
Generated using the official AMS LATEX template v6.1

A New Mode of Subseasonal Predictability Over the US:1

Boreal Summer2

Paul Buchmann,a , and Timothy DelSolea,b
3

a George Mason University, Fairfax, VA 22030, USA4

b Center for Ocean-Land-Atmospheric Studies, George Mason University, Fairfax, VA 22030, USA5

Corresponding author: Timothy DelSole, tdelsole@gmu.edu6

1



ABSTRACT: This study identifies the most predictable modes of subseasonal temperature over

the United States during boreal summer for weeks 1-2 and, separately, for weeks 3-4. Surprisingly,

Granger Causality tests reveal that these modes are unrelated to standard indices of subseasonal

predictability, such as El Niño or the Madden-Julian Oscillation. Lagged regression analysis

indicates that the leading week 1-2 mode is driven by western Pacific precipitation and exhibits

enhanced persistence due to interactions with soil moisture. Similarly, the leading week 3-4 mode

is linked to western Pacific precipitation. While these modes share features with the Boreal Sum-

mer Intraseasonal Oscillation (BSISO), the resemblance is not exact, and the chain of mechanisms

leading to predictability over the U.S., particularly involving soil moisture, appears to be new.

NOAA’s Climate Forecast System v2 (CFSv2) successfully captures the leading week 1-2 mode

but fails to represent the leading week 3-4 mode. The lagged relationships identified here may pro-

vide insights into model adjustments that could enhance subseasonal predictability. These modes

were identified using Canonical Correlation Analysis (CCA), which is capable of uncovering pre-

dictability without prior assumptions about its source. While CCA is a well-established statistical

method, its application to climate data has been limited due to challenges in significance testing

and feature selection. This study addresses these limitations by employing a recently developed

Mutual Information Criterion (MIC) to optimize feature selection, using Monte Carlo techniques to

establish rigorous significance tests for small samples, and formulating a comprehensive procedure

for validating predictability in independent datasets.
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SIGNIFICANCE STATEMENT: Accurate subseasonal forecasts, covering the 2- to 8-week time26

frame, would provide significant societal benefits in areas such as public health, agriculture,27

water resource management, energy, utilities, and early warnings for extreme events. This paper28

integrates rigorous statistical procedures into a framework with the potential to uncover new29

sources of predictability. The underlying idea is that if weather and climate are predictable on30

subseasonal time scales, there ought to be some correlation between events separated in time. Such31

correlations can be identified with no pre-conceived notion as to their source. After identifying32

these correlations, known sources of predictability may be removed statistically one-by-one. Any33

predictability that remains after this sifting process indicates a new source of predictability.34
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1. Introduction35

Predictions of temperature and precipitation on subseasonal time scales have been made for36

at least a decade. These predictions typically forecast one- or two-week means up to six weeks37

in advance (Johnson et al. 2014). Subseasonal predictions are generally less skillful than either38

weather or seasonal forecasts because the lead time is long enough for information from atmospheric39

initial conditions to degrade, yet the averaging period is short enough that not all weather noise is40

smoothed out. Despite these challenges, accurate subseasonal forecasts could provide significant41

benefits to water management, agriculture, disaster preparedness, and health (White et al. 2017).42

Case studies have shown that subseasonal forecasts can support decision-making in areas such43

as public health, agriculture, water resource management, energy, and utilities, as well as early44

warnings for extreme events (White et al. 2021; Domeisen et al. 2022). The importance of45

subseasonal forecasting led to subseasonal forecast competitions, with substantial cash prizes, by46

the U.S. Bureau of Reclamation in 2017 (Hwang et al. 2019) and 2019 (Nowak et al. 2020), and47

by the United Nations’ World Meteorological Organization in 2021 (Vitart et al. 2022).48

Several known phenomena contribute to subseasonal predictability in the United States, in-49

cluding the El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), the50

Pacific-North American teleconnection pattern (PNA), the North Atlantic Oscillation (NAO), Sud-51

den Stratospheric Warming events (SSWs), and land-atmosphere coupling (Robertson and Vitart52

2019; National Research Council 2010; National Academies of Sciences Engineering and Medicine53

2016). A more recently identified source, which plays a significant role in this study, is the Boreal54

Summer Intraseasonal Oscillation (BSISO). The BSISO is a summer mode of the MJO charac-55

terized by northward-propagating precipitation anomalies extending from India to the western56

Pacific. Most studies on the BSISO focus on its influence on the Asian summer monsoons or on57

tropical cyclones. Few studies examine its effects on the United States’ 2m temperature. One such58

study by Krishnamurthy et al. (2021) describes an oscillation in tropical winds over the eastern59

Pacific related to the BSISO, with the response of 2m temperature over the U.S. quantified through60

regression maps. Jenney et al. (2019) also assessed the seasonal impact of the MJO and BSISO61

on surface temperatures in the U.S and concluded that its impact on summer predictability is small62

compared to the MJO’s influence on winter predictability.63
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All of the above phenomena influence U.S. temperatures on subseasonal timescales. However,64

in each case, the phenomenon was identified first, and its impact on temperature was determined65

afterward. This raises the question of whether there might be other mechanisms driving subseasonal66

predictability that have gone unnoticed simply because they have not yet been identified. If an67

unknown source of predictability exists, how would we discover it? Our goal is to identify68

subseasonal predictability without requiring prior knowledge or a hypothesis about the source.69

A mechanism that produces predictability on subseasonal time scales should produce a temporal70

dependence between a pattern at time 𝑡 and a (potentially different) pattern at time 𝑡 + 𝜏. Accord-71

ingly, we employ methods that identify temporal correlations in multivariate time series. Several72

approaches exist for this, including multichannel singular spectrum analysis (MSSA, Ghil et al.73

2002; Krishnamurthy et al. 2021), coherence spectrum analysis (Madden and Julian 1971), lead-lag74

regression between leading EOFs, Canonical Correlation Analysis (CCA, Barnett and Preisendor-75

fer 1987; Barnston and Smith 1996; Huth 2002; DelSole and Tippett 2022), and machine learning76

approaches (McGovern et al. 2014; Hwang et al. 2019; He et al. 2021; Trenary and DelSole 2023).77

