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Abstract- Shared electric micromobility has surged to a 
popular model of urban transportation due to its efficiency 
in short-distance trips and environmentally friendly character 
istics compared to traditional automobiles. However, managing 
thousands of shared electric micromobility vehicles including 
rebalancing and charging to meet users' travel demands still 
has been a challenge. Existing methods generally ignore hu 
man preferences in vehicle selection and assume all nearby 
vehicles have an equal chance of being selected, which is 
unrealistic based on our findings. To address this problem, 
we design PERCEIVE, a human preference-aware rebalancing 
and charging framework for shared electric micromobility 
vehicles. Specifically, we model human preferences in vehicle 
selection based on vehicle usage history and current status 
(e.g., energy level) and incorporate the vehicle selection model 
into a robust adversarial reinforcement learning framework. 
We further utilize conformal prediction to quantify human 
preference uncertainty and fuse it with the reinforcement 
learning framework. We evaluate our framework using two 
months of real-world electric micromobility operation data in 
a city. Experimental results show that our method achieves a 
performance gain of at least 4.02%in the net revenue and offers 
more robust performance in worst-case scenarios compared to 
state-of-the-art baselines. 

Index Terms-Intelligent Transportation Systems, Human 
Factors and Human-in-the-Loop, Reinforcement Learning. 

 
I. INTRODUCTION 

Shared micromobility has surged to a popular model of 
urban transportation. For example, shared electric scooters 
and bikes are growing steadily in the United States, increas­ 
ing trips from 321,000 in 20!0 to 112 million in 2021 [I]. 
As an alternative to traditional automobiles, shared electric 
micromobility allows users to travel in a more efficient and 
environmentally friendly way for short-distance trips, such as 
commuting from subway stations to working places [2], [3]. 
However, managing thousands of shared electric micromo­ 
bility vehicles in a city remains a challenging problem, one 
of which is to rebalance and charge vehicles among different 
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regions to meet spatial-temporally varying user demands [4], 
[5]. In this work, we use electric scooters (e-scooters) as 
an example to study the problem of jointly rebalancing and 
charging shared electric micromobility vehicles. 

Various rebalancing and charging methods have been 
designed for shared electric micromobility vehicles [4]-[13]. 
They generally first set up a simulation environment based on 
historical vehicle usage data, such as pick-up/drop-off loca­ 
tions and energy consumption of trips. In this environment, a 
user randomly selects a nearby vehicle with adequate energy 
for the trip when multiple vehicles are available. Then, 
based on this environment, they employ either mixed integer 
programming methods [5], [6], [8] or sequential decision 
process-based methods such as reinforcement learning [7], 
[9], [IO] for optimal rebalancing and charging strategies. 

However, a key limitation of this setup is that it ignores 
human preferences in vehicle selection. We conduct a study 
on what features may affect human selection and show the 
results in Fig. 1. We found vehicle usage frequency emerges 
as a pivotal feature. This is, individuals might be more drawn 
to those with less historical usage (suggesting a potential 
fresher appearance). The vehicles' remaining energy is also 
an important feature. Ignoring human preferences in vehicle 
selection can lead to vastly different energy distributions 
among different regions. We show the energy distribution 
in five regions based on human preference-based selection 
and random selection in Fig. 2. We divide the whole city 
into equal-size grids (each is considered as a region) and 
summarize vehicles' remaining energy of each region in a 
boxplot. The figure shows that the vehicle energy distri­ 
butions are much different under human preference-aware 
(HP) and random (w/o HP) vehicle selection. This could lead 
to entirely different strategies for rebalancing and charging, 
rendering existing approaches less effective in our context 
due to human preferences. 
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aware rebalancing and charging framework for shared elec­ 
tric micromobi(jty vehicles. The opportunity for our work 
is that the shared electric micromobi(jty system extensively 
records vehicle usage data, allowing us to model and predict 
users' preferences in vehicle selection. We have identified 
factors such as usage frequency and remaining energy that 
affect the choices of users, as shown in Fig. I. In addition, the 
probabi(jty of a vehicle being selected in history also reflects 
how a vehicle will be selected in the future, suggesting 
some aspects that cannot be directly observed from vehicle 
usage data, such as how new a vehicle is. However, there 
are two challenges. First, the human preference modeling 
introduces uncertainty to vehicle scheduling (i.e., rebalancing 
and charging) due to model uncertainty. It is essential to 
quantify the uncertainty as it directly affects the effectiveness 
and efficiency of scheduling. Second, along with human 
preference uncertainty, scheduling models themselves, such 
as reinforcement learning, also present uncertainty [14]-[16] 
that may lead to unrobust scheduling performance in certain 
scenarios. It is challenging to deal with both scheduling un­ 
certainty and human preference uncertainty simultaneously 
because of their intricate interplay. 

