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Abstract- Shared electric micromobility has surged to a
popular model of urban transportation due to its efficiency
in short-distance trips and environmentally friendly character-
istics compared to traditional automobiles. However, managing
thousands of shared electric micromobility vehicles including
rebalancing and charging to meet users' travel demands still
has been a challenge. Existing methods generally ignore hu-
man preferences in vehicle selection and assume all nearby
vehicles have an equal chance of being selected, which is
unrealistic based on our findings. To address this problem,
we design PERCEIVE, a human preference-aware rebalancing
and charging framework for shared electric micromobility
vehicles. Specifically, we model human preferences in vehicle
selection based on vehicle usage history and current status
(e.g., energy level) and incorporate the vehicle selection model
into a robust adversarial reinforcement learning framework.
We further utilize conformal prediction to quantify human
preference uncertainty and fuse it with the reinforcement
learning framework. We evaluate our framework using two
months of real-world electric micromobility operation data in
a city. Experimental results show that our method achieves a
performance gain of at least 4.02%in the net revenue and offers
more robust performance in worst-case scenarios compared to
state-of-the-art baselines.

Index Terms-Intelligent Transportation Systems, Human
Factors and Human-in-the-Loop, Reinforcement Learning.

I. INTRODUCTION

Shared micromobility has surged to a popular model of
urban transportation. For example, shared electric scooters
and bikes are growing steadily in the United States, increas-
ing trips from 321,000 in 20!0 to 112 million in 2021 [I].
As an alternative to traditional automobiles, shared electric
micromobility allows users to travel in a more efficient and
environmentally friendly way for short-distance trips, such as
commuting from subway stations to working places [2], [3].
However, managing thousands of shared electric micromo-
bility vehicles in a city remains a challenging problem, one
of which is to rebalance and charge vehicles among different
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regions to meet spatial-temporally varying user demands [4],
[5]. In this work, we use electric scooters (e-scooters) as
an example to study the problem of jointly rebalancing and
charging shared electric micromobility vehicles.

Various rebalancing and charging methods have been
designed for shared electric micromobility vehicles [4]-[13].
They generally first set up a simulation environment based on
historical vehicle usage data, such as pick-up/drop-off loca-
tions and energy consumption of trips. In this environment, a
user randomly selects a nearby vehicle with adequate energy
for the trip when multiple vehicles are available. Then,
based on this environment, they employ either mixed integer
programming methods [5], [6], [8] or sequential decision
process-based methods such as reinforcement learning [7],
[9], [10O] for optimal rebalancing and charging strategies.

However, a key limitation of this setup is that it ignores
human preferences in vehicle selection. We conduct a study
on what features may affect human selection and show the
results in Fig. 1. We found vehicle usage frequency emerges
as a pivotal feature. This is, individuals might be more drawn
to those with less historical usage (suggesting a potential
fresher appearance). The vehicles' remaining energy is also
an important feature. Ignoring human preferences in vehicle
selection can lead to vastly different energy distributions
among different regions. We show the energy distribution
in five regions based on human preference-based selection
and random selection in Fig. 2. We divide the whole city
into equal-size grids (each is considered as a region) and
summarize vehicles' remaining energy of each region in a
boxplot. The figure shows that the vehicle energy distri-
butions are much different under human preference-aware
(HP) and random (w/o HP) vehicle selection. This could lead
to entirely different strategies for rebalancing and charging,
rendering existing approaches less effective in our context
due to human preferences.
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Fig. I: Importance of vehicle Fig. 2: Vehicle energy dis-
features to user preference tribution under two vehicle
selection strategies

To bridge the gap, we aim to design a human preference-
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aware rebalancing and charging framework for shared elec-
tric micromobi(jty vehicles. The opportunity for our work
is that the shared electric micromobi(jty system extensively
records vehicle usage data, allowing us to model and predict
users' preferences in vehicle selection. We have identified
factors such as usage frequency and remaining energy that
affect the choices of users, as shown in Fig. 1. In addition, the
probabi(jty of a vehicle being selected in history also reflects
how a vehicle will be selected in the future, suggesting
some aspects that cannot be directly observed from vehicle
usage data, such as how new a vehicle is. However, there
are two challenges. First, the human preference modeling
introduces uncertainty to vehicle scheduling (i.c., rebalancing
and charging) due to model uncertainty. It is essential to
quantify the uncertainty as it directly affects the effectiveness
and efficiency of scheduling. Second, along with human
preference uncertainty, scheduling models themselves, such
as reinforcement learning, also present uncertainty [14]-[16]
that may lead to unrobust scheduling performance in certain
scenarios. It is challenging to deal with both scheduling un-
certainty and human preference uncertainty simultaneously
because of their intricate interplay.

