 6 hour increments. Except for precipitation, the data is converted to
151 daily averages. For precipitation, the data is converted to daily total. Then anomalies are calculated
152 at the gridpoint level by removing a trend and 3 annual harmonics. To convert to EOFs, the data is
153 separated into seasons (DJF, MAM, JJA, SON) and averaged into two-week means.

154 An important step is that the mean from each season is removed before analyzing predictability.
155 For example, the anomalies for June, July, August 1999 have zero mean when averaged over June,
156 July, August 1999. EOFs were computed from the two-week mean data and then the mean of each
157 season was removed from each PC. Reversing these steps by removing the local seasonal mean
158 from the gridpoint data and then calculating the EOFs gave virtually identical PC time series and
159 EOF spatial patterns.

160 All observed indices are preprocessed by removing a trend and 3 annual harmonics, and then
161 calculating two week averages. The local seasonal mean is then removed.

162 *d. Canonical Correlation Analysis (CCA)*

163 A procedure called Canonical Correlation Analysis (CCA) is used to quantify the relation between
164 variables. Given a vector $\mathbf{x}(t)$ and a vector $\mathbf{y}(t)$, CCA finds a linear combination of $\mathbf{x}(t)$ and a
165 linear combination of $\mathbf{y}(t)$ that maximizes their correlation. More generally, CCA decomposes the
166 data into pairs of variates (time series) such that the first pair has the maximum possible correlation
167 in the data set, the second pair has the maximum correlation uncorrelated to the first pair, and so
168 on, with each pair of variates uncorrelated to all of the variates preceding them. The n 'th variate
169 pair has correlation ρ_n called the n 'th canonical correlation. Each pair of variates also has a pair of
170 loading vectors (spatial patterns) associated with it. More details of this standard CCA procedure
171 can be found in DelSole and Tippett (2022).

172 In this work, CCA is applied to two temperature fields, $\mathbf{x}(t)$ and $\mathbf{y}(t)$, where t is a time index. In
173 this work, $\mathbf{x}(t)$ and $\mathbf{y}(t)$ are 2-week means separated by a fixed lag. The precise endpoints for the
174 2-week means are listed in Table 1.

	start of $\mathbf{x}(t)$	end of $\mathbf{x}(t)$	start of $\mathbf{y}(t)$	end of $\mathbf{y}(t)$
weeks 1-2	day -13	day 0	day 1	day 14
weeks 3-4	day -13	day 0	day 15	day 28

TABLE 1. Start day and end day of the 2-week averaging windows for weeks 1-2 and weeks 3-4 prediction.

175 *e. Selection Criterion - MIC*

176 In climate applications, it is standard practice to reduce the dimension of $\mathbf{x}(t)$ and $\mathbf{y}(t)$ by
 177 projecting them onto their leading EOFs. The question naturally arises as to how many EOFs should
 178 be chosen. Studies using CCA generally have not used a selection criterion for the number of EOFs
 179 used. In this work, we use a selection criterion called Mutual Information Criterion (MIC) (DelSole
 180 and Tippett 2021), which is similar to information criteria like Akaike's Information Criterion,
 181 except generalized to selection of random predictors and predictands. Following DelSole and
 182 Tippett (2022), MIC is calculated as:

$$MIC(T_X, T_Y) = N \log \Lambda + P(N, T_X, T_Y), \quad (1)$$

183 where N is the total number of $\{\mathbf{x}(t), \mathbf{y}(t)\}$ pairs, T_X and T_Y are the number of PCs included in $\mathbf{x}(t)$
 184 and $\mathbf{y}(t)$, respectively, $P(N, T_X, T_Y)$ is a penalty function defined as

$$P(N, T_X, T_Y) = N \left(\frac{(T_X + T_Y)(N+1)}{N - T_X - T_Y - 2} - \frac{T_X(N+1)}{N - T_X - 2} - \frac{T_Y(N+1)}{N - T_Y - 2} \right), \quad (2)$$

185 and

$$\Lambda = (1 - \rho_1^2)(1 - \rho_2^2) \dots (1 - \rho_{\min(T_X, T_Y)}^2). \quad (3)$$

186 As the number of EOFs increases, Λ decreases, reflecting the increase in predictability, but the
 187 penalty term increases, reflecting the uncertainty from estimating more parameters. The minimum
 188 value of MIC gives us the selection criterion for T_X and T_Y .

189 *f. CCA Critical Values*

190 Statistical significance of the canonical correlations is assessed using Monte Carlo techniques.
 191 The significance of the first canonical correlation is determined as follows: Random numbers

192 drawn from a normal distribution are used to populate two matrices \mathbf{X} and \mathbf{Y} of size $T_X \times N$ and
193 $T_Y \times N$, respectively, where N is the sample size and T_X and T_Y are determined by MIC. To ensure
194 consistency, the same preprocessing steps (i.e., removal of the trend, three harmonics, and the
195 seasonal mean) are applied to the random data as to the original data. CCA is then performed
196 on the random matrices to compute the sample canonical correlations. This process is repeated
197 10,000 times to construct an empirical distribution of the canonical correlations under the null
198 hypothesis of independent \mathbf{X} and \mathbf{Y} . The 95th percentile of the leading canonical correlation from
199 the Monte Carlo simulations is taken as the significance threshold at the 5% level.

200 For the second canonical correlation, the \mathbf{X} and \mathbf{Y} matrices are generated as described above,
201 except this time one (arbitrary) row of the \mathbf{Y} -matrix is set equal to a row of the \mathbf{X} -matrix, thereby
202 generating a component with a population correlation of 1. The remainder of the procedure is the
203 same as described above. This tests the hypothesis that all canonical correlations except one are
204 0. Using a population correlation of 1 for the first PC corresponds to a "worst-case scenario" for
205 the null hypothesis and leads to a conservative estimate of the significance level for the second
206 canonical correlation.

207 The test for the 3rd correlation is similar, except that two rows of the \mathbf{Y} -matrix are set equal to
208 two rows of the \mathbf{X} -matrix, and so on.

209 *g. Multivariate Granger Causality*

210 After identifying a predictable relation, we assess whether it is driven by a known climate process
211 (e.g., ENSO or the PNA). Suppose the climate process is represented by an index F . In this case, F
212 can be regressed out of both \mathbf{X} and \mathbf{Y} , and CCA applied to the resulting residuals. If F is unrelated
213 to \mathbf{X} and \mathbf{Y} , regressing out F should have little effect on the canonical correlations. However, if F
214 drives the relationship between \mathbf{X} and \mathbf{Y} , regressing out F should reduce or eliminate at least one of
215 the canonical correlations. The significance of the correlations can be evaluated by incorporating
216 the regress- F -out step into the Monte Carlo procedure described earlier.

217 The method described above is closely related to Granger Causality (Granger 1969). To under-
218 stand this connection, recall that a time series F is said to Granger-cause \mathbf{Y} if predictions based
219 on both antecedent \mathbf{Y} and F are more skillful than predictions based on antecedent \mathbf{Y} alone. In

220 practice, Granger Causality is evaluated using the regression model

$$Y = LX + cF + E, \quad (4)$$

221 where L is a propagator, c is a coefficient, and E is random noise. Whether F Granger-causes \mathbf{Y}
222 depends on c . If the hypothesis $c = 0$ cannot be rejected, then F does not improve the prediction
223 of \mathbf{Y} beyond what can be achieved using \mathbf{X} alone. Conversely, if c is statistically significant, then
224 including F improves the prediction of \mathbf{Y} . Therefore, demonstrating that F Granger-causes \mathbf{Y} is
225 equivalent to showing that c is statistically significant.

226 The two methods are equivalent due to a close connection between CCA and linear regression.
227 Specifically, DelSole and Chang (2003) demonstrate that if each canonical component is predicted
228 separately and then summed across all components, the result is identical to the prediction obtained
229 from multivariate linear regression. This indicates that CCA and linear regression capture the same
230 predictability but express it in different forms. Moreover, by the Frisch-Waugh-Lovell theorem
231 (Frisch and Waugh 1933; Lovell 2008), the regression matrix L is identical to the matrix obtained
232 when F is regressed out of both \mathbf{X} and \mathbf{Y} and fitted to a linear model. Consequently, determining
233 whether c is significant in equation (4) is equivalent to evaluating whether the canonical correlations
234 change after regressing F out of \mathbf{X} and \mathbf{Y} .

235 No procedure can fully guarantee the correct identification of causality, and the above approach
236 is no exception. For instance, suppose both F and \mathbf{Y} are influenced by another climate process, Z .
237 In this case, the coefficient associated with F may still be nonzero, leading the analysis to conclude
238 that F causes \mathbf{Y} , when in reality it is Z that causes \mathbf{Y} . One way to address this issue is to test
239 multiple climate processes. If more than one process is found to be causal, we may then formulate
240 further hypotheses about the ordering and underlying structure of the causal relationships.

241 *h. How many PCs to regress out when there isn't an index*

242 Soil moisture does not have a standard index associated with it. We compute EOFs of soil
243 moisture over the United States, and then we need to decide how many EOFs of soil moisture
244 we should regress out for Granger Causality. MIC, described in Section 2.d.e, can be used as an
245 objective method to determine how many EOFs to use for testing Granger Causality.

