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ABSTRACT: This study identifies the most predictable modes of subseasonal temperature over
the United States during boreal summer for weeks 1-2 and, separately, for weeks 3-4. Surprisingly,
Granger Causality tests reveal that these modes are unrelated to standard indices of subseasonal
predictability, such as El Nifio or the Madden-Julian Oscillation. Lagged regression analysis
indicates that the leading week 1-2 mode is driven by western Pacific precipitation and exhibits
enhanced persistence due to interactions with soil moisture. Similarly, the leading week 3-4 mode
is linked to western Pacific precipitation. While these modes share features with the Boreal Sum-
mer Intraseasonal Oscillation (BSISO), the resemblance is not exact, and the chain of mechanisms
leading to predictability over the U.S., particularly involving soil moisture, appears to be new.
NOAA’s Climate Forecast System v2 (CFSv2) successfully captures the leading week 1-2 mode
but fails to represent the leading week 3-4 mode. The lagged relationships identified here may pro-
vide insights into model adjustments that could enhance subseasonal predictability. These modes
were identified using Canonical Correlation Analysis (CCA), which is capable of uncovering pre-
dictability without prior assumptions about its source. While CCA is a well-established statistical
method, its application to climate data has been limited due to challenges in significance testing
and feature selection. This study addresses these limitations by employing a recently developed
Mutual Information Criterion (MIC) to optimize feature selection, using Monte Carlo techniques to
establish rigorous significance tests for small samples, and formulating a comprehensive procedure

for validating predictability in independent datasets.
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SIGNIFICANCE STATEMENT:  Accurate subseasonal forecasts, covering the 2- to 8-week time
frame, would provide significant societal benefits in areas such as public health, agriculture,
water resource management, energy, utilities, and early warnings for extreme events. This paper
integrates rigorous statistical procedures into a framework with the potential to uncover new
sources of predictability. The underlying idea is that if weather and climate are predictable on
subseasonal time scales, there ought to be some correlation between events separated in time. Such
correlations can be identified with no pre-conceived notion as to their source. After identifying
these correlations, known sources of predictability may be removed statistically one-by-one. Any

predictability that remains after this sifting process indicates a new source of predictability.
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1. Introduction

Predictions of temperature and precipitation on subseasonal time scales have been made for
at least a decade. These predictions typically forecast one- or two-week means up to six weeks
in advance (Johnson et al. 2014). Subseasonal predictions are generally less skillful than either
weather or seasonal forecasts because the lead time is long enough for information from atmospheric
initial conditions to degrade, yet the averaging period is short enough that not all weather noise is
smoothed out. Despite these challenges, accurate subseasonal forecasts could provide significant
benefits to water management, agriculture, disaster preparedness, and health (White et al. 2017).
Case studies have shown that subseasonal forecasts can support decision-making in areas such
as public health, agriculture, water resource management, energy, and utilities, as well as early
warnings for extreme events (White et al. 2021; Domeisen et al. 2022). The importance of
subseasonal forecasting led to subseasonal forecast competitions, with substantial cash prizes, by
the U.S. Bureau of Reclamation in 2017 (Hwang et al. 2019) and 2019 (Nowak et al. 2020), and
by the United Nations’ World Meteorological Organization in 2021 (Vitart et al. 2022).

Several known phenomena contribute to subseasonal predictability in the United States, in-
cluding the El Nino Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), the
Pacific-North American teleconnection pattern (PNA), the North Atlantic Oscillation (NAO), Sud-
den Stratospheric Warming events (SSWs), and land-atmosphere coupling (Robertson and Vitart
2019; National Research Council 2010; National Academies of Sciences Engineering and Medicine
2016). A more recently identified source, which plays a significant role in this study, is the Boreal
Summer Intraseasonal Oscillation (BSISO). The BSISO is a summer mode of the MJO charac-
terized by northward-propagating precipitation anomalies extending from India to the western
Pacific. Most studies on the BSISO focus on its influence on the Asian summer monsoons or on
tropical cyclones. Few studies examine its effects on the United States’ 2m temperature. One such
study by Krishnamurthy et al. (2021) describes an oscillation in tropical winds over the eastern
Pacific related to the BSISO, with the response of 2m temperature over the U.S. quantified through
regression maps. Jenney et al. (2019) also assessed the seasonal impact of the MJO and BSISO
on surface temperatures in the U.S and concluded that its impact on summer predictability is small

compared to the MJO’s influence on winter predictability.
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All of the above phenomena influence U.S. temperatures on subseasonal timescales. However,
in each case, the phenomenon was identified first, and its impact on temperature was determined
afterward. This raises the question of whether there might be other mechanisms driving subseasonal
predictability that have gone unnoticed simply because they have not yet been identified. If an
unknown source of predictability exists, how would we discover it? Our goal is to identify
subseasonal predictability without requiring prior knowledge or a hypothesis about the source.

A mechanism that produces predictability on subseasonal time scales should produce a temporal
dependence between a pattern at time ¢ and a (potentially different) pattern at time ¢+ 7. Accord-
ingly, we employ methods that identify temporal correlations in multivariate time series. Several
approaches exist for this, including multichannel singular spectrum analysis (MSSA, Ghil et al.
2002; Krishnamurthy et al. 2021), coherence spectrum analysis (Madden and Julian 1971), lead-lag
regression between leading EOFs, Canonical Correlation Analysis (CCA, Barnett and Preisendor-
fer 1987; Barnston and Smith 1996; Huth 2002; DelSole and Tippett 2022), and machine learning
approaches (McGovern et al. 2014; Hwang et al. 2019; He et al. 2021; Trenary and DelSole 2023).
However, each method has limitations in its current form. MSSA does not explicitly maximize
a measure of predictability. Coherence spectrum analysis is univariate and thus does not capture
multivariate dependencies. Lead-lag regression assumes that individual EOF patterns represent
the full response to a mechanism, a highly restrictive assumption. Machine learning approaches,
while powerful, require large datasets for training and validation, which poses a challenge for
subseasonal prediction due to the relatively small sample sizes involved.