We design PERCEIVE, a human preference-awar
_rebalancing and fharging framework for- shared lectric
micromobility yehicles with conformal vehicle selection
prediction. First, we introduce conformal prediction [17]
to quantify human preference modeling uncertainty, result-
ing in potentially selected vehicles with predefined precise
confidence levels. Then, to incorporate human preference
modeling into a scheduling framework considering both pref-
erence modeling uncertainty and scheduling uncertainty, we
design a robust reinforcement learning framework to generate
stable rebalancing and charging strategies by maximizing
the expected reward under the worst cases. Specifically, we
borrow the idea from adversarial reinforcement learning [ 18]
and create two agents: a scheduling agent and an adversary
agent. The scheduling agent maximizes the total revenues
by generating better rebalancing and charging strategies, and
the adversary agent minimizes the revenues by making the
worst human vehicle selection. The scheduling agent and the
adversary agent are trained alternatively by playing against
each other until convergence.

In summary, the key contributions of this work are as
follows:

» We are the first to consider human preferences in vehicle
selection within the context of vehicle scheduling. We
solve the problem of human preference-aware rebal-
ancing and charging for shared electric micromobility
vehicles.

* Technically, we design a robust adversary reinforce-
ment learning framework for vehicle scheduling. The
framework incorporates conformal prediction to quan-
tify the uncertainty of human preference modeling and
introduces two agents (i.e., a scheduling agent and an
adversary agent) to learn a robust scheduling policy.

* By collaborating with a shared micromobility service
provider, we evaluate our method based on real-world

e-scooter usage data in a city. Our experiment results
show that our method achieves a performance gain of
at least 4.02% in net revenue and offers more robust
performance in worst-case scenarios compared to state-
of-the-art baselines.

II. DESIGN
A. Problem Description

The problem of rebalancing and charging shared electric
micromobility vehicles is that given the spatial-temporally
varied user demand, the real-time locations of vehicles, and
their remaining energy, we aim to decide how many vehicles
in each region should be dispatched to other regions and
how many of them should be charged, so as to meet users'
demand while considering rebalancing and charging costs.
Our goal is to maximize the total net revenue, which includes
trip revenues but excludes rebalancing and charging costs.

Problem setting and notations: We partition the whole
city into N equal-size grids as regions and regard the
beginning of each trip as a time step based on the users' trip
start time. For example, if there are T trips in a day, there
will be a total 7 time steps. The vehicle's energy is divided
into L levels, ranging from 0% to 100%. To describe the
distribution of electric vehicles and their remaining energy
spatially and temporally, we denote the number of vehicles of
energy level / in the region i at time step ¢ as £/+". To describe
the spatial-temporally varied users' demand, we denote the
number of users' trip requests from region i to region ;j with
energy consumption level / from time step ¢ to time step t7
as D;,{:1. The trip revenue of satisfied users' requests from

time;tep ¢ to time step ¢’ is defined as R//::P.

Scheduling: When making rebalanci g and charging
strategies, the operator considers the current vehicles' energy
distribution E¢ = {E;*" : Vi E N, VI E L} where N is the
number of regions and L is the number of energy levels,
and users' demand in the future 4 time steps Dtr+h =
{D!)th : Vi,j EN, VIEL}. We define rebt and chat as
the rebalancing and charging strategies at time step 7, where
rebt = {reb!«i,l: Vi,j E N,VI EL}, and chat= {chalJl:
Vi,j EN,VIEL}.

Costs: After the operator gives the rebalancing and charg-
ing strategies {rebt,chat}, the staffs drive trucks to real-
locate the vehicles and charge them by swapping batteries,
which causes rebalancing and charging costs, defined as C[
and Cf, respectively.