246 Following Equation 21 of DelSole and Tippett (2021), the appropriate equation is:

$$MIC(X;Y|F) = MIC(XF;Y) - MIC(F;Y) \quad (5)$$

247 where \mathbf{X} is the 2m temperature PCs at the initial time, \mathbf{Y} is the 2m temperature PCs at the response
248 time, and F is the leading PCs of the variable being investigated, at the initial time. To understand
249 Equation 5, recall that MIC is a measure of the degree of predictability. $MIC(XF;Y)$ predicts \mathbf{Y}
250 using both \mathbf{X} and F , while $MIC(F;Y)$ predicts \mathbf{Y} using only F . The difference of these terms
251 tells us how well \mathbf{X} is able to predict \mathbf{Y} independent of F (that is, while F is held constant). This
252 gives us $MIC(X;Y|F)$, which is a function of the number of PCs of F . The number of PCs of F to
253 include is determined by the minimum of $MIC(X;Y|F)$.

254 3. Verifying Predictability in Independent Data

255 Verifying predictability in independent data is particularly challenging in subseasonal studies,
256 which often involve small sample sizes. Our approach is novel and distinct from the more standard
257 methods discussed in the previous section, so it will be discussed separately in this section.

258 The sample estimate of the leading canonical correlation is biased upward due to overfitting.
259 Overfitting is a common limitation of statistical optimization methods. This bias becomes pro-
260 nounced when the true population correlation is small and the sample size is small (Lee 2007).

261 What is perhaps less widely recognized is that projecting a canonical component onto indepen-
262 dent data typically results in an underestimation of the population correlation. This is intuitively
263 reasonable—since CCA tends to overestimate the correlation by incorporating noise into the predic-
264 tive model, the noise only degrades the predictive value of the model when applied to independent
265 data. As a result, CCA is *expected* to yield upward-biased in-sample correlations and downward-
266 biased out-of-sample correlations, even when both samples come from the same population. Our
267 goal is to quantify these two biases.

268 It appears to have gone unnoticed that Monte Carlo techniques can be used to estimate both upward
269 and downward biases in canonical correlations. The procedure begins as outlined previously:
270 random numbers drawn from a normal distribution are used to fill two matrices, \mathbf{X} and \mathbf{Y} , of size
271 $T_X \times N$ and $T_Y \times N$, respectively. By construction, \mathbf{X} and \mathbf{Y} are independent. Next, \mathbf{Y} is modified

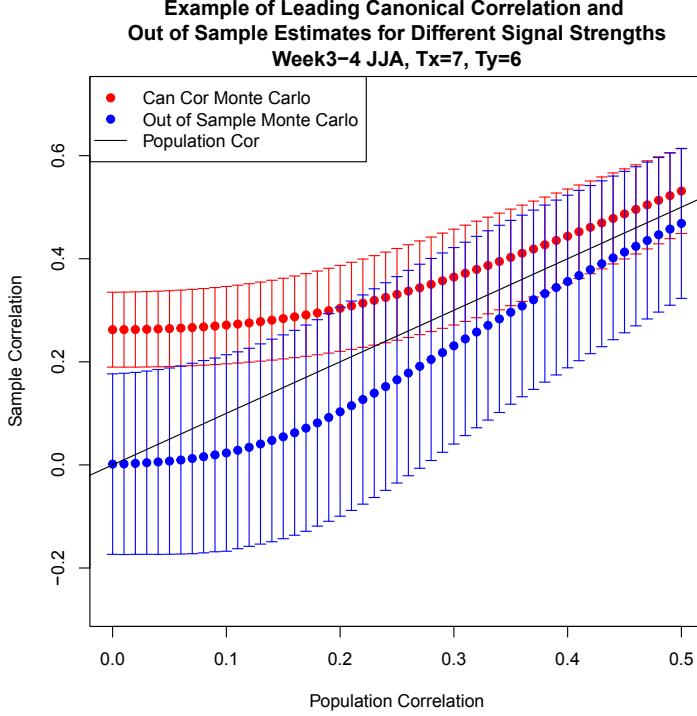
272 to include a correlation by setting the first PC of \mathbf{Y} , denoted Y_1 , to

$$Y_1 = \rho X_1 + \sqrt{(1 - \rho^2)} * Z, \quad (6)$$

273 where X_1 is the first PC of \mathbf{X} , and Z is independently drawn from a standard Gaussian distribution.
274 This modification ensures that the population correlation between the first PCs of \mathbf{X} and \mathbf{Y} is ρ ,
275 while all other PCs remain independent. CCA is then performed, and we expect at least one sample
276 canonical correlation to be close to ρ . Having performed CCA, we obtain the canonical projection
277 vectors associated with the leading canonical correlation. Applying these vectors to \mathbf{X} and \mathbf{Y} will
278 yield time series with a correlation exactly equal to the leading sample canonical correlation. To
279 validate this relation on independent data, we generate new independent matrices \mathbf{X}' and \mathbf{Y}' , in
280 the same manner as described above (particularly using equation (6)), but with a sample size N'
281 matching our verification data. Applying the previously computed projection vectors to \mathbf{X}' and \mathbf{Y}'
282 and computing the correlation gives a realization of the possible correlation that could occur in
283 independent data from the same population. This process is repeated 1,000 times for a given ρ to
284 determine the quantiles of both in-sample and out-of-sample canonical correlations. The procedure
285 is then repeated for different values of ρ , allowing us to estimate the distribution of in-sample and
286 out-of-sample correlations as a function of the population canonical correlation.

290 An example of the distributions of in-sample and out-of-sample correlations is shown in Figure
291 1. For each population correlation, the red points represent the mean leading in-sample canonical
292 correlation over the Monte Carlo simulations, with error bars indicating two standard deviations.
293 The black line shows the $x = y$ line for reference. The fact that the red points are above the $x = y$
294 line illustrates the overfitting discussed earlier, with the largest upward bias occurring when the
295 population correlation is small.

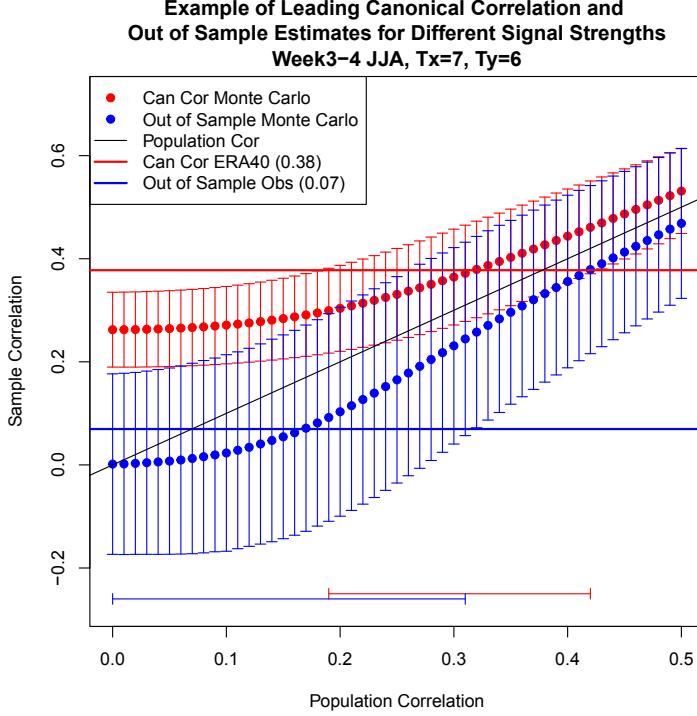
296 The corresponding blue points represent the mean correlation when the leading in-sample canon-
297 ical component is projected onto independent data, with error bars also showing two standard
298 deviations. The fact that the blue points lie below the $x = y$ line highlights the tendency to un-
299 derestimate the population correlation in independent data. While this phenomenon may have
300 been recognized by others, it does not appear to have been previously quantified. Additionally, the
301 in-sample error bars (red) are smaller than the out-of-sample error bars (blue) because the sample



287 FIG. 1. Estimates of leading canonical correlations (red dots) and their corresponding out of sample correlations
 288 (blue dots) for population correlations ranging from 0 to 0.5. These estimates are for the case when $T_X = 7$ and
 289 $T_Y = 6$, which corresponds to the number of EOFs used for JJA.

302 size for the in-sample data is larger than that for the out-of-sample data, as it was chosen to match
 303 the actual data length.

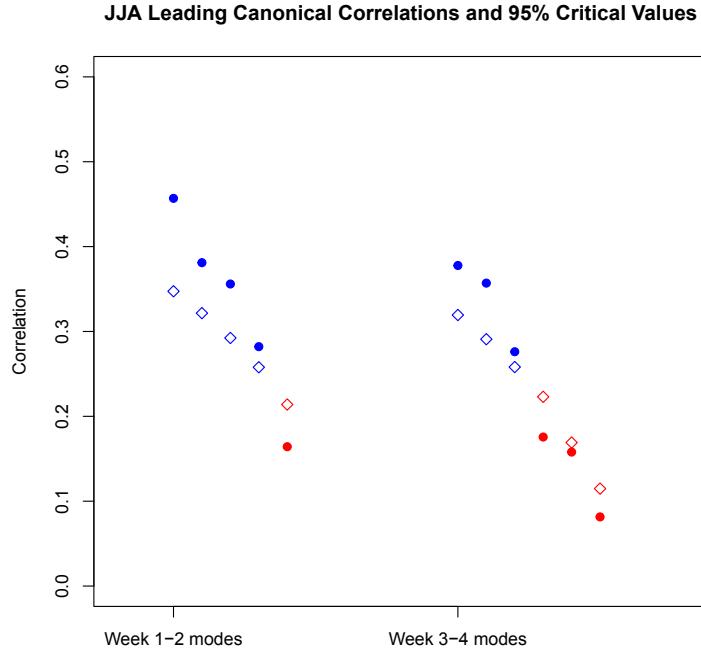
307 The above procedure can be used to derive more comprehensive uncertainty estimates for the
 308 canonical correlation that incorporate out-of-sample information. To illustrate this, we use a
 309 specific example. In Section 4.b.4, we find that the leading canonical correlation for week 3-4
 310 prediction in JJA is 0.38, while the out-of-sample correlation for this mode is 0.07. Figure 2
 311 presents the same estimated distributions of in-sample and out-of-sample correlations as Figure 1,
 312 but with the leading canonical correlation for JJA (0.38, marked as the horizontal red line) and the
 313 out-of-sample correlation (0.07, marked as the horizontal blue line) overlaid. For this mode, 7 PCs
 314 were included as predictors for \mathbf{X} , and 6 were included as predictors for \mathbf{Y} ; these values were used
 315 in the Monte Carlo simulations. The uncertainty of the leading canonical correlation is represented
 316 by the horizontal red error bar at the bottom of the figure. This was obtained by calculating the



304 FIG. 2. As in Figure 1, but additionally showing the leading canonical correlation (0.38) as the horizontal red
 305 line. The correlation of the leading mode when projected onto an independent sample (0.07) is shown as the
 306 horizontal blue line. The bracketed lines at the bottom are the confidence interval for each correlation.

