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Statistical Reachability Analysis of Stochastic
Cyber–Physical Systems Under Distribution Shift
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Abstract—Reachability analysis is a popular method to give
safety guarantees for stochastic cyber–physical systems (SCPSs)
that takes in a symbolic description of the system dynamics and
uses set-propagation methods to compute an overapproximation
of the set of reachable states over a bounded time horizon. In
this article, we investigate the problem of performing reachability
analysis for an SCPS that does not have a symbolic description
of the dynamics, but instead is described using a digital twin
model that can be simulated to generate system trajectories. An
important challenge is that the simulator implicitly models a
probability distribution over the set of trajectories of the SCPS;
however, it is typical to have a sim2real gap, i.e., the actual
distribution of the trajectories in a deployment setting may be
shifted from the distribution assumed by the simulator. We thus
propose a statistical reachability analysis technique that, given a
user-provided threshold 1−ε, provides a set that guarantees that
any trajectory during deployment lies in this set with probability
not smaller than this threshold. Our method is based on three
main steps: 1) learning a deterministic surrogate model from
sampled trajectories; 2) conducting reachability analysis over the
surrogate model; and 3) employing robust conformal inference
(CI) using an additional set of sampled trajectories to quantify the
surrogate model’s distribution shift with respect to the deployed
SCPS. To counter conservatism in reachable sets, we propose
a novel method to train surrogate models that minimizes a
quantile loss term (instead of the usual mean squared loss), and
a new method that provides tighter guarantees using CI using a
normalized surrogate error. We demonstrate the effectiveness of
our technique on various case studies.

Index Terms—Sim2real gap, statistical reachability analysis,
stochastic cyber–physical systems (SCPSs).

I. INTRODUCTION

SAFETY-CRITICAL cyber–physical systems operate in
highly dynamic and uncertain environments. It is common

to model such systems as stochastic dynamical systems where
given an initial configuration (or state) of the system, system
parameter values, and a sequence of exogenous inputs to the
system, a simulator can provide a system trajectory. Several
executions of the simulator can generate a sample distribution
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of the system trajectories, and such a distribution can then
be studied with the goal of analyzing safety and performance
specifications of the system. In safety verification analysis,
we are interested in checking if any system trajectory can
reach an unsafe state. A popular approach for safety veri-
fication considers only bounded-time safety properties using
(bounded-time) reachability analysis [1], [2], [3], [4], [5].
Here, the typical assumption is that the symbolic dynamics
of the simulator (i.e., the equations it uses to provide the
updated state from a previous state and stimuli) are known.
Most reachability analysis methods rely on a deterministic
description of the symbolic dynamics and use set-propagation
methods to compute a flowpipe or an overapproximation of
the set of states reachable over a specified time horizon. Other
methods allow the system dynamics to be stochastic, but rely
on linearity of the dynamics to propagate distributions over
initial states/parameters to compute probabilistic reach sets
[6], [7], [8], [9].

However, for complex cyber–physical systems, dynamical
models may be highly nonlinear or hybrid with artifacts,
such as look-up tables, learning-enabled components, and
proprietary closed-box functions making the symbolic dynam-
ics either unavailable, or difficult for existing (symbolic)
reachability analysis tools to analyze them. To address this
issue, we pursue the idea of model-free analysis, where the
idea is to compute reachable sets for the system from only
sampled system trajectories [10], [11]. The main idea of data-
driven reachability analysis in [10] consists of the following
main steps: Step 1: sample system trajectories based on
a user-specified distribution on a parametric set of system
uncertainties (such as the set of initial states); Step 2: train a
data-driven surrogate model to predict the next K states from a
given state (for example, a neural network (NN)-based model);
Step 3: perform set-propagation-based reachability analysis
using the surrogate dynamics; and Step 4: inflate the computed
flowpipe with a surrogate error term that guarantees that any
actually reached state is within the inflated reach set with
probability not smaller than a user-provided threshold.

There are three main challenges in this overall scheme:
1) in [10], a simple training loss based on minimizing the
mean square error between the surrogate model and the actual
system is used. This may lead to the error distribution to
have a heavy tail, which in turn leads to conservatism in the
inflated reach set; 2) the approach in [10] uses the uncer-
tainty quantification technique of conformal inference (CI) to
construct the inflated flowpipes, but quantifies surrogate error
per trajectory component (i.e., per state dimension and per
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trajectory time-step). These per-component-wise probabilistic
guarantees are then combined using union bounding, i.e., using
that P(A∪B) ≤ P(A)+P(B), leading to conservatism. This is
because requiring a 1 − ε probability threshold on the inflated
reach set requires stricter probability thresholds in the CI step
per component, i.e., thresholds 1−ε′ with ε′ = (ε/nK), where
n is the number of dimensions and K is the number of time-
steps in the trajectory. A stricter probability threshold induces
a larger uncertainty set, which implies greater conservatism;
and 3) the most significant real-world challenge is that the
surrogate model is usually learned based on the trajectories
sampled from the simulator, and thus distributed according
to the assumptions on stochasticity made by the simulator.
However, the actual trajectory distribution in the deployed
system may change. Typically, such distribution shifts can be
quantified using divergence measures, such as an f -divergence
or the Wasserstein distance [12].

To address these challenges, we propose a robust and
efficient approach to computing probabilistic reach sets for
stochastic systems, with the following main contributions:
1) we propose novel training algorithms to obtain surrogate
models to forecast trajectories from sampled initial states (or
other model parameters). Instead of minimizing the mean
square loss between predicted trajectories and the training
trajectories, we allow minimizing an arbitrary quantile of the
loss function. This provides our models with better overall
predictive performance over the entire trajectory space (i.e.,
over different state dimensions and time steps); 2) similar to
[10], we utilize CI to quantify prediction uncertainty. However,
inspired by work in [13], we compute the maximum of the
weighted residual errors to compute the nonconformity score
to use with CI which has the effect of normalizing component-
wise residuals. In contrast to [13], which solves a linear
complementarity problem to compute these weights, we obtain
these weights when training the surrogate model using gra-
dient descent and backpropagation; and 3) finally, to address
distribution shifts, we use techniques from robust CI [14].
Our analysis is motivated by [15] and valid for all trajectory
distributions corresponding to real-world environments that are
close to the original trajectory distribution used for training the
surrogate model; here, the proximity is measured by a certain
f -divergence metric [16].

We show that our training procedure and the use of the
max-based nonconformity score noticeably enhances data
efficiency and significantly improves the conservatism in
reachability analysis. This improvement in data efficiency
is the key factor that enables us to efficiently incorporate
robust CI in our reachability analysis. We empirically validate
our algorithms on challenging benchmark problems from
the cyber–physical systems community [17], and demonstrate
considerable improvement over prior work.

