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We prove that for any n ∈ N there is a convex body K ⊆ Rn

whose surface area is at most n 1
2 +o(1), yet the translates of K

by the integer lattice Zn tile Rn.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Given n ∈ N and a lattice Λ ⊆ Rn, a convex body K ⊆ Rn is called a Λ-parallelotope 
(e.g., [12]) if the translates of K by elements of Λ tile Rn, i.e., Rn = Λ +K =

⋃
x∈Λ(x +K), 

and the interior of (x + K) ∩ (y + K) is empty for every distinct x, y ∈ Λ. One calls 
K a parallelotope (parallelogon if n = 2 and parallelohedron if n = 3; some of the 
literature calls a parallelotope in Rn an n-dimensional parallellohedron; e.g., [1,11]) if 
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it is a Λ-parallelotope for some lattice Λ ⊆ Rn. We call a Zn-parallelotope an integer 
parallelotope.

The hypercube [−1
2 , 12 ]n is an integer parallelotope whose surface area equals 2n. 

By [16, Corollary A.2], for every n ∈ N there exists an integer parallelotope K ⊆ Rn

whose surface area is smaller than 2n by a universal constant factor. Specifically, 
the surface area of the integer parallelotope K that was considered in [16] satisfies 
voln−1(∂K) � σ(n + O(n2/3)), where σ = 2 

∑∞
s=1(s/e)s/(s3/2s!) � 1.23721. To the 

best of our knowledge, this is the previously best known upper bound on the smallest 
possible surface area of an integer parallelotope. The main result of the present work is 
the following theorem:

Theorem 1. For every n ∈ N there exists an integer parallelotope whose surface area is 
n

1
2 +o(1).

Because the covolume of Zn is 1, the volume of any integer parallelotope K ⊆ Rn

satisfies voln(K) = 1. Consequently, by the isoperimetric inequality we have1

voln−1(∂K) � voln−1(Sn−1)
voln(Bn) n−1

n

�
√

n, (1)

where Bn def= {(x1, . . . , xn) ∈ Rn : x2
1 + · · · + x2

n � 1} denotes the Euclidean ball and 

Sn−1 def= ∂Bn.
Thanks to (1), Theorem 1 is optimal up to the implicit lower order factor. It remains 

open to determine whether this lower-order factor could be removed altogether, namely 
to answer the following question:

Question 2. For every n ∈ N, does there exist an integer parallelotope K ⊆ Rn with 
voln−1(∂K) � √

n?

Early investigations in the context of Question 2 focused on exact minimizers in 
low dimensions. The smallest possible perimeter of a unit-area parallelogon in R2 was 
evaluated in [17] and the smallest possible perimeter of an integer parallelogon in R2

was evaluated in [7]. The corresponding questions for parallelohedra in R3 remain open 
(though see [28] for a recent exact solution of a different isoperimetric-type question for 
parallelohedra); for example, Conjecture 7.5 in [5] asks for the smallest possible surface 
area of a unit volume parallelohedron in R3 (and proposes a conjectural minimizer). A 
lot of effort has also been devoted to the analogous questions (exact minimizers when 

1 We use the following conventions for asymptotic notation, in addition to the usual O(·), o(·), Ω(·), Θ(·)
notation. For a, b > 0, by writing a � b or b � a we mean that a � Cb for a universal constant C > 0, 
and a � b stands for (a � b) ∧ (b � a). If we need to allow for dependence on parameters, we indicate it 
by subscripts. For example, in the presence of an auxiliary parameter ε, the notation a �ε b means that 
a � C(ε)b, where C(ε) > 0 may depend only on ε, and analogously for a �ε b and a �ε b.
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n ∈ {2, 3}) for tiling bodies that need not be convex, see [22] for the exact solution in 
this setting when n = 2, whereas the corresponding question when n = 3 remains open; 
see [24,39,4].

While the higher dimensional asymptotic nature of Question 2 differs from the afore-
mentioned classical search for the exact minimum in low dimensions, it is a natural 
outgrowth of it and a folklore question that became popular after interest in this direc-
tion arose due to its connection to theoretical computer science that was found in [16]
and was pursued in [34,25,3,26,6] (we stress that we are not aware of algorithmic im-
plications of Question 2 and our interest in it stems only from the perspective of pure 
mathematics). To the best of our knowledge, Question 2 appeared in print only in [6, 
Section 6], which asks for the smallest possible growth rate (as n → ∞) of the sur-
face area of an integer parallelotope in Rn, albeit without specifying the O(

√
n) rate as 

Question 2 does.
In [25] it was proved that Question 2 has a positive answer if one drops the requirement 

that the tiling set is convex, i.e., by [25, Theorem 1.1] for every n ∈ N there is a compact 
set Ω ⊆ Rn such that Rn = Zn + Ω, the interior of (x + Ω) ∩ (y + Ω) is empty for 
every distinct x, y ∈ Zn, and voln−1(∂Ω) � √

n; see also the proof of this result that was 
found in [3]. The lack of convexity of Ω is irrelevant for the applications to computational 
complexity that were found in [16]. The proofs in [25,3] produce a set Ω that is decidedly 
non-convex. Our proof of Theorem 1 proceeds via an entirely different route and provides 
a paralletotope whose surface area comes close to the guarantee of [25] (prior to [25], the 
best known upper bound on the smallest possible surface area of a compact Zn-tiling 
set was the aforementioned 1.23721n of [16]).

