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by providing guarantees on the correctness of CPS models by statistically reasoning on model simulations.

We propose a new approach for statistical veriocation of CPS models for user-provided distribution on the

model parameters. Our technique uses model simulations to learn surrogate models, and uses conformal in-

ference to provide probabilistic guarantees on the satisfaction of a given STL property. Additionally, we can

provide prediction intervals containing the quantitative satisfaction values of the given STL property for any

user-specioed conodence level. We compare this prediction interval with the interval we get using risk esti-

mation procedures. We also propose a reonement procedure based on Gaussian Process (GP)-based surrogate

models for obtaining one-grained probabilistic guarantees over sub-regions in the parameter space. This in

turn enables the CPS designer to choose assured validity domains in the parameter space for safety-critical

applications. Finally, we demonstrate the eocacy of our technique on several CPS models.
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1 INTRODUCTION

Most cyber-physical systems are highly complex systems with nonlinear behaviors that operate
in uncertain operating environments. As these systems are often safety-critical, it is desirable to
obtain strong assurances on their safe operation. To achieve this goal, recent research has been
focused on efective and sound veriocation algorithms [16, 17, 25, 26, 28, 49, 50], and scalable
best-efort approaches which lack explicit coverage guarantees [55]. However, factors like com-
plexity and stochasticity of the operating environments, curse of dimensionality, the nonlinearity
of dynamics pose a signiocant scalability challenge for veriocation procedures. In this article, we
address the problem of analyzing the efects of uncertainty in the environment on the correctness
of a given CPS modelM. We assume that the uncertainty in the environment is modeled as a pa-
rameter vector (θ ) that takes values from some set Θ, distributed according to some user-provided
distribution DΘ. Such a parameter vector could also include time-varying parameters (represent-
ing time-discretized input signals). For a sample of θ , we assume that the output trajectories of the
model (denoted ξθ ) are deterministic, i.e., the model is free of any internal stochastic behavior.

We assume that the correctness of the given CPSmodel is expressed using a real-valued function
of its input/output trajectories. In many of our examples, we assume this function to be the robust
satisfaction value or robustness of a given Signal Temporal Logic (STL) [35]. Given a formula
φ and a trajectory x (t ), the robustness ρ (φ,x ) approximates the degree of satisfaction of φ by
x [15, 18]. We are primarily interested in building a surrogate model μ̂ to approximate the joint
distribution of θ and ρ (φ,M (θ )), and explore the use of such model to help answer the following
specioc questions:

(1) Given a threshold ϵ , and θ ∼ DΘ, does the probability of the model satisfying a given STL
property φ exceed 1 − ϵ?

(θ ∼ DΘ)
?
=⇒ P (M (θ ) |= φ) ≥ 1 − ϵ (1.1)

(2) For some user-provided threshold ϵ , and θ ∼ DΘ, can we ond an interval [�,u] s.t. the
probability that the robustness value of a model behaviorM (θ ) w.r.t. a given STL property
φ lies in [�,u] greater than 1 − ϵ? i.e.,

θ ∼ DΘ =⇒ P (ρ (φ,M (θ )) ∈ [�,u]) > 1 − ϵ (1.2)

Statistical model checking (SMC) [2, 30, 45, 47, 56, 57] approaches have been used in the past
to establish the above two assertions. The most popular SMC methods use statistical hypothesis
testing procedures to check whether the hypothesis that (1.1) and (1.2) are true can be accepted
with conodence exceeding user-specioed thresholds ³ , ´ for respectively committing a type I er-
ror (i.e., rejecting the hypothesis when it is true) or a type II error (i.e., accepting the hypothesis
when it is not true). SMC methods provide the user with conditions on the number of simulations
required, ³ , ´ and ϵ in order to accept or reject the hypotheses. Unlike SMC that requires a certain
number of samples to answer the above questions, our use of surrogate models can establish the
assertions without the requirements for sampling numbers, which will be explained later. Further-
more, our use of surrogate models can help automatically provide a new distribution of θ ∼ D ′

Θ
,

such that (1.2) holds true.

Approach. To establish assertions such as (1.1) or (1.2), we present an approach based on confor-
mal inference, a technique for giving conodence intervals with marginal coverage guarantees. A
unique feature of our technique is that it does not make any assumptions on the user-provided
distribution on the parameter space or the dynamics represented by the model. While existing
techniques based on uncertainty quantiocation using Gaussian Process based surrogate models
assume that the joint distribution of sampled parameter values and target robustness values have
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Fig. 1. Overview of our approach.

a Gaussian distribution [38]. SMC techniques although make no assumption on the input distri-
bution, assume that the Boolean outcomes of successive runs of a given program have a bino-
mial distribution, and probabilistic guarantees are based on analyzing properties of the binomial
distribution.
The overview of our approach is shown in Figure 1. The orst step of our approach is to learn a

surrogate model – this can be thought of as a statistical data-driven approximation of the black-box
model. For this step, we sampleN parameter values fromΘ, obtain their corresponding trajectories
(ξθ ) and then compute the robust satisfaction value ρ (φ, ξθ ) for each trajectory. We then partition
this set into a training set and a test set. We then use an of-the-shelf regression technique on
the training set treating the sampled parameters in the training set as inputs and the robustness
values as outputs of the learned regressor. Here, we can use any parametric technique such as
polynomial regression, or a non-parametric technique based on Gaussian process regression or
neural networks [7].
Due to the generalizability inherent in regression, the surrogate model can predict the robust-

ness value for all parameter values in Θ. However, most good regression techniques avoid over-
otting to the data, and hence will result in some residual error (i.e., between the predicted values
and the actual values). Conformal inference is a technique that can leverage these residual errors
to give conodence intervals on predicted values. The main idea in conformal inference is: for any
given threshold 1 − ϵ , there is a systematic way to ond a prediction interval [μ̂ (θ ) − d, μ̂ (θ ) + d]
where the answer must lie with probability greater than 1 − ϵ . We couple this idea with a global
optimizer to obtain conodence intervals for regions in the parameter space rather than individual
parameter values. This allows us to provide the guarantee specioed in Equation (1.3), where vmin

and vmax are respectively under- and overapproximations of the predicted robustness over the
region Θ.

θ ∈ Θ =⇒ P (ρ (φ, ξθ ) ∈ [vmin − d, vmax + d]) ≥ 1 − ϵ . (1.3)

A strictly positive or strictly negative interval indicates that the Θ is respectively safe or unsafe.
However, if the interval contains 0, then the status of Θ remains unknown. The above procedure
naturally yields a reonement procedure which allows us to start with a larger region in the param-
eter space, and split it into smaller regions if the region is deemed unknown. In a smaller region,
the accuracy of the surrogate model improves (due to more data in a smaller region), and hence
previously inconclusive regions can be resolved as safe/unsafe. A naïve version of this splitting
algorithm faces the curse of dimensionality—if the parameter space is high-dimensional, then the
branch-and-bound procedure ends up creating too many branches which can make the procedure
intractable.
The naïve splitting algorithm crucially does not use any smart heuristic to decide where a re-

gion should be split, and this can lead to unnecessary exploration of larger regions that can be
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(statistically) verioed as safe or unsafe. To overcome this shortcoming, we propose the use of
Gaussian Process (GP) [40] regression models. There is rich literature on the use of GP-based
models for black-box function optimization, and a key idea therein is to explicitly encode sam-
ple uncertainty as an optimization objective. This allows GP-based methods to tradeof between
exploitation (searching in the vicinity of a local minimum) and exploration (searching in neighbor-
hoods with high sample uncertainty). We propose to use a similar heuristic that adaptively splits
regions based on sample uncertainty.
Our method can scale to CPS models encoding complex dynamics and large state spaces, as