Objective: Our goal is to develop an optimal rebalancing
and charging algorithm to maximize the total net revenue R:

T
argmax R=J?.!.7- 2)C[(rebt) +CNchar). (1)
t

rebt,chat

B. Design Overview

We design a robust adversarial reinforcement learning
framework for the rebalancing and charging shared electric
micromobility vehicles, as shown in Fig. 3. This framework
consists of three components: a scheduling component (the
left part of Fig. 3 in green), an adversary component (the
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Fig. 3: An overview of RARL framework for rebalancing
and charging electric micromobility vehicles with conformal
vehicle selection prediction

right part of Fig. 3 in blue), and an environment component.
(1) In the scheduling component, a scheduling agent deter-
mines how to rebalance and charge vehicles at specific times
(e.g., midnight) to maximize net revenue. This agent takes
the states of all vehicles as input and generates a scheduling
policy as output. The policy is then implemented by trucks to
carry out the rebalancing and charging operations. The input
of this agent is the states of all the vehicles, and the output
is the scheduling policy. The policy is then sent to trucks
to perform rebalancing and changing. (2) In the adversary
component, when a user initiates a trip request, we first input
the state of all nearby vehicles into a conformal vehicle
selection prediction module to predict a range of vehicles
that are most likely to be selected. This range of the vehicles
is then provided to the adversary agent, which perturbs the
vehicle selection to minimize the net revenue (i.e., create
worst-case vehicle selection). (3) Both components interact
with the environment to obtain vehicle states and rewards
(including scheduling rewards and adversary rewards). These
two agents perform updates alternatively based on the cor-
responding rewards (the detailed training process is shown
in Algorithm 1). In the following Section II-C and II-
D, we first introduce how we model hwnan preferences in
vehicle selection and use conformal prediction to quantify
the uncertainty of the model. Then, we introduce the robust
adversarial reinforcement learning framework.

C. Conformal Vehicle Selection Prediction

To predict vehicle selection probabilities Y of each trip,
we conduct extensive data engineering work and conclude
the following important features, including the usage fre-
quency, historical selection probability (i.e., the ratio of the
usage frequency to the frequency of being potentially se-
lected as nearby vehicles of a trip request), the geographical
location, the remaining energy, trip distance, and the vehicle
id. We test multiple methods, including SVM [19], XGBoost
[20), and deep neural networks (DNN), and finally decide to
use the DNN given its high accuracy (detailed comparisons

in Section JII). A typical DNN does not work in our problem,
considering there may be different numbers of vehicles
nearby for each trip (i.e., varied input and output sizes).
To fix the size of the inputs and outputs of the prediction
model, we consider all the vehicles as the input, while all the
vehicles outside a specific range (e.g., 100 meters) and with
remaining energy lower than the user's energy consumption
request (we know the energy consumption based on the
operational data) are padded as zero. We further add a mask
layer before the activation function to avoid the impact of
padded zeros on backward propagation. The output of the
DNN is the selection probability of each vehicle nearby.

To quantify the uncertainty of vehicle selection prediction,
we utilize conformal prediction [17] to predict the range of
the vehicles that contain the actual selected vehicle (i.e.,
label) with a high confidence level, such as 95%, which
is called prediction set. Formally, given a set of data (i.e.,
vehicles)][))= {(Xi, Y1)} 1, we randomly divide it into a
training set ])train and a calibration set 1l))cal- All the samples
are drawn exchangeable, corresponding to the assumption
of the conformal prediction. We aim to construct a marginal
distribution-free prediction interval 1C(Xcal) E that is likely
to contain the unknown response Ycai- Therefore, given a
confidence level ¢, we can obtain:

IP'(Ycal B IC(Xcai)) i 1 - a 2

Thus, the probability that the prediction set contains the
correct label is almost exactly 1-a. We refer readers to [17]
for more detailed definitions and processes of conformal
prediction. By utilizing conformal prediction, we quantify the
uncertainty of vehicle selection prediction. The conformal
prediction results are then used in state transition and the
adversary agent's action generation in the framework later.