Among the available statistical methods, we adopt Canonical Correlation Analysis (CCA) for this
study. While CCA has its own limitations—such as the need to select the number of EOFs for analysis
and the reliance on asymptotic significance tests—these issues are addressable. First, a relatively
new selection criterion, the Mutual Information Criterion (MIC), has been developed specifically
for CCA (DelSole and Tippett 2021). Second, Monte Carlo techniques can be employed to derive
small-sample significance tests (DelSole and Tippett 2022). The goal of this work is to leverage
these tools to develop CCA into a rigorous and objective procedure for identifying predictability
in multivariate time series. Once predictability is detected, lagged regression maps can be used to
describe its temporal evolution and its relationship to other physically relevant variables. To ensure

that the predictability identified by CCA is not the result of overfitting, we verify the findings using
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independent datasets. This is done by projecting the predictable components onto an independent
dataset and comparing the correlation in that data to the correlation determined by CCA. A key
contribution of this work is the development of a comprehensive and rigorous validation procedure
in independent datasets. Interestingly, this process may yield uncertainty ranges that do not contain
either the in-sample or out-of-sample correlations, which may surprise some readers.

Since CCA does not require a prior hypothesis about the underlying mechanism, it has the
potential to uncover previously unknown forms of predictability. Given our goal of identifying
new sources of predictability, we focus primarily on analyzing observational data. There is no
doubt that ENSO contributes to subseasonal predictability; any reasonable method will detect
ENSO as a dominant influence. To explore additional sources of predictability beyond ENSO, this
study removes the seasonal ENSO influence by subtracting the seasonal mean from the temperature
data before performing the predictability analysis. Because the mechanisms driving temperature
predictability vary by season, we will analyze each season separately. This paper presents the
results for boreal summer, while results for other seasons are discussed in Buchmann (2024).

For ease of communication, a pair of temperature patterns along with their time series will
be referred to as a 'mode.” The leading mode identified by CCA will have the highest possible
correlation. The second mode will have the highest possible correlation that is uncorrelated with the
leading mode, and so on. After confirming the detection of predictability, we investigate whether
it is linked to a known source by regressing that phenomenon out of the data and recalculating
CCA. We then compare the resulting modes and correlations to the original ones. If the correlation
of a mode becomes insignificant or if the mode disappears entirely, we can conclude that the
phenomenon we removed is responsible for that mode. Finally, we assess whether subseasonal
dynamical models capture the modes identified by CCA. This is done by projecting the predictable
components onto subseasonal temperature forecasts and comparing the resulting correlations with
those derived from CCA. If a mode is not well-represented by a model, it may offer a target for
model developers to improve the representation of specific features in their models.

This paper is organized as follows. The next section reviews our data and methods, particularly
CCA and associated selection criteria, significance tests, and connections to Granger Causal-
ity Analysis. Section 3 describes a new, comprehensive, and rigorous procedure for validating

canonical components in independent data. Section 4 describes our results of applying CCA to
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June-July-August (JJA) 2m temperature over CONUS. Section 5 discusses results of assessing
whether a state-of-the-art climate forecast model captures the predictability identified here from
observational data sets. This paper ends with a summary and discussion of our results. This work
is a partial summary of a PhD thesis by Paul Buchmann. More comprehensive discussion of these

results and other results for other seasons can be found in the thesis Buchmann (2024).

2. Data and Methods

a. ERA40 Reanalysis

The main dataset used is the daily ERA40 reanalysis. This reanalysis covers September 1957 to
August 2002, making it one of the longest reanalysis data sets. The variables are on a 1.25 by 1.25
uniform longitude-latitude grid. The following daily variables are used from this reanalysis: 2m
temperature, total precipitation, the Nino 3.4 index of SST, and soil moisture in the top layer (0-7cm
underground). BSISO indices used are based on Kikuchi (2020); the EOFs of outgoing longwave
radiation (OLR) were obtained from the International Pacific Research Center, and intraseasonal
OLR from ERA40 was projected onto the EOFs to obtain the time series of the BSISO indices.
The 2m temperature data is used to investigate intraseasonal predictability. The other data is used

to explore the source of the predictability in 2m temperature.

b. Observed Data

To verify the correlations found from the ERA40 reanalysis, we use observed daily 2m temper-
ature over CONUS from the NOAA ESRL. We utilize only the time period September 1, 2002 to
February 28, 2022, which does not intersect with the ERA40 dataset. The data was interpolated to
the ERA40 grid.

To investigate the sources of predictability in the ERA40 2m temperature data, we use the NAO
and PNA indices provided by NOAA’s Climate Prediction Center (CPC). These indices overlap
with the ERA40 data range and are used for convenience rather than being recalculated directly

from the ERA40 dataset.
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c. Data Preprocessing

Data in ERA4O0 is output in 6 hour increments. Except for precipitation, the data is converted to
daily averages. For precipitation, the data is converted to daily total. Then anomalies are calculated
at the gridpoint level by removing a trend and 3 annual harmonics. To convert to EOFs, the data is
separated into seasons (DJF, MAM, JJA, SON) and averaged into two-week means.