However, each method has limitations in its current form. MSSA does not explicitly maximize78

a measure of predictability. Coherence spectrum analysis is univariate and thus does not capture79

multivariate dependencies. Lead-lag regression assumes that individual EOF patterns represent80

the full response to a mechanism, a highly restrictive assumption. Machine learning approaches,81

while powerful, require large datasets for training and validation, which poses a challenge for82

subseasonal prediction due to the relatively small sample sizes involved.83

Among the available statistical methods, we adopt Canonical Correlation Analysis (CCA) for this84

study. While CCA has its own limitations–such as the need to select the number of EOFs for analysis85

and the reliance on asymptotic significance tests–these issues are addressable. First, a relatively86

new selection criterion, the Mutual Information Criterion (MIC), has been developed specifically87

for CCA (DelSole and Tippett 2021). Second, Monte Carlo techniques can be employed to derive88

small-sample significance tests (DelSole and Tippett 2022). The goal of this work is to leverage89

these tools to develop CCA into a rigorous and objective procedure for identifying predictability90

in multivariate time series. Once predictability is detected, lagged regression maps can be used to91

describe its temporal evolution and its relationship to other physically relevant variables. To ensure92

that the predictability identified by CCA is not the result of overfitting, we verify the findings using93
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independent datasets. This is done by projecting the predictable components onto an independent94

dataset and comparing the correlation in that data to the correlation determined by CCA. A key95

contribution of this work is the development of a comprehensive and rigorous validation procedure96

in independent datasets. Interestingly, this process may yield uncertainty ranges that do not contain97

either the in-sample or out-of-sample correlations, which may surprise some readers.98

Since CCA does not require a prior hypothesis about the underlying mechanism, it has the99

potential to uncover previously unknown forms of predictability. Given our goal of identifying100

new sources of predictability, we focus primarily on analyzing observational data. There is no101

doubt that ENSO contributes to subseasonal predictability; any reasonable method will detect102

ENSO as a dominant influence. To explore additional sources of predictability beyond ENSO, this103

study removes the seasonal ENSO influence by subtracting the seasonal mean from the temperature104

data before performing the predictability analysis. Because the mechanisms driving temperature105

predictability vary by season, we will analyze each season separately. This paper presents the106

results for boreal summer, while results for other seasons are discussed in Buchmann (2024).107

For ease of communication, a pair of temperature patterns along with their time series will108

be referred to as a ’mode.’ The leading mode identified by CCA will have the highest possible109

correlation. The second mode will have the highest possible correlation that is uncorrelated with the110

leading mode, and so on. After confirming the detection of predictability, we investigate whether111

it is linked to a known source by regressing that phenomenon out of the data and recalculating112

CCA. We then compare the resulting modes and correlations to the original ones. If the correlation113

of a mode becomes insignificant or if the mode disappears entirely, we can conclude that the114

phenomenon we removed is responsible for that mode. Finally, we assess whether subseasonal115

dynamical models capture the modes identified by CCA. This is done by projecting the predictable116

components onto subseasonal temperature forecasts and comparing the resulting correlations with117

those derived from CCA. If a mode is not well-represented by a model, it may offer a target for118

model developers to improve the representation of specific features in their models.119

This paper is organized as follows. The next section reviews our data and methods, particularly120

CCA and associated selection criteria, significance tests, and connections to Granger Causal-121

ity Analysis. Section 3 describes a new, comprehensive, and rigorous procedure for validating122

canonical components in independent data. Section 4 describes our results of applying CCA to123
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June-July-August (JJA) 2m temperature over CONUS. Section 5 discusses results of assessing124

whether a state-of-the-art climate forecast model captures the predictability identified here from125

observational data sets. This paper ends with a summary and discussion of our results. This work126

is a partial summary of a PhD thesis by Paul Buchmann. More comprehensive discussion of these127

results and other results for other seasons can be found in the thesis Buchmann (2024).128

2. Data and Methods129

a. ERA40 Reanalysis130

The main dataset used is the daily ERA40 reanalysis. This reanalysis covers September 1957 to131

August 2002, making it one of the longest reanalysis data sets. The variables are on a 1.25 by 1.25132

uniform longitude-latitude grid. The following daily variables are used from this reanalysis: 2m133

temperature, total precipitation, the Nino 3.4 index of SST, and soil moisture in the top layer (0-7cm134

underground). BSISO indices used are based on Kikuchi (2020); the EOFs of outgoing longwave135

radiation (OLR) were obtained from the International Pacific Research Center, and intraseasonal136

OLR from ERA40 was projected onto the EOFs to obtain the time series of the BSISO indices.137

The 2m temperature data is used to investigate intraseasonal predictability. The other data is used138

to explore the source of the predictability in 2m temperature.139

b. Observed Data140

To verify the correlations found from the ERA40 reanalysis, we use observed daily 2m temper-141

ature over CONUS from the NOAA ESRL. We utilize only the time period September 1, 2002 to142

February 28, 2022, which does not intersect with the ERA40 dataset. The data was interpolated to143

the ERA40 grid.144

To investigate the sources of predictability in the ERA40 2m temperature data, we use the NAO145

and PNA indices provided by NOAA’s Climate Prediction Center (CPC). These indices overlap146

with the ERA40 data range and are used for convenience rather than being recalculated directly147

from the ERA40 dataset.148
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c. Data Preprocessing149

Data in ERA40 is output in 6 hour increments. Except for precipitation, the data is converted to150

daily averages. For precipitation, the data is converted to daily total. Then anomalies are calculated151

at the gridpoint level by removing a trend and 3 annual harmonics. To convert to EOFs, the data is152

separated into seasons (DJF, MAM, JJA, SON) and averaged into two-week means.153

An important step is that the mean from each season is removed before analyzing predictability.154

For example, the anomalies for June, July, August 1999 have zero mean when averaged over June,155

July, August 1999. EOFs were computed from the two-week mean data and then the mean of each156

season was removed from each PC. Reversing these steps by removing the local seasonal mean157

from the gridpoint data and then calculating the EOFs gave virtually identical PC time series and158