Related Work:
Reachability Analysis for Stochastic Systems With Known

Dynamics: Reachability analysis is a widely studied topic and
typically assumes access to the system’s underlying dynamics,
and the proposed guarantees are valid only on the given model
dynamics. Lin and Bansal [18] proposed DeepReach, a method
using neural PDE solvers for Hamilton–Jacobi method-based

reachability analysis in high-dimensional systems. While it
incorporates neural methods for reachability analysis, it still
requires access to the system dynamics. Alanwar et al. [19]
identified Markovian stochastic dynamics from data through
specific parametric models, such as linear or polynomial,
followed by reachability analysis on the identified models. In
contrast, our method employs NNs, which are not confined to
Markovian dynamics. The approach in [20] is an algorithm
that sequentially linearizes the dynamics and uses constrained
zonotopes for set representation and computation. Bortolussi
and Sanguinetti [21] developed a method utilizing Gaussian
Processes and statistical techniques to compute reachable
sets of dynamical systems with uncertain initial conditions
or parameters, providing confidence bounds for the recon-
struction and bounding the reachable set with probabilistic
confidence, extending to uncertain stochastic models.

Huang et al. [22] introduced a scalable method utilizing
Fourier transforms to compute forward stochastic reach
probability measures and sets for uncontrolled linear
systems with affine disturbances. Similar approaches are
explored in [6] and [23] for stochastic reachability analysis
of linear, potentially time-varying, discrete-time systems.
A constructive method utilizing convex optimization to
determine and compute probabilistic reachable and invariant
sets for linear discrete-time systems under stochastic
disturbances is introduced in [24]. We note that most existing
techniques are for systems with linear dynamics, while
we permit arbitrary stochastic dynamics. In Thorpe et al.
[25], a method utilizing conditional distribution embeddings
and random Fourier features is presented to efficiently
compute stochastic reachability safety probabilities for high-
dimensional stochastic dynamical systems without prior
knowledge of system structure. We note that this work does
not provide finite-data probability guarantees as we do, but
asymptotically converge to the exact reachset.

Probabilistic Guarantees and Reachability Analysis for
Unknown Stochastic Systems: Recent work has studied compu-
tation of reachable sets with probabilistic guarantees directly
from data. Devonport et al. [26] employed level sets of
Christoffel functions [27], [28] to achieve probabilistic reach
sets for general nonlinear systems. Specifically, let vd(x)

denote the vector of monomials up to degree d, and let M
denote the empirical moment matrix obtained by computing
the expected value of vd(x)�vd(x) by sampling over the set
of reachable states. An empirical inverse Christoffel function
�−1(x) is then defined as vd(x)�M−1vd(x). The main idea
in [29] and [30] is to empirically determine �−1(x) and give
probabilistic bounds using the volume of the actual reachset
contained in the sublevel sets of �−1(x). Tebjou et al. [30]
extended the method proposed in [26] by including CI. A
key challenge of this approach is estimating the moment
matrix M from data, which may not scale with increasing state
dimension n and user-selected degree d, as the dimension of
M is

(n+d
d

)
, and the approach requires inverting M.

Devonport and Arcak [29] used a Gaussian process-based
classifier to distinguish reachable from unreachable states and
approximate the reachset. However, the approach requires
adaptive sampling of initial states, which may require solving
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high-dimensional optimization problems. They also propose
an interval abstraction of the reachset, which, though it pro-
vides sample complexity bounds, can be overly conservative
and computationally costly in high-dimensional systems. The
method in [31] assumes partial knowledge of the model and
leverages data to handle Lipschitz-continuous state-dependent
uncertainty; their reachability analysis combines probabilistic
and worst-case analysis. Finally, the work presented [32]
combines simulation-guided reachability analysis with data-
driven techniques, utilizing a discrepancy function estimated
from system trajectories, which can be challenging to obtain.

Reachability Analysis for NNs: Recent approaches have
tackled the challenge of determining the output range of an
NN. These methods aim to compute an interval or a box (a vec-
tor of intervals) that encompasses the outputs of a given NN.
Katz et al. [33] introduced Reluplex, an SMT-based approach
that extends the simplex algorithm to handle ReLU constraints.
Huang et al. [22] employed a refinement-by-layer technique
to verify the presence or absence of adversarial examples in
the vicinity of a specific input. Dutta et al. [4] proposed an
efficient method using mixed-integer linear programming to
compute the range of an NN featuring only ReLU activation
functions. Tran et al. [34] proposed star-sets that offer similar
expressiveness as hybrid zonotopes and are used to provide
approximate and exact reachability of feed-forward ReLU
NNs. In our setting, this method was the most applicable.

II. PROBLEM STATEMENT AND PRELIMINARIES

Notation: We use bold letters to represent vectors and
vector-valued functions, while calligraphic letters denote sets
and distributions. The set {1, 2, . . . , n} is denoted as [n]. The
Minkowski sum is indicated by ⊕. We use x ∼ X to denote
that the random variable x is drawn from the distribution X .

Stochastic Dynamical Systems: We consider discrete-time
stochastic dynamical systems. While it is typical to describe
such systems using symbolic equations that describe how the
system evolves over time, we instead simply model the system
as a stochastic process. In other words, let S0, . . . , SK be a
set of K + 1 random vectors indexed by times 0, . . . , K. We
assume that for all times k, each Sk takes values from the set of
states S ⊆ R

n. A realization of the stochastic process, or the
system trajectory is a sequence of values s0, . . . , sK , denoted
as σ real

s0
. The joint distribution over S0, . . . , SK is called the

trajectory distribution Dreal
S,K of the system, and the marginal

distribution of S0 is called the initial state distribution W . We
assume that the initial state distribution W has support over a
compact set of initial states I, i.e., we assume that W is such
that Pr [s0 /∈ I] = 0. For example, such a stochastic dynamical
system could describe a Markovian process, where for any
k ≥ 1, the distribution of Sk only depends on the realization
of Sk−1 and not the values taken at any past time. However,
it is worth noting that the techniques presented in this article
can be applied to systems with non-Markovian dynamics.

In the remainder of this article, we largely focus on just the

system trajectories, so we abuse notation to denote s0
W∼ I to

signify that s0 is a value sampled from I using the initial state

distribution W .1 Similarly, σ real
s0

∼ Dreal
S,K is used to denote the

sampling of a trajectory from the trajectory distribution.
Quantification of Distribution Shift: In practice, we usually

do not have knowledge of the distribution Dreal
S,K . However,

one may have access to trajectories sampled from a distri-
bution Dsim

S,K that is close to Dreal
S,K , e.g., a simulator. Given

a distribution D, we use the notation P(D) to denote a set
of distributions close to D, where the notion of proximity
is defined using a suitable divergence measure or metric
quantifying distance between distributions. Common examples
include f -divergence measures (such as KL-divergence and
total variation distance) and metrics, such as the Wasserstein
distance [12], [35]. In this article, we assume that Dsim

S,K comes
from the ambiguity set P(Dsim

S,K ) that is centered at Dsim
S,K using

f -divergence balls around Dsim
S,K [35].2 Given a convex function

f : R → R satisfying f (1) = 0 and f (z) = +∞ for z < 0, the
f -divergence [16] between the probability distributions Dsim

S,K
and Dreal

S,K that both have support Z is

Df

(
Dreal

S,K ‖Dsim
S,K

)
=
∫

Z
f

(
dDreal

S,K

dDsim
S,K

)

dDsim
S,K .

Here, the argument of f is the Radon–Nikodym derivative
of Dsim

S,K w.r.t. Dreal
S,K . We define the set Pf ,τ (Dsim

S,K ) as an
f -divergence ball of radius τ ≥ 0 around Dsim

S,K as

Pf ,τ

(
Dsim

S,K

)
=
{
Dreal

S,K | Df

(
Dreal

S,K ‖Dsim
S,K

)
≤ τ
}
.