An important step is that the mean from each season is removed before analyzing predictability.
For example, the anomalies for June, July, August 1999 have zero mean when averaged over June,
July, August 1999. EOFs were computed from the two-week mean data and then the mean of each
season was removed from each PC. Reversing these steps by removing the local seasonal mean
from the gridpoint data and then calculating the EOFs gave virtually identical PC time series and
EOF spatial patterns.

All observed indices are preprocessed by removing a trend and 3 annual harmonics, and then

calculating two week averages. The local seasonal mean is then removed.

d. Canonical Correlation Analysis (CCA)

A procedure called Canonical Correlation Analysis (CCA) is used to quantify the relation between
variables. Given a vector x(7) and a vector y(¢), CCA finds a linear combination of x(¢) and a
linear combination of y(#) that maximizes their correlation. More generally, CCA decomposes the
data into pairs of variates (time series) such that the first pair has the maximum possible correlation
in the data set, the second pair has the maximum correlation uncorrelated to the first pair, and so
on, with each pair of variates uncorrelated to all of the variates preceding them. The n’th variate
pair has correlation p,, called the n’th canonical correlation. Each pair of variates also has a pair of
loading vectors (spatial patterns) associated with it. More details of this standard CCA procedure
can be found in DelSole and Tippett (2022).

In this work, CCA is applied to two temperature fields, x(7) and y(#), where ¢ is a time index. In
this work, x(#) and y(¢) are 2-week means separated by a fixed lag. The precise endpoints for the

2-week means are listed in Table 1.
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start of x(¢) end of x(7) ‘ start of y(¢r) end of y(¢)
weeks 1-2 day -13 day O day 1 day 14
weeks 3-4 day -13 day O day 15 day 28

TaBLE 1. Start day and end day of the 2-week averaging windows for weeks 1-2 and weeks 3-4 prediction.

e. Selection Criterion - MIC

In climate applications, it is standard practice to reduce the dimension of x(¢) and y(z) by
projecting them onto their leading EOFs. The question naturally arises as to how many EOFs should
be chosen. Studies using CCA generally have not used a selection criterion for the number of EOFs
used. In this work, we use a selection criterion called Mutual Information Criterion (MIC) (DelSole
and Tippett 2021), which is similar to information criteria like Akaike’s Information Criterion,
except generalized to selection of random predictors and predictands. Following DelSole and

Tippett (2022), MIC is calculated as:
MIC(Tx,Ty) = Nlog A+P(N,Tx,Ty), (D
where N is the total number of {x(7),y(z)} pairs, Tx and Ty are the number of PCs included in x(¢)

and y(¢), respectively, P(N,Tx,Ty) is a penalty function defined as

(Tx+Ty)(N+1) Tx(N+1) Ty(N+1)

P(N,Tx,Ty) = N - - ,
(N.Tx, Ty) N-Tx-Ty—-2 N-Tx-2 N-Ty-2

2)

and

A=(1=pD)(1=p3) ... (L= prinirey)- 3)

As the number of EOFs increases, A decreases, reflecting the increase in predictability, but the
penalty term increases, reflecting the uncertainty from estimating more parameters. The minimum

value of MIC gives us the selection criterion for Tx and Ty.

f. CCA Critical Values

Statistical significance of the canonical correlations is assessed using Monte Carlo techniques.

The significance of the first canonical correlation is determined as follows: Random numbers
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drawn from a normal distribution are used to populate two matrices X and Y of size Tx X N and
Ty X N, respectively, where N is the sample size and Tx and 7y are determined by MIC. To ensure
consistency, the same preprocessing steps (i.e., removal of the trend, three harmonics, and the
seasonal mean) are applied to the random data as to the original data. CCA is then performed
on the random matrices to compute the sample canonical correlations. This process is repeated
10,000 times to construct an empirical distribution of the canonical correlations under the null
hypothesis of independent X and Y. The 95th percentile of the leading canonical correlation from
the Monte Carlo simulations is taken as the significance threshold at the 5% level.

For the second canonical correlation, the X and Y matrices are generated as described above,
except this time one (arbitrary) row of the Y-matrix is set equal to a row of the X-matrix, thereby
generating a component with a population correlation of 1. The remainder of the procedure is the
same as described above. This tests the hypothesis that all canonical correlations except one are
0. Using a population correlation of 1 for the first PC corresponds to a ”worst-case scenario” for
the null hypothesis and leads to a conservative estimate of the significance level for the second
canonical correlation.

The test for the 3rd correlation is similar, except that two rows of the Y-matrix are set equal to

two rows of the X-matrix, and so on.

g. Multivariate Granger Causality

After identifying a predictable relation, we assess whether it is driven by a known climate process
(e.g., ENSO or the PNA). Suppose the climate process is represented by an index F. In this case, F
can be regressed out of both X and Y, and CCA applied to the resulting residuals. If F is unrelated
to X and Y, regressing out F' should have little effect on the canonical correlations. However, if F
drives the relationship between X and Y, regressing out F' should reduce or eliminate at least one of
the canonical correlations. The significance of the correlations can be evaluated by incorporating
the regress- F-out step into the Monte Carlo procedure described earlier.

The method described above is closely related to Granger Causality (Granger 1969). To under-
stand this connection, recall that a time series F is said to Granger-cause Y if predictions based

on both antecedent Y and F are more skillful than predictions based on antecedent Y alone. In

10
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practice, Granger Causality is evaluated using the regression model

Y=LX+cF+E, 4)

where L is a propagator, c is a coefficient, and E is random noise. Whether F' Granger-causes Y
depends on c. If the hypothesis ¢ = 0 cannot be rejected, then F' does not improve the prediction
of Y beyond what can be achieved using X alone. Conversely, if c is statistically significant, then
including F' improves the prediction of Y. Therefore, demonstrating that  Granger-causes Y is
equivalent to showing that c is statistically significant.