317 standard errors of the simulated canonical correlations that overlap with 0.38, the observed leading
 318 canonical correlation. Similarly, the uncertainty for the out-of-sample correlation is shown by
 319 the horizontal blue error bar at the bottom, based on the standard errors of the simulated out-of-
 320 sample correlations that overlap with 0.07, the observed out-of-sample correlation. Because these
 321 two intervals overlap, we conclude that the in-sample and out-of-sample correlation estimates are
 322 consistent with each other. The range of population correlations that overlap (0.19-0.31) represents
 323 the interval of population coefficients that is consistent with the 95% confidence intervals of both
 324 the in-sample and out-of-sample results.

325 The above analysis produces an unconventional uncertainty range, as it does not encompass either
 326 the in-sample or out-of-sample correlations individually. However, the Monte Carlo simulations
 327 demonstrate that any population correlation within the interval (0.19-0.31) could generate results
 328 consistent with both the in-sample and out-of-sample correlations derived from observations.



333 FIG. 3. Canonical correlations and 95% critical values for JJA. Circles are canonical correlations and diamonds
 334 are the 95% critical values. Blue points indicate that the correlation is statistically significant while red indicates
 335 that it is statistically insignificant, at the 5% level. Correlations when CCA is done at weeks 1-2 is on the left,
 336 correlations when CCA is done at weeks 3-4 is on the right.

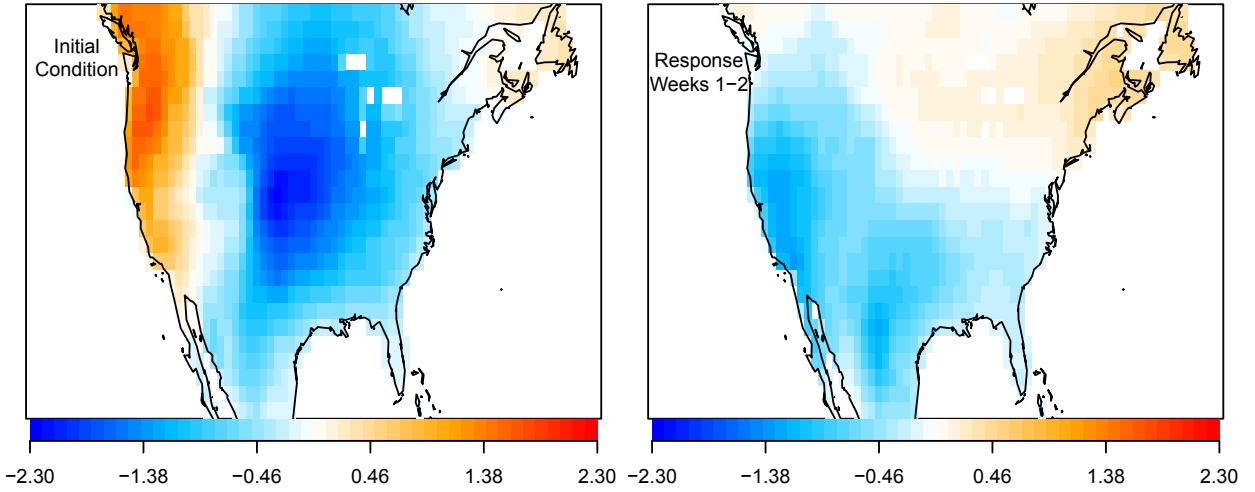
329 **4. Results**

330 We now present the results of the CCA analysis aimed at identifying the most predictable mode
 331 of 2-week mean CONUS temperature during boreal summer. As a reminder, the seasonal mean
 332 has been removed to focus exclusively on subseasonal predictability.

337 Our main finding is that we detect predictable subseasonal modes for both weeks 1-2 and weeks
 338 3-4. Figure 3 shows the leading JJA canonical correlations for weeks 1-2 and weeks 3-4. In this
 339 figure, the points are the correlations and the diamonds are the 95% critical values. Correlations
 340 above the critical value are statistically significant. As a visual aid, significant correlations are
 341 indicated in blue and insignificant correlations are indicated in red.

342 We next diagnose the structure of the leading modes.

JJA Week 1-2 Loading Vectors Number 1



344 FIG. 4. 1st leading loading vector for JJA at weeks 1-2. The left panel is the initial condition, and the right
345 panel is the week 1-2 response.

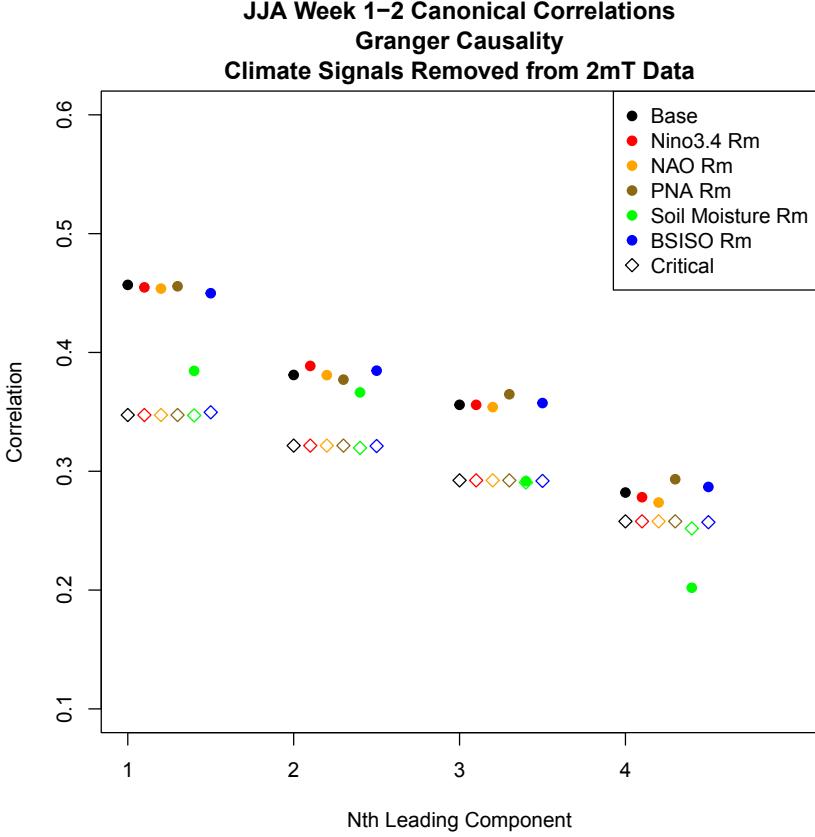
343 *a. JJA Weeks 1-2: Leading Mode*

346 **1) LOADING VECTORS**

347 The loading vectors associated with the leading mode for JJA weeks 1-2 are shown Figure 4. The
348 initial condition (left panel of Figure 4) is characterized by a dipole pattern with anomalies of one
349 sign concentrated along the west coast and anomalies of the opposite sign distributed throughout
350 the rest of the US. At the week 1-2 response (right panel of Figure 4), the west coast anomalies
351 have changed sign and propagated to eastern Canada, with most of the interior CONUS remaining
352 the same sign.

353 **2) RELATION TO KNOWN SOURCES OF PREDICTABILITY**

358 If a correlation becomes insignificant when a climate index is regressed out, we can conclude that
359 the index that was removed Granger Causes this mode. The canonical correlations after regressing
360 out various climate indices one at a time from the temperature PCs are shown in Figure 5. The
361 red, orange, gold, green, and blue points show the results after removing the Nino 3.4 index, NAO,



354 FIG. 5. The statistically significant canonical correlations for JJA at weeks 1-2 after the time series of common
 355 climate indices are removed from the 2m temperature PCs. The black points are when no signal is removed and
 356 is the same as the week 1-2 correlations in Figure 3. The red, orange, gold, green, and blue points are when the
 357 Nino 3.4 index, NAO, PNA, surface soil moisture, and BSISO indices are removed, respectively.

362 PNA, surface soil moisture, and BSISO indices, respectively. The corresponding critical values for
 363 5% significance are shown as diamonds. For reference, the canonical correlations of the original
 364 temperature PCs are shown as black points, reproduced from Figure 3.

365 Except for the case of soil moisture, the leading canonical correlation remains largely unchanged
 366 when the other climate indices are removed. However, when the soil moisture PCs are removed
 367 (represented by blue points in Figure 5), the correlation of the first mode decreases, although it
 368 remains statistically significant. Notably, the canonical correlation with soil moisture removed is
 369 consistent with the second mode's base canonical correlation (compare the leading mode's blue
 370 point with the second mode's black point, and similarly, the second mode's blue point with the

371 third mode's black point, and so on). This suggests that regressing out the soil moisture signal
372 effectively eliminates the first mode, causing the second mode to become the new leading mode.