well as reasonably large parameter spaces. The results of our method can be used to characterize
safe operating regions in the parameter space, and to build (probabilistic) safety assurance cases.
With respect to analysis times, our method compares favorably with approaches based on . A key
diference is that unlike SMC- and PAC-based methods, the orst step in our method is to construct
a surrogate model. This crucially allows us to provided a guarantee that is not a function of the
number of samples. In fact, our method can potentially provide the needed level of probabilistic
guarantees with any number of samples. This is because we build a surrogate model from sam-
ples; if the surrogate model is of poor accuracy due to a limited number of samples, conformal
inference will predict a wider prediction interval with the same probability 1 − ϵ , while for a more
accurate model, the prediction interval will be narrower. Thus, conformal inference allows a trade-
of between sample complexity and the tightness of the guarantee independent of the level of the
guarantee itself. Finally, while SMC-based methods focus solely on the problem of probabilistic
veriocation, our method can enable other model-based analyses: (1) we can give probabilistic safe
regions in the parameter space; for example, these can be used to deone high-conodence oper-
ating regimes for the model, (2) our technique can be used for statistical debugging approaches
such as [6] and [14], and (3) we can extend our technique to identify parameter sensitivity by com-
bining the core regression procedure with dimensionality reduction techniques such as principal
component analysis [7].
While conformal prediction has emerged as an important statistical technique to provide prob-

abilistic guarantees, an important concurrent development is the work on scenario-based verioca-
tion using the notion of risk measures [4]. Measures such as value-at-risk and conditional-value-at-
risk allow quantifying the risk of the given CPS application failing a particular quantitative speci-
ocation (e.g., specioed as an STL formula). In this article, we empirically compare the probabilistic
guarantees obtained using the risk estimation formulation with those obtained using conformal
prediction.
To summarize, the main contributions of this article are:

(1) A technique based on surrogate models to approximate the robustness of a given specioca-
tion learned using of-the-shelf regression techniques;

(2) A new technique for generating prediction intervals for the robustness of a speciocation
with user-specioed probabilistic thresholds;

(3) Algorithms to partition the parameter space of a model into safe, unsafe, and unknown
regions based on conformal inference on the surrogate models;

(4) Experimental validation on CPS models demonstrating the real-world applicability of our
methods; and

(5) Empirical comparison with methods to provide probabilistic guarantees based on estimating
tail risk measures.

The rest of this article is organized as follows: Section 2 provides the background and notation;
Section 3 explains how we use conformal inference for providing probabilistic guarantees on satis-
faction/violation of a given STL property over a region in the parameter space; Section 4 presents
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our algorithm for reoning parameter spaces using Gaussian Processes. Finally, Section 5 illustrates
our approach using several case studies, and Section 6 presents our conclusions.

2 PRELIMINARIES

Deonition 2.1 (Signals, Black-box Models). We deone a signal1 or a trajectory ξ as a function
from a onite set dom ⊆ [0,T ] for some T ∈ R≥0 to a compact set of values X. The signal value
at time t is denoted as ξ (t ). A parameter space Θ is some compact subset of Rk . A modelM is a
function that maps a parameter value θ ∈ Θ to an output signal ξθ .

We note that the above deonition permits parameterized input signals for the model. We can
deone such signals using a function known as a signal generator that maps specioc parameter
values to signals. For example, a piecewise linear signal containing k linear segments can be de-
scribed using k + 1 parameters, k corresponding to the starting point for each segment and 1 for
the end-point of the onal segment.
We assume that θ ∈ Θ is a random variable that follows a (truncated) distribution Dθ with

probability density function (PDF) f (θ ) and ∀θ � Θ, f (θ ) = 0. If we only wish to draw samples
from a subset S ⊆ Θ (by dropping samples fromΘ\S), the corresponding distribution of the samples
is denoted by Dθ ↓ S and follows the PDF shown below:

f ′(θ ) =
⎧⎪«
⎪
¬

f (θ )
∫

τ ∈S
f (τ )dτ

if θ ∈ S

0 otherwise.
(2.1)

Instead of closed form descriptions of the generator for ξθ (e.g., diferential or diference equations),
we assume that there is a simulator that can generate signals compatible with the semantics of the
modelM.

Deonition 2.2. A simulator for a (deterministic) set Ξ of trajectories is a function (or a program)
sim that takes as input a parameter θ ∈ Θ, and a onite sequence of time points t0, . . . , tk , and
returns the signal (t0, sim(θ , t0), . . ., tk , sim(θ , tk )), where for each i ∈ {0, . . . ,k }, sim(θ , ti ) = ξθ (ti ).

In rest of this article, unless otherwise specioed, we ignore the distinction between the signals
sim(θ , ·) and ξθ .

2.1 Signal Temporal Logic

Signal Temporal Logic [35] is a popular formalism that has been widely used to express safety
speciocations for many CPS applications. STL formulas are deoned over signal predicates of the
form f (ξ ) ≥ c or f (ξ ) ≤ c , where ξ is a signal and f : Rn → R is a real-valued function and
c ∈ R. STL formulas are written using the grammar shown in Equation (2.2). Here, we assume that
I = [a,b], where a,b ∈ R≥0,a ≤ b, and ∼∈ {≤, ≥}.

φ,ψ := true | f (ξ ) ∼ c | ¬φ | φ 'ψ | φ (ψ | FIφ | GIφ | φ UI ψ . (2.2)

In the above syntax, F (eventually),G (always), andU (until) are temporal operators. Given t ∈ R≥0

and I = [a,b], we use t + I to denote [t +a, t +b]. Given a signal ξ and a time t , we use (ξ , t ) |= φ to
denote that ξ satisoes φ at time t , and ξ |= φ as shorthand for (ξ , 0) |= φ. The Boolean satisfaction

1Conventionally, signals are deoned over continuous-time; however, in a practical setting, such as in a simulator, we only

obtain signal values at a onite set of time intervals. In such a case, it is common to assume that the underlying continuous-

time signal can be recovered using an appropriate interpolation scheme. The discrete-time vs. continuous-time interpreta-

tion is not of particular importance in this article. The only bearing it has is on the satisfaction of a given STL formula—we

use point-wise semantics of STL over piecewise constant interpolated signals that produce identical satisfaction values for

continuous/discrete-time signals.
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Fig. 2. Trajectories satisfying/violating STL formulas.

semantics of an STL formula can be recursively in terms of the satisfaction of its subformulas over
the a signal. For ∼∈ {≤, ≥}, ξ : (ξ , t ) |= f (ξ ) ∼ c if f (ξ (t )) ∼ c is true. The semantics of the Boolean
operators for negation (¬), conjunction (') and disjunction (() can be obtained in the usual fashion
by applying the operator to the Boolean satisfaction of its operand(s). The value of (ξ , t ) |= FIφ is
true if ∃t ′ ∈ t + I s.t. (ξ , t ′) |= φ, while (ξ , t ) |= GIφ if ∀t ′ ∈ t + I , (ξ , t ′) |= φ. The formula φUIψ

is satisoed at time t if there exists a time t ′ ≥ t s.t.ψ is true, and for all t ′′ ∈ [t , t ′], φ is true.
STL is also equipped with quantitative semantics that deone the robust satisfaction value or

robustness —a function mapping a formula φ and the signal ξ to a real number [15, 18]. Informally,
robustness can be viewed as a degree of satisfaction of an STL formula φ. While many competing
deonitions for robust satisfaction value exist [3, 27, 43], we use the original deonitions [15] in this
article.

Deonition 2.3. The robustness value is a function ρ mapping φ, the trajectory ξ , and a time
t ∈ ξ .dom as follows:

ρ ( f (ξ ) ≥ c, ξ , t ) = f (ξ (t )) − c

ρ (¬φ, ξ , t ) = −ρ (φ, ξ , t )

ρ (φ 'ψ , ξ , t ) = min(ρ (φ, ξ , t ), ρ (ψ , ξ , t ))

ρ (φ UI ψ ) = sup
t1∈t+I

min(ρ (ψ , ξ , t1), inf
t2∈[t,t1 )

ρ (φ, ξ , t2))

The robustness values for other Boolean and temporal operators can be derived from the above
deonition; for example, GIφ and FIφ are a special case of the semantics for until (UI ) respectively
evaluating to the minimum and maximum of the robustness of φ over the interval I .