EOF spatial patterns.159

All observed indices are preprocessed by removing a trend and 3 annual harmonics, and then160

calculating two week averages. The local seasonal mean is then removed.161

d. Canonical Correlation Analysis (CCA)162

A procedure called Canonical Correlation Analysis (CCA) is used to quantify the relation between163

variables. Given a vector x(𝑡) and a vector y(𝑡), CCA finds a linear combination of x(𝑡) and a164

linear combination of y(𝑡) that maximizes their correlation. More generally, CCA decomposes the165

data into pairs of variates (time series) such that the first pair has the maximum possible correlation166

in the data set, the second pair has the maximum correlation uncorrelated to the first pair, and so167

on, with each pair of variates uncorrelated to all of the variates preceding them. The 𝑛’th variate168

pair has correlation 𝜌𝑛 called the 𝑛’th canonical correlation. Each pair of variates also has a pair of169

loading vectors (spatial patterns) associated with it. More details of this standard CCA procedure170

can be found in DelSole and Tippett (2022).171

In this work, CCA is applied to two temperature fields, x(𝑡) and y(𝑡), where 𝑡 is a time index. In172

this work, x(𝑡) and y(𝑡) are 2-week means separated by a fixed lag. The precise endpoints for the173

2-week means are listed in Table 1.174
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start of x(𝑡) end of x(𝑡) start of y(𝑡) end of y(𝑡)
weeks 1-2 day -13 day 0 day 1 day 14
weeks 3-4 day -13 day 0 day 15 day 28

Table 1. Start day and end day of the 2-week averaging windows for weeks 1-2 and weeks 3-4 prediction.

e. Selection Criterion - MIC175

In climate applications, it is standard practice to reduce the dimension of x(𝑡) and y(𝑡) by176

projecting them onto their leading EOFs. The question naturally arises as to how many EOFs should177

be chosen. Studies using CCA generally have not used a selection criterion for the number of EOFs178

used. In this work, we use a selection criterion called Mutual Information Criterion (MIC) (DelSole179

and Tippett 2021), which is similar to information criteria like Akaike’s Information Criterion,180

except generalized to selection of random predictors and predictands. Following DelSole and181

Tippett (2022), MIC is calculated as:182

𝑀𝐼𝐶 (𝑇𝑋 ,𝑇𝑌 ) = 𝑁 log Λ+𝑃(𝑁,𝑇𝑋 ,𝑇𝑌 ), (1)

where 𝑁 is the total number of {x(𝑡),y(𝑡)} pairs, 𝑇𝑋 and 𝑇𝑌 are the number of PCs included in x(𝑡)183

and y(𝑡), respectively, 𝑃(𝑁,𝑇𝑋 ,𝑇𝑌 ) is a penalty function defined as184

𝑃(𝑁,𝑇𝑋 ,𝑇𝑌 ) = 𝑁

(
(𝑇𝑋 +𝑇𝑌 ) (𝑁 +1)
𝑁 −𝑇𝑋 −𝑇𝑌 −2

− 𝑇𝑋 (𝑁 +1)
𝑁 −𝑇𝑋 −2

− 𝑇𝑌 (𝑁 +1)
𝑁 −𝑇𝑌 −2

)
, (2)

and185

Λ = (1− 𝜌2
1) (1− 𝜌2

2) . . . (1− 𝜌2
𝑚𝑖𝑛(𝑇𝑋 ,𝑇𝑌 )). (3)

As the number of EOFs increases, Λ decreases, reflecting the increase in predictability, but the186

penalty term increases, reflecting the uncertainty from estimating more parameters. The minimum187

value of MIC gives us the selection criterion for 𝑇𝑋 and 𝑇𝑌 .188

f. CCA Critical Values189

Statistical significance of the canonical correlations is assessed using Monte Carlo techniques.190

The significance of the first canonical correlation is determined as follows: Random numbers191
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drawn from a normal distribution are used to populate two matrices X and Y of size 𝑇𝑋 ×𝑁 and192

𝑇𝑌 ×𝑁 , respectively, where 𝑁 is the sample size and 𝑇𝑋 and 𝑇𝑌 are determined by MIC. To ensure193

consistency, the same preprocessing steps (i.e., removal of the trend, three harmonics, and the194

seasonal mean) are applied to the random data as to the original data. CCA is then performed195

on the random matrices to compute the sample canonical correlations. This process is repeated196

10,000 times to construct an empirical distribution of the canonical correlations under the null197

hypothesis of independent X and Y. The 95th percentile of the leading canonical correlation from198

the Monte Carlo simulations is taken as the significance threshold at the 5% level.199

For the second canonical correlation, the X and Y matrices are generated as described above,200

except this time one (arbitrary) row of the Y-matrix is set equal to a row of the X-matrix, thereby201

generating a component with a population correlation of 1. The remainder of the procedure is the202

same as described above. This tests the hypothesis that all canonical correlations except one are203

0. Using a population correlation of 1 for the first PC corresponds to a ”worst-case scenario” for204

the null hypothesis and leads to a conservative estimate of the significance level for the second205

canonical correlation.206

The test for the 3rd correlation is similar, except that two rows of the Y-matrix are set equal to207

two rows of the X-matrix, and so on.208

g. Multivariate Granger Causality209

After identifying a predictable relation, we assess whether it is driven by a known climate process210

(e.g., ENSO or the PNA). Suppose the climate process is represented by an index 𝐹. In this case, 𝐹211

can be regressed out of both X and Y, and CCA applied to the resulting residuals. If 𝐹 is unrelated212

to X and Y, regressing out 𝐹 should have little effect on the canonical correlations. However, if 𝐹213

drives the relationship between X and Y, regressing out 𝐹 should reduce or eliminate at least one of214

the canonical correlations. The significance of the correlations can be evaluated by incorporating215

the regress-𝐹-out step into the Monte Carlo procedure described earlier.216

The method described above is closely related to Granger Causality (Granger 1969). To under-217

stand this connection, recall that a time series 𝐹 is said to Granger-cause Y if predictions based218

on both antecedent Y and 𝐹 are more skillful than predictions based on antecedent Y alone. In219
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practice, Granger Causality is evaluated using the regression model220