We  design  PERCEIVE,  a  human  preference-awar 
_rebalancing and fharging framework for- shared lectric 
micromobility vehicles with conformal vehicle selection 
prediction. First, we introduce conformal prediction [17] 
to quantify human preference modeling uncertainty, result­ 
ing in potentially selected vehicles with predefined precise 
confidence levels. Then, to incorporate human preference 
modeling into a scheduling framework considering both pref­ 
erence modeling uncertainty and scheduling uncertainty, we 
design a robust reinforcement learning framework to generate 
stable rebalancing and charging strategies by maximizing 
the expected reward under the worst cases. Specifically, we 
borrow the idea from adversarial reinforcement learning [18] 
and create two agents: a scheduling agent and an adversary 
agent. The scheduling agent maximizes the total revenues 
by generating better rebalancing and charging strategies, and 
the adversary agent minimizes the revenues by making the 
worst human vehicle selection. The scheduling agent and the 
adversary agent are trained alternatively by playing against 
each other until convergence. 

In summary, the key contributions of this work are as 
follows: 

• We are the first to consider human preferences in vehicle 
selection within the context of vehicle scheduling. We 
solve the problem of human preference-aware rebal­ 
ancing and charging for shared electric micromobility 
vehicles. 

• Technically, we design a robust adversary reinforce­ 
ment learning framework for vehicle scheduling. The 
framework incorporates conformal prediction to quan­ 
tify the uncertainty of human preference modeling and 
introduces two agents (i.e., a scheduling agent and an 
adversary agent) to learn a robust scheduling policy. 

• By collaborating with a shared micromobility service 
provider, we evaluate our method based on real-world 

e-scooter usage data in a city. Our experiment results 
show that our method achieves a performance gain of 
at least 4.02% in net revenue and offers more robust 
performance in worst-case scenarios compared to state­ 
of-the-art baselines. 

II. DESIGN 

A. Problem Description 
The problem of rebalancing and charging shared electric 

micromobility vehicles is that given the spatial-temporally 
varied user demand, the real-time locations of vehicles, and 
their remaining energy, we aim to decide how many vehicles 
in each region should be dispatched to other regions and 
how many of them should be charged, so as to meet users' 
demand while considering rebalancing and charging costs. 
Our goal is to maximize the total net revenue, which includes 
trip revenues but excludes rebalancing and charging costs. 

Problem setting and notations: We partition the whole 
city into N equal-size grids as regions and regard the 
beginning of each trip as a time step based on the users' trip 
start time. For example, if there are T trips in a day, there 
will be a total T time steps. The vehicle's energy is divided 
into L levels, ranging from 0% to 100%. To describe the 
distribution of electric vehicles and their remaining energy 
spatially and temporally, we denote the number of vehicles of 
energy level l in the region i at time step t as E!•1. To describe 
the spatial-temporally varied users' demand, we denote the 
number of users' trip requests from region i to region j with 
energy consumption level l from time step t to time step t1 
as D;,{:1. The trip revenue of satisfied users' requests from 
time;tep t to time step t' is defined as R!/t:P. 