The radius τ and the function f are both user-specified param-
eters that quantify the distribution shift between Dreal

S,K and
Dsim

S,K that we have to account for in our reachability analysis.
Specifically, we have to perform reachability analysis for
random trajectories σ real

s0
∼ Dreal

S,K for all Dreal
S,K ∈ Pf ,τ (Dsim

S,K ).
CI: CI [36], [37], [38] is a data-efficient statistical tool

proposed for quantifying uncertainty, particularly valuable for
assessing the uncertainty in predictions made by machine
learning models [39], [40].

Consider a set of random variables z1, z2, . . . , zm+1 where
zi = (xi, yi) ∈ R

n × R for i ∈ [m + 1]. Assume that
z1, z2, . . . , zm+1 are independent and identically distributed
(i.i.d.). Let μ(xi) be a predictor that estimates outputs yi from
inputs xi. With a predefined miscoverage level ε ∈ (0, 1), CI
enables computation of a threshold d > 0 and a probabilistic
prediction interval C(xm+1) = [μ(xm+1)− d, μ(xm+1)+ d] ⊆
R for ym+1 that guarantees that Pr [ym+1 ∈ C(xm+1)] ≥ 1 − ε.
To compute the threshold d, we reason over the empirical
distribution of the residual errors between the predictor and
the ground truth data. Let Ri := |yi − μ(xi)| be the residual
error between yi and μ(xi) for i ∈ [m + 1]. Since the random
variables z1, z2, . . . , zm+1 are i.i.d., the residuals R1, . . . , Rm+1
are also i.i.d. If m satisfies � := �(m + 1)(1 − ε)� ≤ m, then
we take the �th smallest error among these m values which is
equivalent to

R∗
1−ε = Quantilec

1−ε{R1, . . . , Rm,∞} (1)

i.e., the (1 − ε)-quantile over R1, . . . , Rm,∞, see [41].

1W is assumed to be uniform or truncated Gaussian distributed in practice.
2Examples of f include f (z) = z log(z), which induces the KL-divergence

and f (z) = (1/2) | z − 1 |, which induces the total variation distance.
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CI uses this quantile to obtain the probability guarantee
Pr [Rm+1 ≤ R∗

1−ε] ≥ (1 − ε), see [36], [41]. For the choice of
Ri := |yi − μ(xi)|, this can be rewritten as

Pr
[
ym+1 ∈ [μ(xm+1) − R∗

1−ε, μ(xm+1) + R∗
1−ε

]] ≥ 1 − ε.(2)

The guarantees in (2) are marginal,3 i.e., over the random-
ness in Rm+1, R1, R2, . . . , Rm. Note that R∗

1−ε is a provable
upper bound for the (1− ε)-quantile4 of the error distribution.

Robust CI: Unlike CI, which assumes the data-point zm+1 is
sampled from the same distribution as the calibration samples
zi, i ∈ [m], robust CI relaxes this assumption and allows zm+1
to be sampled from a different distribution. Let us denote the
distribution of zi for i ∈ [m] as U and the distribution of zm+1
as V . As illustrated before, the residual Ri is a distribution
and defined as a function of zi. Let us denote the distribution
of Ri for i ∈ [m] with P and the distribution of Rm+1 with
Q. Further, assume Q is in Pf ,τ (P). Utilizing the results
from [14] that assumes the distribution of residual Rm+1 is
within an f -divergence ball of the distributions for R1, . . . , Rm

with radius τ ≥ 0, for the miscoverage level ε ∈ (0, 1), we
obtain

Pr
[
Rm+1 ≤ R∗

1−ε,τ

] ≥ 1 − ε

where R∗
1−ε,τ = Quantilec

(1−ε̄){R1, . . . , Rm,∞} is a robust
(1 − ε)-quantile that is equivalent to the (1 − ε̄)-quantile. We
refer to ε̄ as the adjusted miscoverage level which is computed
as ε̄ = 1 − g−1

f ,τ (1 − εm) where εm is obtained as the solution
of a series of convex optimizations problems as5

εm = 1 − gf ,τ

((
1 + 1

m

)
g−1

f ,τ (1 − ε)

)
,

gf ,τ (β) = inf

{
z ∈ [0, 1]

∣
∣∣∣βf

(
z

β

)
+ (1 − β)f

(
1 − z

1 − β

)
≤ τ

}

g−1
f ,τ (γ ) = sup

{
β ∈ (0, 1)

∣∣ gf ,τ (β) ≤ γ
}
. (3)

Computation of gf ,τ and g−1
f ,τ is efficient since they are

both solutions to 1-D convex optimization and therefore admit
efficient binary search procedures. In some cases, we have also
access to a closed form solution [14].

Example 1: For the total variation, f (z) = (1/2)|z − 1|,
we have gf ,τ (β) = max(0, β − τ), g−1

f ,τ (γ ) = γ + τ, γ ∈
(0, 1−τ). This implies that given radius τ ∈ [0, 1] an adjusted
miscoverage level ε̄ is infeasible if ε ≤ τ , and ε̄ is computed
as

ε̄ = 1 −
(

1 + 1

m

)
(1 − ε + τ), ε ∈ [τ, 1], τ ∈ [0, 1]. (4)

Problem Definition: We are given a closed-box stochastic
dynamical system as the training environment with the tra-
jectory distribution Dsim

S,K . We assume that when this system

3The guarantees from CI are marginal over all potentially sampled calibra-
tion sets. The guarantees over some fixed calibration set can be shown to be
a random variable that has distribution Beta(�, m + 1 − �) [39]. For example,
if m = 104, we get tight probabilistic guarantees for any ε ∈ (0, 1) as the
variance of the Beta distribution is bounded by 2.5 × 10−5.

4For any ε ∈ (0, 1), the (1 − ε)-quantile of a random variable R is defined
as inf{z ∈ R|Pr[R ≤ z] ≥ 1 − ε}.

5Following [14, Lemma A.2], we note that gf ,τ is related to the worst-case
CDF of any distribution with at most τ distribution shift, and g−1 is related
to the inverse worst-case CDF.

is deployed in the real world, the trajectories satisfy σ real
s0

∼
Dreal

S,K ∈ Pf ,τ (Dsim
S,K ). Given a user-specified failure probability

ε ∈ (0, 1) and an i.i.d. dataset of trajectories sampled from
Dsim

S,K , the problem is to obtain a probabilistically guaranteed
flowpipe X that contains σ real

s0
∼ Dreal

S,K for all Dreal
S,K ∈

Pf ,τ (Dsim
S,K ) with a confidence of 1 − ε. Formally

s0
W∼ I,

σ real
s0

∼ Dreal
S,K ∈ Pf ,τ (Dsim

S,K )

}

=⇒ Pr
[
σ real

s0
∈ X
]

≥ 1 − ε.

(5)

In other words, we are interested in computing a probabilisti-
cally guaranteed flowpipe X from a set of trajectories collected
from Dsim

S,K so that X is valid for all trajectories Dreal
S,K ∈

Pf ,τ (Dsim
S,K ), i.e., despite a potential distribution shift.