𝑌 = 𝐿𝑋 + 𝑐𝐹 +𝐸, (4)

where 𝐿 is a propagator, 𝑐 is a coefficient, and E is random noise. Whether 𝐹 Granger-causes Y221

depends on 𝑐. If the hypothesis 𝑐 = 0 cannot be rejected, then 𝐹 does not improve the prediction222

of Y beyond what can be achieved using X alone. Conversely, if 𝑐 is statistically significant, then223

including 𝐹 improves the prediction of Y. Therefore, demonstrating that 𝐹 Granger-causes Y is224

equivalent to showing that 𝑐 is statistically significant.225

The two methods are equivalent due to a close connection between CCA and linear regression.226

Specifically, DelSole and Chang (2003) demonstrate that if each canonical component is predicted227

separately and then summed across all components, the result is identical to the prediction obtained228

from multivariate linear regression. This indicates that CCA and linear regression capture the same229

predictability but express it in different forms. Moreover, by the Frisch-Waugh-Lovell theorem230

(Frisch and Waugh 1933; Lovell 2008), the regression matrix 𝐿 is identical to the matrix obtained231

when 𝐹 is regressed out of both X and Y and fitted to a linear model. Consequently, determining232

whether 𝑐 is significant in equation (4) is equivalent to evaluating whether the canonical correlations233

change after regressing 𝐹 out of X and Y.234

No procedure can fully guarantee the correct identification of causality, and the above approach235

is no exception. For instance, suppose both 𝐹 and Y are influenced by another climate process, 𝑍 .236

In this case, the coefficient associated with 𝐹 may still be nonzero, leading the analysis to conclude237

that 𝐹 causes Y, when in reality it is 𝑍 that causes Y. One way to address this issue is to test238

multiple climate processes. If more than one process is found to be causal, we may then formulate239

further hypotheses about the ordering and underlying structure of the causal relationships.240

h. How many PCs to regress out when there isn’t an index241

Soil moisture does not have a standard index associated with it. We compute EOFs of soil242

moisture over the United States, and then we need to decide how many EOFs of soil moisture243

we should regress out for Granger Causality. MIC, described in Section 2.d.e, can be used as an244

objective method to determine how many EOFs to use for testing Granger Causality.245
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Following Equation 21 of DelSole and Tippett (2021), the appropriate equation is:246

𝑀𝐼𝐶 (𝑋;𝑌 |𝐹) = 𝑀𝐼𝐶 (𝑋𝐹;𝑌 ) −𝑀𝐼𝐶 (𝐹;𝑌 ) (5)

where X is the 2m temperature PCs at the initial time, Y is the 2m temperature PCs at the response247

time, and 𝐹 is the leading PCs of the variable being investigated, at the initial time. To understand248

Equation 5, recall that MIC is a measure of the degree of predictability. 𝑀𝐼𝐶 (𝑋𝐹;𝑌 ) predicts Y249

using both X and 𝐹, while 𝑀𝐼𝐶 (𝐹;𝑌 ) predicts Y using only 𝐹. The difference of these terms250

tells us how well X is able to predict Y independent of 𝐹 (that is, while 𝐹 is held constant). This251

gives us 𝑀𝐼𝐶 (𝑋;𝑌 |𝐹), which is a function of the number of PCs of F. The number of PCs of F to252

include is determined by the minimum of 𝑀𝐼𝐶 (𝑋;𝑌 |𝐹).253

3. Verifying Predictability in Independent Data254

Verifying predictability in independent data is particularly challenging in subseasonal studies,255

which often involve small sample sizes. Our approach is novel and distinct from the more standard256

methods discussed in the previous section, so it will be discussed separately in this section.257

The sample estimate of the leading canonical correlation is biased upward due to overfitting.258

Overfitting is a common limitation of statistical optimization methods. This bias becomes pro-259

nounced when the true population correlation is small and the sample size is small (Lee 2007).260

What is perhaps less widely recognized is that projecting a canonical component onto indepen-261

dent data typically results in an underestimation of the population correlation. This is intuitively262

reasonable–since CCA tends to overestimate the correlation by incorporating noise into the predic-263

tive model, the noise only degrades the predictive value of the model when applied to independent264

data. As a result, CCA is expected to yield upward-biased in-sample correlations and downward-265

biased out-of-sample correlations, even when both samples come from the same population. Our266

goal is to quantify these two biases.267

It appears to have gone unnoticed that Monte Carlo techniques can be used to estimate both upward268

and downward biases in canonical correlations. The procedure begins as outlined previously:269

random numbers drawn from a normal distribution are used to fill two matrices, X and Y, of size270

𝑇𝑋 ×𝑁 and 𝑇𝑌 ×𝑁 , respectively. By construction, X and Y are independent. Next, Y is modified271
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to include a correlation by setting the first PC of Y, denoted 𝑌1, to272

𝑌1 = 𝜌𝑋1 +
√︁
(1− 𝜌2) ∗ 𝑍, (6)

where 𝑋1 is the first PC of X, and 𝑍 is independently drawn from a standard Gaussian distribution.273

This modification ensures that the population correlation between the first PCs of X and Y is 𝜌,274

while all other PCs remain independent. CCA is then performed, and we expect at least one sample275

canonical correlation to be close to 𝜌. Having performed CCA, we obtain the canonical projection276

vectors associated with the leading canonical correlation. Applying these vectors to X and Y will277

yield time series with a correlation exactly equal to the leading sample canonical correlation. To278

validate this relation on independent data, we generate new independent matrices X′ and Y′, in279

the same manner as described above (particularly using equation (6)), but with a sample size 𝑁′
280

matching our verification data. Applying the previously computed projection vectors to X′ and Y′
281

and computing the correlation gives a realization of the possible correlation that could occur in282

independent data from the same population. This process is repeated 1,000 times for a given 𝜌 to283

determine the quantiles of both in-sample and out-of-sample canonical correlations. The procedure284

is then repeated for different values of 𝜌, allowing us to estimate the distribution of in-sample and285

out-of-sample correlations as a function of the population canonical correlation.286