373 To verify if the modes are indeed the same, we compare their time series. The correlation
374 between the **X** variates of the leading mode when soil moisture is removed (blue point for the
375 leading mode) and the **X** variates of the second mode when no signals are removed (black point
376 for the second mode) is 0.62. Similarly, the correlation between the **Y** variates of these modes is
377 0.61. Given the uncertainties, these correlations are effectively equal, indicating that the original
378 first mode has been fully removed, and the second mode has shifted into its place. However, this
379 analysis does not determine whether the soil moisture signal itself is a response to other phenomena
380 not represented among our climate indices.

381 The removal of the other signals does not change the correlation of any of the other modes. This
382 means that we can conclude that the second, third, and fourth modes are not Granger caused by the
383 associated climate mechanisms.

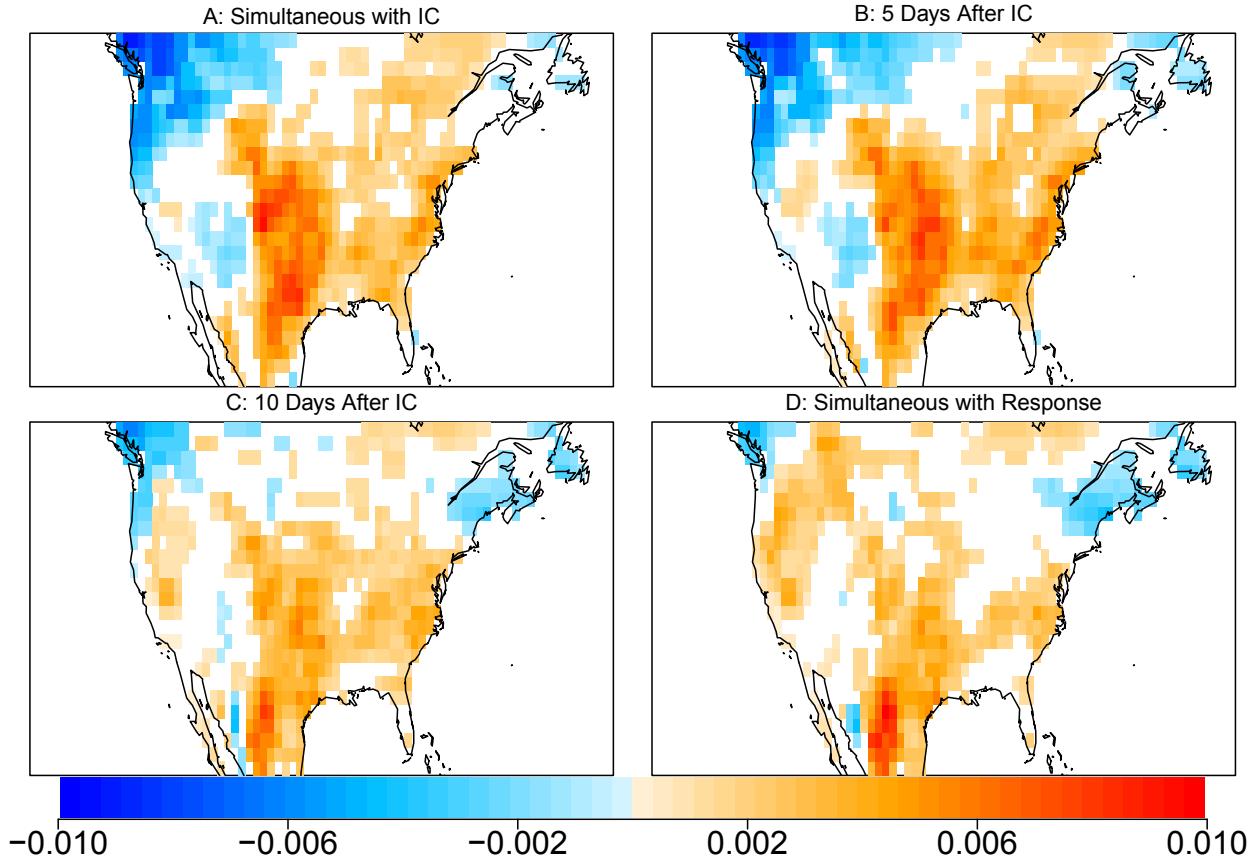
384 3) REGRESSION MAPS

385 The structure and evolution of each mode, as well as its relationship to other physically relevant
386 variables (denoted **Z**), will be diagnosed through lagged regression maps. Each predictable mode
387 has an initial condition **X** and a response **Y**. For week 1-2 predictions, **X** and **Y** represent the
388 same variable, lagged by 14 days. Therefore, a lagged regression map between $X(t)$ and $Z(t+5)$
389 corresponds to the same day for **Z** as a lagged regression map between $Y(t)$ and $Z(t-9)$. Since
390 these two regression maps are broadly similar, only one will be presented in the analysis.

391 As a general rule, before calculating the regression, **Z** is converted to 2-week means, and the
392 local seasonal mean is removed at each grid point.

393 Since Granger causality indicates that the leading mode is caused by surface soil moisture, we
394 will start with regression maps of soil moisture. Lagged regression maps between soil moisture
395 and leading mode variates are shown in Figure 6. By comparing Panel A with the initial condition
396 loading vector (left panel in Figure 4), we can see that the soil moisture anomalies are the opposite
397 sign as the loading vector. Comparing Panel D with the week 1-2 response loading vector (right
398 panel of Figure 4), again the soil moisture anomalies and the loading vector are the opposite signs.
399 The conclusion that the temperature anomalies and soil moisture anomalies are anti-correlated

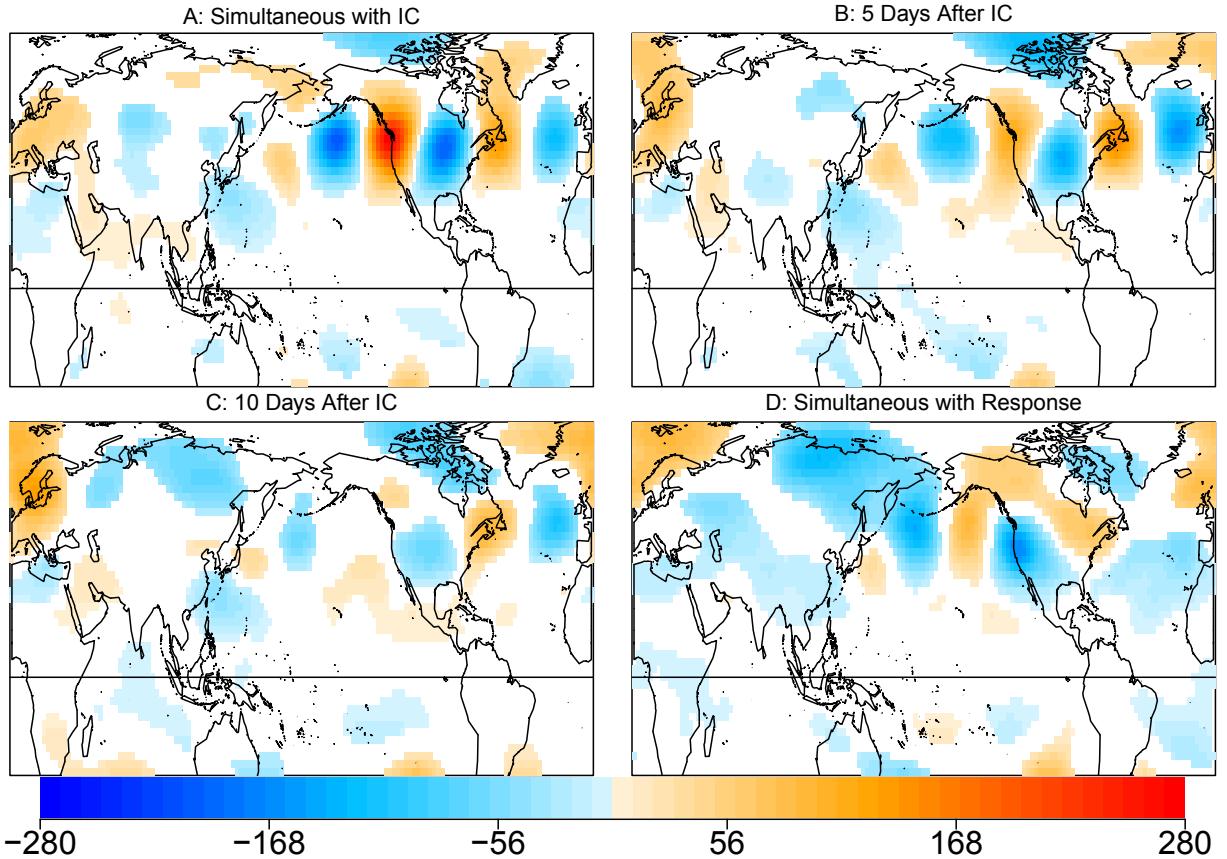
JJA Week 1–2 Loading Vectors Number 1 Regression with Soil Moisture
Significant at 0.01



393 FIG. 6. The regression patterns between the leading mode's variates in JJA at weeks 1–2 and surface soil
394 moisture, where each panel shows a regression pattern that is lagged in time. A) Soil moisture is simultaneous
395 with the initial condition, so 14 days prior to the week 1–2 response; B) Soil moisture is 5 days after the initial
396 condition, (9 days prior to the week 1–2 response); C) Soil moisture is 10 days after the initial condition, (4 days
397 prior to the response); D) Soil moisture is 14 days after the initial condition, (simultaneous with the week 1–2
398 response). The colored grid points are significant at the 0.01 level.