It could be tempting to view the existence of the aforementioned compact set Ω as 
evidence for the availability of an integer parallelotope with comparable surface area, 
but this is a tenuous hope because the convexity requirement from a parallelotope im-
poses severe restrictions. In particular, by [30] for every n ∈ N there are only finitely 
many combinatorial types of parallelotopes in Rn.2 In fact, by combining [10, Section 6]
with [30,37] we see that K ⊆ Rn is a parallelotope if and only if K is a centrally sym-
metric polytope, all of the (n − 1)-dimensional faces of K are centrally symmetric, and 
the orthogonal projection of K along any of its (n − 2)-dimensional faces is either a 
parallelogram or a centrally symmetric hexagon.

Of course, Theorem 1 must produce such a constrained polytope. To understand how 
this is achieved, it is first important to stress that this becomes a straightforward task 
if one only asks for a parallelotope with small surface area rather than for an integer
parallelotope with small surface area. Namely, it follows easily from the literature that 
for every n ∈ N there exist a rank n lattice Λ ⊆ Rn whose covolume is 1 and a Λ-
parallelotope K ⊆ Rn that satisfies voln−1(∂K) � √

n. Indeed, by [35] there is a rank 

2 Thus, just for the sake concreteness (not important for the present purposes): Since antiquity it was 
known that there are 2 types of parallelogons; by [13] there are 5 types of parallelohedra; by [8,36] there 
are 52 types of 4-dimensional parallelotopes.
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n lattice Λ ⊆ Rn of covolume 1 whose packing radius is at least c
√

n, where c > 0 is 
a universal constant. Let K be the Voronoi cell of Λ, namely K consists of the points 
in Rn whose (Euclidean) distance to any point of Λ is not less than their distance to 
the origin. Then, K is a Λ-parallelotope, voln(K) = 1 since the covolume of Λ is 1, and 
K ⊇ c

√
nBn since the packing radius of Λ is at least c

√
n. Consequently, the surface 

area of K is at most c−1√
n by the following simple lemma that we will use multiple 

times in the proof of Theorem 1:

Lemma 3. Fix n ∈ N and R > 0. Suppose that a convex body K ⊆ Rn satisfies K ⊇ RBn. 
Then,

voln−1(∂K)
voln(K) � n

R
.

Lemma 3 is known (e.g., [19, Lemma 2.1]); for completeness we will present its short 
proof in Section 2.

Even though the packing radius of Zn is small, the above observation drives our induc-
tive proof of Theorem 1, which proceeds along the following lines. Fix m ∈ {1, . . . , n −1}
and let V be an m-dimensional subspace of Rn. If the lattice V ⊥ ∩ Zn has rank n − m

and its packing radius is large, then Lemma 3 yields a meaningful upper bound on the 
(n − m − 1)-dimensional volume of the boundary of the Voronoi cell of V ⊥ ∩ Zn. We 
could then consider the lattice Λ ⊆ V which is the orthogonal projection of Zn onto 
V , and inductively obtain a Λ-parallelotope (residing within V ) for which the (m − 1)-
dimensional volume of its boundary is small. By considering the product (with respect 
to the identification of Rn with V ⊥ × V ) of the two convex bodies thus obtained, we 
could hope to get the desired integer parallelotope.

There are obvious obstructions to this plan. The subspace V must be chosen so that the 
lattice V ⊥ ∩Zn is sufficiently rich yet it contains no short nonzero vectors. Furthermore, 
the orthogonal projection Λ of Zn onto V is not Zm, so we must assume a stronger 
inductive hypothesis and also apply a suitable “correction” to Λ so as to be able to 
continue the induction. It turns out that there is tension between how large the packing 
radius of V ⊥ ∩Zn could be, the loss that we incur due to the aforementioned correction, 
and the total cost of iteratively applying the procedure that we sketched above. Upon 
balancing these constraints, we will see that the best choice for the dimension m of V
is m = n exp(−Θ(

√
log n)). The rest of the ensuing text will present the details of the 

implementation of this strategy.

2. Proof of Theorem 1

Below, for each n ∈ N the normed space �n
2 = (Rn, ‖ · ‖�n

2 ) will denote the standard 
Euclidean space, i.e.,

∀x = (x1, . . . , xn) ∈ Rn, ‖x‖�n
def=

√
x2

1 + · · · + x2
n.
2
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The standard scalar product of x, y ∈ Rn will be denoted 〈x, y〉 def= x1y1 + · · · + xnyn. 
The coordinate basis of Rn will be denoted e1, . . . , en, i.e., for each i ∈ {1, . . . , n} the 
ith entry of ei is 1 and the rest of the coordinates of ei vanish. We will denote the origin 
of Rn by 0 = (0, . . . , 0). For 0 < s � n, the s-dimensional Hausdorff measure on Rn

that is induced by the �n
2 metric will be denoted by vols(·). In particular, if K ⊆ Rn is 

a convex body (compact and with nonempty interior), then the following identity holds 
(see, e.g., [27]):

voln−1(∂K) = lim
δ→0+

voln(K + δBn) − voln(K)
δ

. (2)

