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Abstract 

DNA nanotechnology is a rapidly developing field that uses DNA as a building material for 

nanoscale structures. Key to the field’s development has been the ability to accurately describe 

the behavior of DNA nanostructures using simulations and other modeling techniques. In this 

review, we present various aspects of prediction and control in DNA nanotechnology, including 

the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum 

mechanics, and other prediction methods. We also address the current uses of artificial 

intelligence and machine learning in DNA nanotechnology. We discuss how experiments and 

modeling are synergistically combined to provide control over device behavior, allowing scientists 

to design molecular structures and dynamic devices with confidence that they will function as 

intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks 

sufficient prediction ability and suggest possible solutions to these weak areas. 

 

Keywords: DNA nanotechnology, DNA origami, simulations, molecular dynamics, Artificial 

Intelligence, machine learning, statistical mechanics, kinetic modeling 
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Introduction. DNA nanotechnology1 is a field that uses the canonical base-pairing rules of 

DNA to rationally program its self-assembly into nanoscale structures. Over the past 40 years of 

the field’s development, DNA nanotechnology has enabled scientists to make advancements in 

diagnostics,2 therapeutics,3 metrology,4 computation,5 photonics,6 and other applications.7 DNA 

nanotechnology’s best-known design paradigm, DNA origami,8 is emerging as a highly versatile 

tool for creating elaborate devices for investigating nanoscale and microscale phenomena, which 

are leading to applications that would not have been foreseen even a decade ago.  

Key to many of these developments has been an increasing capability of prediction and 

control, which fall largely into the domain of modeling. Every technology which finds its way into 

long-term use has relied upon the ability to predict behavior given a set of inputs and thus control 

system behavior by optimizing those inputs. DNA nanotechnology is no different, and scientists 

can now use it purely as a tool for investigations that have little to do with the technology itself. 

This has been enabled largely by the advent of modeling techniques which can reliably predict 

the outcomes of correct DNA structure folding, e.g., oxDNA;9, 10 availability of various biochemical-

biophysical tools for characterizing DNA structure and properties;11 and our understanding of 

fundamental processes like toehold-mediated strand displacement,12 change in form of DNA,13-15 

etc. As time goes on and DNA nanotechnology begins to be relied upon for commercial 

applications in potentially high-cost industries such as healthcare,16, 17 the value of quantitative 

understanding of DNA nanotechnology will surely increase. However, the field currently lacks a 

comprehensive description of the available modeling paradigms and opportunities to improve our 

ability to predict experimental outcomes. In this review, we will describe the various modeling 

techniques used in the field of DNA nanotechnology and how they are used to predict device 

behavior, which ultimately affords control over DNA nanotechnology. We will also identify  
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Figure 1: Length and time scales of features and processes in DNA nanotechnology and the length and 
time scales practically accessible by different modeling techniques, including quantum mechanics 
calculations (“QM”), all-atom molecular dynamics simulations (“AA”), coarse-grained simulations (“CG”), 
and mesoscopic modeling (“MESO”). Note that the shape representations for each dynamic process type 
are not precise but generally capture their range. 
 

underutilized modeling techniques as well as areas where modeling is currently insufficient and 

therefore hinders the progress of DNA nanotechnology. 

The span of length and time scales relevant to DNA nanotechnology is enormous. At the 

smallest scale, bond vibrations occur on a timescale of femtoseconds. Base-pair fluctuations 

occur on a timescale of nanoseconds and length scale of Angstroms. Hybridization of tens of 

nucleotides can take milliseconds for individual hybridization events18 on partially hybridized 

strands and seconds to minutes for separated strands to hybridize in bulk solution at physically 

relevant concentrations.19 The self-assembly of DNA structures thousands of nucleotides in size 

takes seconds to thousands of seconds and spans tens to hundreds of nanometers,20 and 

hierarchical assembly and larger-scale organization of gigadalton-scale DNA assemblies can take 

thousands to tens of thousands of seconds and span from hundreds of nanometers to microns.21-

23 To further complicate matters, some components of DNA nanotechnology behave rigidly where 



 4 

they can be modeled as continuum bodies,24 while others exhibit significant thermally driven 

stochasticity25, 26 which is best described by statistical mechanics.  

Unsurprisingly, there is not a single modeling technique that can capture the full span of 

these behaviors, and some compromise must be made between detail / resolution and 

time / length scale when conducting simulations. In this review, we will categorize modeling 

techniques by resolution into quantum mechanics, all-atom, coarse-grained, mesoscopic, and 

continuum resolution models and describe the utility and limitations of each. We will also describe 

the different simulation techniques available for each of these models, including explicit-solvent 

molecular dynamics, Brownian dynamics, rigid-body dynamics, finite element analysis, statistical 

mechanics theory, kinetic modeling, and machine learning to determine experimental or 

simulation observables; we will also describe existing techniques which span multiple resolution 

or simulation paradigms. A diagram of where some of these modeling techniques fit into DNA 

nanotechnology’s span of length and time scales can be found in Figure 1. We will describe how 

simulations and experiments are compared to refine models and improve predictive power. 

Finally, we will describe grand challenges in the field and propose some solutions to those 

challenges. 

 

Resolutions of Modeling and Simulation Techniques. 
 

Quantum Mechanics (QM). In QM simulations, the Schrödinger equation is approximately solved 

for the time-independent many-electron case to obtain the electronic distributions of all species in 

the system. Density Functional Theory27 (DFT) is the most common technique used for this 

purpose. DFT replaces the many body wavefunctions Ψ(𝐫!	, 𝐫#	, … , 𝐫$	) of a system, where 𝐫%	 

denotes the Cartesian coordinates of individual bodies, with a single spatial electronic density 

𝑛(𝐫) which is notably a function of a single set of Cartesian coordinates; the many other properties 

of the system such as potentials and energy gradients may then be expressed as functionals of 
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𝑛(𝐫). Interaction forces computed based using this method can also be propagated in time and 

used to simulate system dynamics in a method known as ab-initio molecular dynamics 

simulations.28 

The above formalism contains all the nuance of multibody effects, non-spherical 

interactions, chemical reactivity, and electron transport, so in theory it should accurately 

reproduce the structural and dynamic behavior of DNA nanodevices. However, the schemes 

employed to calculate these electronic structures are extremely computationally expensive, so 

the use of QM in direct simulation of DNA origami devices has been mostly limited to the study of 

very specific aspects, such as electron transfer in single-and double-stranded DNA,29-32 the 

formation of G-quadruplexes,33 the impact of polarization effects on ionic binding to DNA 

quadruplexes,34 and QM studies of basic DNA features like hydrogen bonding,35 base stacking,36 

and ionic binding in canonically-bound DNA.37 A less apparent yet more pervasive way that QM 

simulations have impacted DNA nanotechnology is through their role in parameterizing classical 

force fields of DNA, ions, and water molecules commonly used in all-atom molecular dynamics 

(AAMD) simulations.38 Interestingly, the advent of quantum computing may eventually make it 

possible to rapidly compute electronic structure and conduct quantum mechanics-based 

simulations at significantly lower cost, which could open the doors for new modeling paradigms.39 

 

All-Atom Molecular Dynamics (AAMD) Simulations. In atomistic models, the electronic 

degrees of freedom, explicitly treated through QM simulations, are implicitly treated by means of 

semi-empirical potential energy functions representing the “effective” interatomic interactions 

between the individual atoms of a molecular system. By propagating the classical Newton’s 

equations of motion for every atom found in a molecular system of interest, the dynamics of the 

system can be simulated in physical time. The simplified treatment of interatomic interactions in 

AAMD simulations allows access to orders of magnitude longer time scales than is possible with 

QM simulations, although the accuracy of the results obtained is highly dependent on the quality 
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of the imposed interatomic interactions (i.e., the implemented force field). Atomistic models have 

been utilized to study biological systems for almost 50 years,40 and the first atomistic simulations 

of nucleic acid molecules were reported in the early 1980s by Levitt41  and Tidor et al.42 In these 

simulations, canonical B-form DNA duplexes of under 20 base pairs were simulated for tens of 

picoseconds with an implicit treatment of the solvent, leading to highly distorted and unreasonable 

conformations. Since that time, major advances in algorithms and computing hardware have 

drastically expanded the accuracy, sizes, and simulation times accessible with atomistic 

accuracy, offering fundamental insights into the structure and function of both nucleic acids and 

proteins. 