D. Robust Adversarial Reinforcement Leaming

Motivated by the advancement of vehicle scheduling [13]
and robust adversarial reinforcement learning [18], we model
the problem of rebalancing and charging shared electric mi-
cromobility vehicles as a Markov decision process expressed
as a tuple ({ssch,sadv,Asc\Aadv, nsc\ nadv,P,1'}).
Ssch and 5adv are the continuous states of the scheduling
agents and the adversary agent. Asch and Aadv are the
continuous sets of scheduling agents' and the adversary
agent's actions. P : ssch x Sadv x Asch x Aadv x ssch x
Sadv nsch x R,adv denotes the transition probability.
nsch and nadv are the rewards of scheduling agents and the
adversary agent. 1' is the discounted factor. The definitions
of these notations are as follows.

Agent: We assign a scheduling agent for each region,
deciding the rebalancing and charging strategies for all the
vehicles in the region, reducing the computational difficulty
compared with a single scheduling agent for the whole
system [21]. Then, we define an adversary agent for making
the worst-case actions of human vehicle selection.

State: At time step 7, the state of scheduling agent i

contains the vehicle energy distributions in the whole city
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and the predicted future users' energy consumption from
time step t to t + h, denoted as s:Ch,i = {Et, Dt,t+h}-
The state of the adversary agent at time step ¢ is defined as
sfdv,i = {Et,Dt,t+h, Ya}. Vi denotes the vehicle selection
probabilities of the trip at the time step t. The future
users' energy consumption is predicted by a pre-trained
prediction model used in [22]. Note that we do not attempt to
design a new method to predict future energy consumption,
considering it is not the focus of our work.

Action: Given the scheduling agent's state, the scheduling
agent in region i at time step ¢ decides the number of vehicles
of energy level / needed to be rebalanced from region i to

U@&arge%ilddéhete&ry?er 9f vehicles frgm th@}l} nepdsdaie

a,c,, — {reb',J, cha'

scheduling agents give periodic strategles, we deﬁne H as
the time steps of the scheduling interval. In other words, all
the scheduling agents do rebalancing and charging every H
time steps. To disturb the vehicle selection of each trip, the
adversary agent selects the vehicle that can be the worst-
case selection based on its state at time step # denoted as
v, _ {VIZ'}.

Reward: All the scheduling agents collaboratively max-
imize the net revenue consisting of the trip revenue from
satisfied trips, the cost of charging vehicles, and the cost for
truck rebalancing:

N N L
hoijl
« = < F

i=1 j=1 1=1

_sghii_Ririp, M

where R;, #;/n is the total trip revenue from time step ¢ to
t + H a and f3 are the weights. M is the total traveling
mileage for truck rebalancing, which is provided by a truck-
routing optimization method [22]. For the adversary agent,
its reward is the revenue from unsatisfied users' demands,
defined as rfdv = R, %t

Transition probability function: It denotes the probabil-
ity of state St = {s:C\ sfdv} transferred to the next state
st+1 given the action ai = {a:Clafdv}.

Discounted factor: Discounted factor v represents the
extent that agents pay attention to the future reward compared
with the immediate reward, 'YE [O,1). If 'v = 0, it indicates
that the agent only cares about the immediate reward and
learns the actions that cause the immediate reward.

Given the above setting, the objective of all the
scheduling agents is to collaboratively maximize expected

cumulatiye scheduhng reward, which 1is denoted as
G, _ o Yt—lN Rsch( ggh.i, tsch geh _ 1,
The Q- Value of Jomt state s ch and action a:.ch
9
under pOIII(}]\frr?{ 12 1},oted ﬁr (s: c a Chgvch]
=07 Lo S Lat k7 110, 8 .
The objective of the adversary agent is to

maximize the expected cumulative adversary reward:

Gt [I::1 "Yt-1Radv(sfdv' ardv)isfdv s].
The Q-vaiue of state sfdv and action afdv under
policy rrg is denoted by: ons(sfdv, afdv)

Ef T-onkRadv(sady, 1> g4y )\ 170, 894v,,,0d]
To optimize both the scheduling agents and the adversary

agent, we use an alternating procedure to achieve Nash
Equilibrium [18]. First, we collect the scheduling agents' tra-
jectories { sfch,afch,rfch} in the environment and improve
their policies while keeping the adversary agent's policy
constant Then, we collect the adversary agent's trajectories
{ sfdv" afdv' rrdv} in the environment and improve its policy
while keeping the scheduling agents' policies constant. We
repeat this procedure until convergence. The Algorithm 1
outlines our method in detail.

