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1. Introduction

Given n € N and a lattice A C R", a convex body K C R" is called a A-parallelotope
(e.g., [12]) if the translates of K by elements of A tile R™, i.e., R" = A+ K = [ J ., (z+K),
and the interior of (z + K) N (y + K) is empty for every distinct =,y € A. One calls
K a parallelotope (parallelogon if n = 2 and parallelohedron if n = 3; some of the
literature calls a parallelotope in R™ an n-dimensional parallellohedron; e.g., [1,11]) if
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it is a A-parallelotope for some lattice A C R™. We call a Z™-parallelotope an integer
parallelotope.

The hypercube [—%, %]" is an integer parallelotope whose surface area equals 2n.
By [16, Corollary A.2], for every n € N there exists an integer parallelotope K C R™
whose surface area is smaller than 2n by a universal constant factor. Specifically,
the surface area of the integer parallelotope K that was considered in [16] satisfies
vol,_1(0K) < o(n + O(n??)), where 0 = 2320 (s/e)®/(s%/2s!) < 1.23721. To the
best of our knowledge, this is the previously best known upper bound on the smallest
possible surface area of an integer parallelotope. The main result of the present work is

the following theorem:

Theorem 1. For every n € N there exists an integer parallelotope whose surface area is
3+o(1)
nz :

Because the covolume of Z™ is 1, the volume of any integer parallelotope K C R"
satisfies vol,,(K) = 1. Consequently, by the isoperimetric inequality we have'

vol,_1 (Snil)
Voln_ aK 2 — 7 = n, 1
1(0K) voln(B") " N (1)

where B" {(z1,...,,) € R": 22 + .- + 22 < 1} denotes the Euclidean ball and
sn1 € pn,

Thanks to (1), Theorem 1 is optimal up to the implicit lower order factor. It remains
open to determine whether this lower-order factor could be removed altogether, namely
to answer the following question:

Question 2. For every n € N, does there exist an integer parallelotope K C R™ with

VOln_l(aK) = \/H?

Early investigations in the context of Question 2 focused on exact minimizers in
low dimensions. The smallest possible perimeter of a unit-area parallelogon in R? was
evaluated in [17] and the smallest possible perimeter of an integer parallelogon in R?
was evaluated in [7]. The corresponding questions for parallelohedra in R® remain open
(though see [28] for a recent exact solution of a different isoperimetric-type question for
parallelohedra); for example, Conjecture 7.5 in [5] asks for the smallest possible surface
area of a unit volume parallelohedron in R? (and proposes a conjectural minimizer). A
lot of effort has also been devoted to the analogous questions (exact minimizers when

1 We use the following conventions for asymptotic notation, in addition to the usual O(-),o(-), Q(-), ©(-)
notation. For a,b > 0, by writing a < b or b 2 a we mean that a < Cb for a universal constant C > 0,
and a < b stands for (a < b) A (b < a). If we need to allow for dependence on parameters, we indicate it
by subscripts. For example, in the presence of an auxiliary parameter £, the notation a <. b means that
a < C(g)b, where C(g) > 0 may depend only on &, and analogously for a 2. b and a <. b.
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n € {2,3}) for tiling bodies that need not be convex, see [22] for the exact solution in
this setting when n = 2, whereas the corresponding question when n = 3 remains open;
see [24,39,4].

While the higher dimensional asymptotic nature of Question 2 differs from the afore-
mentioned classical search for the exact minimum in low dimensions, it is a natural
outgrowth of it and a folklore question that became popular after interest in this direc-
tion arose due to its connection to theoretical computer science that was found in [16]
and was pursued in [34,25,3,26,6] (we stress that we are not aware of algorithmic im-
plications of Question 2 and our interest in it stems only from the perspective of pure
mathematics). To the best of our knowledge, Question 2 appeared in print only in [6,
Section 6], which asks for the smallest possible growth rate (as n — oo) of the sur-
face area of an integer parallelotope in R”, albeit without specifying the O(y/n) rate as
Question 2 does.

In [25] it was proved that Question 2 has a positive answer if one drops the requirement
that the tiling set is convex, i.e., by [25, Theorem 1.1] for every n € N there is a compact
set  C R™ such that R™ = Z™ + Q, the interior of (z + Q) N (y + Q) is empty for
every distinct x,y € Z™, and vol,,_1(9Q) < v/n; see also the proof of this result that was
found in [3]. The lack of convexity of € is irrelevant for the applications to computational
complexity that were found in [16]. The proofs in [25,3] produce a set € that is decidedly
non-convex. Our proof of Theorem 1 proceeds via an entirely different route and provides
a paralletotope whose surface area comes close to the guarantee of [25] (prior to [25], the
best known upper bound on the smallest possible surface area of a compact Z™-tiling
set was the aforementioned 1.23721n of [16]).