The 1990s saw rapid development in the atomistic modeling of biological systems, as 

computing power allowed for the inclusion of explicit solvent in AAMD simulations.43 Different 

force fields such as AMBER44 and CHARMM45, 46 were first developed during this decade, 

capturing the conformational dynamics of B-form DNA duplexes over longer time scales.47, 48 

However, the time step for numerical integration is still limited to the order of femtoseconds by 

the extremely fast vibrational frequency of bonds and angles involving hydrogen atoms.49 Hence, 

a limitation of AAMD simulations is that trillions of time steps must be integrated to capture many 

phenomena of biological interest that occur over milliseconds,50 a number that challenges the 

capabilities of even the most advanced massively parallel supercomputers (i.e., Anton).51 

In DNA nanotechnology, AAMD can be used for producing atomically-precise relaxed 

structures for comparison to experimental characterization techniques like cryo-electron 

microscopy (cryo-EM);52 for more detailed mechanistic understanding of the conformations of 

critical components in larger DNA assemblies; and for quantifying interactions of DNA 

nanostructures with proteins.53 Figure 2 presents several notable studies which make use of 

atomistic modeling and demonstrates a variety of applications of AAMD toward prediction and 

control in DNA-based systems. The first atomistic simulations of a DNA origami nanostructure 

were performed by Yoo and Aksimentiev in 2013.54 By simulating millions of atoms including ions  



 7 

 
Figure 2: Applications of all-atom molecular dynamics simulations to prediction and control in DNA 
nanotechnology. The simulations were used for prediction of: (a) base pair and base pair step properties, 
(b) conformational dynamics of an 18 DNA helix bundle, (c) DNA-protein interactions, (d) cholesterol-
mediated stabilization of a DNA nanostructure within a lipid bilayer, and (e) conformation of a DNA 
nanostructure for comparison to cryo-EM reconstruction. (a) reproduced with permission from ref 55. 
Copyright 2009 Oxford University Press. (b) reproduced with permission from ref 54. Copyright 2013 
National Academy of Science. (c) reproduced with permission from ref 56 . Copyright 2021 Oxford University 
Press. (d) reproduced with permission from ref 57. Copyright 2018 Springer Nature. (e) reproduced with 
permission from ref. 58. Copyright 2012 National Academy of Science.  
 

and water, DNA origami nanostructures approximately 50 nanometers long were simulated for 

over 100 nanoseconds, revealing significant departure of the simulated nanostructures from their 

idealized conformations. Explicit treatment of the solvent allows for detailed studies on the effect 

of the environment in the stability and local conformation of DNA origami nanostructures,52, 59-63 

while also allowing for the characterization of the ionic conductivity of DNA origami constructs 

such as nanopores.57, 64-68 Critically, some AAMD force fields can reasonably capture differences 

in interactions between DNA and monovalent ions like sodium vs. divalent ions like magnesium,69 

a feature that is not present in coarser modeling techniques but can be very important to DNA 

nanostructure function. For example, phenomena such as magnesium-mediated DNA form 
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change may be captured with AAMD simulations70 but would not be captured with an implicit 

solvent model which does not account for ionic size, correlation effects, and coordination. Finally, 

non-canonical DNA motifs which might not be captured using coarse-grained models can often 

be captured with AAMD.71 Overall, AAMD is generally not used for simulating entire DNA origami 

devices. The computational cost of atomistic simulations often restricts their use to studying small 

DNA origami constructs (such as Seeman J1 sequences72, 73), to subsections of DNA devices 

(where the rest of the DNA origami is fixed60, 74, 75), and/or to very short times.76  

Current force fields have shown great agreement with multiple experimental observations 

of DNA structure and dynamics, including sequence-dependent conformations,77-80 

deformability,81, 82 ionic conductivity,83-85 spectroscopic features,86-88 and DNA-surface 

interactions.89, 90 Force field refinement and creation will remain a process in constant evolution 

for as long as computer power continues improving and as the ever-growing access to longer 

time scales exposes the inaccuracies of existing force fields. We can thus expect additional uses 

of AAMD simulations to arise with the improvement of these models.  

 

Coarse-Grained Simulations. AAMD has two primary limitations when applied to simulations: 

hydrogen bonds have very fast vibrations, and so simulations conducted with timesteps beyond 

~2 femtoseconds will encounter numerical instability and fail; and there may be many atoms in 

the system, resulting in expensive force calculations and a large amount of computation time for 

each increment of physical time being simulated. Coarse-grained representations and their 

corresponding coarse-grained molecular dynamics (CGMD) simulations attempt to circumvent 

both of these issues by changing the representation of molecules to one that is coarser than an 

AA representation. Coarse-grained modeling has been covered exhaustively in the past,91 but we 

will provide a general overview here.  

In this approach, groups of atoms are each considered as a single representative particle. 

This serves to remove fast vibrational modes from the system, which allows much larger timesteps 
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to be used, and also reduces the quantity of particles in the system, which reduces the 

computational cost of force calculations at each timestep. In addition, the many degrees of 

freedom arising from solvent molecules are removed by replacing the explicit solvent from AAMD 

with a simple implicit solvent representation. There are a few approaches to achieving such 

coarse graining. Some “top-down” schemes attempt to reproduce experimentally characterized 

mechanical properties (e.g., bending and torsional persistence length and pitch of DNA) in 

addition to thermodynamic properties (e.g., melting temperatures) through effective interaction 

potentials between coarse-grained particles.10, 92 Other coarse graining techniques may begin 

with a reference AAMD simulation and attempt to match its equilibrium behaviors, which generally 

include distance and angle distributions between points in the AA model mapped to the CG 

particles. These “bottom-up” methods (readers are referred to multiple excellent reviews93, 94 on 

this topic) include iterative Boltzmann inversion (IBI),95, 96 force matching,97 relative entropy 

minimization,98 and others. Machine learning approaches have also been used for bottom-up 

parametrization.99  

There have been a few different coarse-grained DNA models developed over the past 

decade, including Martini100 and oxDNA,101 among others.102, 103 The top-down parameterized 

oxDNA model has proven to be the most reliable at reproducing the behavior of large DNA 

nanostructures, and top-down models have generally provided better overall accuracy than 

bottom-up parameterizations. This is likely because top-down approaches focus on capturing 

specific characteristics of DNA, e.g., propeller twist, major and minor groove spacing, and 

persistence length. All of these characteristics are directly and intuitively related to the equilibrated 

structure, conformations, and other characteristics of DNA nanostructures that scientists desire 

to predict with simulations. On the other hand, bottom-up parameterization schemes often have 

a broad set of solutions, and many resulting potentials may be unphysical. For example, DNA can 

form a variety of structures, but an AA simulation used for parameterization may only capture 