The two methods are equivalent due to a close connection between CCA and linear regression.
Specifically, DelSole and Chang (2003) demonstrate that if each canonical component is predicted
separately and then summed across all components, the result is identical to the prediction obtained
from multivariate linear regression. This indicates that CCA and linear regression capture the same
predictability but express it in different forms. Moreover, by the Frisch-Waugh-Lovell theorem
(Frisch and Waugh 1933; Lovell 2008), the regression matrix L is identical to the matrix obtained
when F' is regressed out of both X and Y and fitted to a linear model. Consequently, determining
whether c is significant in equation (4) is equivalent to evaluating whether the canonical correlations
change after regressing F out of X and Y.

No procedure can fully guarantee the correct identification of causality, and the above approach
is no exception. For instance, suppose both F' and Y are influenced by another climate process, Z.
In this case, the coefficient associated with F may still be nonzero, leading the analysis to conclude
that F' causes Y, when in reality it is Z that causes Y. One way to address this issue is to test
multiple climate processes. If more than one process is found to be causal, we may then formulate

further hypotheses about the ordering and underlying structure of the causal relationships.

h. How many PCs to regress out when there isn’t an index

Soil moisture does not have a standard index associated with it. We compute EOFs of soil
moisture over the United States, and then we need to decide how many EOFs of soil moisture
we should regress out for Granger Causality. MIC, described in Section 2.d.e, can be used as an

objective method to determine how many EOFs to use for testing Granger Causality.

11
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Following Equation 21 of DelSole and Tippett (2021), the appropriate equation is:

MIC(X;Y|F)=MIC(XF:;Y)-MIC(F:Y) (5)

where X is the 2m temperature PCs at the initial time, Y is the 2m temperature PCs at the response
time, and F is the leading PCs of the variable being investigated, at the initial time. To understand
Equation 5, recall that MIC is a measure of the degree of predictability. MIC(XF;Y) predicts Y
using both X and F, while MIC(F;Y) predicts Y using only F. The difference of these terms
tells us how well X is able to predict Y independent of F' (that is, while F' is held constant). This
gives us MIC(X;Y|F), which is a function of the number of PCs of F. The number of PCs of F to
include is determined by the minimum of MIC(X;Y|F).

3. Verifying Predictability in Independent Data

Verifying predictability in independent data is particularly challenging in subseasonal studies,
which often involve small sample sizes. Our approach is novel and distinct from the more standard
methods discussed in the previous section, so it will be discussed separately in this section.

The sample estimate of the leading canonical correlation is biased upward due to overfitting.
Overfitting is a common limitation of statistical optimization methods. This bias becomes pro-
nounced when the true population correlation is small and the sample size is small (Lee 2007).

What is perhaps less widely recognized is that projecting a canonical component onto indepen-
dent data typically results in an underestimation of the population correlation. This is intuitively
reasonable—since CCA tends to overestimate the correlation by incorporating noise into the predic-
tive model, the noise only degrades the predictive value of the model when applied to independent
data. As a result, CCA is expected to yield upward-biased in-sample correlations and downward-
biased out-of-sample correlations, even when both samples come from the same population. Our
goal is to quantify these two biases.

It appears to have gone unnoticed that Monte Carlo techniques can be used to estimate both upward
and downward biases in canonical correlations. The procedure begins as outlined previously:
random numbers drawn from a normal distribution are used to fill two matrices, X and Y, of size

Tx x N and Ty X N, respectively. By construction, X and Y are independent. Next, Y is modified

12
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to include a correlation by setting the first PC of Y, denoted Y1, to

Y1 =pXi+V(1-p?)+Z, (6)

where X is the first PC of X, and Z is independently drawn from a standard Gaussian distribution.
This modification ensures that the population correlation between the first PCs of X and Y is p,
while all other PCs remain independent. CCA is then performed, and we expect at least one sample
canonical correlation to be close to p. Having performed CCA, we obtain the canonical projection
vectors associated with the leading canonical correlation. Applying these vectors to X and Y will
yield time series with a correlation exactly equal to the leading sample canonical correlation. To
validate this relation on independent data, we generate new independent matrices X’ and Y’, in
the same manner as described above (particularly using equation (6)), but with a sample size N’
matching our verification data. Applying the previously computed projection vectors to X" and Y’
and computing the correlation gives a realization of the possible correlation that could occur in
independent data from the same population. This process is repeated 1,000 times for a given p to
determine the quantiles of both in-sample and out-of-sample canonical correlations. The procedure
is then repeated for different values of p, allowing us to estimate the distribution of in-sample and
out-of-sample correlations as a function of the population canonical correlation.

An example of the distributions of in-sample and out-of-sample correlations is shown in Figure
1. For each population correlation, the red points represent the mean leading in-sample canonical
correlation over the Monte Carlo simulations, with error bars indicating two standard deviations.
The black line shows the x = y line for reference. The fact that the red points are above the x =y
line illustrates the overfitting discussed earlier, with the largest upward bias occurring when the
population correlation is small.