406 makes physical sense—warmer temperatures will evaporate some of the moisture, and then the
407 lower moisture content means more energy will go into sensible heat than latent heat which will
408 raise the temperature. This suggests that the soil moisture anomalies act to persist the temperature
409 anomalies. This can be seen in the central and southern Great Plains, the southeast, and in the

JJA Week 1–2 Loading Vectors Number 1 Regression with Z500
Significant at 0.01



413 FIG. 7. As in Figure 6, but the regression maps between the leading week 1-2 JJA mode and 500mb geopotential
414 height.

410 Pacific northwest. It is in these locations that the temperature anomalies remain the same sign from
411 the initial condition to the week 1-2 response (Figure 4), and it is also in these locations that the
412 soil moisture anomalies have the largest amplitude at the initial condition (Panel A of Figure 6).

415 To investigate the possibility that there may be an atmospheric component to this mode, the
416 variates are regressed onto 500mb height. These lagged regression maps are shown in Figure 7.
417 Simultaneous with the initial condition (Panel A), there is a clear wave originating from the western
418 Pacific. Notably, this wave is oriented zonally. While the path of a Rossby wave typically has a
419 large meridional component in addition to a zonal component, the anomalies in Figure 7 match

JJA Week 1–2 Loading Vectors Number 1 Regression with Precipitation
Significant at 0.01

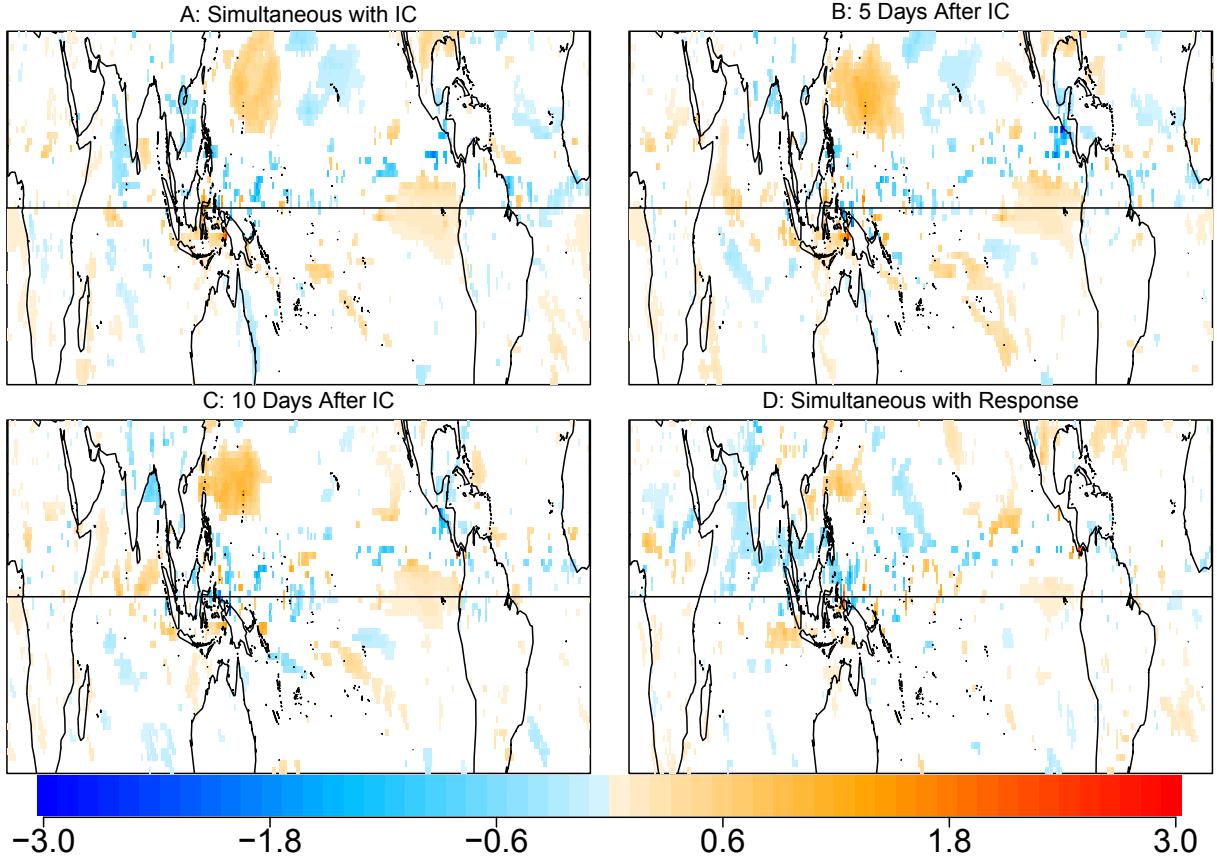


FIG. 8. As in Figure 6, but the regression maps between the leading week 1-2 JJA mode and tropical precipitation.

420 that of a Rossby wave that is trapped by the climatological jet (Teng and Branstator 2019). These
421 waves are usually called "circumglobal teleconnections" (Ding and Wang 2005; Branstrator 2002),
422 or occasionally "waveguide teleconnections" (Teng and Branstrator 2019).

423 As the mode progresses in time, the Rossby wave diminishes in amplitude and appears to shift
424 to the west (Panels B-D). This suggests that there is a source of the Rossby wave in the western
425 Pacific. To investigate this, the variates were regressed onto tropical precipitation. These lagged
426 regression maps are shown in Figure 8. At the location where the Rossby wave appears to originate,
427 there is a relatively large-scale precipitation anomaly that persists until the week 1-2 response.

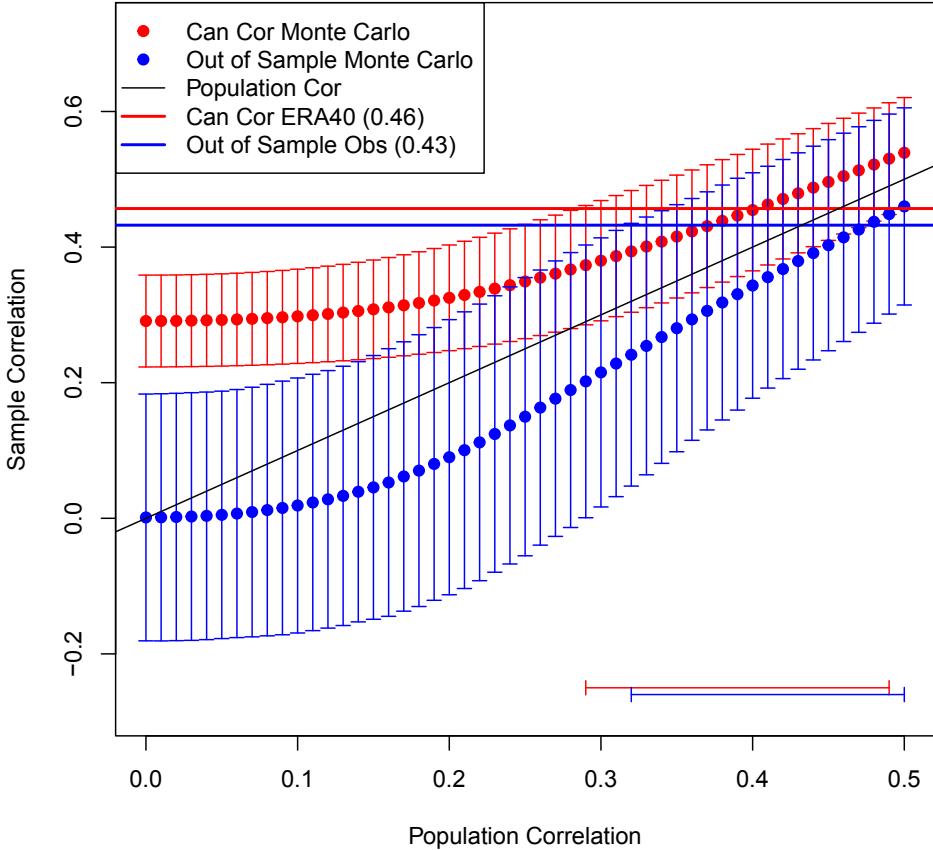
428 Taken together, these results suggest that the western Pacific precipitation anomaly sets up the
429 Rossby wave, trapped by the jet, which impacts the United States. As the Rossby wave shifts in
430 space, the soil moisture modifies the atmospheric response, causing some temperature anomalies
431 to persist.

432 The large-scale precipitation anomaly in the western Pacific suggests a possible connection to
433 the Boreal Summer Intraseasonal Oscillation (BSISO). However, several key differences make it
434 challenging to definitively attribute this predictable mode to the BSISO. One difference is that
435 the large-scale precipitation anomaly associated with this mode is farther north than is typical of
436 most descriptions of the BSISO. The precipitation anomaly associated with the predictable mode
437 extends from about 15N to 30N, while the BSISO typically does not extend past 20N (Kikuchi
438 2021; Chen and Wang 2021). On the other hand, Lee and Wang (2016) show a BSISO extending
439 up to 30N by decomposing the BSISO into Indian Ocean and Western Pacific modes. Additionally,
440 the BSISO has both a positive and a negative precipitation anomaly over the Indian Ocean and
441 western Pacific (although some phases are dominated by anomalies of one sign). In contrast, the
442 predictable mode only has the single positive anomaly. The teleconnections associated with the
443 BSISO are very similar to the Rossby wave generated by this precipitation anomaly (Moon et al.
444 2013), although that is to be expected given their similar locations. One study by Kerns and Chen
445 (2020) tracked individual large-scale precipitation events in the tropical Pacific. They found that
446 individual MJO events do not always project cleanly onto the MJO indices. However, they also
447 found that large-scale precipitation events poleward of 30N were relatively common, but did not
448 fit their criteria to be defined as an MJO or BSISO event. Due to the differences between the
449 precipitation patterns associated with this mode and the typical BSISO, we cannot definitively
450 conclude that this mode is driven by the BSISO. However, we also cannot rule out the possibility
451 that it may be related to the BSISO.