DNA as a duplex. Bottom-up parameterization based on such simulations would thus not account  
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Figure 3: Coarse-grained modeling of DNA nanostructures. (a) Principal component analysis of a large 
DNA origami hinge. (b) direct simulation of DNA nanostructure self-assembly. (c) Use of coarse-grained 
modeling as a predictor of the equilibrium shape of a nanopincer. (d) Characterization of a nanorotor made 
of DNA. (a) reproduced with permission from ref 104. Copyright 2017 American Chemical Society. (b) 
reproduced with permission from ref 105. Copyright 2016 American Chemical Society. (c) reproduced with 
permission from ref 106 . Copyright 2021 Springer Nature. (d) reproduced with permission from ref 107. 
Copyright 2022 Elsevier. 
 

for the myriad other relevant DNA motifs such as Holliday junctions that are fundamental to DNA 

nanotechnology. Even if AA simulations used for parameterization did include whole DNA 

nanostructures with all possible motifs, bottom-up schemes with simple descriptions of potentials 

are not typically designed to handle the interaction complexity of DNA; therefore, the resulting 

model would be unlikely to correctly capture transitions or behaviors of other structures, or even 

the structure on which the parametrization was based. To summarize, top-down coarse-graining 
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has provided the most accurate coarse-grained models because it focuses on directly reproducing 

features that are relevant to experimental observables.  

 Coarse graining’s primary tradeoff is the resulting loss of detail compared to AA models 

– the particles are less well resolved, and the potentials have been fitted as an approximation to 

the interactions of many atoms, so they are not perfect and typically replace an anisotropic set of 

interactions which may be functionally important with a spherical or ellipsoidal approximation. In 

addition, solvent-specific effects such as the aforementioned ionic effects are lost. However, the 

smallest modes of motion of AAMD simulations are typically not very important in the context of 

DNA nanotechnology, and many properties of interest can be reproduced using CG models. 

oxDNA has played a vital role in probing the equilibrium conformations of structures, stability 

verification of designs of large DNA nanostructures produced using common design packages,108-

115 structural characteristics of archetypal DNA origami structures,116 conformations of ssDNA 

brushes on DNA origamis,117 basic motion and reconfiguration of dynamic devices,26, 104, 118-121 

and DNA hybridization-based phenomena such as toehold-mediated strand displacement 

(TMSD).92, 122-124 The self-assembly of DNA nanostructures has even been directly simulated (Fig. 

3b).105 Besides use in self-assembly, all of these examples used CG based simulations to 

iteratively modify DNA nanostructure designs and ultimately control experimental outcomes 

without having to repeat experiments. It is further worth noting that this has become a somewhat 

standard practice that is not often reported in literature; most DNA origami designs that have been 

fabricated for use in research were first simulated using coarse-grained molecular dynamics and 

were often modified based upon results from these simulations.  

Sometimes, instead of using MD simulations, Monte Carlo (MC) simulations125 can be 

used to sample the configurational space. This can be advantageous because this technique may 

offer larger physical jumps between sampled configurations resulting in more efficient sampling. 

MC simulations perform a sequence of perturbations of the particle configuration in a stochastic 

manner that is not associated with time integration and then accept or reject those moves based 
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on the incurred energy change ∆E, typically according to the Metropolis acceptance criterion 

𝑃&'' = min(1, exp(−∆𝐸/𝑘(𝑇	)) . This procedure enables thermodynamically valid sampling such 

that the average of an observable in the simulation corresponds to the true ensemble average of 

that observable, which is ideally the expected value of that observable in an experiment. For 

dense systems like DNA origami, MC move types which move a single particle tend to be 

inefficient. However, carefully constructed “cluster” move types which perturb groups of particles 

together may be drastically more efficient than MD. More complicated implementations of MC like 

virtual move Monte Carlo (VMMC) enable these more sophisticated move types to be used101 and 

have been implemented in the oxDNA simulation package. Figure 3 presents a few representative 

examples where CG simulations have played a role in prediction and nanostructure design.  

 

Mesoscopic Models. Along the same vein but perhaps deserving its own discussion, 

mesoscopic modeling (meso serving to describe an intermediate scale between molecular scale 

and macroscale systems) is an even coarser way to represent DNA structures. Generally, CG 

modeling groups a maximum of several atoms per representative particle and intends to use 

clusters of particles to mimic the behavior of monomers or small molecules; we can draw a 

distinction here for mesoscopic models, which further coarsen the representation of these 

systems to the point where the molecular detail is not well defined.  

Typically, representative particle size is on the order of a few nanometers or larger and 

many mesoscopic models are bead-chain models. At this scale, the molecular detail of the system 

is not of concern and more emphasis is placed on reproducing properties which take place over 

larger length scales, e.g., persistence length, end to end distance distributions, general shape of 

nanostructures, etc. This can be useful for capturing very coarse behaviors of dynamic 

nanostructures like the opening and closing of hinges when several devices need to be 

considered simultaneously. This kind of simulation would be quite expensive to perform using 

finer models like oxDNA but can be very efficiently performed using coarser representations. With 
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such coarse models, the relaxation timecales of the particles often become shorter than the 

simulation timestep so that the highly efficient overdamped Langevin dynamics (Brownian 

dynamics) simulations can be used to describe device motion. Mesoscopic models are also 

generally good candidates for implementation into lattice models.126  

While mesoscopic models have been used for studying various DNA-based systems such 

as chromatin,127-133 DNA renaturation,134  DNA motion in microfluidic and nanofluidic systems,135, 

136 and viral DNA packaging,137 they are generally underutilized in DNA nanotechnology. So far, 

mesoscopic models have been used in the beginning stages of multiscale models for modeling 

DNA nanostructures,138 and patchy mesoscopic representations of DNA building blocks have 

been used to elucidate the nucleated nature of DNA Brick self-assembly 139, 140 and the self-

assembly of DNA tetrahedra into cubic diamond crystals.141  

 

Statistical Mechanics Models.  Molecular simulation techniques are not generally capable of 

studying kinetic phenomena such as the folding of large DNA origami or the supramolecular 

assembly of larger structures from DNA origami tiles. Accessing the long timescales involved in 

these processes requires more efficient computational techniques and analytical theories based 

on statistical mechanics.142 Statistical mechanics uses the statistical behavior of molecular 

systems (e.g., the Boltzmann relation at constant temperature) to compute the long-timescale or 

bulk behavior of the system of interest. The ability to analyze systems using statistical mechanics 

comes from the observation that molecular microstates are Boltzmann distributed, 𝑃) ∝

exp (−𝛽𝐸)). Here 𝜈 is a system microstate,	𝐸) is its energy, and 𝛽 ≡ 1 𝑘(𝑇⁄ , where 𝑘( is the 

Boltzmann constant and 𝑇 is the system temperature. The partition function 𝑄 describes the sum 

of Boltzmann factors of all possible states in the system, or 𝑄 = ∑ 𝑒*+,!)  in the case of a constant 