If V is a subspace of Rn, then its orthogonal complement (with respect to the �n
2

Euclidean structure) will be denoted V ⊥ and the orthogonal projection from Rn onto 
V will be denoted ProjV . When treating a subset Ω of V we will slightly abuse nota-
tion/terminology by letting ∂Ω be the boundary of Ω within V , and similarly when we 
will discuss the interior of Ω we will mean its interior within V . This convention results 
in suitable interpretations of when K ⊆ V is a convex body or a parallelohedron (with 
respect to a lattice of V ). The variant of (2) for a convex body K ⊆ V becomes

voldim(V )−1(∂K) = lim
δ→0+

voldim(V )
(
K + δ(V ∩ Bn)

)
− voldim(V )(K)

δ
. (3)

Proof of Lemma 3. Since K ⊇ RBn, for every δ > 0 we have

K + δBn ⊆ K + δ

R
K =

(
1 + δ

R

)( R

R + δ
K + δ

R + δ
K

)
=

(
1 + δ

R

)
K, (4)

where the last step of (4) uses the fact that K is convex. Consequently,

voln−1(∂K) (2)= lim
δ→0+

voln(K + δBn) − voln(K)
δ

(4)
� lim

δ→0+

(
1 + δ

R

)n − 1
δ

voln(K)

= n

R
voln(K). �

The sequence {Q(n)}∞
n=1 that we introduce in the following definition will play an 

important role in the ensuing reasoning:

Notation 4. For each n ∈ N let Q(n) be the infimum over those Q � 0 such that for 
every lattice Λ ⊆ Zn of rank n there exists a Λ-parallelotope K ⊆ Rn that satisfies

voln−1(∂K)
voln(K) � Q. (5)

As voln(K) = 1 for any integer parallelotope K ⊆ Rn, Theorem 1 is a special case of 
the following result:
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Theorem 5. There exists a universal constant C � 1 such that Q(n) � √
neC

√
log n for 

every n ∈ N.

The following key lemma is the inductive step in the ensuing proof of Theorem 5 by 
induction on n:

Lemma 6. Fix m, n, s ∈ N with s � m � n. Suppose that B ∈ Mm×n(Z) is an m-by-n
matrix all of whose entries are integers such that B has rank m and any s of the columns 
of B are linearly independent. Then,

Q(n) � 2(n − m)√
s

+ Q(m)‖B‖�n
2 →�m

2 , (6)

where ‖ · ‖�n
2 →�m

2 denotes the operator norm from �n
2 to �m

2 .

The fact that Theorem 5 treats any sublattice of Zn of full rank (recall how Q(n)
is defined), even though in Theorem 1 we are interested only in Zn itself, provides a 
strengthening of the inductive hypothesis that makes it possible for our proof of Lemma 6
to go through. If Λ is an arbitrary full rank sublattice of Zn, then a Λ-parallelotope K ⊆
Rn need no longer satisfy voln(K) = 1, so the inductive hypothesis must incorporate the 
value of voln(K), which is the reason why we consider the quantity voln−1(∂K)/voln(K)
in (5). Observe that this quantity is not scale-invariant, so it might seem somewhat 
unnatural to study it, but it is well-suited to the aforementioned induction thanks to the 
following simple lemma:

Lemma 7. Fix m, n ∈ N and an m-dimensional subspace V of Rn. Let O ⊆ V ⊥ be an 
open subset of V ⊥ and let G ⊆ V be an open subset of V . Then, for Ω = O + G we have

voln−1(∂Ω)
voln(Ω) = voln−m−1(∂O)

voln−m(O) + volm−1(∂G)
volm(G) . (7)

Furthermore, if T : Rm → V is a linear isomorphism and K ⊆ Rm is a convex body, 
then

volm−1(∂TK)
volm(TK) � volm−1(∂K)

volm(K) ‖T −1‖(V,‖·‖�n
2

)→�m
2

, (8)

where ‖ · ‖(V,‖·‖�n
2

)→�m
2

is the operator norm from V , equipped with the norm inherited 
from �n

2 , to �m
2 .

Proof. For (7), note that since O ⊥ G we have voln(Ω) = voln−m(O)volm(G), and 
∂Ω = (∂O + G) ∪ (O + ∂G) where voln−1((∂O + G) ∩ (O + ∂G)) = 0, so voln−1(∂Ω) =
voln−m−1(∂O)volm(G) + voln−m(O)volm−1(∂G).
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For (8), denote ρ = ‖T −1‖(V,‖·‖�n
2

)→�m
2

, so that T −1(V ∩ Bn) ⊆ ρBm. Consequently,

∀δ ∈ R, TK + δ(V ∩ Bn) = T
(
K + δT −1(V ∩ Bn)

)
⊆ T (K + δρBm).