III. LEARNING SURROGATE MODEL SUITABLE FOR

PROBABILISTIC REACHABILITY ANALYSIS

As we do not have access to the system dynamics in
symbolic form, our approach to characterize the trajectory
distribution is to use a predictor, called the surrogate model.

Definition 1: A surrogate model F : X × 
 → Y is a
function that approximates a given function f : X → Y . Let
dY be some metric on Y , then the surrogate model guarantees
that for some value of θ ∈ 
, and for any x sampled from a
distribution over X , the induced distribution over the random
variable dY (F(x; θ), f (x)) has good approximation properties,
such as bounds on the moments of the distribution (e.g., mean
value) or bounds on the quantile of the distribution.

In our setting, the set X is the set of states S with
the distribution over X being Dsim

S,K and Y is the set of
K-step trajectories SK , i.e., F maps a given initial state
(or an uncertain model parameter) to the predicted K-step
trajectory of the system. The metric dY can be any metric
on the trajectory space. One example surrogate model is a
feedforward NN with n inputs and Kn outputs, represented as
σ̄s0 = F(s0; θ) where θ is the set of trainable parameters. To
train the surrogate model, we need to define a specific residual
error between a set of sampled trajectories and those predicted
by the model. While most surrogate models are trained using
the cumulative squared loss across a training dataset [42], we
consider a loss function that helps us reduce conservatism in
computing the probabilistic reach set of the system.

Training a Lipschitz-Bounded NN-Based Surrogate Model:
Training is a procedure to identify the parameter value θ

which makes the surrogate model a good approximation; we
use backpropagation to train the surrogate by sampling K-step
trajectories from the simulator of the original model. We call
this dataset T trn. The surrogate model predicts the trajectory

σ sim
s0

starting from an initial state sampled from s0
W∼ I. We

denote the predicted trajectory σ̄s0 corresponding to σ sim
s0

as

σ̄s0 =
[
s�

0 , F(s0 θ)
]
, where,F(s0 θ) =

[
F1(s0), . . . , Fn(s0), . . . , F(K−1)n+1(s0), . . . , FnK(s0)

]�
.

Here, F(i−1)n+r(s0) is the rth state component at the ith
time-step in the trajectory. In other words, we stack the
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dimension and time in the trajectory into a single vector.6

We remark that a trained surrogate model with a nonrestricted
Lipschitz constant is problematic for reachability analysis,
as approximation errors can get uncontrollably magnified
resulting in trivial bounds. As a result, we use techniques
from [43] to penalize the Lipschitz constant of the trained NN
over the course of the training process.

Residual Error: For training NN surrogate models, a com-
mon practice is to minimize a loss function, representing the
difference between the trajectory predicted by the surrogate
model and the actual trajectory. To formulate this difference,
we formally define the notion of the residual error as follows.

Definition 2 (Residual Error): Let ei ∈ R
n denotes the ith

basis vector of R
n. For a trajectory (s0, σ

sim
s0

) with σ sim
s0

sampled from Dsim
S,K , and s0

W∼ I, we define

Rj =
∣∣∣e�

j+nσ
sim
s0

− Fj(s0)

∣∣∣, j ∈ [nK]. (6)

Note that Rj is a non-negative prediction error between the
(j+n)th component7 of σ sim

s0
and its prediction Fj(s0), j ∈ [nK].

The trajectory residual R is then defined as the largest among
all scaled, component-wise prediction errors with scaling
factors αj > 0, j ∈ [nK], i.e., R is defined as

R = max
(
α1R1, α2R2, . . . , αnKRnK

)
. (7)

Note that this definition is inspired by [13].8 Compared
to [10], utilizing the maximum of weighted errors obvi-
ates the need to union bound component-wise probability
guarantees to obtain a trajectory-level guarantee. Let Ri =
max(α1R1

i , α2R2
i , . . . , αnKRnK

i ) for i ∈ [|T trn|] denotes the
trajectory residual as in (7) for the training dataset T trn.

Training Using a δ̄-Quantile Loss: Let δ̄ = 1 − ε̄ where ε̄

is the adjusted miscoverage level as defined previously. The
ultimate goal from training a surrogate model is to achieve a
higher level of accuracy in our reachability analysis. The mean
squared error (MSE) loss function is a popular choice to train
surrogate models; however, we later show that our proposed
flowpipe is generated based on the quantile of the trajectory
residual error. Although the MSE loss function is popular and
efficient, it may result in a heavy tailed distribution for the
residual error which can imply a noticeably larger quantile
and result in conservative flowpipes. Thus, to improve overall
statistical guarantees, we are interested in minimizing the δ̄-
quantile of the trajectory-wise residuals, for an appropriate δ̄ ∈
[0, 1); toward that end, we add a new trainable parameter q. We
can also setup the training process such that the scaling factors
α1, . . . , αnK become decision variables for the optimization
problem. Thus, the set of trainable parameters includes the
NN parameters θ , the scaling factors α1, . . . , αnK and the

6The main advantage of training the trajectory as a long vector in one shot
is that this approach eliminates the problem of compounding errors in time
series prediction; however, this comes with higher training runtimes.

7There is offset of n as the first n components of σ sim
s0

are the initial state.
8In this definition, we consider component-wise residual for Rj instead

of a state-wise residual as the component e�
j+nσ sim

s0
in σ sim

s0
may represent

different quantities like velocity or position. State-wise residuals may lead
to a higher level of conservatism in robust CI, as the magnitude of error in
different components of a state may be noticeably different.

parameter q that approximates the δ̄-quantile of the residual
loss. We define two loss functions.

1) The first loss function L1 is to set the trainable parameter
q as the δ̄-quantile of trajectory-wise residuals. This
loss function is inspired from literature on quantile
regression [44], and it is a well-known result that
minimizing this function yields q to be the δ̄-quantile
of R1, . . . , R|T trn|. Thus, given a batch of training data
points of size M < |T trn|, let

L1 =
M∑

i=1

δ̄ ReLU(Ri − q) + (1 − δ̄
)

ReLU(q − Ri).

(8)

2) Assuming q as the δ̄-quantile of the i.i.d. residuals Ri,
we let the second loss function L2 minimize

L2 = q

(
1

α1
+ 1

α2
+ · · · + 1

αnK

)
. (9)

This is motivated by the fact that, for all j ∈ [nK], Rj
i ≤

Ri/αj by the definition of Ri. Thus, the sum of errors
over the trajectory components is upper bounded by

UBi = Ri

(
1

α1
+ 1

α2
+ · · · + 1

αnK

)
(10)

and the δ̄-quantile of UBi, i ∈ [|T trn|] is nothing but
L2.9

Therefore, we define the loss function as

L = cL1 + L2 (11)

where c is a large number that penalizes L1 to make sure that q
serves as a good approximation for the δ̄-quantile. The training
itself uses standard backpropagation methods for computing
the gradient of the loss function, and uses stochastic gradient
descent to train the surrogate model.

Properties of Surrogate Model: We pick NNs as surrogate
models due to their computational advantages and the ability
to fit arbitrary nonlinear functions with low effort in tuning
hyper-parameters. We note that the input layer of the NN is
always of size n (the state dimension), and the output layer
is of size nK (the dimension of the predicted trajectory over
K time-steps.) In our experiments, we choose NNs with two
to three hidden layers for which we observed good results;
picking more hidden layers will give better training accuracy,
but may cause overfitting. In each hidden layer we pick an
increasing number of neurons between n and nK.