𝑇, constant number of particles, and constant volume (NVT) ensemble. The expectation value of 

any collective variable can thus be expressed as 〈𝑋〉 = ∑ 𝑋)𝑃)) = ∑ 𝑋)𝑒*+,!/𝑄) . Statistical 
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mechanics-based models developed for DNA origami applications to this date have generally 

addressed one of three objectives: prediction of the conformational dynamics and actuation 

behavior of dynamic DNA origami nanostructures, characterization of the dynamics of systems 

involving strand displacement reactions, and prediction of the kinetics and thermodynamics of 

assembly processes. Besides the general role of statistical mechanics in MD and MC simulations 

and in CG model development,143 most existing methods have focused on fitting and predicting 

the behavior of simple dynamic DNA origami devices like hinges.24 These systems usually 

incorporate short single stranded molecules in each arm, referred to as “overhangs”. The binding 

and unbinding of these overhangs, driven by actuation methods such as changes in salt 

concentration or TMSD, drives conformational changes between system states. Hybridization 

affinities are additionally controlled by tuning the length, sequence, and location of these 

strands.120 The thermodynamic properties of the hinges are then fully described by hinge and 

overhang dynamics, whose effects can be decoupled. Marras et al.26 and Crocker et al.142 used 

partition functions to characterize the free energy associated with ion-mediated and temperature-

mediated actuation of DNA origami nano-hinges, respectively. These models have shown great 

agreement with experiments, suggesting notable control over the behavior of dynamic DNA 

origami nanodevices. However, their applications are limited to a narrow range of devices; 

theories and models characterizing the long-time behavior of dynamic DNA nanostructures are 

few and rare. 

 

Kinetic Modeling. Many analysis techniques used in DNA computing and molecular 

programming, such as chemical reaction networks and automata-theoretic models, have diffused 

into structural and dynamic DNA nanotechnology, inspiring diverse mechanisms for actuation, 

communication, and programmability while providing fundamental insights into mechanistic 

processes such as those involving assembly. DNA origami platforms have been used to study 

the dynamic behavior of DNA strand displacement (DSD) systems, ensuring the (reaction-limited) 
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spatial locality typical of other computing models.144-146 While TMSD is often used for actuation,12, 

24, 147 in DSD systems, these reactions are used to execute signal processing and control 

instructions146, 148 such as logic gates ,144 fork and join gates,149 catalytic gates,150  neural network 

computation,151 and oscillators.152  Integration of DNA and RNA enzyme strategies has expanded 

the design toolbox of these nucleic acid circuits,153-155 allowing for the design of feedback control 

mechanisms,156 predator-prey dynamics,157 and transcriptional oscillators,158 among other circuit 

implementations.  

The system size that can be solved analytically148 is limited and has long since been 

exceeded by the complexity of experimentally implemented circuits. Modeling techniques thus 

play an important role in determining the state space of DSD systems,148 estimating signal 

propagation times,159, 160 and verifying if the observed behavior of a system corresponds to the 

behavior predicted from design.148 Two modeling approaches specifically stand out by virtue of 

their simplicity: reaction-diffusion equations and Brownian dynamics.161 The kinetics of a DSD 

system can be modeled as a continuous time Markov process through the state space of all 

possible conformations,159 which can be characterized either by means of mathematical 

treatments or stochastic simulations (i.e., Monte Carlo Gillespie algorithms). For simple DSD 

systems based strictly in strand displacement reactions, the different conformations of a system 

are defined by the state of the strands, and strand displacement reactions occur with an effective 

rate related to diffusion, hybridization-denaturation rates (typically modeled using specialized 

software such as Multistrand159), and the physical constraints of the system.146, 160, 162 These three 

properties can be integrated to obtain the effective strand displacement rates by means of 

reaction-diffusion equations,163-165 reactive Brownian dynamics simulations,146, 162, 166 or analytical 

theories involving first passage times.160 Most DSD analysis has now been automated and can 

be treated computationally using specialized kinetics software such as Visual DSD,165 KinDA167 

and DyNAMiC Workbench.168  
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Similar modeling strategies have been used to design, program, and optimize the 

algorithmically directed assembly of DNA origami tiles.169, 170 A wide variety of DNA origami tile 

shapes and interactions are possible,171 offering ways to build large, complex assemblies with 

nanoscale resolution. Experimentally implemented systems have been regulated by diverse 

physical processes, including hybridization,172 strand displacement,173 shape complementarity, 

171, 174 and base stacking.171, 175 Knowledge of the thermodynamics and kinetics of tile binding can 

then be used as input for theoretical models at different levels of abstraction, including kinetic 

models,170, 176 Monte Carlo models,177 and chemical reaction networks.178, 179 

Kinetic modeling has also been used in structural and dynamic DNA nanotechnology 

systems beyond the context of DSD and tile systems. Many systems are purely reaction-based 

and so their behavior can be represented using mass-action kinetics, i.e., as a system of ordinary 

differential equations (ODEs) describing the time evolution of concentration which can be solved 

using eigenvalue decomposition or ODE solvers. To provide a few examples, kinetic modeling 

has been used to study individual attachment and detachment processes between separated 

DNA origami structures demonstrating autonomous regulation behavior;180, 181 to describe the 

growth of polythymine brushes onto DNA via a catalytic enzymatic polymerization process;182  
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Figure 4: Kinetic modeling in DNA nanotechnology. (a) Kinetic model of higher-order self-assembly and 
disassembly of DNA Nanotubes. (b) Kinetic model of DNA origami self-assembly. (c) Kinetic model of a 
reconfigurable DNA origami sheet. (a) reproduced with permission from ref 180. Copyright 2019 Springer 
Nature. (b) reproduced with permission from ref 183. Copyright 2015 AIP Publishing LLC. (c) reproduced 
with permission from ref 184. Copyright 2014 American Chemical Society.  
 

Similar strategies to those described for DSD systems have also been successfully implemented 

to model DNA origami folding183, 185, 186 and DNA origami tile-tile assembly.187, 188 Figure 4 depicts 

a few relevant kinetic systems. 

 

Continuum Modeling. While CGMD and mesoscale simulations are very useful in DNA 

nanotechnology and offer some of the best value in terms of accuracy vs. computational cost, in 

some cases it is expedient to use continuum modeling. Continuum modeling assumes that the 

response of a system to a perturbation can be approximated as a continuous function satisfying 
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macroscopic balance and conservation principles rather than behaving as a set of discrete 

particles interacting with conservative interaction potentials. When applied to solid mechanics, 

partial differential equations are often used to solve the spring equation for continuum solids in 

order to compute the global deformation response to an applied load which is introduced as a 

boundary condition. When geometry is too complex to analytically solve this equation, the problem 

can be discretized into a set of small volumetric elements whose displacements are described by 

the equation 𝐟 = 𝐊𝐮, where f is the set of all forces on connective elements (nodes), u is the 

displacement vector of the nodes, and K is a stiffness matrix which accounts for both 

compressive/tensile stiffness and bending and torsional stiffness within the element accounting 

for the intrinsic moduli of the material and moment of inertia of the element shape in the direction 

of the applied load. Continuity between all elements is assumed through their shared nodes, 

which converts this partial differential equation problem into a matrix algebra problem which can 

easily be solved.  