Example 2.4. Consider the time-reversed van Der Pol oscillator specioed as ẋ1 = −x2, ẋ2 =
4(x21 − 1)x2 + x1. Figure 2 illustrates the satisfaction (indicated in blue) and violation (indicated in
red) of two example speciocations by x1 (t ): (a) φ1 specioes that for any time t ∈ [0, 10], the value
of the trajectory x (t ) should be less than 0.5 and (b) φ2 specioes that from some time within the
orst two time units, x (t ) settles in the region [−0.3, 0.3] for eight time units.

2.2 Learning Surrogate Models

In this section, we discuss learning of surrogate models for a given black-box modelM. A surro-
gate model is essentially a quantitative abstraction of the original black-box model. Quantitative
abstractions have been explored in the theory of weighted transition systems (WTS) [11]. A
WTS is a transition system where every transition is associated with weights, and a quantitative
property of the WTS maps sequences of states of the WTS to a real number computed using some
arithmetic operations on the weights. Quantitative abstractions focus on sound proofs for quanti-
tative properties. We observe that we can view the robustness of an STL property as a quantitative
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property evaluated on the system trajectory. We introduce two new notions of quantitative ab-
stractions deoned on the trajectories of a system.

Deonition 2.5 (δ -surrogate model). Let ξθ be the trajectory obtained by simulating theM with
the parameter θ , where θ ∈ Θ. Let γ be a quantitative property on ξθ , i.e., γ maps ξθ to a real num-
ber. We say that a model μ̂ that maps θ to a real number is an δ -distance-preserving quantitative
abstraction or an δ -surrogate model ofM and γ if

∀θ ∈ Θ : |γ (ξθ ) − μ̂ (θ ) | ≤ δ . (2.3)

Essentially, the δ -surrogate model guarantees that the value of the quantitative property γ eval-
uated on ξθ (obtained from the original modelM) is no more than δ away from the value that it
predicts. The idea is that the δ -surrogate model could be systematically derived from the original
model, and could be signiocantly simpler than the original model making it amenable to formal
analysis. For example, if we have an δ -surrogate model, then we can prove that a given property
holds by systematically sampling the parameter space Θ.
In general, such models could be hard to obtain; hence, we propose a probabilistic relaxation

known as the (δ , ϵ )-probabilistic surrogate model, where condition (2.3) is replaced by (2.4).

Deonition 2.6 ((δ , ϵ )-probabilistic surrogate model). Given a modelM, a quantitative property γ ,
and a user-specioed bound ϵ ∈ [0, 1), we say that μ̂ is a (δ , ϵ )-probabilistic surrogate model if:

P ( |γ (ξθ ) − μ̂ (θ ) | ≤ δ | θ ∼ Dθ ) ≥ 1 − ϵ . (2.4)

We now explain how we can obtain (δ , ϵ )-probabilistic surrogate models for an arbitrary quan-
titative property γ . The basic idea is to use statistical learning techniques: we sample Θ in accor-

dance with the distribution Dθ to obtain a onite set of parameter values Θ̂. For each θi ∈ Θ̂, we
simulate the model to obtain ξθi and compute γ (ξθi ). We then compute the surrogate model μ̂ us-
ing parametric regression models (e.g., linear, polynomial functions) or nonparametric regression
methods (e.g., neural networks and Gaussian Processes) [5, 20, 40]. We now brieny review some of
these regression methods, and in Section 3 explain how we can obtain δ values for a user-provided
bound ϵ .

Polynomial Regression. Polynomial regression assumes a polynomial relationship between inde-
pendent variables X and the dependent variable Y . It aims to ot a polynomial curve to the input
and output data in a way that minimizes a suitable loss function. A commonly used loss function
is the least square error (or the sum of squares of residuals). Typically, a polynomial regression
requires the user to specify the degree of the polynomial to use. Polynomial regression generally
has high tolerance to the function’s curvature level, but has high sensitivity to the outliers. In our
experiments, we restrict the polynomial degree to 2.

Neural Network Regression. Neural networks [7] ofer a high degree of nexibility for regressing
arbitrary nonlinear functions. While there are many diferent NN architectures, we use a simple
multi-layer perceptron model with a stochastic gradient-based optimizer. This model simply up-
dates its parameters based on iterative steps along the partial derivatives of the loss function.

Gaussian Process based Regression Model [40]. A Gaussian Process (GP) is a stochastic process,
i.e., it is a collection of random variablesWθ indexed by θ , where θ ranges over some discrete or
dense set. The key property of GP is that any onite sub-collection of these random variables has a
multi-variate Gaussian distribution. GP models are popular as non-parametric regression methods
used for approximating arbitrary continuous functions with the appropriate kernel functions. A GP
can be used to express a prior distribution on the space of functions, e.g., from a domain Rn to R.
Let F : Rn → R be a random function. Then, we say that F is a centered Gaussian process with
kernel k , if for every (x1, . . . ,xn ) ∈ R

n , there exists a positive semi-deonite matrix Σ such that
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[F (x1), . . . , F (xn )] ∼ (0, Σ). The (i, j )th entry of Σ, i.e., Σi j = k (xi ,x j ) for some kernel function k .
The matrix Σ is called the covariance matrix, and the function k measures the joint variability of xi
and x j . There are several kernel functions that are popular in literature: the squared exponential
kernel, the 5/2 Matérn kernel, and so on. In our experiments, we use a sum kernel function that is
the addition of a dot product kernel and a white noise kernel (explained in Section 3.4).

3 CONFORMAL INFERENCE

Conformal inference [31, 32] is a framework to quantify the accuracy of predictions in a regres-
sion framework [52]. It can provide guarantees using a onite number of samples, without making
assumptions on the distribution of data used for regression or the technique used for regression.
We explain the basic idea of conformal inference, and then explain how we adapt it to our problem
setting.

3.1 Conformal Inference Recap

Consider i.i.d. regression data Z1, · · · ,Zm drawn from an arbitrary joint DXY , where each Zi =

(Xi ,Yi ) is a random variable in Rn × R, consisting of n-dimensional feature vectors Xi and a re-
sponse variable Yi . Suppose we ot a surrogate model to the data, and we now wish to use this
model to predict a new response Ym+1 for a new feature value Xm+1, with no assumptions on
DXY . Formally, given a positive value ³ ∈ (0, 1), conformal inference constructs a prediction band
C ⊆ Rn × R based on Z1, · · · ,Zn with property (3.1).

P (Ym+1 ∈ C (Xm+1)) ≥ 1 − ³ . (3.1)

Here, the probability is overm + 1 i.i.d. draws Z1, · · · ,Zm+1 ∼ DXY , and for a point x ∈ Rn we
denote C (x ) = {y ∈ R : (x ,y) ∈ C}. The parameter ³ is called the miscoverage level and 1 − ³ is
called the probability threshold. Let

μ (x ) = E(Y | X = x ),x ∈ Rn

denote the regression function, where E(W ) denotes the expected value of the random variableW .
The regression problem is to estimate such a conditional mean of the test response Ym+1 given the
test feature Xm+1 = x . Common regression methods use a regression model д(x ,η) and minimize
the sum of squared residuals of such model on them training regression data Z1, · · · ,Zm , where
η are the parameters of the regression model. An estimator for μ is given by μ̂ (x ) = д(x , η̂), where

η̂ = argmin
η

1

m

m
∑

i=1

(Yi − д(Xi ,η))
2
+ R (η)

and R (η) is a regularizer. In [31], Lei et al. provide a technique called split conformal predic-

tion that we use to construct prediction intervals that satisfy the onite-sample guarantees as in
Equation (3.1). The procedure is described in Algorithm 1 as a function ConfInt which takes as
input the i.i.d. training data {(Xi ,Yi )}

m
i=1, miscoverage level ³ and any regression algorithm Reg.