By combining this inclusion with (3), we see that

volm−1(∂TK) � lim
δ→0+

volm
(
T (K + δρBm)

)
− volm(TK)

δ

= det(T ) lim
δ→0+

volm(K + δρBm) − volm(K)
δ

(2)= det(T )volm−1(∂K)ρ

= volm(TK)
volm(K) volm−1(∂K)ρ. �

Remark 8. We stated Lemma 7 with K being a convex body since that is all that we 
need herein. However, the proof does not rely on its convexity in an essential way; all 
that is needed is that K is a body in Rm whose boundary is sufficiently regular so that 
the identity (2) holds (with n replaced by m).

Any matrix B as in Lemma 6 must have a row with at least n/m nonzero entries. 
Indeed, otherwise the total number of nonzero entries of B would be less than m(n/m) =
n, so at least one of the n columns B would have to vanish, in contradiction to the 
assumed linear independence (as s � 1). Thus, there exists j ∈ {1, . . . , m} such that at 
least �n/m� of the entries of B∗ej ∈ Rn do not vanish. Those entries are integers, so 
‖B∗ej‖�n

2 �
√

�n/m�. Hence, the quantity ‖B‖�n
2 →�m

2 = ‖B∗‖�m
2 →�n

2 in (6) cannot be less 
than 

√
�n/m�.

Question 9. Given m, n ∈ N and C > 1, what is the order of magnitude of the largest 
s = s(m, n, C) ∈ N for which there exists B ∈ Mm×n(Z) such that any s of the columns 
of B are linearly independent and

‖B‖�n
2 →�m

2 � C

√
n

m
.

The following lemma is a step towards Question 9 that we will use in the implemen-
tation of Lemma 6:

Lemma 10. Suppose that m, n ∈ N satisfy 4 � m � n and n � (m log m)/4. There exist 
s ∈ N with s � m2/n and B ∈ Mm×n(Z) of rank m such that any s of the columns of B
are linearly independent and

‖B‖�n
2 →�m

2 �
√

n
.

m
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Lemma 10 suffices for our purposes, but it is not sharp. We will actually prove below 
that in the setting of Lemma 10 for every 0 < ε � 1 there exist s ∈ N with s �
m1+ε/nε = m(m/n)ε � m2/n and B ∈ Mm×n(Z) of rank m such that any s of the 
columns of B are linearly independent and ‖B‖�n

2 →�m
2 �ε

√
n/m.

While Question 9 arises naturally from Lemma 6 and it is interesting in its own 
right, fully answering Question 9 will not lead to removing the o(1) term in Theorem 1
altogether; the bottleneck in the ensuing reasoning that precludes obtaining such an 
answer to Question 2 (if true) is elsewhere.

Proof of Theorem 5 assuming Lemma 6 and Lemma 10. We will proceed by induction 
on n. In preparations for the base of the induction, we will first record the following 
estimate (which is sharp when the lattice is Zn). The Voronoi cell of a rank n sublattice 
Λ of Zn, namely the set

K =
{

x ∈ Rn : ∀y ∈ Λ, ‖x‖�n
2 � ‖x − y‖�n

2

}
,

is a Λ-parallelotope that satisfies K ⊇ 1
2Bn. Indeed, if y ∈ Λ � {0}, then ‖y‖�n

2 � 1 since 
y ∈ Zn

� {0}. Hence,

∀x ∈ 1
2Bn, ‖x − y‖�n

2 � ‖y‖�n
2 − ‖x‖�n

2 � ‖x‖�n
2 .

By Lemma 3, it follows that voln−1(∂K)/voln(K) � 2n. This gives the (weak) a priori 
bound Q(n) � 2n.

Fix n ∈ N and suppose that there exists m ∈ N satisfying 4 � m � n and n �
(m log m)/4. By using Lemma 6 with the matrix B from Lemma 10 we see that there is 
a universal constant κ � 4 for which

Q(n) � κ

(
n

3
2

m
+ Q(m)

√
n

m

)
. (9)

We will prove by induction on n ∈ N the following upper bound on Q(n), thus proving 
Theorem 5:

Q(n) � 4κ
√

ne
√

2(log n) log(2κ). (10)

If n � 4κ2, then by the above discussion Q(n) � 2n � 4κ
√

n, so that (10) holds. If 
n > 4κ2, then define

m
def=

⌊
ne−

√
2(log n) log(2κ)

⌋
. (11)

It is straightforward to verify that this choice of m satisfies 4 � m < n and n �
(m log m)/4 (with room to spare), i.e., the above conditions for (9) to hold are met. 
Using the induction hypothesis, it follows that
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Q(m)
√

n

m
� 4κ

√
ne

√
2(log m) log(2κ)

(11)
� 4κ

√
ne

√
2

(
log n−

√
2(log n) log(2κ)

)
log(2κ)

� 4κ
√

ne

(√
2 log n−

√
log(2κ)

)√
log(2κ) = 2

√
ne

√
2(log n) log(2κ),

(12)

where the penultimate step of (12) uses the inequality 
√

a − b � √
a − b/(2

√
a), which 

holds for every a, b ∈ R with a � b; in our setting a = log n and b =
√

2(log n) log(2κ)
and a > b because we are now treating the case n > 4κ2. A substitution of (12) into (9), 
while using that m � 1

2n exp
(

−
√

2(log n) log(2κ)
)

holds thanks to (11), gives (10), thus 
completing the proof of Theorem 5. �

We will next prove Lemma 6, which is the key recursive step that underlies Theorem 1.