Scheduling: When making rebalanci g and charging 
strategies, the operator considers the current vehicles' energy 
distribution Et = {E;•1 : Vi E N, VI E L} where N is the 
number of regions and L is the number of energy levels, 
and users' demand in the future h time steps Dt,t+h = 
{D!}th : Vi,j EN, VIEL}. We define rebt and chat as 
the rebalancing and charging strategies at time step t, where 
rebt = {reb!•i,l: Vi,j E N,Vl EL}, and chat= {cha!J,l: 
Vi,j EN, VIEL}. 

Costs: After the operator gives the rebalancing and charg­ 
ing strategies {rebt,chat}, the staffs drive trucks to real­ 
locate the vehicles and charge them by swapping batteries, 
which causes rebalancing and charging costs, defined as C[ 
and Cf, respectively. 

Objective: Our goal is to develop an optimal rebalancing 
and charging algorithm to maximize the total net revenue R: 

T 

argmax R = J?.! ,7 - 2)C[(rebt) +CNchat)). (1) 
rebt,chat t 

B. Design Overview 
We design a robust adversarial reinforcement learning 

framework for the rebalancing and charging shared electric 
micromobility vehicles, as shown in Fig. 3. This framework 
consists of three components: a scheduling component (the 
left part of Fig. 3 in green), an adversary component (the 
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Fig. 3: An overview of RARL framework for rebalancing 
and charging electric micromobility vehicles with conformal 
vehicle selection prediction 

 
 

right part of Fig. 3 in blue), and an environment component. 
(1) In the scheduling component, a scheduling agent deter­ 
mines how to rebalance and charge vehicles at specific times 
(e.g., midnight) to maximize net revenue. This agent takes 
the states of all vehicles as input and generates a scheduling 
policy as output. The policy is then implemented by trucks to 
carry out the rebalancing and charging operations. The input 
of this agent is the states of all the vehicles, and the output 
is the scheduling policy. The policy is then sent to trucks 
to perform rebalancing and changing. (2) In the adversary 
component, when a user initiates a trip request, we first input 
the state of all nearby vehicles into a conformal vehicle 
selection prediction module to predict a range of vehicles 
that are most likely to be selected. This range of the vehicles 
is then provided to the adversary agent, which perturbs the 
vehicle selection to minimize the net revenue (i.e., create 
worst-case vehicle selection). (3) Both components interact 
with the environment to obtain vehicle states and rewards 
(including scheduling rewards and adversary rewards). These 
two agents perform updates alternatively based on the cor­ 
responding rewards (the detailed training process is shown 
in Algorithm 1). In the following Section II-C and  II­ 
D, we first introduce how we model hwnan preferences in 
vehicle selection and use conformal prediction to quantify 
the uncertainty of the model. Then, we introduce the robust 
adversarial reinforcement learning framework. 

 
C. Conformal Vehicle Selection Prediction 

To predict vehicle selection probabilities Y of each trip, 
we conduct extensive data engineering work and conclude 
the following important features, including the usage fre­ 
quency, historical selection probability (i.e., the ratio of the 
usage frequency to the frequency of being potentially se­ 
lected as nearby vehicles of a trip request), the geographical 
location, the remaining energy, trip distance, and the vehicle 
id. We test multiple methods, including SVM [19], XGBoost 
[20), and deep neural networks (DNN), and finally decide to 
use the DNN given its high accuracy (detailed comparisons 

in Section JII). A typical DNN does not work in our problem, 
considering there may be different numbers of vehicles 
nearby for each trip (i.e., varied input and output sizes). 
To fix the size of the inputs and outputs of the prediction 
model, we consider all the vehicles as the input, while all the 
vehicles outside a specific range (e.g., 100 meters) and with 
remaining energy lower than the user's energy consumption 
request (we know the energy consumption based on the 
operational data) are padded as zero. We further add a mask 
layer before the activation function to avoid the impact of 
padded zeros on backward propagation. The output of the 
DNN is the selection probability of each vehicle nearby. 