It could be tempting to view the existence of the aforementioned compact set €2 as
evidence for the availability of an integer parallelotope with comparable surface area,
but this is a tenuous hope because the convexity requirement from a parallelotope im-
poses severe restrictions. In particular, by [30] for every n € N there are only finitely
many combinatorial types of parallelotopes in R™.? In fact, by combining [10, Section 6]
with [30,37] we see that K C R"™ is a parallelotope if and only if K is a centrally sym-
metric polytope, all of the (n — 1)-dimensional faces of K are centrally symmetric, and
the orthogonal projection of K along any of its (n — 2)-dimensional faces is either a
parallelogram or a centrally symmetric hexagon.

Of course, Theorem 1 must produce such a constrained polytope. To understand how
this is achieved, it is first important to stress that this becomes a straightforward task
if one only asks for a parallelotope with small surface area rather than for an integer
parallelotope with small surface area. Namely, it follows easily from the literature that
for every n € N there exist a rank n lattice A C R™ whose covolume is 1 and a A-
parallelotope K C R™ that satisfies vol,,_1(0K) < /n. Indeed, by [35] there is a rank

2 Thus, just for the sake concreteness (not important for the present purposes): Since antiquity it was
known that there are 2 types of parallelogons; by [13] there are 5 types of parallelohedra; by [8,36] there
are 52 types of 4-dimensional parallelotopes.
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n lattice A C R™ of covolume 1 whose packing radius is at least ¢y/n, where ¢ > 0 is
a universal constant. Let K be the Voronoi cell of A, namely K consists of the points
in R™ whose (Euclidean) distance to any point of A is not less than their distance to
the origin. Then, K is a A-parallelotope, vol,,(K) = 1 since the covolume of A is 1, and
K D ¢y/nB" since the packing radius of A is at least ¢y/n. Consequently, the surface
area of K is at most ¢~!y/n by the following simple lemma that we will use multiple
times in the proof of Theorem 1:

Lemma 3. Fizn € N and R > 0. Suppose that a convex body K C R" satisfies K O RB"™.
Then,

vol,,—1(0K) o
vol,(K) ~ R’

Lemma 3 is known (e.g., [19, Lemma 2.1]); for completeness we will present its short
proof in Section 2.

Even though the packing radius of Z™ is small, the above observation drives our induc-
tive proof of Theorem 1, which proceeds along the following lines. Fix m € {1,...,n—1}
and let V be an m-dimensional subspace of R™. If the lattice V+ N Z™ has rank n —m
and its packing radius is large, then Lemma 3 yields a meaningful upper bound on the
(n — m — 1)-dimensional volume of the boundary of the Voronoi cell of V+ N Z". We
could then consider the lattice A C V' which is the orthogonal projection of Z™ onto
V, and inductively obtain a A-parallelotope (residing within V') for which the (m — 1)-
dimensional volume of its boundary is small. By considering the product (with respect
to the identification of R™ with V+ x V) of the two convex bodies thus obtained, we
could hope to get the desired integer parallelotope.

There are obvious obstructions to this plan. The subspace V must be chosen so that the
lattice V- NZ™ is sufficiently rich yet it contains no short nonzero vectors. Furthermore,
the orthogonal projection A of Z™ onto V is not Z™, so we must assume a stronger
inductive hypothesis and also apply a suitable “correction” to A so as to be able to
continue the induction. It turns out that there is tension between how large the packing
radius of V+NZ" could be, the loss that we incur due to the aforementioned correction,
and the total cost of iteratively applying the procedure that we sketched above. Upon
balancing these constraints, we will see that the best choice for the dimension m of V'
is m = nexp(—O(y/logn)). The rest of the ensuing text will present the details of the
implementation of this strategy.

2. Proof of Theorem 1

Below, for each n € N the normed space 5 = (R", || -

¢z) will denote the standard
Euclidean space, i.e.,

def /
Vm:(xl,...,xn)ERn7 HJ:”Z?Z@ = ];%_A'__Fx%
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The standard scalar product of x,y € R™ will be denoted (z,y) et 1Y1 + -+ TpYn.