The corresponding blue points represent the mean correlation when the leading in-sample canon-
ical component is projected onto independent data, with error bars also showing two standard
deviations. The fact that the blue points lie below the x =y line highlights the tendency to un-
derestimate the population correlation in independent data. While this phenomenon may have
been recognized by others, it does not appear to have been previously quantified. Additionally, the

in-sample error bars (red) are smaller than the out-of-sample error bars (blue) because the sample

13
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Example of Leading Canonical Correlation and
Out of Sample Estimates for Different Signal Strengths
Week3-4 JJA, Tx=7, Ty=6
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Fic. 1. Estimates of leading canonical correlations (red dots) and their corresponding out of sample correlations
(blue dots) for population correlations ranging from O to 0.5. These estimates are for the case when Tx = 7 and

Ty = 6, which corresponds to the number of EOFs used for JJA.

size for the in-sample data is larger than that for the out-of-sample data, as it was chosen to match
the actual data length.

The above procedure can be used to derive more comprehensive uncertainty estimates for the
canonical correlation that incorporate out-of-sample information. To illustrate this, we use a
specific example. In Section 4.b.4, we find that the leading canonical correlation for week 3-4
prediction in JJA is 0.38, while the out-of-sample correlation for this mode is 0.07. Figure 2
presents the same estimated distributions of in-sample and out-of-sample correlations as Figure 1,
but with the leading canonical correlation for JJA (0.38, marked as the horizontal red line) and the
out-of-sample correlation (0.07, marked as the horizontal blue line) overlaid. For this mode, 7 PCs
were included as predictors for X, and 6 were included as predictors for Y; these values were used
in the Monte Carlo simulations. The uncertainty of the leading canonical correlation is represented

by the horizontal red error bar at the bottom of the figure. This was obtained by calculating the

14
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Example of Leading Canonical Correlation and
Out of Sample Estimates for Different Signal Strengths
Week3-4 JJA, Tx=7, Ty=6
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FiG. 2. As in Figure 1, but additionally showing the leading canonical correlation (0.38) as the horizontal red
line. The correlation of the leading mode when projected onto an independent sample (0.07) is shown as the

horizontal blue line. The bracketed lines at the bottom are the confidence interval for each correlation.

standard errors of the simulated canonical correlations that overlap with 0.38, the observed leading
canonical correlation. Similarly, the uncertainty for the out-of-sample correlation is shown by
the horizontal blue error bar at the bottom, based on the standard errors of the simulated out-of-
sample correlations that overlap with 0.07, the observed out-of-sample correlation. Because these
two intervals overlap, we conclude that the in-sample and out-of-sample correlation estimates are
consistent with each other. The range of population correlations that overlap (0.19-0.31) represents
the interval of population coefficients that is consistent with the 95% confidence intervals of both
the in-sample and out-of-sample results.

The above analysis produces an unconventional uncertainty range, as it does not encompass either
the in-sample or out-of-sample correlations individually. However, the Monte Carlo simulations
demonstrate that any population correlation within the interval (0.19-0.31) could generate results

consistent with both the in-sample and out-of-sample correlations derived from observations.
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Fic. 3. Canonical correlations and 95% critical values for JJA. Circles are canonical correlations and diamonds
are the 95% critical values. Blue points indicate that the correlation is statistically significant while red indicates
that it is statistically insignificant, at the 5% level. Correlations when CCA is done at weeks 1-2 is on the left,

correlations when CCA is done at weeks 3-4 is on the right.

4. Results

We now present the results of the CCA analysis aimed at identifying the most predictable mode
of 2-week mean CONUS temperature during boreal summer. As a reminder, the seasonal mean
has been removed to focus exclusively on subseasonal predictability.

Our main finding is that we detect predictable subseasonal modes for both weeks 1-2 and weeks
3-4. Figure 3 shows the leading JJA canonical correlations for weeks 1-2 and weeks 3-4. In this
figure, the points are the correlations and the diamonds are the 95% critical values. Correlations
above the critical value are statistically significant. As a visual aid, significant correlations are
indicated in blue and insignificant correlations are indicated in red.

We next diagnose the structure of the leading modes.
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Fic. 4. Ist leading loading vector for JJA at weeks 1-2. The left panel is the initial condition, and the right

panel is the week 1-2 response.

a. JJA Weeks 1-2: Leading Mode
1) LoADING VECTORS

The loading vectors associated with the leading mode for JJA weeks 1-2 are shown Figure 4. The
initial condition (left panel of Figure 4) is characterized by a dipole pattern with anomalies of one
sign concentrated along the west coast and anomalies of the opposite sign distributed throughout
the rest of the US. At the week 1-2 response (right panel of Figure 4), the west coast anomalies
have changed sign and propagated to eastern Canada, with most of the interior CONUS remaining

the same sign.

2) ReELATION TO KNOWN SOURCES OF PREDICTABILITY

If a correlation becomes insignificant when a climate index is regressed out, we can conclude that
the index that was removed Granger Causes this mode. The canonical correlations after regressing
out various climate indices one at a time from the temperature PCs are shown in Figure 5. The

red, orange, gold, green, and blue points show the results after removing the Nino 3.4 index, NAO,

17



354

355

356

357

362

363

364

365

366

367

368

369

370

JJA Week 1-2 Canonical Correlations
Granger Causality
Climate Signals Removed from 2mT Data

g 1 ® Base
® Nino3.4 Rm
NAO Rm
® PNA Rm
© Soil Moisture Rm
o ® BSISO Rm
< Critical
®ece o
<
§ ° %o @
= [ ]
o SOOOEO oo °
8 - OOOOHO
o OO0 80 o, LIPS
QOO A0
N
N
S -
T T T T
1 2 3 4

Nth Leading Component

Fic. 5. The statistically significant canonical correlations for JJA at weeks 1-2 after the time series of common
climate indices are removed from the 2m temperature PCs. The black points are when no signal is removed and
is the same as the week 1-2 correlations in Figure 3. The red, orange, gold, green, and blue points are when the

Nino 3.4 index, NAO, PNA, surface soil moisture, and BSISO indices are removed, respectively.