To quantify the uncertainty of vehicle selection prediction, 
we utilize conformal prediction [17] to predict the range of 
the vehicles that contain the actual selected vehicle (i.e., 
label) with a high confidence level, such as 95%, which 
is called prediction set. Formally, given a set of data (i.e., 
vehicles)][))= {(Xi, Yi)} 1, we randomly divide it into a 
training set ][))train and a calibration set ll))cal· All the samples 
are drawn exchangeable, corresponding to the assumption 
of the conformal prediction. We aim to construct a marginal 
distribution-free prediction interval IC(Xca1) E  that is likely 
to contain the unknown response Ycai- Therefore, given a 
confidence level a, we can obtain: 

 
lP'(Yca1 E IC(Xcai)) ::::: 1 - a. (2) 

Thus, the probability that the prediction set contains the 
correct label is almost exactly 1-a. We refer readers to [17] 
for more detailed definitions and processes of conformal 
prediction. By utilizing conformal prediction, we quantify the 
uncertainty of vehicle selection prediction. The conformal 
prediction results are then used in state transition and the 
adversary agent's action generation in the framework later. 

D. Robust Adversarial Reinforcement Leaming 

Motivated by the advancement of vehicle scheduling [13] 
and robust adversarial reinforcement learning [18], we model 
the problem of rebalancing and charging shared electric mi­ 
cromobility vehicles as a Markov decision process expressed 
as a tuple ({ssch,sadv,Asc\Aadv, nsc\ nadv,P,1'}). 
5sch and 5adv are the continuous states of the scheduling 
agents and the adversary agent. Asch and Aadv are the 
continuous sets of scheduling agents' and the adversary 
agent's actions. P : ssch x 5adv x Asch x Aadv x ssch x 
5adv   nsch x R,adv denotes the transition probability. 
nsch and nadv are the rewards of scheduling agents and the 
adversary agent. 1' is the discounted factor. The definitions 
of these notations are as follows. 

Agent: We assign a scheduling agent for each region, 
deciding the rebalancing and charging strategies for all the 
vehicles in the region, reducing the computational difficulty 
compared with a single scheduling agent for the whole 
system [21]. Then, we define an adversary agent for making 
the worst-case actions of human vehicle selection. 

State: At time step t, the state of scheduling agent i 
contains the vehicle energy distributions in the whole city 
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and the predicted future users' energy consumption from 
time step t to t + h, denoted as s:Ch,i = {Et, Dt,t+h} 
The state of the adversary agent at time step t is defined as 
sfdv,i = {Et,Dt,t+h, ½}. Vi denotes the vehicle selection 
probabilities of the trip at the time step t. The future 
users' energy consumption is predicted by a pre-trained 
prediction model used in [22]. Note that we do not attempt to 
design a new method to predict future energy consumption, 
considering it is not the focus of our work. 

agent, we use an alternating procedure to achieve Nash 
Equilibrium [18]. First, we collect the scheduling agents' tra­ 
jectories { sfch,afch,rfch} in the environment and improve 
their policies while keeping the adversary agent's policy 
constant Then, we collect the adversary agent's trajectories 
{ sfdv' afdv' rrdv} in the environment and improve its policy 
while keeping the scheduling agents' policies constant. We 
repeat this procedure until convergence. The Algorithm 1 
outlines our method in detail. 