The coordinate basis of R will be denoted ey, ..., e,, i.e., for each i € {1,...,n} the
ith entry of e; is 1 and the rest of the coordinates of e; vanish. We will denote the origin
of R®" by 0 = (0,...,0). For 0 < s < n, the s-dimensional Hausdorff measure on R™
that is induced by the £% metric will be denoted by vols(:). In particular, if K C R"™ is
a convex body (compact and with nonempty interior), then the following identity holds
(see, e.g., [27]):

vol, 1 (9K) = lim Yon(E+ 535 ) = voln(K) (2)

§—0+

If V is a subspace of R™, then its orthogonal complement (with respect to the ¢%
Euclidean structure) will be denoted V+ and the orthogonal projection from R™ onto
V will be denoted Proj;,. When treating a subset Q2 of V we will slightly abuse nota-
tion/terminology by letting 9 be the boundary of Q within V, and similarly when we
will discuss the interior of  we will mean its interior within V. This convention results
in suitable interpretations of when K C V is a convex body or a parallelohedron (with
respect to a lattice of V). The variant of (2) for a convex body K C V becomes

. VOldim 1% K + 5(V N Bn) - VOldim \%4 (K)
vOlaim(v)—1(9K) = lim, 1 5 ) e

(3)

Proof of Lemma 3. Since K O RB", for every § > 0 we have

) 0 R 1 1
K+0B"CK+—=-K=(1+—= K K)=(14+=)K 4
w8 K = (L ) (ot ) = (e gl @
where the last step of (4) uses the fact that K is convex. Consequently,

: 1,(K + §B™) — vol,,(K) (4 1+&)" -1
voly_1(9K) 2 1im Yo+ B = voln(K) O | %mln(m
50+ 4 50+ d

= }%voln(K). O

The sequence {Q(n)}52; that we introduce in the following definition will play an
important role in the ensuing reasoning:

Notation 4. For each n € N let Q(n) be the infimum over those @ > 0 such that for
every lattice A C Z™ of rank n there exists a A-parallelotope K C R™ that satisfies

VOln_l (8K)

ol (k) S @ (5)

As vol, (K) =1 for any integer parallelotope K C R™, Theorem 1 is a special case of
the following result:
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Theorem 5. There exists a universal constant C > 1 such that Q(n) < /neCvVIos™ for
every n € N.

The following key lemma is the inductive step in the ensuing proof of Theorem 5 by
induction on n:

Lemma 6. Fiz m,n,s € N with s < m < n. Suppose that B € My, xn(Z) is an m-by-n
matriz all of whose entries are integers such that B has rank m and any s of the columns
of B are linearly independent. Then,

2(n—m)

/5 +Q(m)|[Blleg ey (6)

where || - ||z ey denotes the operator norm from £y to (3.

The fact that Theorem 5 treats any sublattice of Z™ of full rank (recall how Q(n)
is defined), even though in Theorem 1 we are interested only in Z™ itself, provides a
strengthening of the inductive hypothesis that makes it possible for our proof of Lemma 6
to go through. If A is an arbitrary full rank sublattice of Z", then a A-parallelotope K C
R™ need no longer satisfy vol,, (K) = 1, so the inductive hypothesis must incorporate the
value of vol,, (K'), which is the reason why we consider the quantity vol,,_1 (0K)/vol, (K)
in (5). Observe that this quantity is not scale-invariant, so it might seem somewhat
unnatural to study it, but it is well-suited to the aforementioned induction thanks to the
following simple lemma:

Lemma 7. Fiz m,n € N and an m-dimensional subspace V of R"™. Let O C V* be an
open subset of V- and let G C V be an open subset of V. Then, for Q = O+ G we have

vol,—1(99)  vol,—,—1(00)  vol,,—1(90G)

vol, (92) B vol,—m (0) + vol, (G) @

Furthermore, if T : R™ — V is a linear isomorphism and K C R™ is a convezr body,
then

voly,—1(OTK) _ voly,—1(0K) .4
g T . n ’77L7 8
Vol (TK) vol () 1T lwing)—e (8)

where || - ||(v,||.|u)—ep 95 the operator norm from V', equipped with the norm inherited
2
from €3, to €5

Proof. For (7), note that since O L G we have vol,(Q2) = vol,_,(0)vol,,(G), and
0 = (00 + G) U (O + 0G) where vol,,_1((00 + G) N (O + 9G)) = 0, so vol,,_1(9N) =
voly,—m—1(00)vol,, (G) + voly, ., (O)voly,—1 (0G).
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For (8), denote p = [T || (v,-|ln)—ez» SO that T=1(V N B™) C pB™. Consequently,
3

V6 € R, TK +6(VNB")=T(K+6T'(VNB") CT(K +6pB™).