Algorithm 1 RARL for rebalancing and charging of shared
electric micromobility vehicles

Inlgrlp, g{ggh She pbhcel}e%(:lgfs

scheduling agents rro = {rr(,} (Vi EN)

Initialize: Learnable parameters in adversary and schedul-
ing agents' policies; Distribution of initial state p
for n =1 to Niter do

Sample s; = p
for j =1 to N° do
Collectin.o. Nsycgh ) tral-ectories {sscch asych rsychy
Updating the scheduling agents' policies rro
end for
for j = 1 to Nadv do
Collectin.°. Nayd,y, tral-ectories {sadv aasdv raydv}
Updating the adversary agent's policy 1o
end for

end for
return rro, rro

ect1 n robab1l1t1ets of each

versary agen
1rQ

II. EVALUATION

A. Evaluation Metlwdology

Experiment setting: We conduct our experiments based
on a two-month real-world shared e-scooter usage data [22],
which contains vehicle IDs, vehicle locations, vehicle re-
maining energy, event types (e.g., trip start or trip end),
and other relevant information. We divide the dataset into
two parts: one month's usage data is used for training,
and another month's data is used for testing. The vehicle's
remaining energy is divided into 10 levels, ranging from O to
100%. Each region has a size of 800 meters x 800 meters,
and the scheduling interval is 24 hours. The trip revenue is
$0.5 per minute based on the operator. The truck traveling
cost per kilometer is set at $2.422 based on the gas prices
and truck fuel consumption (we ignore the labor fee to make
it simple). The charging cost is valued at $0.69 per e-scooter
b S EAFO IS P GRS o e
lines with PyTorch 1.9.1, Python-mip 1.14.2, gym 0.21.0 in
Python 3.7 environment and train it with 32 GB memory
and GeForce RTX 3080 Ti GPU. A stochastic gradient
descent optimizer is applied and the learning rate is le-4.
The confidence level of conformal prediction is 0.9.

Baselines: We evaluate the performance of our model with
the following five baselines:
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TABLE I: Performance comparison of different approaches on the real-world data

Method Trip Revenue ($) Rebalancing Costs ($)

Net Revenue ($)

Daily Average Revenue (§)  Average Satisfaction Rate (%)

No Rebalance & Charging
State-of-The-Practice
Record [91
MADDPG [211
RECOMMEND [221

592.59 (+5.96)
5960.57 (+144.54)
6059.23 (£146.41)
5941.5 (< 133.06)
7015.63 (+114.87)

1526.2 (222.51)
913.88 (+21.55)
1376.47 (= 19.88)
486.60 (+16.91)

592.59 (+5.96) 83.3 (£0.85) 7.8 (20.1)
443437 (+ 134.79) 851.51 (£20.65) 81.25 (+1.81)
514535 (£133.42) 865.6 (£20.92) 81.6 (+1.94)
4565.02 (£127.98) 848.79 (£19.01) 79 (£1.79)
6529.03 (+101.93) 1002.23 (+16.41) 94.5 (+1.54)

PERCEIVE 7291.57 (+92.73) 584.39 (+ 16.76)

6707.19 (+85.46)

1041.65 (+13.25) 96.84 (+ 1.24)

* No Rebalance & Charging (NRC): There are no
scheduling actions in the vehicle-sharing system.

+ State-of-The-Practice (SoTP): It represents the real-
world scheduling policy based on a static charging
threshold used by our platform collaboration.

* MADDPG [21]: It is a standard multi-agent RL frame-
work to achieve cooperative or competitive relationships
of multiple agents, which is commonly used in robotics
and automation [23]-[25].

* Record [9]: It is a state-of-the-art electric carsharing
rebalancing and charging algorithm based on the defi-
nition of the dynamic deadline for scheduling.

 RECOMMEND [22]: It is a state-of-the-art shared
electric micromobility vehicle rebalancing and charging
algorithm considering energy-informed demand.