452 4) UNCERTAINTY RANGE OF THE CANONICAL CORRELATION

453 The description of the out-of-sample correlation test is described in Section 3. The leading
454 canonical correlation in JJA at weeks 1-2 is 0.46, and the correlation of the leading mode in
455 independent data is 0.43. The results of the out of sample correlation test as applied to the leading
456 week 1-2 mode in JJA is shown in Figure 9. Because the two confidence intervals overlap, we

Leading Canonical Correlation and Out of Sample Estimates
Week 1–2 JJA, $T_x=5$, $T_y=11$



459 FIG. 9. Estimates of leading canonical correlations (red dots) and their corresponding out of sample correlations
460 for population correlations ranging from 0 to 0.5. These estimates are for the case when $T_x = 5$ and
461 $T_y = 11$, which corresponds to the number of EOFs used for JJA at week 1-2. The black line shows the 1:1 line
462 for reference. The leading canonical correlation for JJA at weeks 1-2 is shown as the red horizontal line. The
463 correlation of the leading mode when projected onto an independent sample is shown as the horizontal blue line.
464 The bracketed lines at the bottom are the confidence interval for each correlation.

457 conclude that the leading canonical correlation and out-of-sample correlation are consistent with
458 a population correlation in the range $\rho \in [0.32, 0.49]$.

465 *b. JJA Weeks 3-4*

466 The previous section examined the predictability of temperature at weeks 1-2. However, skillful
467 predictions for weeks 3-4 could potentially be even more valuable to society (White et al. 2017).
468 Therefore, it is important to investigate the most predictable modes at weeks 3-4. The results of this
469 analysis are summarized in the Supplemental Document. Briefly, we detect a predictable mode at
470 weeks 3-4 characterized by (1) an in-sample correlation of 0.38, (2) an input-response loading pair
471 that are largely the same pattern but of opposite sign, suggesting an oscillatory-type predictable
472 pattern, and (3) an associated regression pattern in 500hPa height that strongly resembles the
473 Rossby wave present at the initial condition of the leading week 1-2 JJA mode.

474 **5. CFSv2**

475 The previous analysis presents the predictable subseasonal modes identified by CCA in obser-
476 vational data sets. The next natural question is whether dynamical forecast models capture these
477 predictable subseasonal modes. To address this question, we project the leading mode of each
478 season onto reforecasts of NCEP's dynamical model CFSv2. Then, using the test discussed in
479 Section 3, we assess if the lagged correlations of the leading modes from CFSv2 reforecasts are
480 consistent with observations.

481 *a. Model Data*

482 1) CFSv2 PREPROCESSING

483 The reforecasts of the NCEP CFSv2 model (Saha et al. 2014) were evaluated as to whether it
484 was able to capture the subseasonal modes. The reforecasts are available daily from January 1999
485 to December 2020, excluding 2016. In order to only use data that is independent of the ERA40
486 data, only reforecasts from 2002 and later are included in this analysis. Each daily reforecast from
487 CFSv2 is 44 days. Anomalies of the ensemble mean were calculated according to Pegion et al.
488 (2019). To get the week 3-4 forecast from each day, forecast days 15-28 were averaged together.
489 Likewise, week 1-2 forecasts were calculated by averaging forecast days 1-14 together. To get the
490 intraseasonal component of the reforecasts, the mean of each season was removed. The data was
491 interpolated onto the ERA40 grid in order to project the loading vectors.

492 The two-week mean forecasts were selected such that only non-overlapping forecasts were
493 included in the calculation. For example, for boreal summer the two week means beginning on
494 June 1, June 15, July 1, July 15, August 1, and August 15 were selected.

495 2) INITIAL CONDITION DATA

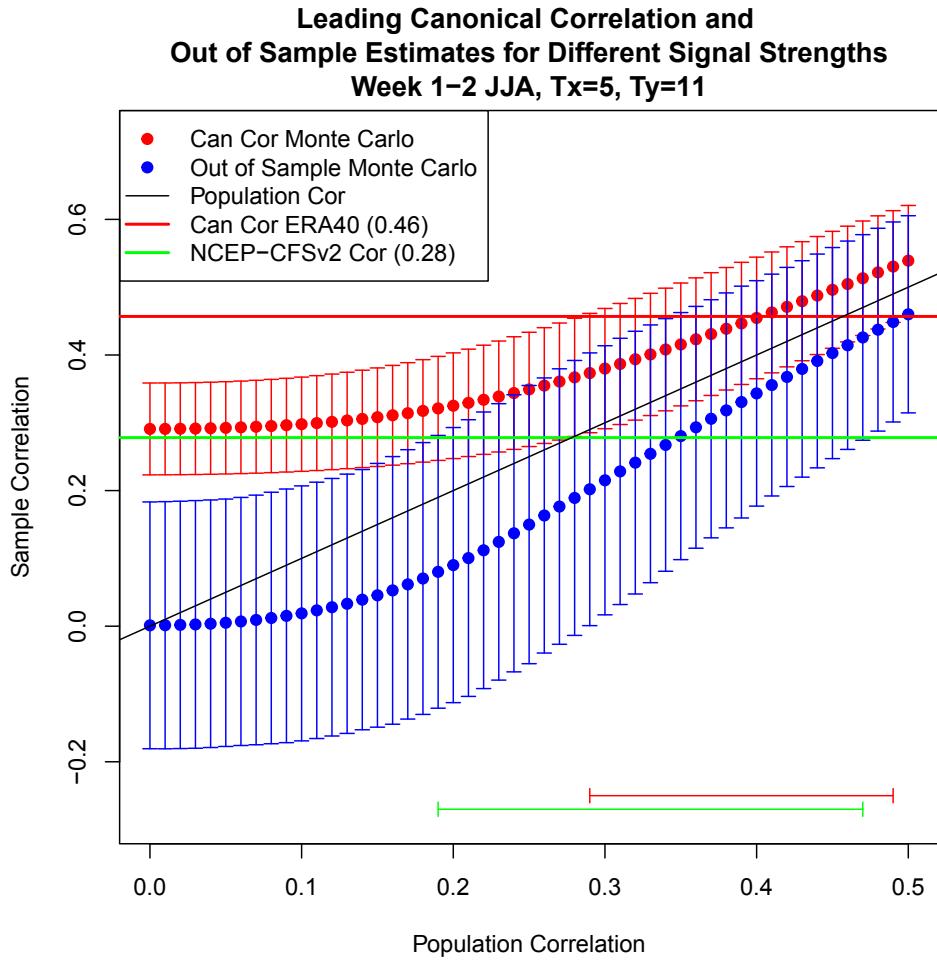
496 Observed two-week mean 2m temperature from the NOAA ESRL, described in Section 2, was
497 projected onto the X loading vector to obtain the X-variate. CFSv2 re-forecasts at the appropriate
498 leads were projected onto the Y loading vector to obtain the Y-variate.

499 *b. Evaluating CFSv2 for JJA weeks 1-2*

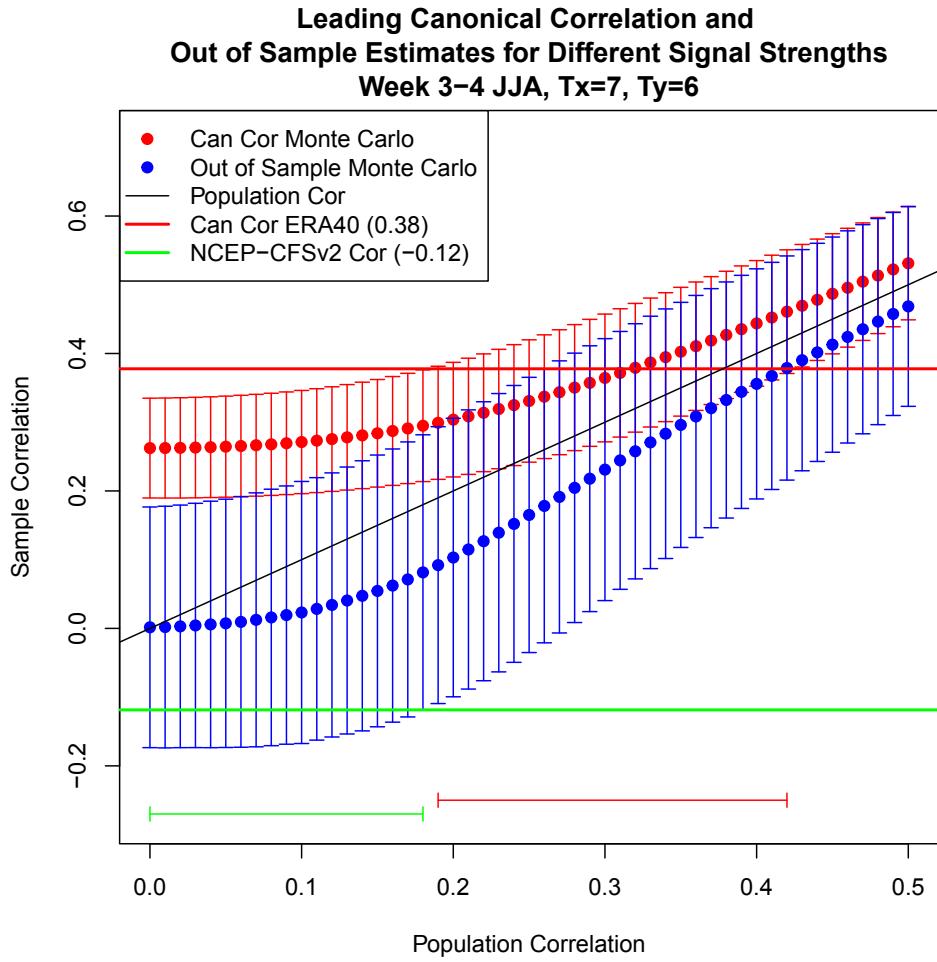
500 The correlation of the prediction of the leading week 1-2 JJA mode in the CFSv2 model is
501 $\rho = 0.28$. The leading canonical correlation is $\rho = 0.46$. Figure 10 shows the canonical correlation,
502 CFSv2 prediction correlation, and the Monte Carlo in-sample and out-of-sample estimates. The
503 confidence intervals overlap, so we conclude that the CFSv2 reforecasts capture this mode.