Algorithm 1 begins by splitting the training data into two equal-sized disjoint subsets. Then a re-
gression estimator μ̂ is ot to the training set {(Xi ,Yi )} : i ∈ I1) using the regression algorithm Reg

(Line 2). Then the algorithm computes the absolute residuals Ri s on the test set {(Xi ,Yi )} : i ∈ I2)
(Line 3). For the desired probability threshold ³ ∈ [0, 1), the algorithm sorts the residuals in
ascending order {Ri : i ∈ I2} and onds the residual at the position given by the expression:
�(n/2 + 1) (1 − ³ )�. This residual is used as the conodence range d . In [31], Lei et al. prove that
the prediction interval at a new point Xm+1 is given by such μ̂ and d that Theorem 3.1 is valid.

Theorem 3.1 (Theorem 2.1 in [31]). If (Xi ,Yi ), i = 1, · · · ,m are i.i.d., then for an new i.i.d.

draw (Xm+1,Ym+1), using μ̂ and d constructed in Algorithm 1, we have that P (Ym+1 ∈ [μ̂ (Xm+1) −
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ALGORITHM 1: Conformal regression algorithm ConfInt({(Xi ,Yi )}
m
i=1,³ , Reg)

input: Data {(Xi ,Yi )}
m
i=1, miscoverage level ³ , regression algorithm Reg

output: Regression estimator μ̂, conodence range d

1 Randomly split {1, · · · ,m} into two equal-sized subsets I1,I2;

2 μ̂ = Reg((Xi ,Yi ) : i ∈ I1) ;

3 Ri = |Yi − μ̂ (Xi ) |, i ∈ I2 ;

4 d = the kth smallest value in {Ri : i ∈ I2}, where k = �(m/2 + 1) (1 − ³ )� ;

5 return μ̂,d

d, μ̂ (Xm+1) + d]) ≥ 1 − ³ . Moreover, if we additionally assume that the residuals {Ri : i ∈ I2} have a
continuous joint distribution, then P (Ym+1 ∈ [μ̂ (Xm+1) − d, μ̂ (Xm+1) + d]) ≤ 1 − ³ + 2

m+2 . �

Generally speaking, as we improve our surrogate model μ̂ of the underlying regression func-
tion μ, the resulting conformal prediction interval decreases in length. Intuitively, this happens
because a more accurate μ̂ leads to smaller residuals (or ϵ in Section 2.2), and conformal inter-
vals are essentially deoned by the quantiles of the (augmented) residual distribution. Note that
Theorem 3.1 asserts marginal coverage guarantees, which should be distinguished with the condi-
tional coverage guarantee P (Ym+1 ∈ C (x ) | Xm+1 = x ) ≥ 1 − ³ for all x ∈ Rn . The latter one is a
much stronger property and hard to be achieved without assumptions on DXY .

3.2 Computing (d, ϵ )Probabilistic Surrogate Models

We assume that the parameter value θ and ρ (φ, ξθ ) follow a joint (unknown) distribution Dθ,ρ (φ )

that we wish to empirically estimate. As indicated in Section 2.2, the orst step to learning a (δ , ϵ )-
probabilistic surrogate model is based on sampling Dθ,ρ (φ ) and applying regression methods. We

drawm i.i.d samples Θ̂ = {θ1, · · · ,θm } from Dθ and compute the robustness values ρi = ρ (φ, ξθi )

for each model trajectory corresponding to the parameter θi . Lemma 3.2 follows from Theorem 3.1.

Lemma 3.2. Let (μ̂,d ) = ConfInt({θi , ρi }, ϵ, Reg), where ConfInt is as deoned in Algorithm 1,

1 − ϵ is a user-provided probability threshold, Reg is some regression algorithm, and d ∈ R, then μ̂ is

a (d, ϵ )-probabilistic surrogate model.

We now show how we can use (d, ϵ )-probabilistic surrogate models to perform statistical veri-
ocation. Theorem 3.3 shows that the conodence range returned by the conformal inference proce-
dure can be extended over the entire parameter space.

Theorem 3.3. Let

(1) (θi , ρi ), i = 1, · · · ,m be i.i.d. samples drawn from the joint distribution Dθ,ρ (φ ) of θ ∈ Θ and

ρ (φ, ξθ ),

(2) Reg be a regression algorithm,

(3) 1 − ϵ be a user-provided probability threshold,

(4) (μ̂,d ) = ConfInt({θi , ρi }, ϵ, Reg), i.e., μ̂ is the surrogate model and d is the conodence range

returned by Algorithm 1,

(5) v∗max = maxθ ∈Θ μ̂ (θ ), and, v∗min = minθ ∈Θ μ̂ (θ ).

Then,

P
(

ρ (φ, ξθ ) ∈ [v
∗
min − d,v

∗
max + d] | θ ∼ Dθ

)

≥ 1 − ϵ . (3.2)

Proof. From Theorem 3.1, we know that any new i.i.d. sample (θ ′, ρ (φ, ξθ ′ )) from Dθ,ρ (φ )

satisoes:

P (ρ (φ, ξθ ′ ) ∈ [μ̂ (θ
′) − d, μ̂ (θ ′) + d]) ≥ 1 − ϵ . (3.3)
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By deonition, v∗min ≤ μ̂ (θ ′) ≤ v∗max. Combining this with Equation (3.3), we get the desired
result. �

Theorem 3.3 requires us to obtain the minimum/maximum values of the surrogate model over a
given region in the parameter space. If μ̂ (θ ) is a non-convex function and the chosen optimization
algorithm cannot compute the perfect optimal value v∗min or v

∗
max, but can only give conservative

estimates of the optimal value, we can update the predicted interval in Theorem 3.3 as follows:

Corollary 3.4. Let vmin and vmax be respectively under- and over-approximations of v∗min and

v∗max, then

P (ρ (φ, ξθ ) ∈ [vmin − d,vmax + d] | θ ∼ Dθ ) ≥ 1 − ϵ (3.4)

The bounds vmin and vmax in Corollary 3.4 can be computed using global optimization solvers,
SMT sovlers, or range analysis tools for neural networks [17, 50] (for neural network regression).

We can use the bounds obtained in Theorem 3.3 (similarly those with Corollary 3.4) to de-
rive probabilistic bounds on the Boolean satisfaction of a given STL property φ, as expressed in
Theorem 3.5.

Theorem 3.5. If v∗min − d > 0, then PDθ
(ξθ |= φ | θ ∈ Θ) ≥ 1 − ϵ . If v∗max + d < 0, then

PDθ
(ξθ � |= φ | θ ∈ Θ) ≥ 1 − ϵ .

Proof. From [18], we know that ρ (φ, ξθ ) > 0 =⇒ ξθ |= φ. Thus, if the lower bound of the
prediction interval in Theorem 3.3 is positive, then ξθ |= φ. The second case follows by a similar
argument. �

If the orst statement in the above theorem holds, we say that Θ safe, if the second statement
holds, we say that Θ is unsafe, and if neither statement holds (i.e., the predicted interval con-
tains 0), then we say that Θ is unknown. While Theorem 3.5 allows us a way to identify whether
a region in the parameter space is is safe (or unsafe), unfortunately there are two challenges:

(1) the function mapping θ to ρ (φ, sim(θ )) is a highly nonlinear function in general, and an a

priori choice for a regression algorithm Reg that ots this function with small residual values may
be diocult and (2) if there is large variation in the value of the regression function over Θ, it is
likely that the conformal interval contains 0, thereby marking Θ as unknown. To circumvent this
issue, one solution is to split the parameter space Θ into smaller regions where it may be possible
to get narrow conformal intervals at the same level of probability threshold. We present a naïve
algorithm based on parameter-space partitioning next.