Variants of our model: We conduct experiments consid-

ering the significance of different variants of our model:

* Our model without conformal prediction (W/O CP):
To verify the importance of conformal prediction on
vehicle scheduling, we replace it with direct vehicle
selection probability.

* Our model without the adversary agent (W/O AA):
To demonstrate the effectiveness of the adversary agent,
we remove it and operate the shared electric micromo-
bility system operation based on the conformal vehicle
selection prediction result of each trip.

Metrics: For vehicle selection prediction, we utilize ACC,
Recall, F-score, and Precision as metrics, which are widely
used in prediction tasks [26]. To evaluate the performance
of scheduling models, we use the monetary score (i.c., net
revenue, trip revenue, and daily average revenue) and average
satisfaction rate (i.e., the ratio of the number of satisfied trips
to the number of total trips) as metrics. To evaluate the model
robustness, we utilize the trip revenue and revenue decreasing
rate (i.e., the decreasing rate of trip revenue under worst-
case vehicle selections to that under human preference-aware
vehicle selections) as metrics.

B. Overall Performance

Table I shows the overall performance of different meth-
ods. Our model achieves better trip revenue by at least
4.02% compared with state-of-the-art methods. The possible
reason is that after the alternating optimization procedure
with the adversary agent, the scheduling agents learn to
generate robust rebalancing and charging strategies to han-
dle the worst-case scenarios. Consequently, the scheduling
agents' policy can satisfy more users' demands compared

with other baselines. Table I also shows that PERCEIVE
achieves more net revenue than other baselines even though
its scheduling costs are higher than RECOMMEND. The
possible reason is that the scheduling agents' policies always
try to generate robust rebalancing and charging strategies
to avoid low performance in the worst cases, while those
worst-case situations seldom happen in the real-world shared
micromobility system operation. As a result, it may cause
unnecessary rebalancing and charging costs compared with
RECOMMEND, whose goal is only to maximize the trip
revenue while minimizing the scheduling costs. Besides the
above metrics, the performance of PERCEIVE on satisfac-
tion rate in Table I further supports our results.

C. The performance of conformal vehicle selection predic-
tion

1) The performance of vehicle selection prediction: In our
work, we use Deep Neural Network (DNN) to predict the
vehicle selection probabilities based on the real-time vehicle
information in the city. We conduct comparison experiments
with other methods to evaluate the model performance,
including XGBoost [20] and Support Vector Machine (SVM)
[19]. Table II shows that the DNN-based method performs
better than the other two methods.

TABLE II: Performance of different vehicle selection pre-
diction models

Methods ACC Recall F-score Precision

XGBoost 0.742 0.692 0.551 0.685
SVM 0.653 0.628 0.499 0.619
DNN 0.855 0.731 0.583 0.726

2) The performance of conformal prediction: To evaluate
the performance of conformal prediction, we use correctness
coverage (the rate of covering the correct label) and the
size of the prediction set (the preciseness of the conformal
procedure) as metrics. The result is that the correctness
coverage of the prediction set is 1.0, and the average size
of the prediction set is 10.9. Therefore, conformal prediction
can ensure that the prediction sets cover the 100% correct
labels of vehicle selections in the test set, and the average
number of potentially selected vehicles for each trip is 10.9.

D. Ablation Study

1) The effectiveness of conformal prediction: To demon-
strate the effectiveness of conformal prediction, we conduct
comparison experiments under different demand densities
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compared to our model's variant W/O CP. Fig. 4 shows
that even though the net revenue of two baselines is nearly
the same when the user demand is low, the performance of
PERCEfVE outperforms its variant W/0 CP significantly by
10.94% when the user demand is high. The possible reason
is that without conformal prediction, the model is trained
toward a situation where some vehicles can still be selected
even if they are very unlikely to be selected based on human
preferences. In the real world, this situation rarely happens,
which in turn decreases the model performance when we test
on real-world data. This discrepancy is magnified when the
demand is high.

2) The significance of the adversary agent: To prove the
effectiveness of the adversary agent, we conduct comparison
experiments with our model's variant W/O AA. Fig. 5 shows
that optimized with the adversary agent, the scheduling
agents learn to generate better rebalancing and charging
strategies. As a result, it satisfies more users' demands with
higher revenue compared to its variant W/0 AA.