Action: Given the scheduling agent's state, the scheduling   
agent in region i at time step t decides the number of vehicles 
of energy level l needed to be rebalanced from region i to 
region j and the number of vehicles from them needed to 

Algorithm 1 RARL for rebalancing and charging of shared 
electric micromobility vehicles 

 

Input: Environment; Vehicle selection probabilities of each be charged denoted as 8 h. = • ·1 •1.l To make trip; Stochastic policies of the adversary agent and 
' at c ,, {reb't,J, ' cha't' ' }• 1r0 

scheduling agents give periodic strategies, we define H as 
the time steps of the scheduling interval. In other words, all 
the scheduling agents do rebalancing and charging every H 
time steps. To disturb the vehicle selection of each trip, the 
adversary agent selects the vehicle that can be the worst­ 
case selection based on its state at time step t, denoted as 
atadv,i -_ {Vt:'}• 

Reward: All the scheduling agents collaboratively max­ 
imize the net revenue consisting of the trip revenue from 
satisfied trips, the cost of charging vehicles, and the cost for 
truck rebalancing: 

N N L 

scheduling agents rro = { rr0,} (\/ i E N) 
Initialize: Learnable parameters in adversary and schedul­ 

ing agents' policies; Distribution of initial state p 
for n = 1 to Niter do 

Sample s1 ~ p 
for j = 1 to N 8 do 

Collectin:o:, NstrcahJ_traJ·ectories {sstch, ast ch, rst ch} 
Updating the scheduling agents' policies rro 

end for 
for j = 1 to Nadv do 

Collectin:°:, NatrdavJ_t•raJ·ectories {sat dv, aat dv, rat dv} 
Updating the adversary agent's policy 1r0 

_sch,i _ Rtrip _ .  h i,j,l _ M rt - 't,t+H a  c at  ' 
i=l j=l l=l 

(3) end for 
end for 
return rro, rro 

where R;, t;!n is the total trip revenue from time step t to 
t + H. a and f3 are the weights. M is the total traveling 
mileage for truck rebalancing, which is provided by a truck­ 
routing optimization method [22]. For the adversary agent, 
its reward is the revenue from unsatisfied users' demands, 
defined as rfdv = R!,_0st: 

Transition probability function: It denotes the probabil­ 
ity of state St = {s:C\ sfdv} transferred to the next state 
st+1 given the action ai = {a:C\ afdv}. 

Discounted factor: Discounted factor 'Y represents the 
extent that agents pay attention to the future reward compared 
with the immediate reward, 'YE [O,1). If 'Y = 0, it indicates 
that the agent only cares about the immediate reward and 
learns the actions that cause the immediate reward. 

Given the above setting, the objective of all the 
scheduling agents is to collaboratively maximize expected 
cumulative  scheduling  reward,  which  is  denoted  as 

t _ 
L.,t=l 'Y L.,i=l

Rsch( sch,i'at sch,i)I sch  _ ] • 
The  Q-value  of  joint  state  s:ch  and  action  a:ch 
under policy rro  is denoted  by: Q,r9(s:c\afch) 
E oo k N Rsch(8sch,i sch,i )I 8 sch sch] 

 
 

 
III. EVALUATION 

A. Evaluation Metlwdology 

Experiment setting: We conduct our experiments based 
on a two-month real-world shared e-scooter usage data [22], 
which contains vehicle IDs, vehicle locations, vehicle re­ 
maining energy, event types (e.g., trip start or trip end), 
and other relevant information. We divide the dataset into 
two parts: one month's usage data is used for training, 
and another month's data is used for testing. The vehicle's 
remaining energy is divided into 10 levels, ranging from O to 
100%. Each region has a size of 800 meters x 800 meters, 
and the scheduling interval is 24 hours. The trip revenue is 
$0.5 per minute based on the operator. The truck traveling 
cost per kilometer is set at $2.422 based on the gas prices 
and truck fuel consumption (we ignore the labor fee to make 
it simple). The charging cost is valued at $0.69 per e-scooter 
based on the electricity price and e-scooter battery volume. Implementation: We implement our method and base­ 

IL..,k=O'Y L.,i=l t+k+1,at+k+l 1f0, t ,at • 
The objective of the adversary agent is to 
maximize the expected cumulative adversary reward: 
Gt [I::1 'Yt-1 Radv(sfdv' ardv)lsfdv s]. 
The Q-vaiue of state sfdv and action afdv under 
policy  rr8  is  denoted  by:  Q1r& (sfdv, afdv) 

lines with PyTorch 1.9.1, Python-mip l.l4.2, gym 0.21.0 in 
Python 3.7 environment and train it with 32 GB memory 
and GeForce RTX 3080 Ti GPU. A stochastic gradient 
descent optimizer is applied and the learning rate is le-4. 
The confidence level of conformal prediction is 0.9. 