IV. SCALABLE DATA-DRIVEN REACHABILITY ANALYSIS

In this section, we show how we can compute a robust
probabilistically guaranteed reach set or flowpipe X ⊂ R

n(K+1)

for a stochastic dynamical system. Given a miscoverage level
ε, we wish to be at least (1 − ε)-confident about the reach-set
that we compute. For brevity, we introduce δ = (1 − ε). In

9In case we replace L2 with q, the trivial solution for scaling factors is
αj = 0, j ∈ [nK]. Therefore, the proposed secondary loss function L2 also
results in avoiding the trivial solution for scaling factors.
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the procedure that we describe, we compute a probabilistically
guaranteed δ-confident flowpipe, defined as follows.

Definition 3 (δ-Confident Flowpipe): For a given confi-
dence probability δ ∈ (0, 1), a distribution Dsim

S,K , the radius τ ,
and an f -divergence ball Pf ,τ (Dsim

S,K ), we say that X ⊆ R
n(K+1)

is a δ-confident flowpipe if we have Pr [σ real
s0

∈ X] ≥ δ for any

random trajectory σ real
s0

∼ Dreal
S,K ∈ Pf ,τ (Dsim

S,K ) with s0
W∼ I.

Our objective is to compute X while being limited to sample
trajectories from the training environment Dsim

S,K . We will
demonstrate that we can compute X with formal probabilistic
guarantees by combining reachability analysis on the surrogate
model trained from T trn and error analysis on this model via
robust CI.

Deterministic Reachsets for the Surrogate Models: Using
the surrogate model from Section III, we show how to perform
deterministic reachability analysis to get surrogate flowpipes.

Definition 4 (Surrogate Flowpipe): The surrogate flowpipe
X̄ ⊂ R

n(K+1) is defined as a superset of the image of F(I θ).
Formally, for all s0 ∈ I, we need that [s�

0 , F(s0 θ)] ∈ X̄.
Thus, to compute the surrogate flowpipe, we essentially

need to compute the image of I w.r.t. the F . This can be
accomplished by performing reachability analysis for NNs,
e.g., using tools, such as [3], [34], [45], and [46].

Robust δ-Confident Flowpipes: In spite of training the
surrogate model to maximize prediction accuracy, it is still
possible that a predicted trajectory is not accurate, especially
when predicting the system trajectory from a previously
unseen initial state. Note also that we trained the surrogate
model on trajectory data from Dsim

S,K . We thus cannot expect
the predictor to always perform well on trajectories drawn
from Dreal

S,K . We now show how to quantify this prediction
uncertainty using robust CI. To do so, we first sample an i.i.d.
set of trajectories from the training environment Dsim

S,K , which
we again denote as the calibration dataset.

Definition 5 (Calibration Data Set): The calibration dataset
Rcalib is defined as

Rcalib =
{
(
s0,i, Ri

)
∣
∣∣∣∣
s0,i

W∼ I, σ sim
s0,i

∼ Dsim
S,K

Ri = max
(
α1R1

i , . . . , αnKRnK
i

)

}

.

Here, σ sim
s0,i

refers to the trajectory starting at the ith initial state

sampled from W and the resulting trajectory from Dsim
S,K , and

Rj
i is as defined in (6).
Remarks 1: It is worth noting that although the data points

within a single trajectory may not be i.i.d., the trajectory σ sim
s0

can be treated as an i.i.d. random vector in the R
n(K+1)-space,

and subsequently the residuals are also i.i.d. This is crucial
to apply robust CI, which requires that the calibration set is
exchangeable (a weaker form of i.i.d.).

Let J sim
S,K be the distribution over trajectory-wise residuals

for trajectories from σ sim
s0

∼ Dsim
S,K . However, we wish to get

information about the trajectory-wise residual R for a trajec-
tory sampled from Dreal

S,K ∈ Pf ,τ (Dsim
S,K ). Let the distribution of

R induced by Dreal
S,K be denoted by J real

S,K . As a direct result
from the data processing inequality [47], the distribution shift
between Dreal

S,K and Dsim
S,K is larger than the distribution shift

between J real
S,K and J sim

S,K so that we have J real
S,K ∈ Pf ,τ (J sim

S,K ).

Knowing that J real
S,K ∈ Pf ,τ (J sim

S,K ), we can utilize robust
CI in [14] to find a guaranteed upper bound for the δ-
quantile of R. We call this guaranteed upper bound as robust
conformalized δ-quantile, and we denote it with R∗

δ,τ , where,
Pr [R ≤ R∗

δ,τ ] ≥ δ. Specifically, we utilize (3) to compute R∗
δ,τ

from the calibration dataset Rcalib.
Next we show that our definition of residual error introduced

in (7) allows us to use a single trajectory-wise nonconformity
score for applying robust CI (instead of the component-wise
CI as in [10]).

Lemma 1: Assume R∗
δ,τ is the δ̄-quantile computed over

the residuals Ri from the calibration dataset Rcalib. For the
residual R = max(α1R1, α2R2, . . . , αnKRnK) sampled from the
distribution J real

S,K ∈ Pf ,τ (J sim
S,K ), it holds that

Pr

⎡

⎣
nK∧

j=1

[
Rj ≤ R∗

δ,τ /αj
]
⎤

⎦ ≥ δ

where Rj is again the component-wise residual for j ∈ [nK].
Proof: The proof follows as the residual R is the maximum

of the scaled version of component-wise residuals so that:

R = max
(
α1R1, α2R2, . . . , αnKRnK

)
⇐⇒

nK∧

j=1

[
Rj ≤ R

αj

]
.

Now, since Pr [R ≤ R∗
δ,τ ] ≥ δ as well as R < R∗

δ,τ ⇐⇒ Rj <

R∗
δ,τ /αj for all j ∈ [nK], we can claim that Pr [

∧nK
j=1 [Rj ≤

R∗
δ,τ /αj]] ≥ δ

Next, we introduce the notion of an inflating zonotope to
define the inflated flowpipe from the surrogate flowpipe.

Definition 6 (Inflating Zonotope): A zonotope
Zonotope(b, A) is defined as a centrally symmetric polytope
with b ∈ R

k as its center, and A = {g1, . . . , gp} is a set of
generators, where gi ∈ R

k, that represents the set {b + μigi |
μi ∈ [−1, 1]}. Here, we introduce the inflating zonotope with
base vector

A = diag
(

01×n,
R∗

δ,τ

α1
, . . . ,

R∗
δ,τ

αnK

)

and center, b is the vector 0 of length (n + 1)K; the notation
diag(v) represents a diagonal matrix with the elements of v
along its diagonal and off-diagonal elements being zero.

Including this inflating zonotope in our probabilistic reach-
ability analysis leads to the following result.