Proof of Lemma 6. We will start with the following two elementary observations to fa-
cilitate the ensuing proof. Denote the span of the rows of B by V = B∗Rm ⊆ Rn and 
notice that dim(V ) = m as B is assumed to have rank m. Suppose that Λ is a lat-
tice of rank n that is contained in Zn. Firstly, we claim that the rank of the lattice 
V ⊥ ∩ Λ equals n − m. Indeed, we can write V ⊥ ∩ Λ = C(Zn ∩ C−1V ⊥) where C is an 
invertible matrix with integer entries, i.e., C ∈ Mn(Z) ∩ GLn(Q), such that Λ = CZn. 
Furthermore, V ⊥ = Ker(B), so the dimension over Q of Qn ∩ V ⊥ equals n − m. As 
C−1 ∈ GLn(Q), it follows that C−1V ⊥ contains n − m linearly independent elements of 
Zn. Secondly, we claim that the orthogonal projection ProjV Λ of Λ onto V is a discrete 
subset of V , and hence is a lattice; its rank will then be dim(V ) = m because we are 
assuming that span(Λ) = Rn, so span(ProjV Λ) = ProjV (span(Λ)) = ProjV (Rn) = V . 
We need to check that for any {x1, x2, . . .} ⊆ Λ such that limi→∞ ProjV xi = 0 there is 
i0 ∈ N such that ProjV xi = 0 whenever i ∈ {i0, i0 + 1, . . .}. Indeed, as V ⊥ = Ker(B)
we have Bx = BProjV x for every x ∈ Rn, so limi→∞ Bxi = 0. But, Bxi ∈ Zm for every 
i ∈ N because B ∈ Mm×n(Z) and xi ∈ Λ ⊆ Zn. Consequently, there is i0 ∈ N such that 
Bxi = 0 for every i ∈ {i0, i0 + 1, . . .}, i.e., xi ∈ Ker(B) = V ⊥ and hence ProjV xi = 0.

Let K1 ⊆ V ⊥ be the Voronoi cell of V ⊥ ∩ Λ, namely K1 = {x ∈ V ⊥ : ∀y ∈ V ⊥ ∩
Λ, ‖x‖�n

2 � ‖x −y‖�n
2 }. If y = (y1, . . . , yn) ∈ V ⊥ = Ker(B), then y1Be1 + · · ·+ynBen =

0. By the assumption on B, this implies that if also y �= 0, then |{i ∈ {1, . . . , n} : yi �=
0}| > s. Consequently, as the entries of elements of Λ are integers,

∀y ∈ (V ⊥ ∩ Λ) � {0}, ‖y‖�n
2 >

√
s.

Hence, if x ∈
√

s
2 (V ⊥ ∩ Bn), then

∀y ∈ (V ⊥ ∩ Λ) � {0}, ‖x − y‖�n
2 � ‖y‖�n

2 − ‖x‖�n
2 >

√
s −

√
s

2 =
√

s

2 � ‖x‖�n
2 .

This means that K1 ⊇
√

s (V ⊥ ∩ Bn), and therefore by Lemma 3 we have
2
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voln−m−1(∂K1)
voln−m(K1) � n − m

1
2
√

s
= 2(n − m)√

s
. (13)

Next, fix i ∈ {1, . . . , m}. By the definition of V , the i’th row B∗ei of B belongs to V , 
so

∀(x, i) ∈ Rn × {1, . . . , m}, 〈x, B∗ei〉 = 〈ProjV x, B∗ei〉. (14)

Since all of the entries of B are integers, it follows that

∀(x, i) ∈ Zn × {1, . . . , m}, 〈BProjV x, ei〉 = 〈ProjV x, B∗ei〉
(14)= 〈x, B∗ei〉 ∈ Z.

In other words, BProjV Zn ⊆ Zm, and hence the lattice BProjV Λ is a subset of Zm. 
Furthermore, B is injective on V because Ker(B) = V ⊥, so BProjV Zn is a rank m

sublattice of Zm. By the definition of Q(m), it follows that there exists a BProjV Λ-
parallelotope K0

2 ⊆ Rm such that

volm−1(∂K0
2 )

volm(K0
2 ) � Q(m). (15)

Because V ⊥ = Ker(B) and the rank of B is m = dim(V ), the restriction B|V of B to 
V is an isomorphism between V and Rm. Letting T : Rm → V denote the inverse of 
B|V , define K2 = TK0

2 . By combining (the second part of) Lemma 7 with (15), we see 
that

volm−1(∂K2)
volm(K2) � Q(m)‖B‖�n

2 →�m
2 . (16)

Let K = K1 +K2 ⊆ Rn. By combining (the first part of) Lemma 7 with (13) and (16), 
we have

voln−1(∂K)
voln(K) � 2(n − m)√

s
+ Q(m)‖B‖�n

2 →�m
2 .

Hence, the proof of Lemma 6 will be complete if we check that K is a Λ-parallelotope. 
Our construction ensures by design that this is so, as K1 is a (V ⊥ ∩Λ)-parallelotope and 
K2 is a ProjV Λ-parallelotope; verifying this fact is merely an unraveling of the definitions, 
which we will next perform for completeness.