A finite element model called CanDo189 has been developed for continuum analysis of 

DNA nanostructures; this model treats individual nucleotides as connected continuum nonlinear 

beams (since DNA’s behavior is more complex than the usual, linear macroscopic treatment of 

most isotropic engineering materials) and computes the equilibrium configuration and fluctuations 

of the DNA nanostructure being studied. While it does not serve as final validation for structural 

integrity or stability, CanDo is a good first check for having attained the desired final structure 

before running a CG simulation, as CanDo can usually predict undesired twisting and bending of 

structures in a small fraction of the simulation time required by CGMD simulations. This allows 

experimental groups designing DNA origami to quickly test their designs and return to the drawing 

board if significant undesired bending or twist are predicted. The more recent SNUPI model190 

improves upon the CanDo model by adding electrostatic interactions and has been shown to work 

well for computing the equilibrium conformations of hierarchical superstructures consisting of 

many DNA origami,191, 192 a task that has proven quite challenging for both AAMD and CGMD 



 19 

simulations. Continuum mechanics provides additional value to DNA nanotechnology by 

providing practically useful quasi-analytical scaling behavior of new systems. For example, basic 

solid mechanics including beam bending calculations based on moment of inertia can be used to 

intuitively explain the relationship between DNA origami cross section and structural persistence 

length with remarkable agreement.193 This is useful because as DNA nanotechnology has been 

advancing in complexity (with nanostructures containing structural elements with many different 

cross sections being introduced recently110), these continuum mechanics assumptions provide 

basic predictive power for controlling the deformation behavior of these structures and provide 

quantitative data for comparison of multiple cross sections when they, for example, contain the 

same overall cross-sectional area but different shapes. 

 

Multiscale and hybrid resolution models. There are some approaches which combine 

multiple modeling paradigms to address specific limitations of individual techniques. For example, 

some larger DNA nanostructures may be prohibitively expensive to equilibrate at a coarse-grained 

resolution. To address this, a model has been developed which performs major equilibration steps 

like global structure relaxation at a mesoscopic resolution and gradually refines modeling 

resolution to achieve atomically reasonable equilibrium conformations in just a few minutes.138 

This model has the added benefit of accessing very long dynamic timescales for other purposes 

such as the simulation of applied electric fields. Other examples of hybrid approaches include a 

recently developed model which allows CGMD simulations of DNA to be run in the presence of a 

mesoscale protein representation194 and, in the area of chromatin modeling, a mesoscale 

representation of DNA and a coarser representation of nucleosomes with charges represented 

using a discrete surface charge approach.128 Another multiscale model used oxDNA to sample 

the local free energy landscape of DNA Brick self-assembly, then used that data to produce a 

two-state kinetic rate model of the self-assembly process.195 Examples of multiscale and hybrid 

resolution models can be found in Figure 5. Quantum Mechanics / Molecular  
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Figure 5: Three multiscale / hybrid scale models used to solve tractability problems in DNA 
nanotechnology. (a) multiresolution DNA model used for rapid configurational equilibration. (b) hybrid DNA 
- protein model for simulation of DNA and protein complexes. (c) Hybrid scale nucleosome-DNA model for 
simulation of chromatin. (a) reproduced with permission from ref 138. Copyright 2020 Oxford University 
Press. (b) reproduced with permission from ref 194. Copyright 2021 The Royal Society of Chemistry. (c) 
reproduced with permission from ref 133 . Copyright 2006 National Academy of Science. 
 

Mechanics (QM/MM) multiscale models have also been used in limited context to study DNA. 

QM/MM models apply QM based behavior to reactive species, e.g., those undergoing some kind 
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of chemical reaction, while treating other species using standard AAMD forcefields within the 

same simulation. This enables timescale access approaching that of AAMD while still capturing 

the physics required for phenomena like ATP hydrolysis196 or enzyme activity.197 In the context of 

DNA nanotechnology, combinations of QM and MD simulations have already been applied toward 

the optimization of dye placement74 to afford control over device signal output and could find future 

use in photonic systems198 or systems containing quantum dots.199-201  

 
Analysis of simulations 
 
The objective of simulations is typically to produce data that can be compared with an 

experimental result or another simulation to provide interpretable information about system 

behavior. However, simply running simulations of DNA nanostructures and attempting to 

“observe” phenomena by eye is often insufficient to capture interesting phenomenological 

behavior. Trajectories must be analyzed to remove unimportant degrees of freedom and capture 

the true mean structure, dynamics, or some other property of the system. We will describe some 

of the most common analysis performed on simulations.  

 

Mean structure computation and removal of diffusive degrees of freedom. Computation of 

the mean structure of a DNA nanodevice from dynamic simulations is often a first step in the 

process of trajectory analysis. Molecular simulations are often conducted on species which are 

floating in solution; these species correspondingly have six degrees of freedom (three degrees of 

translation, and three axes of rotation) which are not relevant to the actual intra-device motion. 

To address this, we may isolate the specific components of the body of molecules that we want 

to analyze (excluding other bodies which do not participate in or are not relevant to the process 

under study) and perform a rotational and translational transform to minimize the mean squared 

distance between the selected particles in frame i and those particles in every other frame of the 
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simulation. This frame i is often selected at random but may also be selected to force alignment 

to some basis, e.g., Cartesian axes. This yields a trajectory of a structure which does not translate 

or rotate but instead solely performs its own internal motions, which is much easier to analyze. 

Taking the mean of this modified trajectory provides what is referred to as the “mean structure”, 

which is the average structure accounting only for internal motions. Examples of where this 

analysis has been applied include characterizing polythymine brush extent on DNA 

nanostructures,117 and capturing the mean structure of a dynamic DNA origami hinge,120 both of 

which demonstrated good agreement with experiments. 

 

Principal Component Analysis. To determine the dynamical behavior of structures, one may 

conduct principal component analysis (PCA).202 In a general sense, PCA generates a set of 

orthogonal vectors within a 𝐷-dimensional dataset along which the first vector captures the largest 

deviation in that dataset, the second component produces the second largest deviation in a 

dataset, etc., until there are no more orthogonal vectors that can be created. This results in 

(𝐷 − 	1) vectors or principal components. In the case of molecular simulations, PCA can be used 

to compute the combinations of particle motions that produce the largest overall deviation from 

the structure’s mean. To do this, one can calculate the Cartesian displacement of particles in each 

frame from the mean structure of an N-particle system, flattening them into a vector of length 3N 

for each frame, computing a covariance matrix of this vector, and computing the eigenvectors and 

eigenvalues of that covariance matrix, where each eigenvector is a “component” of motion. These 

components can then be redistributed into a set of 3-dimensional vectors v each accounting for 

the motion of a single particle. This is often diagrammatically represented using an image of the 

mean structure at c superimposed with a new image of the structure where each particle has 

been moved by its corresponding 3-dimensional vector to locations c ± v (Figure 3a). With PCA, 

one can understand how a structure is moving, including determining whether undesired motions 

are occurring, thereby allowing researchers to better design dynamic devices to have more 
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controlled motions.104 The recent introduction of the oxView webserver203 enables these 

components to be computed easily. 