By combining this inclusion with (3), we see that

Vol 1 (OTK) < lim ~2 (T(K + 6pB™)) — vol,, (TK)
met = d—0+ S

vol, (K + 6pB™) — vol,, (K) (2)

= det(T) 51_1>%1+ 5 = det(T)voly,—1(0K)p
~ vol,,(TK)
= Wvolm_l(al()p. O

Remark 8. We stated Lemma 7 with K being a convex body since that is all that we
need herein. However, the proof does not rely on its convexity in an essential way; all
that is needed is that K is a body in R whose boundary is sufficiently regular so that
the identity (2) holds (with n replaced by m).

Any matrix B as in Lemma 6 must have a row with at least n/m nonzero entries.
Indeed, otherwise the total number of nonzero entries of B would be less than m(n/m) =
n, so at least one of the n columns B would have to vanish, in contradiction to the
assumed linear independence (as s > 1). Thus, there exists j € {1,...,m} such that at
least [n/m] of the entries of B*e; € R™ do not vanish. Those entries are integers, so
IB*ejllez = +/[n/m]. Hence, the quantity ||Bl|ey e = |[|B*|leg ¢y in (6) cannot be less

than /[n/m].

Question 9. Given m,n € N and C > 1, what is the order of magnitude of the largest
s = s(m,n,C) € N for which there exists B € My, xn(Z) such that any s of the columns

of B are linearly independent and
n
1Blleg »ep < Cyf oo

The following lemma is a step towards Question 9 that we will use in the implemen-
tation of Lemma 6:

Lemma 10. Suppose that m,n € N satisfy 4 < m < n and n = (mlogm)/4. There exist
s € N with s 2 m?/n and B € My« (Z) of rank m such that any s of the columns of B

are linearly independent and
n
IBlls e S /2
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Lemma 10 suffices for our purposes, but it is not sharp. We will actually prove below
that in the setting of Lemma 10 for every 0 < & < 1 there exist s € N with s >
mite/n® = m(m/n)* > m?/n and B € M,,x,(Z) of rank m such that any s of the
columns of B are linearly independent and |[Bl|ey e Se v/n/m.

While Question 9 arises naturally from Lemma 6 and it is interesting in its own
right, fully answering Question 9 will not lead to removing the o(1) term in Theorem 1
altogether; the bottleneck in the ensuing reasoning that precludes obtaining such an
answer to Question 2 (if true) is elsewhere.

Proof of Theorem 5 assuming Lemma 6 and Lemma 10. We will proceed by induction
on n. In preparations for the base of the induction, we will first record the following
estimate (which is sharp when the lattice is Z™). The Voronoi cell of a rank n sublattice
A of Z™, namely the set

K= {m eER":Vy e, ||zl < |z - y”gg},
is a A-parallelotope that satisfies K O 1 B". Indeed, if y € A\ {0}, then [y > 1 since
y € Z™ ~ {0}. Hence,

1
Vz € §Bna |z = ylles = ylley — llzlley = l|zleg-

By Lemma 3, it follows that vol,_1(0K)/vol,(K) < 2n. This gives the (weak) a priori
bound Q(n) < 2n.

Fix n € N and suppose that there exists m € N satisfying 4 < m < n and n >
(mlogm)/4. By using Lemma 6 with the matrix B from Lemma 10 we see that there is
a universal constant x > 4 for which

Qn) < (% * Q(m)\/g> . )

We will prove by induction on n € N the following upper bound on Q(n), thus proving
Theorem 5:

Q(n) < 4Hﬁe\/2(logn) 10g(2l€). (10)

If n < 4k2, then by the above discussion Q(n) < 2n < 4k+/n, so that (10) holds. If
n > 4k2, then define

m def {ne‘ 2(log n) log(%)J . (11)

It is straightforward to verify that this choice of m satisfies 4 < m < n and n >
(mlogm)/4 (with room to spare), i.e., the above conditions for (9) to hold are met.
Using the induction hypothesis, it follows that
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Q(m) \f < AoV 20008 (2R)

11 ogn— ogn) lo K (o) K 12
() f¢2(lg V/2(log ) Tog(2w) ) log(2r) (12)

< 4ky/ne

< 41%\/56(\/2logn—\/log(2ﬁ))\/log(2ﬁ) — 2\/56«/2(10gn) log(2k)

where the penultimate step of (12) uses the inequality va — b < y/a — b/(2y/a), which
holds for every a,b € R with a > b; in our setting a = logn and b = /2(logn) log(2x)
and a > b because we are now treating the case n > 4x2. A substitution of (12) into (9),
while using that m > inexp (— 2(logn) log(2/{)) holds thanks to (11), gives (10), thus
completing the proof of Theorem 5. O

We will next prove Lemma 6, which is the key recursive step that underlies Theorem 1.