Fix z ∈ Rn. As Rm = BProjV Λ + K0
2 , there is x ∈ Λ with BProjV z ∈ BProjV x + K0

2 . 
Apply T to this inclusion and use that T B|V is the identity mapping to get ProjV z ∈
ProjV x +K2. Next, V ⊥ = K1 +V ⊥ ∩Λ since K1 is the Voronoi cell of V ⊥ ∩Λ, so there is 
y ∈ V ⊥∩Λ such that ProjV ⊥z−ProjV ⊥x ∈ y+K1. Consequently, z = ProjV ⊥z+ProjV z ∈
ProjV ⊥x + y + K1 + ProjV x + K2 = x + y + K ∈ Λ + K. Hence, Λ + K = Rn.

It remains to check that for every w ∈ Λ � {0} the interior of K does not intersect 
w +K. Indeed, by the definition of K, if k belongs to the interior of K, then k = k1 +k2, 
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where k1 belongs to the interior of K1 and k2 belongs to the interior of K2. Since B
is injective on K2 ⊆ V , it follows that Bk2 belongs to the interior of BK2 = K0

2 . If 
ProjV w �= 0, then BProjV w ∈ BProjV Λ � {0}, so because K0

2 is a BProjV Λ-parallelotope, 
Bk2 /∈ BProjV w+K0

2 . By applying T to is inclusion, we see that k2 /∈ ProjV w+K2, which 
implies that k /∈ w + K. On the other hand, if ProjV w = 0, then w ∈ (V ⊥ ∩ Λ) � {0}. 
Since K1 is a V ⊥ ∩ Λ-parallelotope, it follows that k1 /∈ w + K1, so k /∈ w + K. �

To complete the proof of Theorem 5, it remains to prove Lemma 10. For ease of later 
reference, we first record the following straightforward linear-algebraic fact:

Observation 11. Fix m, n, s ∈ N with s � m � n. Suppose that there exists A ∈ Mm×n(Z)
such that any s of the columns of A are linearly independent. Then, there also exists 
B ∈ Mm×n(Z) such that any s of the columns of B are linearly independent, B has rank 
m, and

‖B‖�n
2 →�m

2 �
√

1 + ‖A‖2
�n

2 →�m
2

. (17)

Proof. Let r ∈ {1, . . . , m} be the rank of A. By permuting the rows of A, we may 
assume that its first r rows, namely A∗e1, . . . , A∗er ∈ Rn are linearly independent. Also, 
since we can complete A∗e1, . . . , A∗er to a basis of Rn by adding n − r vectors from 
{e1, . . . , en} ⊆ Rn, by permuting the columns of A, we may assume that the vectors 
A∗e1, . . . , A∗er, er+1, . . . , em ∈ Rn are linearly independent. Let B ∈ Mm×n(Z) be the 
matrix whose rows are A∗e1, . . . , A∗er, er+1, . . . , em, so that B has rank m by design. 
Also,

∀x ∈ Rn, ‖Bx‖2
�m

2
=

r∑
i=1

(Ax)2
i +

m∑
j=r+1

x2
j �

(
‖A‖2

�n
2 →�m

2
+ 1

)
‖x‖2

�n
2
.

Therefore (17) holds. It remains to check that any s of the columns of B are linearly 
independent. Indeed, fix S ⊆ {1, . . . , n} with |S| = s and {αj}j∈S ⊆ R such that ∑

j∈S αjBij = 0 for every i ∈ {1, . . . , m}. In particular, 
∑

j∈S αjAij = 0 for every 
i ∈ {1, . . . , r}. If k ∈ {r + 1, . . . , m}, then since the k’th row of A is in the span of the 
first r rows of A, there exist βk1, . . . , βkr ∈ R such that Akj =

∑r
i=1 βkiAij for every 

j ∈ {1, . . . , n}. Consequently, 
∑

j∈S αjAkj =
∑r

i=1 βki

∑
j∈S αjAij = 0. This shows that ∑

j∈S αjAij = 0 for every i ∈ {1, . . . , m}. By the assumed property of A, this implies 
that αj = 0 for every j ∈ S. �

The following lemma is the main existential statement that underlies our justification 
of Lemma 10:

Lemma 12. There exists a universal constant c > 0 with the following property. Let 
d, m, n � 3 be integers that satisfy d � m � n and n � (m log m)/d. Suppose also that 
s ∈ N satisfies
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s � c

d

(
md

n2

) 1
d−2

. (18)

Then, there exists an m-by-n matrix A ∈ Mm×n({0, 1}) with the following properties:

• Any s of the columns of A are linearly independent over the field Z/(2Z);
• Every column of A has at most d nonzero entries;
• Every row of A has at most 5dn/m nonzero entries.

The ensuing proof of Lemma 12 consists of probabilistic reasoning that is common 
in the literature on Low Density Parity Check (LDPC) codes; it essentially follows the 
seminal work [18]. While similar considerations appeared in many places, we could not 
locate a reference that states Lemma 12.3 A peculiarity of the present work is that, for 
the reason that we have seen in the above deduction of Theorem 5 from Lemma 6 and 
Lemma 10, we need to choose a nonstandard dependence of m on n; recall (11).