EIrL.=.,k=O kRadv(8adv adv )I 8adv adv] Baselines: We evaluate the performance of our model with 
To optimize both the scheduling agents and the adversary the following five baselines: 

G 
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TABLE I: Performance comparison of different approaches on the real-world data 
 

 Method Trip Revenue ($) Rebalancing Costs ($) Net Revenue ($) Daily Average Revenue ($) Average Satisfaction Rate (%)  

No Rebalance & Charging 592.59 (±5.96)  592.59 (±5.96) 83.3 (±0.85) 7.8 (±0.1)  
State-of-The-Practice 5960.57 (±144.54) 1526.2 (±22.51) 4434.37 (± 134.79) 851.51 (±20.65) 81.25 (±1.81)  

Record [91 6059.23 (±146.41) 913.88 (±21.55) 5145.35 (±133.42) 865.6 (±20.92) 81.6 (±1.94)  

MADDPG [211 5941.5 (± 133.06) 1376.47 (± 19.88) 4565.02 (±127.98) 848.79 (± 19.01) 79 (±1.79)  

RECOMMEND [221 7015.63 (±114.87) 486.60 (±16.91) 6529.03 (±101.93) 1002.23 (± 16.41) 94.5 (±1.54)  

 PERCEIVE 7291.57 (±92.73) 584.39 (± 16.76) 6707.19 (±85.46) 1041.65 (±13.25) 96.84 (± 1.24)  

 
• No Rebalance & Charging (NRC): There are no 

scheduling actions in the vehicle-sharing system. 
• State-of-The-Practice (SoTP): It represents the real­ 

world scheduling policy based on a static charging 
threshold used by our platform collaboration. 

• MADDPG [21]: It is a standard multi-agent RL frame­ 
work to achieve cooperative or competitive relationships 
of multiple agents, which is commonly used in robotics 
and automation [23]-[25]. 

• Record [9]: It is a state-of-the-art electric carsharing 
rebalancing and charging algorithm based on the defi­ 
nition of the dynamic deadline for scheduling. 

• RECOMMEND [22]: It is a state-of-the-art shared 
electric micromobility vehicle rebalancing and charging 
algorithm considering energy-informed demand. 

Variants of our model: We conduct experiments consid­ 
ering the significance of different variants of our model: 

• Our model without conformal prediction (W/O CP): 
To verify the importance of conformal prediction on 
vehicle scheduling, we replace it with direct vehicle 
selection probability. 

• Our model without the adversary agent (W/O AA): 
To demonstrate the effectiveness of the adversary agent, 
we remove it and operate the shared electric micromo­ 
bility system operation based on the conformal vehicle 
selection prediction result of each trip. 

Metrics: For vehicle selection prediction, we utilize ACC, 
Recall, F-score, and Precision as metrics, which are widely 

with other baselines. Table I also shows that PERCEIVE 
achieves more net revenue than other baselines even though 
its scheduling costs are higher than RECOMMEND. The 
possible reason is that the scheduling agents' policies always 
try to generate robust rebalancing and charging strategies 
to avoid low performance in the worst cases, while those 
worst-case situations seldom happen in the real-world shared 
micromobility system operation. As a result, it may cause 
unnecessary rebalancing and charging costs compared with 
RECOMMEND, whose goal is only to maximize the trip 
revenue while minimizing the scheduling costs. Besides the 
above metrics, the performance of PERCEIVE on satisfac­ 
tion rate in Table I further supports our results. 