Proof of Lemma 6. We will start with the following two elementary observations to fa-
cilitate the ensuing proof. Denote the span of the rows of B by V = B*R™ C R" and
notice that dim(V) = m as B is assumed to have rank m. Suppose that A is a lat-
tice of rank n that is contained in Z". Firstly, we claim that the rank of the lattice
VLN A equals n — m. Indeed, we can write V- N A = C(Z" N C V1) where C is an
invertible matrix with integer entries, i.e., C € M,,(Z) N GL,(Q), such that A = CZ".
Furthermore, V+ = Ker(B), so the dimension over Q of Q" N V+ equals n — m. As
C~! € GL,(Q), it follows that C~*V+ contains n — m linearly independent elements of
Z™. Secondly, we claim that the orthogonal projection Proj,, A of A onto V is a discrete
subset of V, and hence is a lattice; its rank will then be dim(V) = m because we are
assuming that span(A) = R™, so span(Proj,A) = Projy (span(A)) = Proj,,(R™) = V.
We need to check that for any {z1,zs2,...} C A such that lim;_, ., Proj,,z; = 0 there is
ip € N such that Proj,x; = 0 whenever i € {ip,ig + 1,...}. Indeed, as V+ = Ker(B)
we have Bx = BProjyx for every x € R”, so lim;_,~, Bx; = 0. But, Bz; € Z™ for every
i € N because B € M, (Z) and z; € A C Z™. Consequently, there is ig € N such that
Bz; = 0 for every i € {ig,ig + 1,...}, i.e., 7; € Ker(B) = V+ and hence Proj,,z; = 0.

Let K; C V* be the Voronoi cell of VX N A, namely K; = {zx € V+: vy e Vin
A, zlleg < lle—ylleg}- Ty = (y1,...,yn) € VF = Ker(B), then y1Bey +- - - +y,Be,, =
0. By the assumption on B, this implies that if also y # 0, then [{i € {1,...,n}: y; #
0}] > s. Consequently, as the entries of elements of A are integers,

Vye (VENA) {0}, ylle > Vs

Hence, if z € %(Vl‘ N B"), then
Vs _ Vs
Yye (VENAN{0}, =yl > lylle — el > Vs =5 = 5 > llzlle-

This means that K; D @(VL N B™), and therefore by Lemma 3 we have
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voly,—m—1(0K7) cnom_ 2(n —m)
voly—m (K1) %\/E s

Next, fix i € {1,...,m}. By the definition of V, the ¢’th row B*e¢; of B belongs to V,

(13)

s0
V(z,i) € R" x {1,...,m}, (x,B"e;) = (Projy x,B%e;). (14)

Since all of the entries of B are integers, it follows that

V(i) € Z" x {1,...,m},  (BProjyz,e;) = (Projyz,B*e;) = (z,B*¢;) € Z.

In other words, BProj,,Z" C Z™, and hence the lattice BProj;,A is a subset of Z™.
Furthermore, B is injective on V because Ker(B) = V1, so BProj,,Z" is a rank m
sublattice of Z™. By the definition of Q(m), it follows that there exists a BProj; A-
parallelotope K§ C R™ such that

V01m71 (8Kg)

e < Qo) (15)

Because V+ = Ker(B) and the rank of B is m = dim(V'), the restriction By of B to
V is an isomorphism between V' and R™. Letting 7' : R™ — V denote the inverse of
By, define Ko = TKY. By combining (the second part of) Lemma 7 with (15), we see
that

VOlm_l (8K2)

vol,, (K>) < Q(m)|[Blleg e "

Let K = K1+ K5 C R™. By combining (the first part of) Lemma 7 with (13) and (16),
we have

vol,—1(0K) o 2(n—m)
vol, (K) = /s

Hence, the proof of Lemma 6 will be complete if we check that K is a A-parallelotope.