In the course of the proof of Lemma 12 we will use the following probabilistic estimate:

Lemma 13. Let {W (t) = (W (t, 1), . . . , W (t, m))}∞
t=0 be the standard random walk on the 

discrete hypercube {0, 1}m, starting at the origin. Thus, W (0) = 0 and for each t ∈ N

the random vector W (t) is obtained from the random vector W (t − 1) by choosing an 
index i ∈ {1, . . . , m} uniformly at random and setting

W (t) =
(
W (t−1, 1), . . . , W (t−1, i−1), 1−W (t−1, i), W (t−1, i+1), . . . , W (t−1, m)

)
.

Then, Prob[W (t) = 0] � 2(t/m)t/2 for every t ∈ N.

Proof. If t is odd, then Prob[W (t) = 0] = 0, so suppose from now that t is even. Let 
P ∈ M{0,1}m×{0,1}m(R) denote the transition matrix of the random walk W , i.e.,

∀f : {0, 1}m → R, ∀x ∈ {0, 1}m, Pf(x) = 1
m

m∑
i=1

f(x + ei mod 2).

Then, Prob[W (t) = 0] = (Pt)00. By symmetry, all of the 2m diagonal entries of Pt

are equal to each other, so (Pt)00 = Trace(Pt)/2m. For every S ⊆ {0, 1}m, the Walsh 
function (x ∈ {0, 1}m) �→ (−1)

∑
i∈S xi is an eigenvector of P whose eigenvalue equals 

1 − 2|S|/m. Consequently,

Prob[W (t) = 0] = 1
2m

Trace(Pt) = 1
2m

m∑
k=0

(
m

k

)(
1 − 2k

m

)t

. (19)

3 The standard range of parameters that is discussed in the LDPC literature is, using the notation of 
Lemma 12, either when m � n, or when s, d are fixed and the pertinent question becomes how large n can 
be as m → ∞; sharp bounds in the former case are due to [18] and sharp bounds in the latter case are 
due to [29,32]. Investigations of these issues when the parameters have intermediate asymptotic behaviors 
appear in [15,14,2,9,21,23].
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Suppose that β1, . . . , βm are independent {0, 1}-valued unbiased Bernoulli random 
variables, namely, Prob[βi = 0] = Prob[βi = 1] = 1/2 for any i ∈ {1, . . . , m}. By 
Hoeffding’s inequality (e.g., [38, Theorem 2.2.6]),

∀u � 0, Prob
[∣∣∣∣

m∑
i=1

(
βi − 1

2

)∣∣∣∣ � u

]
� 2e− 2u2

m . (20)

Observing that the right hand side of (19) is equal to the expectation of 
(
1 − 2

m

∑m
i=1 βi

)t, 
we see that

Prob[W (t) = 0] (19)=
(

− 2
m

)t

E

[( m∑
i=1

(
βi − 1

2

))t
]

=
(

2
m

)t
∞∫

0

tut−1Prob
[∣∣∣∣

m∑
i=1

(
βi − 1

2

)∣∣∣∣ � u

]
du

(20)
� 2t

(
2
m

)t
∞∫

0

ut−1e− 2u2
m du = 2

(
2
m

) t
2

(
t

2

)
! � 2

(
2
m

) t
2

(
t

2

) t
2

= 2
(

t

m

) t
2

. �

With Lemma 13 at hand, we can now prove Lemma 12.

Proof of Lemma 12. Consider the random matrix A ∈ Mm×n({0, 1}) whose columns are 
independent identically distributed copies W1(d), . . . , Wn(d) of W (d), where W (0) =
0, W (1), W (2), . . . is the standard random walk on {0, 1}m as in Lemma 13. By de-
sign, this means that each column of A has at most d nonzero entries. Fixing (i, j) ∈
{1, . . . , m} × {1, . . . , n}, if Wj(d, i) = 1, then in at least one of the d steps of the random 
walk that generated Wj(d) the ith coordinate was changed. The probability of the latter 
event equals 1 − (1 − 1/m)d. Hence, Prob[Wj(d, i) = 1] � 1 − (1 − 1/m)d � d/m and 
therefore for every fixed S ⊆ {1, . . . , n}, the probability that Wj(d, i) = 1 for every j ∈ S

is at most (d/m)|S|. Consequently, the probability that each one of the m rows of A has 
at most � = �4dn/m� nonzero entries is at least

1 − m

(
n

�

) (
d

m

)�

� 1 − m
(en

�

)�
(

d

m

)�

= 1 − m

(
edn

m�

)�

� 1 − m
(e

4

)4 log m

� 1
3 ,

where the first step is the standard elementary bound 
(

n
�

)
�

(
en
�

)� (see, e.g., [33, Sec-
tion 4]), the penultimate step uses � � 4dn/m and the assumption n � (m log m)/d, and 
the final step holds because m � 3.