3.3 Naïve Parameter Space Partitioning

We now present an algorithm that uses Theorem 3.3 (or Corollary 3.4) to provide probabilistic
guarantee by recursively splitting the parameter spaceΘ into smaller regions such that each region
can be labeled as safe, unsafe or unknown. The basic idea of this algorithm is to compute the
conformal interval using Theorem 3.3 and then check ifv∗min−d < 0 andv∗max+d > 0. If yes, we need
to partition the region. After partitioning the region, we have to repeat the process of computing
the conformal interval for each of the sub-regions. Note that the probability in Theorem 3.3 (and
Theorem 3.1 ) is marginal, being taken over all the i.i.d. samples {θi , ρi } from Dθ,ρ (φ ) . Therefore,
when we work on each subset S ⊆ Θ after the partitions, we will have to restrict θ to be in S

(according to Equation (2.1)) to ensure that the Theorem 3.3 is valid. We abuse the notation and
denote the joint distributionDθ,ρ (φ ) when θ is restricted to be sampled from S ⊆ Θ byDθ,ρ (φ ) ↓ S .

Algorithm 2 searches over the parameter spaceΘ and partitions it to setsΘ+,Θ−, andΘU , along
with the prediction intervals for the robustness values in each set. We orst check if the robustness
value is strictly positive or negative and accordingly add the region being inspected S into Θ+ or
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ALGORITHM 2: Parameter space partition with respect to STL formulas using conformal regression.

input: Parameter space Θ and corresponding distribution Dθ , simulator sim and interpolation method

to provide sim, miscoverage level ³ , regression algorithm Reg, an STL formula φ, a vector ∆

output: Parameter set Θ+ that lead to satisfaction of φ, Θ− that lead to violation of φ, and the rest

parameter set ΘU that is undecided

1 Θ+,Θ−,ΘU ← ∅, Θr ← {Θ};

2 while Θr
� ∅ do

3 S ← Pop(Θr ) ;

4 θ1, · · · ,θm ← IID_Sample(Dθ ↓ S ) ;

5 for i = 1, · · · ,m do

6 ρi ← ρ (φ, ξθi ) ;

7 μ̂,d ← ConfInt({(θi , ρi )}
m
i=1,³ , Reg);

8 vmax ← maxθ ∈S μ̂ (θ ), vmin ← minθ ∈S μ̂ (θ );

9 if vmin − d ≥ 0 then

10 Θ+ ← Θ+ ∪ (S, [vmin − d,vmax + d]) ;

11 else if vmax + d ≤ 0 then

12 Θ− ← Θ− ∪ (S, [vmin − d,vmax + d]) ;

13 else if Diameters(S ) < ∆Diameters(Θ) then

14 ΘU ← ΘU ∪ (S, [vmin − d,vmax + d]) ;

15 else

16 Θr .Push(Partition(S, Reg)) ;

17 return Θ+,Θ−,ΘU ;

Θ− (Lines 10 and 12). When Algorithm 2 cannot decide whether S belongs toΘ+ orΘ− the interval
contains 0, we orst check if for all n, the diameter of S along the nth parameter dimension less
than the fraction ∆nDiameters(Θ)n . We assume that the vector ∆ is provided by the user. If yes,
the region is marked as unknown. Otherwise, we partition S into a number of subregions, that are
then added to a worklist of regions (Line 16). In our implementation, in order to keep the number
of subsets to be explored bounded, we randomly pick a dimension in the parameter space, and split
the parameter space into two equal subsets along that dimension. Note that the partitioning can
be accelerated by using parallel computation, but we leave that for future exploration. For each
subset S , Algorithm 2 additionally gives the corresponding prediction interval, which indicates
how good (or bad) the trajectories satisfy (or violate) φ.

Theorem 3.6. In Algorithm 1, P (ξθ |= φ | θ ∼ Dθ,ρ (φ ) ↓
⋃

S ∈ Θ+) ≥ 1 − ϵ,, and P (ξθ � |= φ | θ ∼

Dθ,ρ (φ ) ↓
⋃

S ∈ Θ−) ≥ 1 − ϵ .

Theorem 3.6 directly follows from Theorems 3.3 and 3.5 and the total probability theorem.

3.4 Gaussian Processes for Refinement

A drawback of Algorithm 2 is that the naïve splitting procedure is not scalable in high dimensions,
and may have poor performance if the safe/unsafe regions have arbitrary shapes. In this section,
we instead suggest the use of Gaussian Processes (GP) coupled with Bayesian updates to intel-
ligently partition regions. Recall from Section 2, for each parameter value θ , the GP model allows
representing the mean μ (θ ) and σ 2 (θ ) in terms of samples already explored in the parameter space.
In a GP model, at sampled parameter values, the variance is zero, but at points that are away from
the sampled values, the variance could be high. We now give the symbolic expressions for the
mean and variance of a GP model in terms of a kernel function k (θ ,θ ). A kernel function in GP is
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a covariance function of the random variables inside GP. It innuences the nexibility and capacity

of the GP, as well as its ability to generalize to new data points. For ease of exposition let Θ̂ denote
the vector of parameter values already sampled. Then, let Y denote the vector of robustness val-

ues for parameter values in Θ̂. Then, from [40], Chapter 2, the posterior of the distribution given

observed samples we have: μ (θ ) = k (θ , Θ̂)� k (Θ̂, Θ̂)−1 Y , Σ(θ ) = k (θ ,θ ) − k (θ , Θ̂) k (Θ̂, Θ̂)−1 k (Θ̂,θ ),

and σ (θ ) =
√

Σ(θ ). The main idea is to use the mean and variance of the GP model to prioritize
searching parameter values where: (a) the robustness may be close to zero and (b) the variance of
the GPmodel may be high. These two choices give us two diferent ways to partition the parameter
region that we now explain.
In the literature on GP-based Bayesian optimization, there is work on deoning acquisition func-

tions that are used as targets for optimization. Examples includeUCB (UpperConodenceBound)

acquisition function that is a combination of the mean and variance of the GP, EI (Expected Im-

provement) which focuses on the expected value of the improvement in the function value, and
so on. Inspired by the UCB function that allows a tradeof between exploration and exploitation,
we consider two acquisition functions: (1) the orst is focused on pure exploration and uses the
variance of the GP as the objective for maximization and (2) the second is the diference between
the mean and the standard deviation. The rationale for the second function is that if μ (θ ) − σ (θ )
is lower than 0, then it is an indicator of a low robustness region.

ALGORITHM 3: Parameter Space Partition using GP models Partition(S, Reg)

input: Parameter set S , regression algorithm Reg

output: parameter sets S1, . . . that will be pushed into the set Θr

1 f (θ ) ← acquisition(μ (θ ),σ (θ )) ;

2 θ ′← argmaxθ f (θ ) ;

3 return Split(S,θ ′) ;

Algorithm 3 presents the new Partition function of Algorithm 2 using GP-based acquisition.
The function Split(S,θ ′) partitions the given region S into 2 |θ | new regions that all share θ ′ as a
vertex.

4 RISK ESTIMATION

In previous sections, we explored how surrogate models and conformal inference can be used
to obtain probabilistic guarantees on the behavior of black-box cyber-physical system models. A
diferent way of obtaining high-conodence probabilistic statements about correctness of systems
that has recently emerged is based on the idea of risk-estimation [4, 12, 33, 34]. Such a correctness
statement provided by risk estimation is quantitative and takes the uncertainty of the behaviors
of the system into account. A risk measure is simply a function д that maps a scalar random vari-
able X to a real value д(X ). Typically, the random variable X may represent an observed state of
the system, where the probability distribution of X may depend on particular decision parameters
for the system. The distribution of X allows us to estimate how risky a particular set of system’s
design parameters are, and д(X ) is a function that can be thought of as an empirical estimate of
the magnitude of risk at a given conodence threshold · . For example, consider the risk-aware ver-
iocation problem considered in [4]. Here, Akella et al. treat the robustness of a given STL formula
with respect to a given model trajectory as a scalar random variable. The probability distribution
of this random variable is induced by the uncertainty in the initial states and parameters of the
model.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 2, Article 22. Publication date: May 2024.