+ Q(m)|[Blleg e

Our construction ensures by design that this is so, as K; is a (VN A)-parallelotope and
K> is a Projy, A-parallelotope; verifying this fact is merely an unraveling of the definitions,
which we will next perform for completeness.

Fix z € R™. As R™ = BProj,, A + K9, there is z € A with BProj 2 € BProj,x + KJ.
Apply T to this inclusion and use that TB|y is the identity mapping to get Proj, z €
Projy-x 4+ K2. Next, V+ = K1+ V1L NA since K is the Voronoi cell of VN A, so there is
y € VN A such that Projy . z—Projy . o € y+ K. Consequently, z = Proj, . 2+ Proj 2 €
Projyox+y+ K1 +Projyz + Ko =2 +y+ K € A+ K. Hence, A+ K =R".

It remains to check that for every w € A \ {0} the interior of K does not intersect
w + K. Indeed, by the definition of K, if k belongs to the interior of K, then k = ki + ko,
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where k1 belongs to the interior of K7 and ko belongs to the interior of K5. Since B
is injective on Ky C V, it follows that Bky belongs to the interior of BKy = KJ. If
Projy,w # 0, then BProj,,w € BProj,, A \ {0}, so because K is a BProj,, A-parallelotope,
Bks ¢ BProj, w+ K3. By applying T to is inclusion, we see that ko ¢ Projy,w+ K», which
implies that k ¢ w + K. On the other hand, if Proj,w = 0, then w € (V+ N A) ~ {0}.
Since K, is a V+ N A-parallelotope, it follows that k1 ¢ w + Ky, s0 k ¢ w+ K. O

To complete the proof of Theorem 5, it remains to prove Lemma 10. For ease of later
reference, we first record the following straightforward linear-algebraic fact:

Observation 11. Fiz m,n,s € N with s < m < n. Suppose that there exists A € My, 5 (Z)
such that any s of the columns of A are linearly independent. Then, there also exists
B € Myxn(Z) such that any s of the columns of B are linearly independent, B has rank

m, and
ey <AJ1+ [AIZ - (17)

Proof. Let » € {1,...,m} be the rank of A. By permuting the rows of A, we may

1B

assume that its first » rows, namely A*eq,...,A*e, € R" are linearly independent. Also,
since we can complete A*e,...,A"e,. to a basis of R™ by adding n — r vectors from
{e1,...,en} € R™ by permuting the columns of A, we may assume that the vectors
A*er,...,A*er €01, ..,6m € R™ are linearly independent. Let B € M, x,(Z) be the
matrix whose rows are A*ey,...,A%e,,€r41,...,€m, so that B has rank m by design.
Also,

T m

Ve €R",  [Ballfp =Y (An)i+ Y 2F < ([AlGoey +1)ll2l7-
i=1 j=r+1

Therefore (17) holds. It remains to check that any s of the columns of B are linearly
independent. Indeed, fix S C {1,...,n} with |[S| = s and {¢;};es € R such that
> jes @jBij = 0 for every i € {1,...,m}. In particular, >°; g a;A;; = 0 for every
te{l,...,r}. If k€ {r +1,...,m}, then since the k’th row of A is in the span of the
first r rows of A, there exist Bi1,..., Bk € R such that Ax; = 2;1 BriAi; for every
j €{1,...,n}. Consequently, 3 e ajAr; = > i_ Bri > jeg @jAi; = 0. This shows that
Zjes a;A;; = 0 for every ¢ € {1,...,m}. By the assumed property of A, this implies
that o; =0 for every j € S. O

The following lemma is the main existential statement that underlies our justification
of Lemma 10:

Lemma 12. There exists a universal constant ¢ > 0 with the following property. Let
d,m,n = 3 be integers that satisfy d < m < n and n = (mlogm)/d. Suppose also that
s € N satisfies
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1
c (md\ 2

Then, there exists an m-by-n matriz A € My, ({0,1}) with the following properties:

o Any s of the columns of A are linearly independent over the field Z/(2Z);
o FEvery column of A has at most d nonzero entries;
o Every row of A has at most 5dn/m nonzero entries.

The ensuing proof of Lemma 12 consists of probabilistic reasoning that is common
in the literature on Low Density Parity Check (LDPC) codes; it essentially follows the
seminal work [18]. While similar considerations appeared in many places, we could not
locate a reference that states Lemma 12.% A peculiarity of the present work is that, for
the reason that we have seen in the above deduction of Theorem 5 from Lemma 6 and
Lemma 10, we need to choose a nonstandard dependence of m on n; recall (11).