An example of the distributions of in-sample and out-of-sample correlations is shown in Figure290

1. For each population correlation, the red points represent the mean leading in-sample canonical291

correlation over the Monte Carlo simulations, with error bars indicating two standard deviations.292

The black line shows the 𝑥 = 𝑦 line for reference. The fact that the red points are above the 𝑥 = 𝑦293

line illustrates the overfitting discussed earlier, with the largest upward bias occurring when the294

population correlation is small.295

The corresponding blue points represent the mean correlation when the leading in-sample canon-296

ical component is projected onto independent data, with error bars also showing two standard297

deviations. The fact that the blue points lie below the 𝑥 = 𝑦 line highlights the tendency to un-298

derestimate the population correlation in independent data. While this phenomenon may have299

been recognized by others, it does not appear to have been previously quantified. Additionally, the300

in-sample error bars (red) are smaller than the out-of-sample error bars (blue) because the sample301
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Fig. 1. Estimates of leading canonical correlations (red dots) and their corresponding out of sample correlations

(blue dots) for population correlations ranging from 0 to 0.5. These estimates are for the case when 𝑇𝑋 = 7 and

𝑇𝑌 = 6, which corresponds to the number of EOFs used for JJA.
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size for the in-sample data is larger than that for the out-of-sample data, as it was chosen to match302

the actual data length.303

The above procedure can be used to derive more comprehensive uncertainty estimates for the307

canonical correlation that incorporate out-of-sample information. To illustrate this, we use a308

specific example. In Section 4.b.4, we find that the leading canonical correlation for week 3-4309

prediction in JJA is 0.38, while the out-of-sample correlation for this mode is 0.07. Figure 2310

presents the same estimated distributions of in-sample and out-of-sample correlations as Figure 1,311

but with the leading canonical correlation for JJA (0.38, marked as the horizontal red line) and the312

out-of-sample correlation (0.07, marked as the horizontal blue line) overlaid. For this mode, 7 PCs313

were included as predictors for X, and 6 were included as predictors for Y; these values were used314

in the Monte Carlo simulations. The uncertainty of the leading canonical correlation is represented315

by the horizontal red error bar at the bottom of the figure. This was obtained by calculating the316
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Fig. 2. As in Figure 1, but additionally showing the leading canonical correlation (0.38) as the horizontal red

line. The correlation of the leading mode when projected onto an independent sample (0.07) is shown as the

horizontal blue line. The bracketed lines at the bottom are the confidence interval for each correlation.

304

305

306

standard errors of the simulated canonical correlations that overlap with 0.38, the observed leading317

canonical correlation. Similarly, the uncertainty for the out-of-sample correlation is shown by318

the horizontal blue error bar at the bottom, based on the standard errors of the simulated out-of-319

sample correlations that overlap with 0.07, the observed out-of-sample correlation. Because these320

two intervals overlap, we conclude that the in-sample and out-of-sample correlation estimates are321

consistent with each other. The range of population correlations that overlap (0.19-0.31) represents322

the interval of population coefficients that is consistent with the 95% confidence intervals of both323

the in-sample and out-of-sample results.324

The above analysis produces an unconventional uncertainty range, as it does not encompass either325

the in-sample or out-of-sample correlations individually. However, the Monte Carlo simulations326

demonstrate that any population correlation within the interval (0.19-0.31) could generate results327

consistent with both the in-sample and out-of-sample correlations derived from observations.328
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Fig. 3. Canonical correlations and 95% critical values for JJA. Circles are canonical correlations and diamonds

are the 95% critical values. Blue points indicate that the correlation is statistically significant while red indicates

that it is statistically insignificant, at the 5% level. Correlations when CCA is done at weeks 1-2 is on the left,

correlations when CCA is done at weeks 3-4 is on the right.

333

334

335

336

4. Results329

We now present the results of the CCA analysis aimed at identifying the most predictable mode330

of 2-week mean CONUS temperature during boreal summer. As a reminder, the seasonal mean331

has been removed to focus exclusively on subseasonal predictability.332

Our main finding is that we detect predictable subseasonal modes for both weeks 1-2 and weeks337

3-4. Figure 3 shows the leading JJA canonical correlations for weeks 1-2 and weeks 3-4. In this338

figure, the points are the correlations and the diamonds are the 95% critical values. Correlations339

above the critical value are statistically significant. As a visual aid, significant correlations are340

indicated in blue and insignificant correlations are indicated in red.341

We next diagnose the structure of the leading modes.342
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JJA Week 1−2 Loading Vectors Number 1

Initial
Condition Response

Weeks 1−2

−2.30 −1.38 −0.46 0.46 1.38 2.30 −2.30 −1.38 −0.46 0.46 1.38 2.30

Fig. 4. 1st leading loading vector for JJA at weeks 1-2. The left panel is the initial condition, and the right

panel is the week 1-2 response.

344

345

a. JJA Weeks 1-2: Leading Mode343

1) Loading Vectors346

The loading vectors associated with the leading mode for JJA weeks 1-2 are shown Figure 4. The347

initial condition (left panel of Figure 4) is characterized by a dipole pattern with anomalies of one348

sign concentrated along the west coast and anomalies of the opposite sign distributed throughout349

the rest of the US. At the week 1-2 response (right panel of Figure 4), the west coast anomalies350

have changed sign and propagated to eastern Canada, with most of the interior CONUS remaining351

the same sign.352

2) Relation to Known Sources of Predictability353

If a correlation becomes insignificant when a climate index is regressed out, we can conclude that358

the index that was removed Granger Causes this mode. The canonical correlations after regressing359

out various climate indices one at a time from the temperature PCs are shown in Figure 5. The360

red, orange, gold, green, and blue points show the results after removing the Nino 3.4 index, NAO,361
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Fig. 5. The statistically significant canonical correlations for JJA at weeks 1-2 after the time series of common

climate indices are removed from the 2m temperature PCs. The black points are when no signal is removed and

is the same as the week 1-2 correlations in Figure 3. The red, orange, gold, green, and blue points are when the

Nino 3.4 index, NAO, PNA, surface soil moisture, and BSISO indices are removed, respectively.