14000 9000

12000
al

E3S] W/O CP
7] PERCEIVE

J;SSJ] W/OAA
c::-::J] PERCEIVE

§:8000

Fig. 4: The effect of confor-
mal prediction

Fig. 5: The significance of
the adversary agent

E. Robustness Analysis

To reflect the model robustness, we use four-week trips
in the test set and conduct the comparison experiments with
RECOMMEND under the worst-case vehicle selections that
the adversary agent causes. Table M shows that the trip
revenue of both methods decreases under the situation of
worst-case vehicle selections caused by the adversary agent.
However, PERCEIVE achieves a higher trip revenue and
a lower revenue decline rate than RECOMMEND. This
demonstrates that PERCENE can be more robust to different
scenarios by introducing the adversary agent and human
preference quantification.

TABLE III: The performance under the worst-case situation

Melhod Trip Revenue ($) Total Cost (§ Revenue decline rate (%)

RECOMMEND 6623.02 (+109.49) 565.09 (+17.03) 5.6
PERCEIVE 7037.15 (£90.61)  660.46 (+ 18.54) 3.1

IV. RELATED WORK

1) Vehicle Scheduling: Provided with real-time vehicle
geographical locations and vehicle usage information, there
is a substantial amount of work that focuses on addressing the
imbalance problem between vehicle supply and user demand
for various vehicle modes, such as (I) for-hire vehicles,
including taxis [27]-[30], and e-taxis [5], [31]; (2) shared
vehicles, including bikes [32]-[37], and e-scooters [13], [22],
and e-cars [7],[8], [10]. The existing methods can be roughly

categorized into two types from methodological perspectives:
(1) Some researchers regard vehicle scheduling as a mixed
integer programming problem with various constraints based
on the spatial-temporal contexts and assumptions [5], [8],
[33), [37]. (2) Other researchers model vehicle schedul-
ing as a Markov Decision Processing and assign agents
to give optimal rebalancing and charging (or rebalancing
only) strategies through continuous interaction with vehicle
operation environments [9], [30]-[32], [38]. However, the
mentioned works do not consider human preferences for
vehicle selection, leading to less realistic vehicle operation
environments. Different from their works, we predict it as
vehicle selection probability and incorporate it into an RL--
based model.

2) Robust Reinforcement Leaming: It aims to learn a
policy that is robust to model errors in simulation and
mismatch between training and testing scenarios [18]. The
recent advances can be divided into two perspectives: (I)
some researchers utilize constrained reinforcement learning
and try to make agents maximize the worst-case expected
reward while satisfying certain constraints to address the
uncertainties in their models [14), [39], [40]. (2) Other
researchers utilize adversarial reinforcement learning with a
general framework of creating an adversary agent to play
with a protagonist agent to maximize/minimize their rewards
in the environment [18], [41], [42]. The adversary agent's
reward is from the failure of the protagonist agent and its
goal is to maximize such reward. As a result, the protagonist
agent can be robust in different scenarios, trained with the
adversary agent. Our work follows this framework and make
adaptions considering the following difference. Compared to
a free space of agent's actions in other works, the space
of the adversary agent's actions (e.g., vehicle selection) is
constrainted by human preferences. As a result, the action
is conditioned on the human preference model. In our work,
we use Conformal Prediction [43] to quantify the uncertainty
of vehicle selection prediction and constrain the action space
based on the uncertainty quantification. Then, we incorporate
the constrained action space in state transition. Therefore, the
adversary agent can make the worst-case action within the
space of human-like vehicle selections.

V. CONCLUSION

In this work, we focus on the problem of human
preference-aware rebalancing and charging for shared elec-
tric micromobility vehicles. We design a robust adversar-
ial reinforcement learning (RARL) framework called PER-
CEIVE, which incorporates human preference in vehicle
selections in the form of vehicle selection probabilities
and contains an adversary agent to train the scheduling
agent againt worst-case vehicle selection. To quantify the
uncertainty of the vehicle selection prediction, we utilize
conformal prediction and incorporate it into our RARL-based
framework. The evaluation results show that PERCEIVE
achieves an improvement of at least 4.02% in net revenue
and more stable performance in the situation of worst-case
vehicle selection compared with state-of-the-art methods.
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