 

Estimating the mechanical properties of structures. The exact mechanical properties of DNA 

nanostructures could be of import to future experiments in DNA nanotechnology. Past studies 

have focused on applying the principles of mechanical engineering beam analysis to DNA 

nanostructures. The chemistry and biophysics communities typically address the bending 

stiffness of DNA nanostructures in terms of persistence length 𝑙-, whereas the mechanical 

engineering community tends to use quantities like Young’s modulus 𝐸 and bending moment of 

inertia 𝐼 to describe stiffness. These properties are connected by the relationship 𝑙- = 𝐸𝐼 𝑘(𝑇⁄ .204 

The persistence length can be computed using standard methods from MD simulations,205 

providing  a quantity which can be compared against  experiments.206 The mechanical stiffness 

of other bodies like hinges can be determined by calculating hinge angle distributions and 

computing the slope of the free energy landscape 𝑑𝐹 𝑑𝜃⁄ .24  

 

Calculating diffusion coefficients. The diffusion of particles in a liquid, which is the typical 

environment for DNA systems, generally follows Stokes-Einstein behavior,207 where the 

translational self-diffusivity 𝐷. is inversely proportional to the particle’s hydrodynamic radius. 𝐷. 

can be ascertained in simulations from the slope of a plot of mean squared displacement as a 

function of time change 𝑡 in the long-time limit. These diffusive statistics apply not only to a single 

isolated particle, but also to the centroid of a group of particles forming a single-stranded 

oligonucleotide or even an entire DNA origami, although many existing models like oxDNA do not 

account for hydrodynamic interactions208 and so simulations using these may be inaccurate for 

comparison to experimental techniques. AAMD simulations should hypothetically produce 
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accurate diffusion behavior that accounts for hydrodynamics, although this technique suffers from 

periodic boundary condition artifacts and computational expense. 

 

Enhanced Sampling and Computation of Energy Landscapes. The free energy of systems 

with respect to some reaction coordinate is often of interest. For example, one might wish to 

design a DNA hinge with an energy barrier to opening and closing. Describing this energy barrier  

 
Figure 6: Use of enhanced sampling to predict DNA nanodevice behavior. (a) pseudoknot formation in a 
dodecamer. (b) metadynamics to improve conformational sampling of a DNA nanostructure. (c) umbrella 
sampling using hinge angle of a DNA nanostructure as a reaction coordinate. (d) umbrella sampling of a 
toehold-mediated strand displacement reaction. (a) adapted  with permission from ref 101. Copyright 2021 
Frontiers Media S.A. (b) reproduced with permission from ref 209. Copyright 2022 The Authors. Published 
by American Chemical Society. (c) reproduced with permission from ref 120 . Copyright 2020 Oxford 
University Press. (d) adapted with permission from ref 122. Copyright 2013 Oxford University Press.  
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and quantifying the timescale of transitions between states would likely involve conducting CGMD 

simulations of that hinge which sample its full configurational space. However, such simulations 

might be prohibitively long since the transition time across energetic barriers scales exponentially 

with barrier height normalized by thermal energy. For this reason, one can turn to enhanced 

sampling techniques such as umbrella sampling, metadynamics, or various other techniques.210 

Enhanced sampling applies a known bias to a simulation which drives the system being studied 

out of local energy minima and then uses that bias to determine the free energy landscape along 

a reaction coordinate. Normally, the Hamiltonian of a system is simply a function their coordinates 

𝐫$ and momenta 𝐩$: 𝐻(𝐫$𝐩$). As the most basic example, umbrella sampling modifies the 

Hamiltonian being used in the simulation to 𝐻′ = 𝐻(𝐫$𝐩$) + !
#
𝑘/(𝜒 − 𝜒0)# where 𝜒 is the current 

location along the reaction coordinate being considered and 𝜒0 is some value around which we 

would like to sample, and 𝑘/ is some stiffness which is selected roughly corresponding to how 

steep the energy gradient is along the area being sampled. By running simulations with this 

modified Hamiltonian for many different values of 𝜒0 such that there is a contiguous set of 

simulations with significant overlap in the distribution of 𝜒 between each, we can effectively force 

the sampling of the entire energy landscape of interest. These overlapping distributions in 𝜒 are 

then combined using weighted histogram analysis211 to produce a contiguous free energy 

landscape across the entire range of 𝜒. This is a simple yet very powerful paradigm which has 

only recently begun to be exploited for more advanced analysis of DNA nanostructures.104, 120 

Another enhanced sampling technique, metadynamics,212 defines a reaction coordinate and then 

begins sampling the energy landscape along that reaction coordinate. As sampling proceeds, 

artificial potentials (usually Gaussians) are added to the current location being sampled to favor 

exploring other sections of the energy landscape. This pushes the system out of well-sampled 

regions and into less well-sampled ones. Once the entire range of interest has been sampled, the 

artificial potentials are summed and inverted to reveal the true free energy landscape. This 
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technique has been used to enhance the sampling of the configurational space of DNA 

nanostructures for comparison to experiments involving DNA origami with broad configurational 

flexibility,209 but it has also been applied in a variety of biochemistry systems213-215 and will surely 

find additional uses. Figure 6 depicts a few studies utilizing enhanced sampling. 

 

Comparing Simulation Results to Experiments 
 
The value of predictive simulation data is somewhat limited unless a sufficiently large body of 

paired data, consisting of simulations and corroborative experimental data, has been produced to 

merit confidence that the simulations are accounting for all or nearly all sources of experimental 

variability. This experimental data may be generated in several ways, from direct imaging with 

light microscopy to fluorescence spectroscopy to more advanced and well-resolved techniques 

like cryo-electron microscopy (cryo-EM). Generally, simulations and experiments are compared 

by defining useful collective variables and then designing schemes for measuring those variables 

both in simulations and in experiments. The distributions or other features of these collective 

variables can then be compared between simulation and experiment to determine whether the 

model is capturing the relevant physics. We previously described the ways that simulations are 

processed to gather collective variables of interest; in this section, we will describe a few ways in 

which experiments are used to generate collective variable data which may be mappable to 

simulations. 

 

Electrophoresis. The most common first step in experimental characterization of a DNA origami 

nanostructure is gel electrophoresis of the folding products. Since larger DNA species flow more 

slowly through an agarose gel under an electric field, differently sized species will separate over 

time where they can be compared to reference DNA ladders. The separation of these species is 

based upon the general concept of electrophoretic terminal velocity 𝑣. The net force 𝐹 acting on 
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a molecule carrying charge 𝑞 and being driven by electric field 𝐸 is given by  𝐹 = 𝑞𝐸 − 𝛾𝑣, where 

γ is the friction coefficient of the species. Since agarose gel is highly viscous, species rapidly 

reach terminal velocity so 𝐹 = 0 and thus 𝑣 = 𝑞𝐸/𝛾. Since 𝑞 and 𝛾 scale differently with molecule 

size, larger DNA species tend to have a slower terminal velocity and thus migrate more slowly 

through the gel, resulting in a band of DNA (identified using a loading dye) which is closer to the 

well where the sample was loaded than smaller species. For sufficiently long stimulation times, 

these DNA bands become so well separated that they can be distinguished from each other and 

individually isolated and further characterized. This technique is primarily comparative, as the 

ladder and existing known species serve as points of reference. However, this can be useful for 

identifying bulk aggregation, dimerization, disassembly, and other desired / undesired behavior. 

Furthermore, bands from these gels may be repurified and assayed directly to further characterize 

the experimental result. This may serve to corroborate modeling-based predictions of structural 

stability or instability, or to direct further modeling and simulation to understand the cause of 

experimental outcomes such as aggregation. 

 

Direct imaging. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) 

are typically used to provide direct images of DNA nanostructures. AFM works on the principle of 

mechanical cantilever bending, where a nanoscale silicon cantilever with a sharp tip is dragged 

or tapped across a nanoscale surface; a laser beam pointed at the top of the cantilever helps to 

measure the cantilever’s angular deflection, from which the height of the tip can be calculated. 