354

355

356

357

PNA, surface soil moisture, and BSISO indices, respectively. The corresponding critical values for362

5% significance are shown as diamonds. For reference, the canonical correlations of the original363

temperature PCs are shown as black points, reproduced from Figure 3.364

Except for the case of soil moisture, the leading canonical correlation remains largely unchanged365

when the other climate indices are removed. However, when the soil moisture PCs are removed366

(represented by blue points in Figure 5), the correlation of the first mode decreases, although it367

remains statistically significant. Notably, the canonical correlation with soil moisture removed is368

consistent with the second mode’s base canonical correlation (compare the leading mode’s blue369

point with the second mode’s black point, and similarly, the second mode’s blue point with the370
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third mode’s black point, and so on). This suggests that regressing out the soil moisture signal371

effectively eliminates the first mode, causing the second mode to become the new leading mode.372

To verify if the modes are indeed the same, we compare their time series. The correlation373

between the X variates of the leading mode when soil moisture is removed (blue point for the374

leading mode) and the X variates of the second mode when no signals are removed (black point375

for the second mode) is 0.62. Similarly, the correlation between the Y variates of these modes is376

0.61. Given the uncertainties, these correlations are effectively equal, indicating that the original377

first mode has been fully removed, and the second mode has shifted into its place. However, this378

analysis does not determine whether the soil moisture signal itself is a response to other phenomena379

not represented among our climate indices.380

The removal of the other signals does not change the correlation of any of the other modes. This381

means that we can conclude that the second, third, and fourth modes are not Granger caused by the382

associated climate mechanisms.383

3) Regression Maps384

The structure and evolution of each mode, as well as its relationship to other physically relevant385

variables (denoted 𝑍), will be diagnosed through lagged regression maps. Each predictable mode386

has an initial condition X and a response Y. For week 1-2 predictions, X and Y represent the387

same variable, lagged by 14 days. Therefore, a lagged regression map between 𝑋 (𝑡) and 𝑍 (𝑡 +5)388

corresponds to the same day for 𝑍 as a lagged regression map between 𝑌 (𝑡) and 𝑍 (𝑡 − 9). Since389

these two regression maps are broadly similar, only one will be presented in the analysis.390

As a general rule, before calculating the regression, 𝑍 is converted to 2-week means, and the391

local seasonal mean is removed at each grid point.392

Since Granger causality indicates that the leading mode is caused by surface soil moisture, we399

will start with regression maps of soil moisture. Lagged regression maps between soil moisture400

and leading mode variates are shown in Figure 6. By comparing Panel A with the initial condition401

loading vector (left panel in Figure 4), we can see that the soil moisture anomalies are the opposite402

sign as the loading vector. Comparing Panel D with the week 1-2 response loading vector (right403

panel of Figure 4), again the soil moisture anomalies and the loading vector are the opposite signs.404

The conclusion that the temperature anomalies and soil moisture anomalies are anti-correlated405
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JJA Week 1−2 Loading Vectors Number 1 Regression with Soil Moisture 
Significant at 0.01

A: Simultaneous with IC B: 5 Days After IC

C: 10 Days After IC D: Simultaneous with Response

−0.010 −0.006 −0.002 0.002 0.006 0.010

Fig. 6. The regression patterns between the leading mode’s variates in JJA at weeks 1-2 and surface soil

moisture, where each panel shows a regression pattern that is lagged in time. A) Soil moisture is simultaneous

with the initial condition, so 14 days prior to the week 1-2 response; B) Soil moisture is 5 days after the initial

condition, (9 days prior to the week 1-2 response); C) Soil moisture is 10 days after the initial condition, (4 days

prior to the response); D) Soil moisture is 14 days after the initial condition, (simultaneous with the week 1-2

response). The colored grid points are significant at the 0.01 level.

393

394

395

396

397

398

makes physical sense–warmer temperatures will evaporate some of the moisture, and then the406

lower moisture content means more energy will go into sensible heat than latent heat which will407

raise the temperature. This suggests that the soil moisture anomalies act to persist the temperature408

anomalies. This can be seen in the central and southern Great Plains, the southeast, and in the409
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JJA Week 1−2 Loading Vectors Number 1 Regression with Z500 
Significant at 0.01

A: Simultaneous with IC B: 5 Days After IC

C: 10 Days After IC D: Simultaneous with Response

−280 −168 −56 56 168 280

Fig. 7. As in Figure 6, but the regression maps between the leading week 1-2 JJA mode and 500mb geopotential

height.

413

414

Pacific northwest. It is in these locations that the temperature anomalies remain the same sign from410

the initial condition to the week 1-2 response (Figure 4), and it is also in these locations that the411

soil moisture anomalies have the largest amplitude at the initial condition (Panel A of Figure 6).412

To investigate the possibility that there may be an atmospheric component to this mode, the415

variates are regressed onto 500mb height. These lagged regression maps are shown in Figure 7.416

Simultaneous with the initial condition (Panel A), there is a clear wave originating from the western417

Pacific. Notably, this wave is oriented zonally. While the path of a Rossby wave typically has a418

large meridional component in addition to a zonal component, the anomalies in Figure 7 match419
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JJA Week 1−2 Loading Vectors Number 1 Regression with Precipitation 
Significant at 0.01

A: Simultaneous with IC B: 5 Days After IC

C: 10 Days After IC D: Simultaneous with Response

−3.0 −1.8 −0.6 0.6 1.8 3.0

Fig. 8. As in Figure 6, but the regression maps between the leading week 1-2 JJA mode and tropical precipitation.

that of a Rossby wave that is trapped by the climatological jet (Teng and Branstator 2019). These420

waves are usually called ”circumglobal teleconnections” (Ding and Wang 2005; Branstator 2002),421

or occasionally ”waveguide teleconnections” (Teng and Branstator 2019).422

As the mode progresses in time, the Rossby wave diminishes in amplitude and appears to shift423

to the west (Panels B-D). This suggests that there is a source of the Rossby wave in the western424

Pacific. To investigate this, the variates were regressed onto tropical precipitation. These lagged425

regression maps are shown in Figure 8. At the location where the Rossby wave appears to originate,426

there is a relatively large-scale precipitation anomaly that persists until the week 1-2 response.427
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Taken together, these results suggest that the western Pacific precipitation anomaly sets up the428