Statistical Verification using Surrogate Models and Conformal Inference 22:13

A popular risk measure is known as Value-at-Risk (VaR). In risk-aware veriocation, given a
risk level · ∈ [0, 1], Value-at-Risk level2 · computes the value ρ∗ s.t. the probability of the robust-
ness for a trajectory being less than ρ∗ is greater than · . Clearly, this is yet another way to obtain
probabilistic guarantees on a model’s behavior through simulations (which can be used to obtain
empirical estimates of the probability distribution of the desired quantity, e.g., robustness w.r.t.
a given formula). In what follows, we formally recap two important tail risk measures that are
commonly used and compare the bounds we obtain through risk estimation with those obtained
through conformal inference.

4.1 Risk Measures

The behavior of a given CPS application can vary with the values of the system parameters. If
we assume that the parameter values of a system are a priori unknown, then we can consider
the system behavior as uncertain – where the uncertainty is induced by the distribution on the
parameter values. Risk measures can then be used to quantify if the system is safe with a given
probability threshold. We assume that the parameter value θ and ρ (φ, ξθ ) follow a joint (unknown)
distributionDθ,ρ (φ ) . A risk measure r· can provide the following probabilistic guarantee about the
robustness of the system, given an STL speciocation and a conodence level · :

Pr (−ρ (φ, ξθ ) ≤ r· ) ≥ · . (4.1)

We now include two important risk measures used in the literature [33].

Deonition 4.1 (Value-at-Risk (VaR), Conditional-Value-at-Risk (CVaR) [33]). Let Z be shorthand
for ρ (φ, ξθ ). The Value-at-Risk is deoned as follows:

VaR· (−Z ) = inf
¸ ∈R

{

¸ | Pr(−Z ≤ ¸ ) ≥ ·
}

. (4.2)

The conditional-value-at-risk is deoned as follows:

CVaR· (−Z ) = E
−Z ≥VaRε (−Z )

(−Z ) (4.3)

Essentially, both risk measures provide probabilistic upper bounds on the negative of the robust-
ness value, or provide lower bounds on the actual robustness value, as is required in risk-aware
veriocation [4, 33]. Figure 3 demonstrates the relationship between the two risk measures.

To compare with the bounds provided by conformal inference, we also need to compute prob-
abilistic guarantees on upper bounds on the robustness. These can be simply given by the risk
measures VaR· (ρ (φ, ξθ )) and CVaR· (ρ (φ, ξθ )). For brevity, we refer to VaR· (−ρ (φ, ξθ )) as VaR

�
·

and VaR· (ρ (φ, ξθ )) as VaR
u
· . We will use similar notation CVaR�

· and CVaRu· .

4.2 Computing Risk Against Diferent System Parameters

Algorithm 2 returns regions of space that satisfy or do not satisfy a given STL formula. We now
investigate whether conformal inference and risk measures will give the same conclusion on the
safety of a region. We remark that the system under consideration is deterministic, but the random
choice of the model parameter values θ induces a distribution of the robustness values ρ (φ, ξθ ) of
the given STL formula φ. Thus, the probability appearing in Equation (4.2) is associated with this
distribution.

2Our deonition is slightly diferent from the one in [4] and is consistent with the deonitions in [41], [42], and [51]. The

main diference is that in [4], the authors denote VaR at level · to denote infζ P (x < ¸ ) > 1 − · , while the probability

threshold in our technique is · .
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Fig. 3. Illustration of the Value-at-Risk, and the Conditional Value-at-Risk with · = 0.7.

Estimation of VaR, CVaR. The deonition of VaR· presumes that we know the joint probability
distribution of ρ (φ, ξθ ) and θ . However, in our problem setting, this distribution is unknown. We
use the (100 ∗ · )-percentile of the samples values to approximate the VaR· [24].

To estimate CVaR· , we note that CVaR· can be rewritten as the following integral:

CVaR· (−Z ) =

∫ ·

0

VaRγ (−Z )dγ (4.4)

The value of the above integral can be estimated using standard Monte Carlo integration by ran-
domly sampling the values of γ .

5 CASE STUDIES

In this section, we present case studies of CPS models, and identify regions in the parameter space
that we can mark as safe, unsafe or unknown with high probability. We tried each of the case
studies with diferent regression algorithms, with Gaussian Process regression leading to smaller
residuals, ergo, narrower conformal intervals.We tried both (a) the naïve algorithm that recursively
splits the parameter space, and (b) the algorithm which adaptively partitions the parameter space
exploiting the uncertainty as expressed by a Gaussian Process prior. For all case studies, we used
a miscoverage level of ϵ = 0.05 (i.e., providing a correctness threshold of 95% probability).

We orst compared the performance of Algorithm 2while using diferent partition splittingmeth-
ods. For the GP-based partitioning method, we use the sum kernel k (θi ,θ j ) = k1 (θi ,θ j ) +k2 (θi ,θ j ),
where k1 is the dot product kernel, i.e., k1 (θi ,θ j ) = σ 2

0 + θi · θ j , and k2 is the white kernel, where
k2 (θi ,θ j ) = 1 if θi = θ j and 0 otherwise.

Comparing Partitioning Schemes using Mountain Car. For the comparison experiment, we used
a model known as mountain car popular in the reinforcement learning literature [56]. Here, the
model describes an under-powered car attempting to drive up a hill. A successful strategy involves
the car accumulating potential energy by going in the opposite direction and then use the gained
momentum. Details of this model can be found in [56]. The parameter space for mountain car
is deoned by the initial position xinit and velocity vinit of the car. We wish to identify regions of
space that satisfy or violate the property of reaching the goal. The region we choose for analysis is
deoned as as Θ = (xinit,vinit) ∈ [−0.7, 0.2] × [−0.5, 0.5], which is comparable to the region used in
[56]. We consider the parameter value safe if it satisoes the STL formula φmc = F[0,10] (x (t ) > 0.45).
In Figure 4(c), we show an approximation of the ground truth obtained by a uniform grid sampling
of the parameter space3; here, green and red dots, respectively, denote satisfaction and violation
of φmc.

3Note that the number of grid samples used to generate the approximate ground truth far exceeds the number of simulations

required for the experiments, and is only provided to enable validation of our results.
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Fig. 4. Mountain Car parameter space partitioning using diferent approaches

Table 1. Comparison of Algorithm 2 for Diferent Partitioning Strategies

Partition method
num. regions Ratio of Volumes (%)
explored Safe Unsafe Unk.

Naïve (Section 3.3) 457 89.01 10.99 0.00
Greatest uncertainty (Section 3.4) 364 88.72 11.28 0.00

(1 − ϵ ) = 0.95. Caption here (1 − ϵ ) got splitted into a diferent line.

Results of comparing the naïve splitting method (Figure 4(a)) and GP-based partitioning
(Figure 4(b)) are shown in Table 1. We note that the number of regions explored is much lower
than the one with naïve splitting. As fewer number of regions explored translates into fewer num-
ber of simulations, it is clear that the GP-based method has superior performance. We observed
similar results for other case studies in this article, but we skip the results for brevity. Due to the
superiority of the GP-based method, we use this method for rest of the case studies in this article.