The height values z measured at each location x,y scanned using a motorized stage then provides 

a three-dimensional map of surfaces at very high resolution. TEM works on the principle of an 

electron source which fires electrons through a specimen and records the un-scattered electron 

density behind the sample, providing an image of the specimen being sampled. TEM works on 

the principle of an electron source which fires electrons through a specimen and records the un-

scattered electron density behind the sample, providing an image of the specimen being sampled. 



 28 

This provides a massive amount of useful information that can be compared to simulations, 

ranging from simple qualitative comparison between images and equilibrium simulations112 to 

measuring the extent of polymers grafted to DNA origami for comparison to CGMD simulations216 

or nanoparticles,217, 218 to measuring the angle distributions of hinge and lever nanodevices and 

comparing these distributions to simulations.104 The complexity in this technique arises from 

measuring collective variables, which must generally be performed manually, although this can 

be enhanced using artificial intelligence (see below). 

 

Spectroscopy. Spectroscopy is the study of matter’s interactions with electromagnetic waves. 

This is often a coarse but very effective way of observing DNA nanostructures and their behavior. 

Within spectroscopy is fluorescence, a phenomenon where certain molecular species absorb light 

at one (often invisible) wavelength and then emit (usually visible) light in their excited state. The 

emitted light can be used to determine the locations of DNA nanostructure components that have 

been labeled with fluorescent groups. Fluorescent particle tracking has been used to quantify the 

energy landscapes of DNA origami devices, revealing free energy landscape features that are 

corroborated by coarse-grained molecular dynamics simulations.107 One adjacent example to 

fluorescence is Förster resonance energy transfer (FRET), a nonradiative dipole-dipole energy 

transfer phenomenon arising when one molecular species (“donor”) is excited. If that species is 

close to a species which is capable of receiving energy from resonance energy transfer 

(“acceptor”), the excited donor species will shunt its energy to the acceptor species and excite it, 

then causing the acceptor to emit its characteristic excitation signal; if the donor is not close to an 

acceptor, the energy from excitation will be emitted as the donor’s signal. When FRET pairs are 

placed on different parts of a DNA nanostructure, the signal arising from that FRET pair can be 

used to determine whether those two parts are near each other or far away from each other.  

While very simple in nature, this is extremely useful as it can indicate open / closed states for 

hinge and box type structures,2 or can serve as a signal for whether a certain component has 
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incorporated into or dissociated from a DNA nanostructure.20 This data is also easy to corroborate 

with simulations since a simple collective variable can be defined based on the separation of the 

pair’s grafting locations and the system can be predicted using CGMD simulations219.  

Ultraviolet-visible (UV-Vis) spectroscopy measures the absorption of UV and visible 

spectrum electromagnetic radiation by a sample. DNA’s spectral absorption can be used to 

estimate the concentration of DNA in solution,220 which can provide information about DNA 

nanostructure yield. G-quadruplexes also have a distinct spectral absorbance from ssDNA or 

dsDNA, leading to the use of UV-Vis spectroscopy to quantify the behavior of DNA-based 

nanoswitches.221 Finally, UV-Vis spectroscopy has been used to quantify DNA binding onto gold 

nanoparticles.222 

As the characteristic energy levels of rotation and vibration of DNA molecules fall in the 

high gigahertz (GHz) to low terahertz (THz) spectra,87, 223-227 these wavelengths have also been 

used to manipulate DNA origami nanostructures, increasing the yield of assembly of DNA 

origami228 and allowing for the development of biosensors and antennas with tunable 

resonance.229-231 To better understand these devices, computational THz spectroscopy of DNA 

origami molecules can be performed using specialized software86, 232, 233 and algorithms234, 235 

together with atomistic simulations.87, 88 However, such treatment can only be implemented on 

small molecular systems. 

 

Cryo-Electron Microscopy (Cryo-EM). Cryo-EM236 vitrifies samples at extremely low 

temperatures and then uses transmission electron microscopy (TEM) to resolve 2D projections 

of those samples. Mathematical transformations can be performed on the 2D data to recover 3D 

structural information.237 This can be used to resolve the structure or dynamics of proteins or DNA 

nanostructures in a nearly atomically precise manner. In DNA nanotechnology, cryo-EM 

reconstructions of DNA origami52 have been used as validation for new simulation models.190  
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Dynamic light scattering (DLS). DLS uses the autocorrelation of laser light scattering intensity 

to determine the diffusive properties of the species contained within a sample. It is most often 

used to obtain the diffusion coefficient of species and to estimate the hydrodynamic radius of 

those species.238-240 For a single species in solution, the autocorrelation of scattering intensity 

decays as a single exponential with a decay constant τ = 𝑞#𝐷, where 𝑞 is the wave vector and 𝐷 

is the translational diffusion coefficient. This is relatively straightforward to compare to 

approximations for the diffusive properties of non-spherical shapes,241-243 making for a useful point 

of comparison with the DLS result.  

 

Small angle X-ray scattering (SAXS). This technique is used to determine the sizes and 

distributions of nanoparticles in solution239, 244 in addition to their shapes and for distinguishing 

between different conformational states and resolving their transitions.245 SAXS functions on the 

same principle of standard x-ray scattering: when the paths of scattered x-rays differ by a perfect 

multiple of their wavelength 𝜆, those x-rays collectively exhibit a high intensity from cooperativity, 

while paths differing by a perfect half multiple 𝜆/2 are mutually destructive and will produce 

essentially no scattered signal; SAXS data is typically a plot of scattering intensity as a function 

of scattering vector q; this data may be interpreted to provide information about particle size and 

shape which can be compared directly to simulations. While its use has been limited, SAXS 

promises to resolve similar behavior to that which can be captured using fluorescence, but without 

the use of bulky and saturation-prone fluorescent molecules. 

 

Less Common Techniques. Some additional experimental characterization techniques applied 

toward DNA origami include small angle neutron scattering,246 ion mobility spectrometry – mass 

spectrometry,247 and individual particle electron tomography.248 
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Artificial Intelligence and Machine Learning 
 
Artificial Intelligence (AI) and Machine Learning (ML) are somewhat distinct from the rest of the 

methods covered in this review since they are more general. However, due to the incredible power 

of inference, ML and AI have seen broad adoption across the domains of physics,249, 250 

biology,251, 252 and materials science,253, 254 and discussion of their use in the context of prediction 

and control in DNA nanotechnology is warranted. AI is a discipline that concerns solving problems 

that cannot necessarily be addressed procedurally, in a manner inspired by the learning behaviors 

of intelligent beings like humans. In most cases, AI attempts to establish a mapping relationship 

between some input and a desired output. This output may be, for example, the correct 

identification of the subject of an image or an estimation of the probability distribution of some 

collective variable. This process is often accomplished using feedback,255-257 where the output is 

compared to the ground truth (expected outputs); the mapping function is then adjusted until it 

can reliably reproduce these input-output relationships.  