Rossby wave, trapped by the jet, which impacts the United States. As the Rossby wave shifts in429

space, the soil moisture modifies the atmospheric response, causing some temperature anomalies430

to persist.431

The large-scale precipitation anomaly in the western Pacific suggests a possible connection to432

the Boreal Summer Intraseasonal Oscillation (BSISO). However, several key differences make it433

challenging to definitively attribute this predictable mode to the BSISO. One difference is that434

the large-scale precipitation anomaly associated with this mode is farther north than is typical of435

most descriptions of the BSISO. The precipitation anomaly associated with the predictable mode436

extends from about 15N to 30N, while the BSISO typically does not extend past 20N (Kikuchi437

2021; Chen and Wang 2021). On the other hand, Lee and Wang (2016) show a BSISO extending438

up to 30N by decomposing the BSISO into Indian Ocean and Western Pacific modes. Additionally,439

the BSISO has both a positive and a negative precipitation anomaly over the Indian Ocean and440

western Pacific (although some phases are dominated by anomalies of one sign). In contrast, the441

predictable mode only has the single positive anomaly. The teleconnections associated with the442

BSISO are very similar to the Rossby wave generated by this precipitation anomaly (Moon et al.443

2013), although that is to be expected given their similar locations. One study by Kerns and Chen444

(2020) tracked individual large-scale precipitation events in the tropical Pacific. They found that445

individual MJO events do not always project cleanly onto the MJO indices. However, they also446

found that large-scale precipitation events poleward of 30N were relatively common, but did not447

fit their criteria to be defined as an MJO or BSISO event. Due to the differences between the448

precipitation patterns associated with this mode and the typical BSISO, we cannot definitively449

conclude that this mode is driven by the BSISO. However, we also cannot rule out the possibility450

that it may be related to the BSISO.451

4) Uncertainty Range of the Canonical Correlation452

The description of the out-of-sample correlation test is described in Section 3. The leading453

canonical correlation in JJA at weeks 1-2 is 0.46, and the correlation of the leading mode in454

independent data is 0.43. The results of the out of sample correlation test as applied to the leading455

week 1-2 mode in JJA is shown in Figure 9. Because the two confidence intervals overlap, we456
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Fig. 9. Estimates of leading canonical correlations (red dots) and their corresponding out of sample correlations

(blue dots) for population correlations ranging from 0 to 0.5. These estimates are for the case when 𝑇𝑋 = 5 and

𝑇𝑌 = 11, which corresponds to the number of EOFs used for JJA at week 1-2. The black line shows the 1:1 line

for reference. The leading canonical correlation for JJA at weeks 1-2 is shown as the red horizontal line. The

correlation of the leading mode when projected onto an independent sample is shown as the horizontal blue line.

The bracketed lines at the bottom are the confidence interval for each correlation.

459

460

461

462

463

464

conclude that the leading canonical correlation and out-of-sample correlation are consistent with457

a population correlation in the range 𝜌 ∈ [0.32,0.49].458
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b. JJA Weeks 3-4465

The previous section examined the predictability of temperature at weeks 1-2. However, skillful466

predictions for weeks 3-4 could potentially be even more valuable to society (White et al. 2017).467

Therefore, it is important to investigate the most predictable modes at weeks 3-4. The results of this468

analysis are summarized in the Supplemental Document. Briefly, we detect a predictable mode at469

weeks 3-4 characterized by (1) an in-sample correlation of 0.38, (2) an input-response loading pair470

that are largely the same pattern but of opposite sign, suggesting an oscillatory-type predictable471

pattern, and (3) an associated regression pattern in 500hPa height that strongly resembles the472

Rossby wave present at the initial condition of the leading week 1-2 JJA mode.473

5. CFSv2474

The previous analysis presents the predictable subseasonal modes identified by CCA in obser-475

vational data sets. The next natural question is whether dynamical forecast models capture these476

predictable subseasonal modes. To address this question, we project the leading mode of each477

season onto reforecasts of NCEP’s dynamical model CFSv2. Then, using the test discussed in478

Section 3, we assess if the lagged correlations of the leading modes from CFSv2 reforecasts are479

consistent with observations.480

a. Model Data481

1) CFSv2 Preprocessing482

The reforecasts of the NCEP CFSv2 model (Saha et al. 2014) were evaluated as to whether it483

was able to capture the subseasonal modes. The reforecasts are available daily from January 1999484

to December 2020, excluding 2016. In order to only use data that is independent of the ERA40485

data, only reforecasts from 2002 and later are included in this analysis. Each daily reforecast from486

CFSv2 is 44 days. Anomalies of the ensemble mean were calculated according to Pegion et al.487

(2019). To get the week 3-4 forecast from each day, forecast days 15-28 were averaged together.488

Likewise, week 1-2 forecasts were calculated by averaging forecast days 1-14 together. To get the489

intraseasonal component of the reforecasts, the mean of each season was removed. The data was490

interpolated onto the ERA40 grid in order to project the loading vectors.491
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The two-week mean forecasts were selected such that only non-overlapping forecasts were492

included in the calculation. For example, for boreal summer the two week means beginning on493

June 1, June 15, July 1, July 15, August 1, and August 15 were selected.494

2) Initial Condition Data495

Observed two-week mean 2m temperature from the NOAA ESRL, described in Section 2, was496

projected onto the X loading vector to obtain the X-variate. CFSv2 re-forecasts at the appropriate497

leads were projected onto the Y loading vector to obtain the Y-variate.498

b. Evaluating CFSv2 for JJA weeks 1-2499

The correlation of the prediction of the leading week 1-2 JJA mode in the CFSv2 model is500

𝜌 = 0.28. The leading canonical correlation is 𝜌 = 0.46. Figure 10 shows the canonical correlation,501