PNA, surface soil moisture, and BSISO indices, respectively. The corresponding critical values for
5% significance are shown as diamonds. For reference, the canonical correlations of the original
temperature PCs are shown as black points, reproduced from Figure 3.

Except for the case of soil moisture, the leading canonical correlation remains largely unchanged
when the other climate indices are removed. However, when the soil moisture PCs are removed
(represented by blue points in Figure 5), the correlation of the first mode decreases, although it
remains statistically significant. Notably, the canonical correlation with soil moisture removed is
consistent with the second mode’s base canonical correlation (compare the leading mode’s blue

point with the second mode’s black point, and similarly, the second mode’s blue point with the
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third mode’s black point, and so on). This suggests that regressing out the soil moisture signal
effectively eliminates the first mode, causing the second mode to become the new leading mode.

To verify if the modes are indeed the same, we compare their time series. The correlation
between the X variates of the leading mode when soil moisture is removed (blue point for the
leading mode) and the X variates of the second mode when no signals are removed (black point
for the second mode) is 0.62. Similarly, the correlation between the Y variates of these modes is
0.61. Given the uncertainties, these correlations are effectively equal, indicating that the original
first mode has been fully removed, and the second mode has shifted into its place. However, this
analysis does not determine whether the soil moisture signal itself is a response to other phenomena
not represented among our climate indices.

The removal of the other signals does not change the correlation of any of the other modes. This
means that we can conclude that the second, third, and fourth modes are not Granger caused by the

associated climate mechanisms.

3) REGRESSION MaPs

The structure and evolution of each mode, as well as its relationship to other physically relevant
variables (denoted Z), will be diagnosed through lagged regression maps. Each predictable mode
has an initial condition X and a response Y. For week 1-2 predictions, X and Y represent the
same variable, lagged by 14 days. Therefore, a lagged regression map between X (¢) and Z(7+5)
corresponds to the same day for Z as a lagged regression map between Y (z) and Z(¢#—9). Since
these two regression maps are broadly similar, only one will be presented in the analysis.

As a general rule, before calculating the regression, Z is converted to 2-week means, and the
local seasonal mean is removed at each grid point.

Since Granger causality indicates that the leading mode is caused by surface soil moisture, we
will start with regression maps of soil moisture. Lagged regression maps between soil moisture
and leading mode variates are shown in Figure 6. By comparing Panel A with the initial condition
loading vector (left panel in Figure 4), we can see that the soil moisture anomalies are the opposite
sign as the loading vector. Comparing Panel D with the week 1-2 response loading vector (right
panel of Figure 4), again the soil moisture anomalies and the loading vector are the opposite signs.

The conclusion that the temperature anomalies and soil moisture anomalies are anti-correlated
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Fic. 6. The regression patterns between the leading mode’s variates in JJA at weeks 1-2 and surface soil
moisture, where each panel shows a regression pattern that is lagged in time. A) Soil moisture is simultaneous
with the initial condition, so 14 days prior to the week 1-2 response; B) Soil moisture is 5 days after the initial
condition, (9 days prior to the week 1-2 response); C) Soil moisture is 10 days after the initial condition, (4 days
prior to the response); D) Soil moisture is 14 days after the initial condition, (simultaneous with the week 1-2

response). The colored grid points are significant at the 0.01 level.

makes physical sense—warmer temperatures will evaporate some of the moisture, and then the
lower moisture content means more energy will go into sensible heat than latent heat which will
raise the temperature. This suggests that the soil moisture anomalies act to persist the temperature

anomalies. This can be seen in the central and southern Great Plains, the southeast, and in the
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Fic. 7. AsinFigure 6, but the regression maps between the leading week 1-2 JJA mode and 500mb geopotential

height.

Pacific northwest. Itis in these locations that the temperature anomalies remain the same sign from
the initial condition to the week 1-2 response (Figure 4), and it is also in these locations that the
soil moisture anomalies have the largest amplitude at the initial condition (Panel A of Figure 6).
To investigate the possibility that there may be an atmospheric component to this mode, the
variates are regressed onto 500mb height. These lagged regression maps are shown in Figure 7.
Simultaneous with the initial condition (Panel A), there is a clear wave originating from the western
Pacific. Notably, this wave is oriented zonally. While the path of a Rossby wave typically has a

large meridional component in addition to a zonal component, the anomalies in Figure 7 match
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Fic. 8. As in Figure 6, but the regression maps between the leading week 1-2 JJA mode and tropical precipitation.

that of a Rossby wave that is trapped by the climatological jet (Teng and Branstator 2019). These
waves are usually called “circumglobal teleconnections” (Ding and Wang 2005; Branstator 2002),
or occasionally ”waveguide teleconnections” (Teng and Branstator 2019).

As the mode progresses in time, the Rossby wave diminishes in amplitude and appears to shift
to the west (Panels B-D). This suggests that there is a source of the Rossby wave in the western
Pacific. To investigate this, the variates were regressed onto tropical precipitation. These lagged
regression maps are shown in Figure 8. At the location where the Rossby wave appears to originate,

there is a relatively large-scale precipitation anomaly that persists until the week 1-2 response.
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Taken together, these results suggest that the western Pacific precipitation anomaly sets up the
Rossby wave, trapped by the jet, which impacts the United States. As the Rossby wave shifts in
space, the soil moisture modifies the atmospheric response, causing some temperature anomalies
to persist.