. Reinforcement Learning Lane-Keep Assist. Lane-keep assist (LKA) is an automated driver as-
sistance technique used in semi-autonomous vehicles to keep the ego vehicle traveling along
the centerline of a lane. We consider a reinforcement learning (RL)-based agent to perform LKA
from the Matlab® RL toolbox (based on [37]). The agent has a Deep Q-Network (DQN) inside,
which makes this case study a learning-enabled application. The inputs to the agent are lateral
deviation e1, relative yaw angle (i.e., yaw error) e2, their derivatives and their integrals. The pa-
rameter space for this model consists of initial values for e1 and e2, where we looked at region
Θ = (e1, e2) ∈ [−0.3, 0.3] × [−0.2, 0.2]. We are interested in checking properties such as over-
shoot/undershoot bounds and the settling time for the lateral deviation and yaw error signals. In
this experiment, we consider two properties characterizing bounds on e2 and settling time for e1;
φlka,settle : G[2,15] ( |e1 | < 0.025) and φlka,bounds : G[0,15] (e2 < 0.4 ' e2 > −0.4). Figure 5 shows the
parameter space partitioning results and the ground truth with respect to φlka,settle. Our technique
was able to certify that φlka,bounds is satisoed by the entire region with 95% conodence.

F-16 Control System. Next, we consider the veriocation challenge presented in [23]. This is the
model of a F-16 night control system—a hierarchical control system containing an outer-loop au-
topilot and an inner-loop tracking and stabilizing controller (ILC), and a 13 dimensional non-
linear dynamical plant model. The plant dynamics are based on a 6 degrees of freedom standard
airplanemodel [48] represented by a system of 13 ODEs describing the force equations, kinematics,
moments, and a orst-order lag model for the afterburning turbofan engine. These ODEs describe
the evolution of the system states, namely velocity vt , angle of attack ³ , sideslip ´ , altitude h, atti-
tude angles: rollϕ, pitch θ , yawψ , and their corresponding ratesp,q, r , enginepower and twomore
states for translation along north and east. The non-linear plant model uses linearly interpolated
lookup tables to incorporate wind tunnel data. The control system is composed of an autopilot
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Fig. 5. Lane Keep Assist.

that sets the references on upward acceleration, stability roll rate and the throttle . The ILC uses
an LQR state feedback law to track the references and computes the control input for the aileron,
rudder and the elevator . We consider three separate scenarios capturing specioc contexts; each
scenario deones the parameter set and an associated speciocation.

F16-Pull-UpManeuver.This scenario demonstrates the tracking of a constant autopilot command
requesting an upward acceleration (Nz = 5д). The ILC tries to track the reference without unde-
sirable transients like pitch oscillations and exceeding pitch rate limits. We modify the controller
gains to highlight the violations of the spec φf16,pullup : G[0,10]q ≤ 120◦/s . The parameter space is
described by initial values of ³ ∈ [−10◦, 0◦],θ ∈ [−30◦, 0◦] and the results are shown in Figure 6(a)
(results of Algorithm 2) and Figure 6(b) (ground truth).

F16-Level Flight. This scenario describes straight and level night with a constant attitude and 0
initial angular rates. The bounded parameter space is deoned by the initial altitudeh ∈ [500, 65000]
and velocityvt ∈ [130, 1200]. The autopilot references are set to zero, and the ILC tries to maintain
a constant altitude and angle of attack ³ . As the F-16 can ny over a large range of altitudes and
velocities, a single LQR computed against the linearzied model can not satisfy the goal and results
in a stall deoned by φf16,level : G[0,10] (³ ≤ 35◦). This is shown Figure 6.

F16-Ground Collision Avoidance (GCAS). The onal scenario describes the F-16 diving towards the
ground and the GCAS autopilot trying to prevent the collision. The GCAS brings the roll angle
and its rate to 0 and then accelerates upwards to avoid ground collision as deoned by the spec
φf16,gcas : G[0,10] (h ≥ 0f t ). The parameter space is described by initial values of ³ ∈ [0.075, 0.1]c

and φ ∈ [−0.1,−0.075]c . In this case study, the ground truth and our results seem to be less
well-matched than other case studies. There are a couple of reasons for this. First, observe that
the ground truth is highly non-monotonic. Given the nonlinearity of the ground truth, the otted
surrogate model could tend to ot the value of the majority of the points better, which in this case
are negative values, making the optimization results errs on the negative values and resulting in a
region being marked unsafe. To remedy this, we would have to increase the number of simulations
per region used to train the GP regression model and possibly experiment with other regression
models (such as a deep neural network regressor). (We provide an illustration of the results in the
Appendix in Figure A.1(c) and A.1(d).)

Artiocial Pasncreas. Type-1 diabetes (juvenile diabetes) is a chronic condition caused by the
inability of the pancreas to secrete the required amount of insulin. Simglucose [54] is a Python im-
plementation of the FDA-approved Type-1 Diabetes simulator [36] which models glucose kinetics.
We input a list of tuples of time andmeal size to Simglucose and set the same scenario environment.
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Fig. 6. F16 - Pull up (Top) Level Flight (botom).

Choosing patients in diferent age will result in diferent simulation trace. The parametermeal time

is constrained to be strictly increasing and the last meal of a day to be taken in less than 24 hours.
For each scenario, the simulator provides traces records of diferent blood indicators based on a
given environment setting. We are interested in checking if patients do not become hyperglycemic
on the orst day (i.e., when the blood glucose (BG) exceeds a certain threshold). We use δ = 0.5 as
the termination criteria for region splitting. We study 4 scenarios describing an adolescent patient
who takes 2, 3, 4, and 5 meals a day, respectively. The meals of size si are consumed at time ti . The
parameters space is then deoned by S1×S2× · · · ×Sn , the dimension of the parameter space equals
the number of meals taken. We denote n as the total number of meals. We can calculate ti using
equation ti = [(i − 1) ∗ 24

n
+ 1, i ∗ 24

n
], and Si ⊆ [1, 20].

The property φhyper,c specioes that the patient should not become hyperglycemic. Our results
predict the entire region as 100% safe region with 95% conodence for all cases where the patient
had 3 or more meals. For the two meal case for the property φhyper,155 our implementation result
of 54.44% matches well with the ground truth where we see a 52.47% unsafe volume (obtained
by expensive grid-based sampling). For higher dimensional cases, the initial Si considered are
diferent. This could imply more frequent meals with less amounts each can help control blood
glucose.
Impact and Discussion of Results. The results obtained for all the case studies are summarized

in Table 2. Our tool is capable of producing heatmap style representation of the unsafe parameter
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Table 2. Performance of Algorithm 2 using the GP-based Greatest Uncertainty Split Method with 95%

Confidence Level

Case Study
Ratio of Volumes (%) Sims./

Spec.
Safe Unsafe Unk. region

Mountain Car 1 88.72 11.28 0.00 100 φmc

Lane Keep Assist 1 100 0.00 0.00 100 φlka,bounds

Lane Keep Assist 2 77.23 21.97 0.80 100 φlka,settle

F16 Level Flight 67.18 32.81 0.00 100 φf16,level

F16 Pull up 43.52 56.09 0.40 100 φf16,pullup

F16 GCAS 3.91 96.09 0.00 100 φf16,GCAS

Simglucose 2D 45.45 54.55 0.00 10 φhyper,155

Simglucose 2D 100 0.00 0.00 10 φhyper,170

Simglucose 3D 100 0.00 0.00 10 φhyper,155

Simglucose 4D 100 0.00 0.00 10 φhyper,155

Simglucose 5D 100 0.00 0.00 10 φhyper,155

regionswhen projected to two parameter dimensions. For higher number of parameter dimensions,
visualization is more diocult. Hence, we also report the percentage volume of regions found safe
or unsafe by our method. We observe that, in most cases, the volume of regions that remain un-
known is quite low. As some of the case studies are those of learning-enabled CPS applications,
it is expected to see a high volume of unsafe regions—this can happen if the learning-enabled
components (LECs) are efectively trained in all parameter regions. Thus, our tool can provide
useful information to algorithms for training such LECs.