CFSv2 prediction correlation, and the Monte Carlo in-sample and out-of-sample estimates. The502

confidence intervals overlap, so we conclude that the CFSv2 reforecasts capture this mode.503

c. Evaluating CFSv2 for JJA weeks 3-4506

The correlation of the prediction of the leading week 3-4 JJA mode by the CFSv2 model507

is 𝜌 = −0.12. The leading canonical correlation is 𝜌 = 0.38. Figure 11 shows the canonical508

correlation, CFSv2 prediction correlation, and the Monte Carlo in-sample and out-of-sample509

estimates. The confidence intervals do not overlap, so we conclude that the CFSv2 reforecasts do510

not capture this mode.511
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Fig. 10. As in Figure 9, but for the leading week 1-2 mode in JJA in CFSv2 forecast data. In this case, 𝑇𝑋 = 5

and 𝑇𝑌 = 11.
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Fig. 11. As in Figure S5, but for the leading week 3-4 mode in JJA in CFSv2 forecast data. In this case, 𝑇𝑋 = 7

and 𝑇𝑌 = 6.
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6. Conclusions514

The overarching goal of this paper is to identify new sources of subseasonal predictability.515

To achieve this, we developed a novel methodology that involves removing ENSO influences by516

subtracting seasonal means from a variable, and then applying Canonical Correlation Analysis517

(CCA) to time lags of the resulting intraseasonal variable. The rationale underlying this method518

is that any source of subseasonal predictability that influences a variable should impart a temporal519

correlation over a few weeks. CCA is an ideal method for identifying such temporal correlations520

because it finds the indices at the initial and final times that maximize correlation. A major521

contribution of this work is the development of a rigorous significance test for deciding if the522

resulting canonical correlations are statistically significant, particularly when validating predictable523

modes in independent data.524

We applied this method to 2-week mean temperature over the United States and identified525

predictable modes at week 1-2 leads and week 3-4 leads, in JJA. To ascertain if these modes are526

related to known sources of subseasonal predictability, we applied a Granger Causality test and527

examined lagged regression maps of variables related to the general circulation. We concluded528

that the leading JJA modes in weeks 1-2 and 3-4 are new sources of subseasonal predictability.529

This mode is associated with a precipitation anomaly in the western Pacific that sets up a Rossby530

wave, which uses the jet as a waveguide, impacting the United States. As time progresses, the531

precipitation anomaly switches sign, which sets up a different Rossby wave. A lagged correlation532

analysis reveals that soil moisture influences the predictable mode in the later stages of its evolution.533

We suspect that soil moisture in the southern Great Plains modifies the expected atmospheric534

response by causing the temperature anomalies in the southern Great Plains to persist longer535

than it otherwise would. In our analysis, the week 3-4 response is the same as the week 1-2536

initial condition, which means that the combination of the modes may extend predictability out to537

week 5-6. Each of these mechanisms has been discussed in the literature, although the chain of538

mechanisms and their evolution in time has not been presented together before.539

One aspect of this mode that we were unable to determine is if the precipitation in the western540

Pacific is due to the Boreal Summer Intraseasonal Oscillation (BSISO). The BSISO is an oscillation541

of convection over the Indian Ocean and western tropical Pacific during the boreal summer. It542

is characterized by northward as well as eastward propagation over the western Pacific (Kikuchi543
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2021; Chen and Wang 2021). As the precipitation associated with this mode is also in the western544

Pacific, the BSISO is the natural phenomenon to compare it to. However, there are some differences545

between our mode and the BSISO. For instance, the precipitation associated with our predictable546

mode extends about 10 degrees further north than conventional BSISO indices. Furthermore, the547

BSISO is associated with a large-scale precipitation anomaly of the opposite sign, in contrast to548

our predictable mode (Section 4.a.3).549

We examined if the above predictable modes were captured by the CFSv2 dynamical forecast550

model. We conclude that it does capture the leading mode of week 1-2 predictability but not the551

leading mode of week 3-4 predictability. Our results might provide clues about how to improve552

CFSv2’s representation of subseasonal predictability. For instance, CFSv2 was unable to capture553

the leading week 3-4 JJA mode. The regression maps of this mode show that it is associated by554

anomalous precipitation in the western Pacific that sets up a Rossby wave impacting the United555

States (discussed in Section 4.b). This could mean that the CFSv2 model does not have a sufficiently556

realistic representation of western Pacific precipitation, which could be in the representation of the557

magnitude or the variability of the precipitation. Another explanation may be that the model does558

not have a sufficiently good representation of the tropical-extratropical teleconnections, either in559

setting up the Rossby wave or in its propagation.560

One limitation of using CCA to identify predictable temperature patterns is that some climate561

mechanisms may not impact the temperature during both the initial condition and the response at562

weeks 1-2 or 3-4, and yet the mechanisms themselves may be predictable that far in advance. For563

example the MJO has a relatively small direct impact on wintertime temperature over the United564

States, with only phases four through six producing statistically significant, large scale temperature565

anomalies (Zhou et al. 2012). However, it has been shown that dynamical models can accurately566

forecast the state of the MJO four weeks in advance (Pegion et al. 2019; Du et al. 2024). This567

means that while we may be able to forecast the direct impact of the MJO using dynamical models,568

CCA applied in the manner described above would not be able to capture that predictability owing569

to the weak teleconnection.570

It might come as some surprise that these new sources of predictability were found using CCA,571

which has been used to study aspects of the climate for decades. We posit that this is for three572

reasons. The first is that CCA rarely is applied to lagged temperature fields. Most studies that573
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use CCA have used it to find the temperature pattern that is most correlated with some other field,574

often SST. As a result, those studies limit themselves to the temperature response from the other575

variable. In our method, we were not limited to finding only the response from one variable. The576

second reason is that we were able to employ a relatively new criterion, MIC (DelSole and Tippett577

2021), to objectively determine the number of EOFs to use for both the initial condition and the578

response. Without MIC, prior studies have had to justify the number of EOFs used. This was often579

based on the total amount of variance explained by the EOFs and the cutoff differed from study to580

study. The third reason is that we have developed a novel significance test for the leading mode581

based on a Monte Carlo procedure and by using independent data for validation of the correlation.582

While this work has focused on subseasonal predictability, the methodology developed here is583

broadly applicable to any time series, offering new pathways for uncovering and understanding584

previously unrecognized sources of predictability.585
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