The large-scale precipitation anomaly in the western Pacific suggests a possible connection to
the Boreal Summer Intraseasonal Oscillation (BSISO). However, several key differences make it
challenging to definitively attribute this predictable mode to the BSISO. One difference is that
the large-scale precipitation anomaly associated with this mode is farther north than is typical of
most descriptions of the BSISO. The precipitation anomaly associated with the predictable mode
extends from about 15N to 30N, while the BSISO typically does not extend past 20N (Kikuchi
2021; Chen and Wang 2021). On the other hand, Lee and Wang (2016) show a BSISO extending
up to 30N by decomposing the BSISO into Indian Ocean and Western Pacific modes. Additionally,
the BSISO has both a positive and a negative precipitation anomaly over the Indian Ocean and
western Pacific (although some phases are dominated by anomalies of one sign). In contrast, the
predictable mode only has the single positive anomaly. The teleconnections associated with the
BSISO are very similar to the Rossby wave generated by this precipitation anomaly (Moon et al.
2013), although that is to be expected given their similar locations. One study by Kerns and Chen
(2020) tracked individual large-scale precipitation events in the tropical Pacific. They found that
individual MJO events do not always project cleanly onto the MJO indices. However, they also
found that large-scale precipitation events poleward of 30N were relatively common, but did not
fit their criteria to be defined as an MJO or BSISO event. Due to the differences between the
precipitation patterns associated with this mode and the typical BSISO, we cannot definitively
conclude that this mode is driven by the BSISO. However, we also cannot rule out the possibility

that it may be related to the BSISO.

4) UNCERTAINTY RANGE OF THE CANONICAL CORRELATION

The description of the out-of-sample correlation test is described in Section 3. The leading
canonical correlation in JJA at weeks 1-2 is 0.46, and the correlation of the leading mode in
independent data is 0.43. The results of the out of sample correlation test as applied to the leading

week 1-2 mode in JJA is shown in Figure 9. Because the two confidence intervals overlap, we
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Fic. 9. Estimates of leading canonical correlations (red dots) and their corresponding out of sample correlations
(blue dots) for population correlations ranging from O to 0.5. These estimates are for the case when Tx =5 and
Ty = 11, which corresponds to the number of EOFs used for JJA at week 1-2. The black line shows the 1:1 line
for reference. The leading canonical correlation for JJA at weeks 1-2 is shown as the red horizontal line. The
correlation of the leading mode when projected onto an independent sample is shown as the horizontal blue line.

The bracketed lines at the bottom are the confidence interval for each correlation.

conclude that the leading canonical correlation and out-of-sample correlation are consistent with

a population correlation in the range p € [0.32,0.49].
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b. JJA Weeks 3-4

The previous section examined the predictability of temperature at weeks 1-2. However, skillful
predictions for weeks 3-4 could potentially be even more valuable to society (White et al. 2017).
Therefore, it is important to investigate the most predictable modes at weeks 3-4. The results of this
analysis are summarized in the Supplemental Document. Briefly, we detect a predictable mode at
weeks 3-4 characterized by (1) an in-sample correlation of 0.38, (2) an input-response loading pair
that are largely the same pattern but of opposite sign, suggesting an oscillatory-type predictable
pattern, and (3) an associated regression pattern in 500hPa height that strongly resembles the

Rossby wave present at the initial condition of the leading week 1-2 JJA mode.

5. CFSv2

The previous analysis presents the predictable subseasonal modes identified by CCA in obser-
vational data sets. The next natural question is whether dynamical forecast models capture these
predictable subseasonal modes. To address this question, we project the leading mode of each
season onto reforecasts of NCEP’s dynamical model CFSv2. Then, using the test discussed in
Section 3, we assess if the lagged correlations of the leading modes from CFSv2 reforecasts are

consistent with observations.

a. Model Data
1) CFSv2 PREPROCESSING

The reforecasts of the NCEP CFSv2 model (Saha et al. 2014) were evaluated as to whether it
was able to capture the subseasonal modes. The reforecasts are available daily from January 1999
to December 2020, excluding 2016. In order to only use data that is independent of the ERA40
data, only reforecasts from 2002 and later are included in this analysis. Each daily reforecast from
CFSv2 is 44 days. Anomalies of the ensemble mean were calculated according to Pegion et al.
(2019). To get the week 3-4 forecast from each day, forecast days 15-28 were averaged together.
Likewise, week 1-2 forecasts were calculated by averaging forecast days 1-14 together. To get the
intraseasonal component of the reforecasts, the mean of each season was removed. The data was

interpolated onto the ERA40 grid in order to project the loading vectors.
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The two-week mean forecasts were selected such that only non-overlapping forecasts were
included in the calculation. For example, for boreal summer the two week means beginning on

June 1, June 15, July 1, July 15, August 1, and August 15 were selected.

2) IntTiAL ConDITION DATA

Observed two-week mean 2m temperature from the NOAA ESRL, described in Section 2, was
projected onto the X loading vector to obtain the X-variate. CFSv2 re-forecasts at the appropriate

leads were projected onto the Y loading vector to obtain the Y-variate.

b. Evaluating CFSv2 for JJA weeks 1-2

The correlation of the prediction of the leading week 1-2 JJA mode in the CFSv2 model is
p =0.28. The leading canonical correlation is p = 0.46. Figure 10 shows the canonical correlation,
CFSv2 prediction correlation, and the Monte Carlo in-sample and out-of-sample estimates. The

confidence intervals overlap, so we conclude that the CFSv2 reforecasts capture this mode.