Theorem 1: Let X̄ be a surrogate flowpipe of the surrogate
model F for the set of initial conditions I. Let R∗

δ,τ be
computed from the calibration dataset Rcalib, as shown before.
If we use R∗

δ,τ to construct the inflated surrogate flowpipe

X = X̄ ⊕ Zonotope(0, diag([01×n, e))

e = [R∗
δ,τ /α1, . . . , R∗

δ,τ /αnK
]

then, it holds that X is a δ-confident flowpipe for any σ real
s0

∼
Dreal

S,K ∈ Pf ,τ (Dsim
S,K ) with s0

W∼ I.
Proof: Assume again that σ real

s0
∼ Dreal

S,K ∈ Pf ,τ (Dsim
S,K )

with s0
W∼ I, and recall that R = max [α1R1, . . . , αnKRnK]
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where Rj = |e�
j+nσ

real
s0

−Fj(s0)|. Applying Lemma 1 results in

Pr [
∧nK

j=1(R
j ≤ R∗

δ,τ /αj)] ≥ δ. We rephrase this as

Pr

⎡

⎣
nK∧

j=1

(
| e�

j+nσ
real
s0

− Fj(s0) |≤ R∗
δ,τ /αj

)
⎤

⎦ ≥ δ.

Next, we define the interval Cj(s0) as

Cj(s0) := [Fj(s0) − R∗
δ,τ /αj Fj(s0) + R∗

δ,τ /αj
]

and accordingly obtain the guarantee that

Pr

⎡

⎣
nK∧

j=1

(
e�

j+nσ
real
s0

∈ Cj(s0)
)
⎤

⎦ ≥ δ.

Based on this representation, we can now see that

Pr
[
σ real

s0
∈ Zonotope

([
s�

0 ,F(s0 θ)
]
, diag

([
01×n, e

]))] ≥ δ. (12)

Finally, since Pr [s0 /∈ I] = 0 and X̄ is a surrogate flowpipe
for the surrogate model F on I, i.e., s0 ∈ I implies
[s�

0 ,F(s0 θ)] ∈ X̄, we can conclude

Zonotope
([

s�
0 ,F(s0 θ)

]
, diag

([
01×n, e

]))

⊂ X̄ ⊕ Zonotope
(
0, diag

([
01×n, e

])) = X. (13)

Consequently, we know that Pr [σ real
s0

∈ X] ≥ δ holds.
We note that the surrogate reachability, and also use of the

Minkowski sum in the reachability analysis, results in some
level of conservatism.

Remarks 2: We note that we can even compute the min-
imum size of the calibration dataset required to achieve a
desired confidence probability δ ∈ (0, 1). Robust CI [14]
imposes two constraints in this regard. The first constraint
specifies a relation between the adjusted miscoverage level ε̄

and the size of the calibration dataset as �(L+1)(1− ε̄)� ≤ L.
The second constraint is that the ranges of gf ,τ and g−1

f ,τ have

to be within [0, 1]. Thus, we can impose (1+1/L)g−1
f ,τ (δ) < 1,

or in other words L > �g−1
f ,τ (δ)/(1 − g−1

f ,τ (δ))�.
Tightening the Surface Area of the Flowpipe: The scaling

factors αj are trained to minimize the sum of errors over the
trajectory components, see (9). The expression R∗

δ,τ

∑nK
j=1 1/αj

arising from (9) can also be interpreted as the surface area
of the inflating zonotope, see Definition 6. We now show
how we can update scaling factors after training to reduce
the surface area to tighten the δ-confident flowpipe further.
Let us sample a new trajectory dataset T LP and compute the
prediction errors Rj

i and residuals Ri for i ∈ [|T LP|], and also
their conformalized robust δ̄-quantile R∗

δ,τ , using the trained
scaling factors αj and surrogate model.

The main idea for an efficient update of the trained scaling
factors is as follows. Assume α′

j is the updated version
of αj. If this update is such that the updated trajectory
residuals max(α′

1Ri
1, . . . , α

′
nKRi

nK), i ∈ [|T LP|] are the same
as the trajectory residuals Ri under αj, then R∗

δ,τ under the
updated α′

j remains the same. By defining ω′
j = 1/α′

j , we see

that the surface area R∗
δ,τ

∑nK
j=1 ω′

j of the inflating zonotope
depends linearly on ω′

j. On the other hand the constraint

Ri = max(R1
i /ω

′
1, . . . , RnK

i /ω′
nK), is a linear constraint. This

constraint can be equivalently represented as

∀i ∈
[
|T LP|

]
, j ∈ [nK] Riω

′
j ≥ Rj

i

under the additional assumption that the updated scaling
factors ω′

j are minimized. This means an efficient update on
scaling factors to reduce the surface area can be done via linear
programming with decision variables ω′

j, j ∈ [nK], i.e.,

minimize
nK∑

j=1

ω′
j s.t. ∀i ∈

[
|T LP|

]
, j ∈ [nK] ω′

j ≥ Rj
i/Ri

(14)

which has the analytical solution ω′
j = maxi [Rj

i/Ri].

V. EXPERIMENTAL RESULTS

To mimic real-world systems that can produce actual trajec-
tory data, we use stochastic difference equation-based models
derived from dynamical system models. In these difference
equations, we assume additive Gaussian noise that models
uncertainty in observation, dynamics, or even modeling errors.

Our theoretical guarantees depend on knowledge of the
distribution shift τ . In practice, however, τ is usually not
known a priori but can be estimated from the data. For
the purpose of providing an empirical examination of our
results, we fix τ a priori to compute the δ-confident flowpipe
and construct a system Dreal

S,K from Dsim
S,K by varying system

parameters such that J real
S,K ∈ Pf ,τ (J sim

S,K ). We ensure that this
holds by estimating the distribution shift, denoted by τ̃ , as the
f -divergence between J sim

S,K and J real
S,K and by making sure that

τ̃ ≤ τ . In our experiments, we used the total variation distance
for f , and used 3 × 105 trajectories to estimate τ̃ .

We use ReLU activation functions in our surrogate NN-
based models motivated by recent advances in NN verification
with ReLU activations. We specifically use the NNV toolbox
from [34] for reachability analysis of the surrogate model.
While other activation functions could be used, we expect
more conservative results in case we utilize non-ReLU acti-
vation functions. The approach in [34] uses star-sets (an
extension of zonotopes) to represent the reachable set and
employs two main methods: 1) the exact-star method that
performs exact but slow computations and 2) the approx-star
method that is conservative but faster. To mitigate the runtime
of the exact-star technique and the conservatism of the approx-
star technique, set partitioning can be utilized [48], where
initial states are partitioned into subregions and reachability is
done on each subregion in parallel.