In the course of the proof of Lemma 12 we will use the following probabilistic estimate:

Lemma 13. Let {W (t) = (W(t,1),...,W(t,m))}2, be the standard random walk on the
discrete hypercube {0,1}™, starting at the origin. Thus, W(0) = 0 and for each t € N
the random vector W (t) is obtained from the random vector W(t — 1) by choosing an
index i € {1,...,m} uniformly at random and setting

W)= W(t-1,1),..., W(t—1,i—1),1-W(t—1,i), W(t—1,i+1),..., W(t—1,m)).
Then, Prob[W (t) = 0] < 2(t/m)*/? for every t € N.

Proof. If ¢ is odd, then Prob[W(¢) = 0] = 0, so suppose from now that ¢ is even. Let
P € Myg,13m x {0,131 (R) denote the transition matrix of the random walk W, i.e.,

m

v {0,1}"" - R, Vo € {0,1}™, Pf(a:):%Zf(x—l—ei mod 2).

=1

Then, Prob[W(t) = 0] = (P")go. By symmetry, all of the 2" diagonal entries of P?
are equal to each other, so (P')go = Trace(P!)/2™. For every S C {0,1}™, the Walsh
function (z € {0,1}™) + (—1)Xies® is an eigenvector of P whose eigenvalue equals
1 —2|S|/m. Consequently,

Prob[W (t) = 0] = 2i Trace(P') = - Z ( ) (1 - %) (19)

3 The standard range of parameters that is discussed in the LDPC literature is, using the notation of
Lemma 12, either when m X< n, or when s, d are fixed and the pertinent question becomes how large n can
be as m — o0o; sharp bounds in the former case are due to [18] and sharp bounds in the latter case are
due to [29,32]. Investigations of these issues when the parameters have intermediate asymptotic behaviors
appear in [15,14,2,9,21,23].



A. Naor, O. Regev / Journal of Functional Analysis 285 (2023) 110122 13

Suppose that fi,..., B, are independent {0,1}-valued unbiased Bernoulli random
variables, namely, Prob[8; = 0] = Prob[8; = 1] = 1/2 for any i € {1,...,m}. By
Hoeffding’s inequality (e.g., [38, Theorem 2.2.6)),

Yu > 0, Prob[ zm:(ﬂz—%ﬂ 24 <26_¥. (20)
i=1

Observing that the right hand side of (19) is equal to the expectation of (1 — % > ,Bi)t,

we see that
m t
(26-3)]

1=

Prob[W (t) = 0] & <_%>tm
i(ﬁz_%)’ >u] du

o\' T
:(—> /tut_lProbl
m 0 =1
@) /2\' T 2\ % /¢ 2\% /t\* 2
<ol = W lemm du=2(= “ g2 = ) =2(=) . O
m m 2 m 2 m
0

With Lemma 13 at hand, we can now prove Lemma 12.

[MES

Proof of Lemma 12. Consider the random matrix A € M,,«,({0,1}) whose columns are
independent identically distributed copies Wi (d),..., W, (d) of W(d), where W(0) =
0,W(1),W(2),... is the standard random walk on {0,1}™ as in Lemma 13. By de-
sign, this means that each column of A has at most d nonzero entries. Fixing (i,j) €
{1,....,m} x{1,...,n}, if W;(d,7) = 1, then in at least one of the d steps of the random
walk that generated W;(d) the ith coordinate was changed. The probability of the latter
event equals 1 — (1 — 1/m)<. Hence, Prob[W;(d,i) = 1] < 1 — (1 —1/m)? < d/m and
therefore for every fixed S C {1,...,n}, the probability that W;(d,i) = 1 for every j € S
is at most (d/m)!S!. Consequently, the probability that each one of the m rows of A has
at most ¢ = [4dn/m] nonzero entries is at least

¢ ¢ ‘
n d en\¢ [ d edn e\4logm 1
— Z) s1-m(=) (Z2) =1- =) >1-m(-= > -
! m(f) (m) z1 m(() (m> ! m(m() =1 m(4> -y

where the first step is the standard elementary bound (}}) < (%)e (see, e.g., [33, Sec-
tion 4]), the penultimate step uses £ > 4dn/m and the assumption n > (mlogm)/d, and
the final step holds because m > 3.