C. The performance of conformal vehicle selection predic 
tion 

I) The performance of vehicle selection prediction: In our 
work, we use Deep Neural Network (DNN) to predict the 
vehicle selection probabilities based on the real-time vehicle 
information in the city. We conduct comparison experiments 
with other methods to evaluate the model performance, 
including XGBoost [20] and Support Vector Machine (SVM) 
[19]. Table II shows that the DNN-based method performs 
better than the other two methods. 

TABLE II: Performance of different vehicle selection pre­ 
diction models 

 

Methods ACC Recall F-score Precision 

 

revenue, trip revenue, and daily average revenue) and average 
satisfaction rate (i.e., the ratio of the number of satisfied trips 

DNN 0.855 0.731 0.583 0.726 

to the number of total trips) as metrics. To evaluate the model 
robustness, we utilize the trip revenue and revenue decreasing 
rate (i.e., the decreasing rate of trip revenue under worst­ 
case vehicle selections to that under human preference-aware 
vehicle selections) as metrics. 

B. Overall Performance 
Table I shows the overall performance of different meth­ 

ods. Our model achieves better trip revenue by at least 
4.02% compared with state-of-the-art methods. The possible 
reason is that after the alternating optimization procedure 
with the adversary agent, the scheduling agents learn to 
generate robust rebalancing and charging strategies to han­ 
dle the worst-case scenarios. Consequently, the scheduling 
agents' policy can satisfy more users' demands compared 

2) The performance of conformal prediction: To evaluate 
the performance of conformal prediction, we use correctness 
coverage (the rate of covering the correct label) and the 
size of the prediction set (the preciseness of the conformal 
procedure) as metrics. The result is that the correctness 
coverage of the prediction set is 1.0, and the average size 
of the prediction set is 10.9. Therefore, conformal prediction 
can ensure that the prediction sets cover the 100% correct 
labels of vehicle selections in the test set, and the average 
number of potentially selected vehicles for each trip is I0.9. 

D. Ablation Study 
I) The effectiveness of conformal prediction: To demon­ 

strate the effectiveness of conformal prediction, we conduct 
comparison experiments under different demand densities 

used in prediction tasks [26]. To evaluate the performance XGBoost 0.742 0.692 0.551 0.685 
of scheduling models, we use the monetary score (i.e., net SVM 0.653 0.628 0.499 0.619 
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compared to our model's variant W/O CP. Fig. 4 shows 
that even though the net revenue of two baselines is nearly 
the same when the user demand is low, the performance of 
PERCEfVE outperforms its variant W/0 CP significantly by 
10.94% when the user demand is high. The possible reason 
is that without conformal prediction, the model is trained 
toward a situation where some vehicles can still be selected 
even if they are very unlikely to be selected based on human 
preferences. In the real world, this situation rarely happens, 
which in turn decreases the model performance when we test 
on real-world data. This discrepancy is magnified when the 
demand is high. 

2) The significance of the adversary agent: To prove the 
effectiveness of the adversary agent, we conduct comparison 
experiments with our model's variant W/O AA. Fig. 5 shows 
that optimized with the adversary agent, the scheduling 
agents learn to generate better rebalancing and charging 
strategies. As a result, it satisfies more users' demands with 
higher revenue compared to its variant W/0 AA. 

categorized into two types from methodological perspectives: 
(1) Some researchers regard vehicle scheduling as a mixed 
integer programming problem with various constraints based 
on the spatial-temporal contexts and assumptions [5], [8], 
[33), [37]. (2) Other researchers model vehicle schedul­ 
ing as a Markov Decision Processing and assign agents 
to give optimal rebalancing and charging (or rebalancing 
only) strategies through continuous interaction with vehicle 
operation environments [9], [30]-[32], [38]. However, the 
mentioned works do not consider human preferences for 
vehicle selection, leading to less realistic vehicle operation 
environments. Different from their works, we predict it as 
vehicle selection probability and incorporate it into an RL-­ 
based model. 