506 *c. Evaluating CFSv2 for JJA weeks 3-4*

507 The correlation of the prediction of the leading week 3-4 JJA mode by the CFSv2 model
508 is $\rho = -0.12$. The leading canonical correlation is $\rho = 0.38$. Figure 11 shows the canonical
509 correlation, CFSv2 prediction correlation, and the Monte Carlo in-sample and out-of-sample
510 estimates. The confidence intervals do not overlap, so we conclude that the CFSv2 reforecasts do
511 not capture this mode.



504 FIG. 10. As in Figure 9, but for the leading week 1-2 mode in JJA in CFSv2 forecast data. In this case, $T_X = 5$
505 and $T_Y = 11$.



512 FIG. 11. As in Figure S5, but for the leading week 3-4 mode in JJA in CFSv2 forecast data. In this case, $T_X = 7$
513 and $T_Y = 6$.

514 **6. Conclusions**

515 The overarching goal of this paper is to identify new sources of subseasonal predictability.
516 To achieve this, we developed a novel methodology that involves removing ENSO influences by
517 subtracting seasonal means from a variable, and then applying Canonical Correlation Analysis
518 (CCA) to time lags of the resulting intraseasonal variable. The rationale underlying this method
519 is that any source of subseasonal predictability that influences a variable should impart a temporal
520 correlation over a few weeks. CCA is an ideal method for identifying such temporal correlations
521 because it finds the indices at the initial and final times that maximize correlation. A major
522 contribution of this work is the development of a rigorous significance test for deciding if the
523 resulting canonical correlations are statistically significant, particularly when validating predictable
524 modes in independent data.

525 We applied this method to 2-week mean temperature over the United States and identified
526 predictable modes at week 1-2 leads and week 3-4 leads, in JJA. To ascertain if these modes are
527 related to known sources of subseasonal predictability, we applied a Granger Causality test and
528 examined lagged regression maps of variables related to the general circulation. We concluded
529 that the leading JJA modes in weeks 1-2 and 3-4 are new sources of subseasonal predictability.

530 This mode is associated with a precipitation anomaly in the western Pacific that sets up a Rossby
531 wave, which uses the jet as a waveguide, impacting the United States. As time progresses, the
532 precipitation anomaly switches sign, which sets up a different Rossby wave. A lagged correlation
533 analysis reveals that soil moisture influences the predictable mode in the later stages of its evolution.
534 We suspect that soil moisture in the southern Great Plains modifies the expected atmospheric
535 response by causing the temperature anomalies in the southern Great Plains to persist longer
536 than it otherwise would. In our analysis, the week 3-4 response is the same as the week 1-2
537 initial condition, which means that the combination of the modes may extend predictability out to
538 week 5-6. Each of these mechanisms has been discussed in the literature, although the chain of
539 mechanisms and their evolution in time has not been presented together before.

540 One aspect of this mode that we were unable to determine is if the precipitation in the western
541 Pacific is due to the Boreal Summer Intraseasonal Oscillation (BSISO). The BSISO is an oscillation
542 of convection over the Indian Ocean and western tropical Pacific during the boreal summer. It
543 is characterized by northward as well as eastward propagation over the western Pacific (Kikuchi

544 2021; Chen and Wang 2021). As the precipitation associated with this mode is also in the western
545 Pacific, the BSISO is the natural phenomenon to compare it to. However, there are some differences
546 between our mode and the BSISO. For instance, the precipitation associated with our predictable
547 mode extends about 10 degrees further north than conventional BSISO indices. Furthermore, the
548 BSISO is associated with a large-scale precipitation anomaly of the opposite sign, in contrast to
549 our predictable mode (Section 4.a.3).

550 We examined if the above predictable modes were captured by the CFSv2 dynamical forecast
551 model. We conclude that it does capture the leading mode of week 1-2 predictability but not the
552 leading mode of week 3-4 predictability. Our results might provide clues about how to improve
553 CFSv2's representation of subseasonal predictability. For instance, CFSv2 was unable to capture
554 the leading week 3-4 JJA mode. The regression maps of this mode show that it is associated by
555 anomalous precipitation in the western Pacific that sets up a Rossby wave impacting the United
556 States (discussed in Section 4.b). This could mean that the CFSv2 model does not have a sufficiently
557 realistic representation of western Pacific precipitation, which could be in the representation of the
558 magnitude or the variability of the precipitation. Another explanation may be that the model does
559 not have a sufficiently good representation of the tropical-extratropical teleconnections, either in
560 setting up the Rossby wave or in its propagation.

561 One limitation of using CCA to identify predictable temperature patterns is that some climate
562 mechanisms may not impact the temperature during both the initial condition and the response at
563 weeks 1-2 or 3-4, and yet the mechanisms themselves may be predictable that far in advance. For
564 example the MJO has a relatively small direct impact on wintertime temperature over the United
565 States, with only phases four through six producing statistically significant, large scale temperature
566 anomalies (Zhou et al. 2012). However, it has been shown that dynamical models can accurately
567 forecast the state of the MJO four weeks in advance (Pegion et al. 2019; Du et al. 2024). This
568 means that while we may be able to forecast the direct impact of the MJO using dynamical models,
569 CCA applied in the manner described above would not be able to capture that predictability owing
570 to the weak teleconnection.

571 It might come as some surprise that these new sources of predictability were found using CCA,
572 which has been used to study aspects of the climate for decades. We posit that this is for three
573 reasons. The first is that CCA rarely is applied to lagged temperature fields. Most studies that

574 use CCA have used it to find the temperature pattern that is most correlated with some other field,
575 often SST. As a result, those studies limit themselves to the temperature response from the other
576 variable. In our method, we were not limited to finding only the response from one variable. The
577 second reason is that we were able to employ a relatively new criterion, MIC (DelSole and Tippett
578 2021), to objectively determine the number of EOFs to use for both the initial condition and the
579 response. Without MIC, prior studies have had to justify the number of EOFs used. This was often
580 based on the total amount of variance explained by the EOFs and the cutoff differed from study to
581 study. The third reason is that we have developed a novel significance test for the leading mode
582 based on a Monte Carlo procedure and by using independent data for validation of the correlation.

583 While this work has focused on subseasonal predictability, the methodology developed here is
584 broadly applicable to any time series, offering new pathways for uncovering and understanding
585 previously unrecognized sources of predictability.

586 *Acknowledgments.* We thank Paul Dirmeyer and Kathy Pegion for valuable guidance throughout
587 the years of this research, and Davis Straus for insightful comments on an early version of this
588 work. This research was supported primarily by the National Science Foundation (AGS-1822221).
589 Additional support was provided from National Science Foundation (AGS-1338427), National
590 Aeronautics and Space Administration (NNX14AM19G), the National Oceanic and Atmospheric
591 Administration (NA14OAR4310160). The views expressed herein do not necessarily reflect the
592 views of these agencies.

593 *Data availability statement.* The observed daily 2m temperature is from the NOAA Earth
594 System Research Laboratories (ESRL) and was accessed from <https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html>. The observed time series of the
595 PNA and NAO are from NOAA's Climate Prediction Center (CPC) and was accessed from
596 <https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/pna.shtml>. The EE-
597 OFs of OLR that make up the BSISO indices are from the International Pacific Research Cen-
598 ter and was accessed from https://iprc.soest.hawaii.edu/users/kazuyosh/Bimodal_ISO.html. The ERA40 reanalysis is a ECMWF product and can be accessed from <https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-40-years>. A set of R
600 codes for performing the analyses described in this paper can be found at <https://github.com/PaulBuchmann/CCA-Summer>.
601
602
603

604 **References**

605 Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill
606 for united states surface air temperatures determined by canonical correlation analysis. *Monthly*
607 *Weather Review*, **115** (9), 1825 – 1850, [https://doi.org/10.1175/1520-0493\(1987\)115<1825:OALOMA>2.0.CO;2](https://doi.org/10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2).
608
609 Barnston, A. G., and T. M. Smith, 1996: Specification and prediction of global surface temper-
610 ature and precipitation from global sst using cca. *Journal of Climate*, **9** (11), 2660 – 2697,
611 [https://doi.org/10.1175/1520-0442\(1996\)009<2660:SAPOGS>2.0.CO;2](https://doi.org/10.1175/1520-0442(1996)009<2660:SAPOGS>2.0.CO;2).
612
613 Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the north atlantic
oscillation. *Journal of Climate*, **15** (14), 1893 – 1910, [https://doi.org/10.1175/1520-0442\(2002\)015<1893:CWTJSA>2.0.CO;2](https://doi.org/10.1175/1520-0442(2002)015<1893:CWTJSA>2.0.CO;2).

614 015⟨1893:CTTJSW⟩2.0.CO;2.