It therefore suffices to prove that with probability greater than 2/3 the vectors
{Wi(d)}ies € {0,1}™ are linearly independent over Z/(2Z) for every @ # S C {1,...,n}
with |S] < s, where s € N satisfies (18) and the universal constant ¢ > 0 that appears
in (18) will be specified later; see (24). So, it suffices to prove that with probability greater
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than 2/3 we have ), ¢ Wi(d) # 0 mod 2 for every @ # S C {1,...,n} with [S] < s.
Hence, letting D denote the number of @ # S C {1,...,n} with |S| < s that satisfy
> ics Wi(d) = 0 mod 2, it suffices to prove that 2/3 < Prob[D = 0] = 1 — Prob[D > 1].
Using Markov’s inequality, it follows that the proof of Lemma 12 will be complete if we
demonstrate that E[D] < 1/3.

The expectation of D can be computed exactly. Indeed,

S

E[D] = IE[ > Ly wi@=0 mea 2}} = <:f> Prob[W(dr) = 0],  (21)

SCA{1,...,n} r=1
I<ISI<s

where we used the fact that ), ¢ Wi(d) mod 2 € {0,1}™ has the same distribution as
W(d|S]) for every @ # S C {1,...,n}. By substituting the conclusion of Lemma 13
into (21) we see that

oS ()E) S e

where in the last step we again used the standard bound (7:) < (%)r For every r €

{1,...,s},

di d_q dé d_q (18) 1
e 27“1 n < e 251 n < edcg_1<?7 (23)
m?2 m?2
provided that
(LN
c< Inf (@) € (0,1). (24)

Therefore, when (24) holds we may substitute (23) into (22) to get that E[D] <
2y =3 O

We can now prove Lemma 10, thus concluding the proof of Theorem 5.

Proof of Lemma 10. We will prove the following stronger statement (Lemma 10 is its
special case ¢ = 1). If 0 < ¢ < 2 and m,n € N satisfy 2 + [2/e] < m < n and
n = (mlogm)/(2+[2/e|), then there exist s € N with s > em!T¢/n® and B € M,,,x(Z)
such that any s of the columns of B are linearly independent, the rows of B are linearly
independent, and

1 /n
Blesep S <y
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Indeed, apply Lemma 12 with d = 2+ |2/¢] > max{3,2/c} (equivalently, d > 3 is the
largest integer such that 2/(d — 2) > €) to deduce that there exist an integer s with

1

1 /mi\7=2 m (m)ﬁ € (m)éf emltte
S = | —& = —|— sm\|— =
d \ n? d \n ) n o2ne ’

and a matrix A € My,xn({0,1}) C My, xn(Z) such that any s of the columns of A are
linearly independent over Z/(2Z), every column of A has at most d nonzero entries, and

every row of A has at most 5dn/m nonzero entries. If a set of vectors vy, ...,vs € {0,1}™
is linearly independent over Z/(2Z), then it is also linearly independent over R (e.g.,
letting V € M, xs({0,1}) denote the matrix whose columns are vy,...,vs, the latter
requirement is equivalent to the determinant of V*V € M;({0,1}) being an odd integer, so
in particular it does not vanish). Hence, any s of the columns of A are linearly independent
over R. Also,

||A\|£g—>em\(e{nlaax Z|A ) (]E?llax Z|Aw) < 5dn Vis \/;

where the first step is a standard bound which holds for any m-by-n real matrix (e.g., [20,
Corollary 2.3.2]). Thus, A has all of the properties that we require from the matrix B in
Lemma 10, except that we do not know that A has rank m, but Observation 11 remedies
this (minor) issue. 0O

We end by asking the following question:

Question 14. Fiz n € N. Does there exist an integer parallelotope K C R™ such that the
(n — 1)-dimensional area of the orthogonal projection Proj,. K of K along any direction
0 € S is at most n°M) ?

An application of Cauchy’s surface area formula (see [27, Section 5.5]), as noted in,
e.g., [31, Section 1.6], shows that a positive answer to Question 14 would imply Theo-
rem 1. Correspondingly, a positive answer to Question 14 with n°®) replaced by O(1)
would imply a positive answer to Question 2.

Apart from the intrinsic geometric interest of Question 14, if it had a positive answer,
then we would deduce using [31] that there exists an integer parallelotope K C R™
such that the normed space X whose unit ball is K has certain desirable nonlinear
properties, namely, we would obtain an improved randomized clustering of X and an
improved extension theorem for Lipschitz functions on subsets of X; we refer to [31]
for the relevant formulations since including them here would result in a substantial
digression.
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