2) Robust Reinforcement Leaming: It aims to learn a 
policy that is robust to model errors in simulation and 
mismatch between training and testing scenarios [18]. The 
recent advances can be divided into two perspectives: (I) 
some researchers utilize constrained reinforcement learning 
and try to make agents maximize the worst-case expected 

14000 E3S] W/O CP 

!2000 t:::z] PERCEIVE 
::l 

9000 
 

§;8000 

J;SSJ W/OAA 
c::-::J PERCEIVE 

reward while satisfying certain constraints to address the 
uncertainties in their models [14), [39], [40]. (2) Other 
researchers utilize adversarial reinforcement learning with a 
general framework of creating an adversary agent to play 
with a protagonist agent to maximize/minimize their rewards 
in the environment [18], [41], [42]. The adversary agent's 

 
Fig. 4: The effect of confor­ 
mal prediction 

E. Robustness Analysis 

SOOOTrip revenue Net revenue 
 

Fig. 5: The significance of 
the adversary agent 

reward is from the failure of the protagonist agent and its 
goal is to maximize such reward. As a result, the protagonist 
agent can be robust in different scenarios, trained with the 
adversary agent. Our work follows this framework and make 
adaptions considering the following difference. Compared to 

To reflect the model robustness, we use four-week trips 
in the test set and conduct the comparison experiments with 
RECOMMEND under the worst-case vehicle selections that 
the adversary agent causes. Table m shows that the trip 
revenue of both methods decreases under the situation of 
worst-case vehicle selections caused by the adversary agent. 
However, PERCEIVE achieves a higher trip revenue and 
a lower revenue decline rate than RECOMMEND. This 
demonstrates that PERCENE can be more robust to different 
scenarios by introducing the adversary agent and human 
preference quantification. 

TABLE III: The performance under the worst-case situation 
Melhod Trip Revenue ($)  Total Cost ($) Revenue decline rate (%) 

RECOMMEND 6623.02 (±109.49) 565.09 (±17.03) 5.6 
PERCEIVE 7037.15 (±90.61)  660.46 (± 18.54) 3.1 

IV. RELATED WORK 
I) Vehicle Scheduling: Provided with real-time vehicle 

geographical locations and vehicle usage information, there 
is a substantial amount of work that focuses on addressing the 
imbalance problem between vehicle supply and user demand 
for various vehicle modes, such as (I) for-hire vehicles, 
including taxis [27]-[30], and e-taxis [5], [31]; (2) shared 
vehicles, including bikes [32]-[37], and e-scooters [13], [22], 
and e-cars [7], [8], [10]. The existing methods can be roughly 

a free space of agent's actions in other works, the space 
of the adversary agent's actions (e.g., vehicle selection) is 
constrainted by human preferences. As a result, the action 
is conditioned on the human preference model. In our work, 
we use Conformal Prediction [43] to quantify the uncertainty 
of vehicle selection prediction and constrain the action space 
based on the uncertainty quantification. Then, we incorporate 
the constrained action space in state transition. Therefore, the 
adversary agent can make the worst-case action within the 
space of human-like vehicle selections. 

V. CONCLUSION 
In this work, we focus on the problem of human 

preference-aware rebalancing and charging for shared elec­ 
tric micromobility vehicles. We design a robust adversar­ 
ial reinforcement learning (RARL) framework called PER­ 
CEIVE, which incorporates human preference in vehicle 
selections in the form of vehicle selection probabilities 
and contains an adversary agent to train the scheduling 
agent againt worst-case vehicle selection. To quantify the 
uncertainty of the vehicle selection prediction, we utilize 
conformal prediction and incorporate it into our RARL-based 
framework. The evaluation results show that PERCEIVE 
achieves an improvement of at least 4.02% in net revenue 
and more stable performance in the situation of worst-case 
vehicle selection compared with state-of-the-art methods. 
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