615 Buchmann, P., 2024: Assessing the limits of improving subseasonal predictability indices. Ph.D.
616 thesis, George Mason University.

617 Chen, G., and B. Wang, 2021: Diversity of the boreal summer intraseasonal oscillation. *Journal of*
618 *Geophysical Research: Atmospheres*, **126** (8), e2020JD034137, <https://doi.org/https://doi.org/10.1029/2020JD034137>.

620 DelSole, T., and P. Chang, 2003: Predictable component analysis, canonical correlation analysis,
621 and autoregressive models. *J. Atmos. Sci.*, **60**, 409–416.

622 DelSole, T., and M. Tippett, 2022: *Statistical Methods for Climate Scientists*. Cambridge University
623 Press, <https://doi.org/10.1017/9781108659055>.

624 DelSole, T., and M. K. Tippett, 2021: A mutual information criterion with applications to canonical
625 correlation analysis and graphical models. *Stat*, **10** (1), e385, <https://doi.org/10.1002/sta4.385>.

626 Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the northern hemisphere summer.
627 *Journal of Climate*, **18** (17), 3483 – 3505, <https://doi.org/10.1175/JCLI3473.1>.

628 Domeisen, D. I., and Coauthors, 2022: Advances in the subseasonal prediction of extreme
629 events: Relevant case studies across the globe. *Bulletin of the American Meteorological Society*,
630 <https://doi.org/10.1175/BAMS-D-20-0221.1>.

631 Du, D., A. C. Subramanian, W. Han, W. E. Chapman, J. B. Weiss, and E. Bradley, 2024: Increase in
632 mjo predictability under global warming. *Nature Climate Change*, **14** (1), 68–74, <https://doi.org/10.1038/s41558-023-01885-0>.

634 Frisch, R., and F. V. Waugh, 1933: Partial time regressions as compared with individual trends.
635 *Econometrica*, **1** (4), 387–401.

636 Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. *Reviews of*
637 *Geophysics*, **40** (1), 3–1–3–41, <https://doi.org/10.1029/2000RG000092>.

638 Granger, C. W. J., 1969: Investigating causal relations by econometric models and cross-spectral
639 methods. *Econometrica*, **37** (3), 424–438.

640 He, S., X. Li, L. Trenary, B. A. Cash, T. DelSole, and A. Banerjee, 2021: Learning and dynamical
641 models for sub-seasonal climate forecasting: Comparison and collaboration. *arXiv [Preprint]*,
642 <https://doi.org/10.48550/ARXIV.2110.05196>.

643 Huth, R., 2002: Statistical downscaling of daily temperature in central europe. *Journal of Climate*,
644 **15** (13), 1731 – 1742, [https://doi.org/10.1175/1520-0442\(2002\)015<1731:SDODTI>2.0.CO;2](https://doi.org/10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2).

645 Hwang, J., P. Orenstein, J. Cohen, K. Pfeiffer, and L. Mackey, 2019: Improving subseasonal
646 forecasting in the western u.s. with machine learning. *Proceedings of the 25th ACM SIGKDD*
647 *International Conference on Knowledge Discovery & Data Mining*, Association for Computing
648 Machinery, 2325–2335, KDD ’19, <https://doi.org/10.1145/3292500.3330674>.

649 Jenney, A. M., K. M. Nardi, E. A. Barnes, and D. A. Randall, 2019: The seasonality and regionality
650 of mjo impacts on north american temperature. *Geophysical Research Letters*, **46** (15), 9193–
651 9202, <https://doi.org/10.1029/2019GL083950>.

652 Johnson, N. C., D. C. Collins, S. B. Feldstein, M. L. L’Heureux, and E. E. Riddle, 2014: Skillful
653 wintertime north american temperature forecasts out to 4 weeks based on the state of enso and
654 the mjo. *Weather and Forecasting*, **29** (1), 23–38, <https://doi.org/10.1175/WAF-D-13-00102.1>.

655 Kerns, B. W., and S. S. Chen, 2020: A 20-year climatology of madden-julian oscillation convection:
656 Large-scale precipitation tracking from trmm-gpm rainfall. *Journal of Geophysical Research: Atmospheres*, **125** (7), e2019JD032142, <https://doi.org/10.1029/2019JD032142>.

658 Kikuchi, K., 2020: Extension of the bimodal intraseasonal oscillation index using jra-55 reanalysis.
659 *Climate Dynamics*, **54** (1), 919–933, <https://doi.org/10.1007/s00382-019-05037-z>.

660 Kikuchi, K., 2021: The boreal summer intraseasonal oscillation (bsiso): A review. *Journal of the
661 Meteorological Society of Japan*, **99** (4), 933–972, <https://doi.org/10.2151/jmsj.2021-045>.

662 Krishnamurthy, V., and Coauthors, 2021: Sources of subseasonal predictability over conus
663 during boreal summer. *Journal of Climate*, **34** (9), 3273 – 3294, <https://doi.org/10.1175/JCLI-D-20-0586.1>.

665 Lee, H.-S., 2007: Canonical correlation analysis using small number of samples. *Communications in Statistics - Simulation and Computation*, **36** (5), 973–985, <https://doi.org/10.1080/03610910701539443>.

668 Lee, S.-S., and B. Wang, 2016: Regional boreal summer intraseasonal oscillation over indian ocean
669 and western pacific: comparison and predictability study. *Climate Dynamics*, **46** (7), 2213–2229,
670 <https://doi.org/10.1007/s00382-015-2698-7>.

671 Lovell, M. C., 2008: A simple proof of the fwl theorem. *The Journal of Economic Education*,
672 **39** (1), 88–91, <https://doi.org/10.3200/JECE.39.1.88-91>.

673 Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind
674 in the tropical pacific. *Journal of Atmospheric Sciences*, **28** (5), 702 – 708, [https://doi.org/10.1175/1520-0469\(1971\)028<0702:DOADOI>2.0.CO;2](https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2).

675 McGovern, A., D. J. Gagne, J. K. Williams, R. A. Brown, and J. B. Basara, 2014: Enhancing
676 understanding and improving prediction of severe weather through spatiotemporal relational
677 learning. *Machine Learning*, **95** (1), 27–50, <https://doi.org/10.1007/s10994-013-5343-x>.

678 Moon, J.-Y., B. Wang, K.-J. Ha, and J.-Y. Lee, 2013: Teleconnections associated with northern
679 hemisphere summer monsoon intraseasonal oscillation. *Climate Dynamics*, **40** (11), 2761–2774,
680 <https://doi.org/10.1007/s00382-012-1394-0>.

681 National Academies of Sciences Engineering and Medicine, 2016: *Next Generation Earth Sys-
682 tem Prediction: Strategies for Subseasonal to Seasonal Forecasts*. The National Academies
683 Press, <https://doi.org/10.17226/21873>, URL <https://nap.nationalacademies.org/catalog/21873/next-generation-earth-system-prediction-strategies-for-subseasonal-to-seasonal>.

684 National Research Council, 2010: *Assessment of Intraseasonal to Interannual Cli-
685 mate Prediction and Predictability*. The National Academies Press, Washington,
686 DC, <https://doi.org/10.17226/12878>, URL <https://www.nap.edu/catalog/12878/assessment-of-intraseasonal-to-interannual-climate-prediction-and-predictability>.

687 Nowak, K., I. M. Ferguson, J. Beardsley, and L. D. Brekke, 2020: Enhancing western united states
688 sub-seasonal forecasts: Forecast rodeo prize competition series. *AGU Fall Meeting Abstracts*,
689 Vol. 2020, A188–0008.

690 Pegion, K., and Coauthors, 2019: The subseasonal experiment (subx): A multimodel subseasonal
691 prediction experiment. *Bulletin of the American Meteorological Society*, **100** (10), 2043 – 2060,
692 <https://doi.org/10.1175/BAMS-D-18-0270.1>.

696 Robertson, A. W., and F. Vitart, Eds., 2019: *Sub-Seasonal to Seasonal Prediction The Gap Between*
697 *Weather and Climate Forecasting*. Elsevier, <https://doi.org/10.1016/C2016-0-01594-2>.

698 Saha, S., and Coauthors, 2014: The ncep climate forecast system version 2. *Journal of Climate*,
699 **27** (6), 2185 – 2208, <https://doi.org/10.1175/JCLI-D-12-00823.1>.

700 Teng, H., and G. Branstator, 2019: Amplification of waveguide teleconnections in the bo-
701 real summer. *Current Climate Change Reports*, **5** (4), 421–432, <https://doi.org/10.1007/s40641-019-00150-x>.

703 Trenary, L., and T. DelSole, 2023: Skillful statistical prediction of subseasonal temperature by
704 training on dynamical model data. *Environmental Data Science*, **2**, e7, <https://doi.org/10.1017/eds.2023.2>.

706 Vitart, F., and Coauthors, 2022: Outcomes of the wmo prize challenge to improve subseasonal
707 to seasonal predictions using artificial intelligence. *Bulletin of the American Meteorological
708 Society*, **103** (12), E2878 – E2886, <https://doi.org/10.1175/BAMS-D-22-0046.1>.

709 White, C. J., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (s2s) pre-
710 dictions. *Meteorological Applications*, **24** (3), 315–325, <https://doi.org/10.1002/met.1654>.

712 White, C. J., and Coauthors, 2021: Advances in the application and utility of subseasonal-to-
713 seasonal predictions. *Bulletin of the American Meteorological Society*, 1 – 57, <https://doi.org/10.1175/BAMS-D-20-0224.1>.

715 Zhou, S., M. L'Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the mjo influence
716 on the surface air temperature and precipitation over the continental united states. *Climate
717 Dynamics*, **38** (7), 1459–1471, <https://doi.org/10.1007/s00382-011-1001-9>.