As a subset of AI, ML covers algorithms capable of learning from pre-existing examples 

to make decisions or predictions by recognizing the underlying patterns of a problem. There are 

three main categories of ML: supervised learning, unsupervised learning, and reinforcement 

learning. Supervised learning is commonly adopted when a labeled dataset is available for the 

model to capture the relationship between feature and label. On the other hand, unsupervised 

learning is adopted when labeling is physically or economically prohibited, or when the goal is to 

identify the underlying distribution of data, e.g., using clustering algorithms.258 Both supervised 

and unsupervised learning provide data-driven predictions on properties of interest. In the 

framework of reinforcement learning, the objective would be for an agent to identify an optimal 

strategy (policy) by maximizing a given reward function. The agent does this by directly interacting 

with the environment and learning from the received rewards.  
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To establish and evaluate machine learning models, one can partition an available labeled dataset 

into training, validation, and isolated testing groups. This partitioning approach allows one to train 

the model on the training set, tune the hyperparameters (a setting on a machine learning model 

which determines how the model will learn from data) on the validation set, and evaluate the 

model performance on the isolated testing set. If accuracy and reliability need to be improved, 

more statistical methods can be employed, such as cross-validation or nested cross-validation. 

For how AI and ML work, we refer readers to existing comprehensive literature addressing these 

topics.259, 260 

In DNA nanotechnology, AI has been adopted to address emergent topics in the field, 

including nanostructure annotation, design optimization, and device development. The most 

straightforward application is to apply AI toward direct imaging data of DNA nanostructures. 

Correctly quantifying the values of collective variables in DNA nanostructures and annotating AFM 

imaging usually takes a tremendous amount of human input, where a researcher must manually 

label hundreds to thousands of data points to establish sufficient statistical power in an 

experiment. AI promises to enable automated labeling of experimental data in a way that is not 

only less work but also less error-prone than manual human entry.261-263 For example, YOLOv5,264 

a type of convolutional neural network which performs extraordinarily well in image recognition 

tasks, has been implemented in the context of nanostructure detection to avoid laborious manual 

annotation of AFM images, leading to a much more labor-efficient and statistically robust 

approach to distinguishing between DNA nanostructures.265 A deep neural network has also been 

used to directly improve the resolution of DNA origami AFM images.266 Similar goals can also be 

achieved by nanoTRON,267 an open-source imaging package that performs classification tasks 

and has been shown to reliably reconstruct nanostructures from super-resolution DNA-PAINT268 

imaging of DNA origami. A more recent study used AI to reduce the amount of sampling required 

to reconstruct these structures by an order of magnitude,269 indicating that AI can be used to 

massively improve throughput in DNA nanotechnology based imaging applications. 
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Beyond accelerating laborious analysis tasks, AI has also been applied to develop better 

DNA origami designs. In simulation work, researchers have implemented shape annealing and 

evolutionary strategies on the oxDNA model and simulation software package10, 92, 270 to design 

nanostructures that closely match a desired shape profile.271  AI has also been applied to provide 

more accurate prediction of structural properties, e.g., constructing quantum-accurate electron 

density profiles for DNA nanostructures up to ~225 kDa.272 Another interesting experimental 

application of AI to DNA origami is the use of ML to predict and optimize the performance of 

molecular photonic wires based on their chromophore attachment configuration.273 eXtreme 

Gradient Boosting (XGB)274 has additionally been used to classify the sequence of molecular 

barcodes for multiplexed detection of biomolecules on surfaces.275 

 

Grand Challenges and Opportunities 
 

The past ten years have produced astounding advancements in our ability to understand 

and optimize the behavior of DNA nanodevices. However, several behaviors of DNA origami are 

still not under our control. Firstly, the folding of DNA nanostructures and the associated yield of 

this process are not predictable. While several design and fabrication recipes help to avoid folding 

problems,8, 276, 277 they must be developed on a case-by-case basis and do not always guarantee 

good folding results. Better understanding the folding process will lead to much higher confidence 

that designs will fold properly, both within the field and when researchers adopt DNA origami as 

a tool in other fields. 

 Several properties of correctly assembled DNA nanostructures are also not very 

predictable, e.g., the interaction of DNA with proteins. Addressing this issue is well underway,194  

but the field still lacks a coarse-grained force field which is capable of accurately capturing the 

interactions between different peptides and DNA. In addition to proteins, the effect of ions on 

DNA, specifically multivalent ions, may not be accurately captured with CG modeling. This is likely 
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because CG models tend to treat salt effects using Debye-Hückel theory, which is too simple to 

address multivalent ionic effects. Currently, multivalent ion effects in the oxDNA model are treated 

by simply applying an artificially high monovalent ionic concentration.  While this functions well in 

fabrication conditions, it is not clear how it will scale with multivalent ion conditions deviating 

significantly from these conditions. This may potentially be resolved in the future using more 

complex CG interactions that account for other factors such as ion type, correlation, and valency 

in addition to ionic concentration. CG models in adjacent fields like chromatin modeling have 

successfully reproduced multivalent cation-mediated effects,278 offering potential solutions to this 

challenge. 

The size of DNA nanostructures, especially those hierarchically assembled from multiple 

DNA origamis, is increasing at a rapid pace. At the larger length and time scales associated with 

these structures, existing CG simulation techniques are becoming insufficient to characterize 

dynamic behavior. Mesoscale models using a coarser representation than the oxDNA model may 

be useful for this purpose, where capturing transition behavior over microns and seconds may be 

tractable. The aforementioned mrDNA model138 may be a good starting framework for this. 

Lastly, AI can be used to improve our understanding of several under-addressed topics in 

DNA nanotechnology. The first is to use AI to understand fundamental processes. For instance, 

one can exploit the inference power of ML models to predict the transition behavior of dynamic 

DNA origami devices. This can take place either in a simulation or in experiments for the inference 

of relevant collective variables, or in identifying interesting behavioral patterns. The second is to 

exploit AI to improve assembly yields and control defects. Instead of relying on expert intuition to 

craft assembly rules to obtain desired origami design with sufficient yields, we envision that 

reinforcement learning or active learning can be well suited for this type of task. The third is to 

encourage the use of AI in DNA technology by improving data accessibility. Powerful ML models 

have achieved great success in other research fields, such as Alphafold 2279 in the protein field, 

largely thanks to the existence of vast data repositories like the RCSB Protein Data Bank.280 Yet, 
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the adoption of ML has been relatively slow in DNA nanotechnology because there has not 

historically been a database or a data-sharing platform for DNA nanostructure data, hindering AI 

workers from accessing the data and extracting knowledge or building models on it. A promising 

new resource in the DNA nanotechnology space has been Nanobase, a database and repository 

for DNA nanostructures.281 This makes it possible to see the designs used in various publications 

in the field, with additional data available describing fabrication protocols. This resource could be 

further leveraged in AI and ML applications and in data harvesting for the enhancement of the 

field if additional information about these nanostructures was provided, e.g., AFM or TEM images 

of folding products and standardized and accessible data fields for annealing ramps and salt 

conditions used in the fabrication of these nanostructures. This could potentially aid in the 

improvement of our understanding of DNA origami folding and provide a robust body of reference 

data against which new simulation models may be parameterized. Another way that ML and 

especially deep learning can contribute is in the development of simulation force fields where AI 

can provide non-functional parametrization of CG force fields which may be more accurate than 

functional representations. 

  

Conclusion 
 
In this review, we discussed the broad range of time and length scales over which events in DNA 

nanotechnology take place and the modeling resolutions used to represent DNA nanostructures 

at these length and time scales. We then discussed different simulation methods for the prediction 

and control of DNA nanostructure and device behavior. We described the different experimental 

characterization techniques that are available to compare to model predictions and how they are 

used in synergy with modeling for practical device design and fabrication. We then discussed the 

recent development of AI and ML based tools for DNA nanotechnology. Finally, we discussed the 
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current limitations and gaps in the modeling and simulation space and identified key opportunities 

in prediction and control that may further aid in the advancement of the field.  
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