As per Theorem 1, our results are guaranteed to be valid
with a confidence of δ. To determine how tight this bound
is, we will empirically examine the computed probabilistic
flowpipes. We do so by sampling i.i.d. trajectories from Dreal

S,K
10

and computing the ratio of the trajectories that are included in
the probabilistic flowpipes, which we denote by �̃. In addition,
to check the coverage guarantee δ for R∗

δ,τ directly, we also
report the ratio of the trajectories that provide a residual less

10We use trajectories close to the worst case where τ̃ is close to τ .
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TABLE I
SHOWS THE DETAIL OF OUR COMPUTATION PROCESS TO PROVIDE PROBABILISTICALLY GUARANTEED FLOWPIPES. THE TIME HORIZON FOR

EXPERIMENTS 1, 5, AND 6 IS K = 50 TIME-STEPS AND FOR THE EXPERIMENTS 2, 3, AND 4 IS K = 100 TIME-STEPS. THE SAMPLING TIME FOR

QUADCOPTER AND TIME-REVERSED VAN DER POL (TRVDP) ARE 0.05 AND 0.02 S, RESPECTIVELY. WE EXAMINE THE RESULTS WITH A VALID

DISTRIBUTION SHIFT (EXPLAINED IN DETAIL IN TABLE II) THAT IS, LESS THAN THE MAXIMUM SPECIFIED DISTRIBUTION SHIFT IN TERMS OF TOTAL

VARIATION. THIS SHIFT IS ESTIMATED THROUGH THE COMPARISON BETWEEN 300 000 TRAJECTORIES FROM Dreal
S,K AND Dsim

S,K . WE ALSO UTILIZE

10 000 TRAJECTORIES (NUMBER OF TRIALS) FROM THIS SPECIFIC DISTRIBUTION Dreal
S,K TO EXAMINE THE COVERAGE OF FLOWPIPES AND 300 000

TRAJECTORIES FOR EXAMINATION OF THE COVERAGE LEVEL FOR R∗
δ,τ (I.E., �̃, δ̃). TO EVALUATE THE CONTRIBUTION OF ROBUST CI, WE ALSO

SOLVE FOR THE FLOWPIPES AGAIN NEGLECTING THE DISTRIBUTION SHIFT, I.E., ε̄ = ε , AND SHOW THE COVERAGE GUARANTEE FOR R∗
δ,τ AND

FLOWPIPES MAY GET VIOLATED, (δ̃ < δ OR �̃ < δ), IN CASE THE SHIFTED DISTRIBUTION (DEPLOYMENT DISTRIBUTION) IS CONSIDERED. THE

RUNTIMES WE REPORT FOR REACHABILITY ASSUMES NO PARALLEL COMPUTING

than R∗
δ,τ , which we denote with δ̃. We emphasize that �̃ and

δ̃ are both expected to be greater than δ.
In the remainder, we first present a case study to compare

between reachability with surrogate models using the MSE
and our proposed quantile loss function in (11). We show
that the quantile loss function results in tighter probabilistic
flowpipes. After that, we present several case studies on a
12-D quadcopter and the time reversed van Der Pol dynamics.
The results are also summarized in Table I. We visualize
our flowpipes by their 2-D projection. Therefore, in case a
trajectory is included in all the visualized bounds, it does
not necessary mean the trajectory is covered. We instead,
determine the inclusion of traces in our star-sets using the
NNV toolbox which determines set inclusion by solving a
linear programming feasibility problem.

Comparison Between MSE and Quantile Minimization:
Experiment 1: Our first experiment will show the advantage
of training a surrogate model with quantile loss function
compared to training a surrogate model using the MSE loss

function. Therefore, we model Dsim
S,K as the nonlinear system

xk+1 = 0.985yk + sin(0.5xk) − 0.6 sin(xk + yk) − 0.07 + 0.01v1

yk+1 = 0.985xk + cos(0.5yk) − 0.6 cos(xk + yk) − 0.07 + 0.01v2

that generates a periodic motion. Here, v1 and v2 denote
random variables sampled from a normal distribution. In
this experiment, we do not consider a shifted stochastic
system Dreal

S,K , and instead sample trajectories from Dsim
S,K for

comparison of our two surrogate models. The first surrogate
model is trained as proposed in Section III using quantile
minimization, while the other surrogate model is trained with
the MSE loss function. Our results are shown upfront in
Fig. 1(a) where we compare the probabilistic reachable sets
of these two models.

In more detail, recall that the scaling factors α1, . . . , αnK of
our proposed method in Section III are jointly trained with the
surrogate model. However, since we do not train these scaling
factors jointly when we use the MSE loss function, we instead
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Fig. 1. (a) and (b) show a comparison between flowpipes and distributions
of UB/(nK), respectively, for training via MSE and training via our proposed
loss function (11). (a) Flowpipe for xk and yk over time steps. The red borders
are for flowpipes generated by MSE loss function and the blue ones are for
quantile based loss function. The shaded region shows an approximation of
flowpipe by recording trajectories, and the darkness of the green color shows
the density of the trajectories. The black lines are the borders for the shaded
region. The shaded area is generated via 300000 trajectories. (b) Distribution
of UB/(nK) for the MSE and the quantile-based NNs for 3 × 105 samples.
The 95represents the surface area of the obtained inflating zonotope. The
figure is cropped for better visibility.

compute them beforehand following [15]. In other words, we
normalize the component-wise residuals as

αj = 1/ωj where ωj = max
(

Rj
1, Rj

2, . . . , Rj
|T trn|

)

for each j ∈ [nK]. We utilized |T trn| = 105 random trajectories
with K = 50 for training the surrogate model. The initial
states were uniformly sampled from the set of initial states
I1 = [−0.5, 0.5] × [−0.5, 0.5]. In both case, we trained a
ReLU surrogate model with structure [2, 20, 50, 90, 100]
and we applied approx-star from the NNV [34] toolbox for
the reachability analysis. To lower the conservatism of approx-
star, we partition the set of initial states into 400 partitions, and
perform the surrogate reachability analysis for every partition
separately. The flowpipe is also computed for the confidence
level of δ ≥ 95%. The details of the experiment via quantile
minimization are also provided in Table I.

We additionally compare the surface area R∗
δ,τ

∑nK
j=1 1/αj of

the inflating zonotopes, see Definition 6, for both surrogate
models. Note that this surface area is the L2 loss in (9) when
q = R∗

δ,τ , which we enforce during training. The δ̄-quantile of
UBi as defined in (10) is the L2 loss, and hence approximates
the surface area of the inflating zonotope. To compare the
distributions of UBi, we simulate 3 × 105 trajectories and

TABLE II
INITIAL STATE DISTRIBUTION AND ADDED GAUSSIAN NOISE (MEAN: 0,

COVARIANCE: �) FOR THE TRAINING AND THE SHIFTED

ENVIRONMENTS; uni(I) DENOTES THE UNIFORM DISTRIBUTION OVER I

Fig. 2. Dynamics for the quadcopter. Here, initial set of states I2 = {s0|i
∈ [1, 6]: − 0.2 ≤ s0(i) ≤ 0.2, i ≥ 7:s0(i) = 0}.

Fig. 3. This figure shows the proposed flowpipes computed for the quadcopter
dynamics for each state component over the time horizon of 100 time steps
with δt = 0.05 that means 5 s operation of quadcopter. The red borders
show the flowpipe that contains trajectories from Dsim

S,K with provable coverage
of δ ≥ 99.99%. The green shaded area shows the density of a collection
of 300 000 of these trajectories, and the darker color means the higher density
of traces. The blue borders are also for a flowpipe that contains the trajectories
from distribution Dsim

S,K with δ ≥ 95%. The dotted black line also shows the
border of collected simulated trajectories.

compute UBi/(nK) for both the MSE and the quantile loss-
based NNs. We present the histograms of UBi/(nK) for both
loss functions in Fig. 1(b) where we see that the quantile of
UBi for MSE is larger. This emphasizes the advantage of
training via quantile loss function.
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Fig. 4. Shows the density of trajectories starting from I3 versus their computed flowpipes. The green color-bar represents the density of traces from,
Dsim

S,K and the blue color-bar is for traces from Dreal
S,K . The shaded areas are generated via 3 × 105 different trajectories, and the dotted lines represents their

border. (a) shows two different flowpipes for TRVDP dynamics with confidence level of 0.9999 on Dsim
S,K . The tighter flowpipe (blue color) utilizes the linear

programming (14) while the looser one (red color) does not. (b) shows a flowpipe that covers trajectories from Dreal
S,K with the confidence level of 77% and

also covers the traces from Dsim
S,K with the confidence level of 99.5%. The blue shaded area is for Dreal

S,K and the green shaded area is for Dsim
S,K . (c) shows the

vector field of TRVDP dynamics that illustrates the instability of the system.