It therefore suffices to prove that with probability greater than 2/3 the vectors 
{Wi(d)}i∈S ⊆ {0, 1}m are linearly independent over Z/(2Z) for every ∅ �= S ⊆ {1, . . . , n}
with |S| � s, where s ∈ N satisfies (18) and the universal constant c > 0 that appears 
in (18) will be specified later; see (24). So, it suffices to prove that with probability greater 
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than 2/3 we have 
∑

i∈S Wi(d) �≡ 0 mod 2 for every ∅ �= S ⊆ {1, . . . , n} with |S| � s. 
Hence, letting D denote the number of ∅ �= S ⊆ {1, . . . , n} with |S| � s that satisfy ∑

i∈S Wi(d) ≡ 0 mod 2, it suffices to prove that 2/3 < Prob[D = 0] = 1 − Prob[D � 1]. 
Using Markov’s inequality, it follows that the proof of Lemma 12 will be complete if we 
demonstrate that E[D] < 1/3.

The expectation of D can be computed exactly. Indeed,

E[D] = E

[ ∑
S⊆{1,...,n}

1�|S|�s

1{∑
i∈S Wi(d)≡0 mod 2

}
]

=
s∑

r=1

(
n

r

)
Prob[W (dr) = 0], (21)

where we used the fact that 
∑

i∈S Wi(d) mod 2 ∈ {0, 1}m has the same distribution as 
W (d|S|) for every ∅ �= S ⊆ {1, . . . , n}. By substituting the conclusion of Lemma 13
into (21) we see that

E[D] � 2
s∑

r=1

(
n

r

) (
dr

m

) dr
2

� 2
s∑

r=1

(
ed

d
2 r

d
2 −1n

m
d
2

)r

, (22)

where in the last step we again used the standard bound 
(

n
r

)
�

(
en
r

)r. For every r ∈
{1, . . . , s},

ed
d
2 r

d
2 −1n

m
d
2

� ed
d
2 s

d
2 −1n

m
d
2

(18)
� edc

d
2 −1 <

1
7 , (23)

provided that

c < inf
d�3

(
1

7ed

) 2
d−2

∈ (0, 1). (24)

Therefore, when (24) holds we may substitute (23) into (22) to get that E[D] <

2 
∑∞

r=1
1

7r = 1
3 . �

We can now prove Lemma 10, thus concluding the proof of Theorem 5.

Proof of Lemma 10. We will prove the following stronger statement (Lemma 10 is its 
special case ε = 1). If 0 < ε � 2 and m, n ∈ N satisfy 2 + �2/ε� � m � n and 
n � (m log m)/(2 +�2/ε�), then there exist s ∈ N with s � εm1+ε/nε, and B ∈ Mm×n(Z)
such that any s of the columns of B are linearly independent, the rows of B are linearly 
independent, and

‖B‖�n
2 →�m

2 � 1
√

n
.

ε m
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Indeed, apply Lemma 12 with d = 2 + �2/ε� � max{3, 2/ε} (equivalently, d � 3 is the 
largest integer such that 2/(d − 2) � ε) to deduce that there exist an integer s with

s � 1
d

(
md

n2

) 1
d−2

= m

d

(m

n

) 2
d−2 � ε

2m
(m

n

)ε

= εm1+ε

2nε
,

and a matrix A ∈ Mm×n({0, 1}) ⊆ Mm×n(Z) such that any s of the columns of A are 
linearly independent over Z/(2Z), every column of A has at most d nonzero entries, and 
every row of A has at most 5dn/m nonzero entries. If a set of vectors v1, . . . , vs ∈ {0, 1}m

is linearly independent over Z/(2Z), then it is also linearly independent over R (e.g., 
letting V ∈ Mm×s({0, 1}) denote the matrix whose columns are v1, . . . , vs, the latter 
requirement is equivalent to the determinant of V∗V ∈ Ms({0, 1}) being an odd integer, so 
in particular it does not vanish). Hence, any s of the columns of A are linearly independent 
over R. Also,

‖A‖�n
2 →�m

2 �
(

max
i∈{1,...,m}

n∑
j=1

|Aij |
) 1

2
(

max
j∈{1,...,n}

m∑
i=1

|Aij |
) 1

2 �
√

5dn

m
·
√

d � 1
ε

√
n

m
,

where the first step is a standard bound which holds for any m-by-n real matrix (e.g., [20, 
Corollary 2.3.2]). Thus, A has all of the properties that we require from the matrix B in 
Lemma 10, except that we do not know that A has rank m, but Observation 11 remedies 
this (minor) issue. �

We end by asking the following question:

Question 14. Fix n ∈ N. Does there exist an integer parallelotope K ⊆ Rn such that the 
(n − 1)-dimensional area of the orthogonal projection Projθ⊥K of K along any direction 
θ ∈ Sn−1 is at most no(1)?

An application of Cauchy’s surface area formula (see [27, Section 5.5]), as noted in, 
e.g., [31, Section 1.6], shows that a positive answer to Question 14 would imply Theo-
rem 1. Correspondingly, a positive answer to Question 14 with no(1) replaced by O(1)
would imply a positive answer to Question 2.

Apart from the intrinsic geometric interest of Question 14, if it had a positive answer, 
then we would deduce using [31] that there exists an integer parallelotope K ⊆ Rn

such that the normed space X whose unit ball is K has certain desirable nonlinear 
properties, namely, we would obtain an improved randomized clustering of X and an 
improved extension theorem for Lipschitz functions on subsets of X; we refer to [31]
for the relevant formulations since including them here would result in a substantial 
digression.
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