c. Evaluating CFSv2 for JJA weeks 3-4

The correlation of the prediction of the leading week 3-4 JJA mode by the CFSv2 model
is p = —0.12. The leading canonical correlation is p = 0.38. Figure 11 shows the canonical
correlation, CFSv2 prediction correlation, and the Monte Carlo in-sample and out-of-sample
estimates. The confidence intervals do not overlap, so we conclude that the CFSv2 reforecasts do

not capture this mode.
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512 Fic. 11. Asin Figure S5, but for the leading week 3-4 mode in JJA in CFSv2 forecast data. In this case, Tx =7
5,3 and TY =6.
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6. Conclusions

The overarching goal of this paper is to identify new sources of subseasonal predictability.
To achieve this, we developed a novel methodology that involves removing ENSO influences by
subtracting seasonal means from a variable, and then applying Canonical Correlation Analysis
(CCA) to time lags of the resulting intraseasonal variable. The rationale underlying this method
is that any source of subseasonal predictability that influences a variable should impart a temporal
correlation over a few weeks. CCA is an ideal method for identifying such temporal correlations
because it finds the indices at the initial and final times that maximize correlation. A major
contribution of this work is the development of a rigorous significance test for deciding if the
resulting canonical correlations are statistically significant, particularly when validating predictable
modes in independent data.

We applied this method to 2-week mean temperature over the United States and identified
predictable modes at week 1-2 leads and week 3-4 leads, in JJA. To ascertain if these modes are
related to known sources of subseasonal predictability, we applied a Granger Causality test and
examined lagged regression maps of variables related to the general circulation. We concluded
that the leading JJA modes in weeks 1-2 and 3-4 are new sources of subseasonal predictability.

This mode is associated with a precipitation anomaly in the western Pacific that sets up a Rossby
wave, which uses the jet as a waveguide, impacting the United States. As time progresses, the
precipitation anomaly switches sign, which sets up a different Rossby wave. A lagged correlation
analysis reveals that soil moisture influences the predictable mode in the later stages of its evolution.
We suspect that soil moisture in the southern Great Plains modifies the expected atmospheric
response by causing the temperature anomalies in the southern Great Plains to persist longer
than it otherwise would. In our analysis, the week 3-4 response is the same as the week 1-2
initial condition, which means that the combination of the modes may extend predictability out to
week 5-6. Each of these mechanisms has been discussed in the literature, although the chain of
mechanisms and their evolution in time has not been presented together before.

One aspect of this mode that we were unable to determine is if the precipitation in the western
Pacific is due to the Boreal Summer Intraseasonal Oscillation (BSISO). The BSISO is an oscillation
of convection over the Indian Ocean and western tropical Pacific during the boreal summer. It

is characterized by northward as well as eastward propagation over the western Pacific (Kikuchi
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2021; Chen and Wang 2021). As the precipitation associated with this mode is also in the western
Pacific, the BSISO is the natural phenomenon to compare it to. However, there are some differences
between our mode and the BSISO. For instance, the precipitation associated with our predictable
mode extends about 10 degrees further north than conventional BSISO indices. Furthermore, the
BSISO is associated with a large-scale precipitation anomaly of the opposite sign, in contrast to
our predictable mode (Section 4.a.3).

We examined if the above predictable modes were captured by the CFSv2 dynamical forecast
model. We conclude that it does capture the leading mode of week 1-2 predictability but not the
leading mode of week 3-4 predictability. Our results might provide clues about how to improve
CFSv2’s representation of subseasonal predictability. For instance, CFSv2 was unable to capture
the leading week 3-4 JJA mode. The regression maps of this mode show that it is associated by
anomalous precipitation in the western Pacific that sets up a Rossby wave impacting the United
States (discussed in Section 4.b). This could mean that the CFSv2 model does not have a sufficiently
realistic representation of western Pacific precipitation, which could be in the representation of the
magnitude or the variability of the precipitation. Another explanation may be that the model does
not have a sufficiently good representation of the tropical-extratropical teleconnections, either in
setting up the Rossby wave or in its propagation.

One limitation of using CCA to identify predictable temperature patterns is that some climate
mechanisms may not impact the temperature during both the initial condition and the response at
weeks 1-2 or 3-4, and yet the mechanisms themselves may be predictable that far in advance. For
example the MJO has a relatively small direct impact on wintertime temperature over the United
States, with only phases four through six producing statistically significant, large scale temperature
anomalies (Zhou et al. 2012). However, it has been shown that dynamical models can accurately
forecast the state of the MJO four weeks in advance (Pegion et al. 2019; Du et al. 2024). This
means that while we may be able to forecast the direct impact of the MJO using dynamical models,
CCA applied in the manner described above would not be able to capture that predictability owing
to the weak teleconnection.

It might come as some surprise that these new sources of predictability were found using CCA,
which has been used to study aspects of the climate for decades. We posit that this is for three

reasons. The first is that CCA rarely is applied to lagged temperature fields. Most studies that
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use CCA have used it to find the temperature pattern that is most correlated with some other field,
often SST. As a result, those studies limit themselves to the temperature response from the other
variable. In our method, we were not limited to finding only the response from one variable. The
second reason is that we were able to employ a relatively new criterion, MIC (DelSole and Tippett
2021), to objectively determine the number of EOFs to use for both the initial condition and the
response. Without MIC, prior studies have had to justify the number of EOFs used. This was often
based on the total amount of variance explained by the EOFs and the cutoff differed from study to
study. The third reason is that we have developed a novel significance test for the leading mode
based on a Monte Carlo procedure and by using independent data for validation of the correlation.

While this work has focused on subseasonal predictability, the methodology developed here is
broadly applicable to any time series, offering new pathways for uncovering and understanding

previously unrecognized sources of predictability.
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