12-D Quadcopter: Next, we consider a 12-D quadcopter
model from the benchmarks in [17] that is designed to hover
around a prespecified elevation. The ODE model for this
system is provided in Fig. 2, where the state consists of the
position and velocity of the quadrotor x1, x2, x3 and x4, x5, x6,
respectively, as well as the Euler angles x7, x8, x9, i.e., roll,
pitch, and yaw, and the angular velocities x10, x11, x12.

We also add additive noise to the system that is detailed in
Table II, and we generate data with time step δt = 0.05 s over 100
time steps (i.e., 5 s). The controller is an NN controller that was
presented in [17]. We present three experiments on this model.
Learning a surrogate model to map the 12-D initial state to a
1200-D trajectory is impractical. We thus use an interpolation
technique to resolve this issue. To that end, we select only certain
time-steps of the 1200-D trajectory in order to map the initial
state to state values at the selected time steps, while we take care
of the remaining time steps via interpolation. If the trajectories
are smooth, as is the case in this case study, this is expected
to work well. We here select every second time-step to extract
a 600-D trajectory (δt = 0.1, K = 50) to train a surrogate
model of structure [12, 200, 400, 600]. Finally we interpolate
the sampled 600-D trajectory to approximate the original 1200-
D trajectory (δt = 0.05, K = 100). This interpolation process
is integrated in the model in an analytical way, and is done
by multiplying a weight matrix, W ∈ R

1200×600 to the last
layer. This converts the model’s structure to [12, 200, 400, 1200]
which will be utilized for the surrogate reachability. The
scaling factors ωj, j ∈ [nK] will be also interpolated for un-
sampled time-steps after the training and before the linear
programming.

Experiment 2: In comparison with [10], we provide a higher
level of data efficiency. Consider a confidence level of 99.99%,
and no distribution shift. We assume a calibration dataset of size
|Rcalib| = 2×104 to compute R∗

δ,τ and the δ-confident flowpipe,
and a ReLU NN of structure [12, 20, 400, 1200] to train the
surrogate model. The methodology proposed in [10] requires a
calibration dataset of at least 24 × 106 data-points11 to provide

11Minimum data size in [10] is |Rcalib| > �(1 + γ /1 − γ )�, where γ =
1 − (1 − δ/nK).

the mentioned level of confidence. On the other hand, we only
require 104 trajectories. Fig. 3 shows the proposed reach set
and Table I presents the detail of the computation process. Our
estimation shows that we achieve δ̃ = 0.9999 via 3 × 105 trials
and �̃ = 1 via 104 trials, which aligns with our expectations.

Experiments 3 and 4: In this case study, we generate a
95% confident flowpipe for the trajectories from Dsim

S,K and
we utilize it to study the distribution shift on two different
deployment environments Dreal

S,K . This flowpipe is plotted in
Fig. 3 and the details of the computation process is included in
Tables I and II. For this generated flowpipe, given a maximum
distribution shift radius τ ∈ [0, 1], the flowpipe’s confidence
level δ for trajectories from Dreal

S,K has to satisfy δ ≥ 0.95 − τ .
The bound δ ≥ δ̄ − τ can be derived from (4). Therefore,
we consider two different scenarios. In Experiment 3, we
examine our flowpipe for the case τ = 0.15. In this case,
for a deployment environment with distribution shift, τ̃ <

0.15 we numerically show that �̃, δ̃ > 0.95 − 0.15 = 0.8.
In addition, in Experiment 4, we assume τ = 0.25 and for
a deployment environment with τ̃ < 0.25 we show that
�̃, δ̃ > 0.95 − 0.25 = 0.7. Tables I and II show the detail of
the experiments and distribution shift, respectively.

TRVDP Oscillator Dynamics: The TRVDP dynamics is
known for its inherent instability, which makes it a pernicious
challenge for computing reach sets. The SDE model for
TRVDP is[

ẋ1 ẋ2
]� = [x2 μx2

(
1 − x2

1

)− x1
]� + v, μ = −1

here, v is an additive Gaussian noise, detailed in Table II. We
generate data from this dynamics with sampling time δt =
0.02 s, and we target reachability for K = 50 time step. We
use a limited set of initial states I3 = {s0 | [−1.2,−1.2] ≤
s0 ≤ [−1.195,−1.195]} to investigate the instability of the
system dynamics. Our analysis centers on discerning how this
instability manifests as a divergence in trajectories originating
from this restricted set of initial states. We also assume a model
with structure [2, 50, 90, 100] to train the surrogate model.
We perform two experiments on this system, explained below.

Experiment 5: In this experiment, we target the flowpipe
computation for the TRVDP dynamics for the confidence

Authorized licensed use limited to: University of Southern California. Downloaded on December 16,2024 at 23:51:25 UTC from IEEE Xplore.  Restrictions apply. 



4260 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

probability of δ ≥ 99.99% and no distribution shift. Fig. 4(a)
shows the resulting flowpipe and Table I shows the details
of the process. In this experiment, we also generate another
0.9999-confident flowpipe excluding the linear programming
[proposed in (14)] from the process. Fig. 4(a) also compares
these flowpipe and shows removing the linear programming
increases the level of conservatism.

Experiment 6: We target an arbitrary confidence level of
δ ≥ 0.77 for the flowpipe, despite distribution shifts within
radius τ < 0.225 measured in total variation. As suggested by
robust CI, we should target a flowpipe with confidence level
of 99.5% = 77% + 22.5% on Dsim

S,K to ensure the confidence
level of 77% on Dreal

S,K . Fig. 4(b) shows our probabilistically
guaranteed flowpipe, and Tables I and II present the detail of
the experiment. These tables also show that, in case we set
ε̄ = ε in reachability analysis (Vanilla CI) then our flowpipe,
violates the guarantee (i.e., δ ≥ 0.77). This emphasizes on the
contribution of robust CI.

Conclusion: This article addresses challenges in data-driven
reachability analysis for stochastic dynamical systems, specif-
ically focusing on distribution shifts between training and test
environments. By leveraging a dataset of K-step trajectories,
the approach constructs a probabilistic flowpipe, ensuring that
the probability of trajectory violation remains below a user-
defined threshold even in the presence of distribution shifts.
We propose the reliable guarantees with higher data efficiency
compared to the existing techniques assuming knowledge
of an upper bound for distribution shift. The methodology
relies on three key principles: 1) surrogate model learning;
2) reachability analysis using the surrogate model; and 3)
robust CI for probabilistic guarantees. We illustrated the
efficacy of our approach via reachability analysis on high-
dimensional systems like a 12-D quadcopter and unstable
systems like the TRVDP oscillator.
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