We remark that the runtime for our method is dominated by the time required for running
the simulations—a step that is easily parallelizable. We can also reuse simulations performed on a
given sub-region of a coarser region when the region is split. Our prototype tool also does not in-
clude either of these optimizations. The time required for training the GP surrogate with 100 data
points takes 0.035 seconds on an average. The naïve reonement procedure takes around 7.1 μs for
models with 2D parameter spaces and 24 μs for 3D parameter spaces. With GP-based reonement
(which requires the use of optimization with acquisition functions), the runtime is 0.006 seconds.
Thus, with the ability to parallelize and reuse simulations, the additional overhead induced by our
method (e.g., in comparison to an SMC method) is minimal. We do acknowledge that SMC meth-
ods can perhaps obtain guarantees with a fewer number of simulations using statistical hypothesis
testing; however, SMC methods typically do not learn surrogate models and cannot generate pa-
rameter space partitioning. We onally remark that if the model parameters are being chosen by an
outer loop supervisory control, then the partitions that we generate create conditional contracts
on the safety of the CPS model; such contracts can be used for constructing safety assurance
cases [46].

5.1 Comparing with Risk Measures

Figures 7-9 demonstrate the VaR· and CVaR· risk assessment for each region. For the same con-
odence level · = 95%, the conformal inference procedure computes [vmin,vmax] as the bounds on
the robustness value, while with a given risk measure r· , let [r

�, ru ] indicate the (probabilistic)
lower and upper bounds on the robustness values. Recall that, if vmax < 0, then note the region is
red; and if vmin > 0, the region is green. We use the following color coding:

(1) For red regions: If vmax < ru < 0, then we use a lighter shade of red, and if 0 > vmax > ru ,
we use a darker shade. Intuitively, a lighter shade indicates that the risk-based probability
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Table 3. Number of CVaR and VaR Not Bounded by the upper and Lower Bound of Conformal Inference,

with −ρ as Loss Function and 95% as Confidence Level

Sims./
CVaR Lower CVaR Higher Dif # Region VaR Lower VaR Higher Dif # Region

region

5 17 (54.84%) 0 (0.0%) 3 (9.68%) 31 17 (60.71%) 2 (7.14%) 1(3.57%) 28
10 34 (55.74%) 7 (11.48%) 3 (4.92 %) 61 26 (65.0%) 2(5.0%) 6(15.0%) 40
50 148 (62.18%)) 0 (0.0%) 24 (10.08%) 238 158 (55.83%) 1 (0.35%) 17 (6.01%) 283
100 879 (35.37%) 1(0.04%) 61(2.45%) 2485 647 (27.79%) 0 (0.0%) 30 (1.24%) 2425
200 830 (36.24%) 3 (0.13%) 50 (2.18%) 2290 637 (28.0%) 0 (0.0%) 15 (0.66%) 2275
300 801 (33.61%) 2 (0.08%) 50 (2.10%) 2383 612 (27.70%) 2 (0.09%) 13 (0.59%) 2209
500 757 (32.50%) 2 (0.09%) 34 (1.46%) 2329 592 (25.19%) 6 (0.26%) 10 (0.43%) 2350
1000 739 (31.73%) 8 (0.34%) 35 (1.50%) 2329 579 (24.21 %) 11 (0.46%) 7 (0.29%) 2392

measures deem the region <less unsafe= (as compared to the bounds computed by the split
conformal predictor), and a darker shade indicates riskier or more unsafe regions (for the
same comparison).

(2) For green regions: If r � > vmin > 0, then we use a lighter shade of green, and if 0 < r � < vmin,
we use a darker shade. Intuitively, a darker shade indicates that the risk-based probability
measures deem the region <less safe=, and a lighter shade indicates a more robustly safe
region (according to risk estimation).

(3) For blue regions: Ifvmax < 0 < ru (i.e., the conformal bound deems the region unsafe, but the
risk measure either deems the region safe or inconclusive), then we color the region light
blue. If r � < 0 < vmin (i.e., the conformal bound deems the region safe, but the risk measure
either deems it unsafe or inconclusive), then we color the region dark blue. Blue regions
indicate that the two methods are unable to agree on the classiocation of a region as safe or
unsafe.

In conclusion, conformal inference bounds are not guaranteed to bound the risk (as computed by
using risk measures). However, risk measures largely agree with conformal inference on region
safety. Table 3 and Table 4 show risk measure performance compared to the bounds computed
by conformal inference as a function of the number of samples used per region to compute ei-
ther kind of bounds. The column labeled <Dif= counts regions where the conformal inference is:
(1) not assigned unknown to the region, and (2) the risk measure has a diferent conclusion about
the safety of that region. We can see that the maximum disagreement is still less than 5%, and the
two methods tend to agree more when we sample more per region. We remark that a surrogate
model’s training set could still miss rare unsafe points due to sampling vagaries, so the surrogate
model can provide an optimistic vmin, which may mark some regions containing unsafe points
as safe (because the regression-based surrogate model lacks some critical data points). However,
risk-based analysis directly does quantile estimation on the robustness values (without otting a
surrogate model), and hence, in some cases, may help (conservatively) label regions as unsafe.

6 RELATEDWORK AND CONCLUSIONS

Related Work. Methods based on Statistical Model Checking (SMC) [29, 30, 57] can overcome
the hurdles like scalability and nonlinearity and provide probabilistic guarantees [1, 13, 45, 53,
56]. These methods are based on statistical inference methods like sequential probability ratio
tests [13, 29, 45, 47], Bayesian statistics [57], and Clopper-Pearson bounds [56]. Another line of
works use Probably Approximately Correct (PAC) learning theory to give probabilistic bounds
for Markov decision processes and black-box systems [19, 21].

In contrast to SMC- and PAC-learning techniques, our approach is sample independent and can
provide the required probabilistic guarantees with any number of samples. This is becausewe build
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Fig. 7. F16 - Pull up. 100 samples per region.

Table 4. Number of CVaR and VaR Not Bounded by the Upper and Lower Bound of Conformal Inference,

with ρ as Loss Function and 95% as Confidence Level

Sim./
region

CVaR Lower CVaR Higher Dif # Region VaR Lower VaR Higher Dif # Region

5 0 (0.0%) 10 (62.5%) 9(56.25%) 16 0 (0.0%) 5 (71.43%) 5 (71.43%) 7
10 0 (0.0%) 15 (48.39%) 9 (29.03%) 31 1 (3.57 %) 16 (57.14%) 13 (46.43%) 28
50 0 (0.0%) 97 (62.99%) 40 (25.97%) 154 1 (1.06%) 57 (60.64%) 26 (27.66%) 94
100 1 (0.04%) 37 (1.51%) 1 (0.04%) 2458 8 (0.34%) 1 (0.04%) 0 (0.0%) 2350
200 3 (0.13%) 150 (6.34%) 8 (0.34%) 2365 5 (0.21%) 30 (1.28%) 4 (0.17%) 2338
300 3 (0.13%) 169 (7.16%) 7 (0.30%) 2359 9 (0.37%) 27 (1.10%) 0 (0.0%) 2446
500 5 (0.21%) 208 (8.62%) 4 (0.17%) 2413 8 (0.35%) 48 (2.09%) 1 (0.04%) 2293
1000 16 (0.70%) 223 (9.80%) 14 (0.62%) 2275 17 (0.74%) 60 (2.61%) 2 (0.09%) 2299

a guaranteed regression model from the system parameters with respect to the robust satisfaction
value of the corresponding STL properties. If the regression model is of poor quality (due to few
samples), using the calibration step in conformal regression, the predicted (but wider) interval can
still have the same level of guarantee. Conformal regression lets us trade of the quality of the
regression model (w.r.t. the data) and the width of the interval for which we have high-conodence
property satisfaction, and not the level of the guarantee itself.
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Fig. 8. F16 - Pull up. With more samples (1000) per region.

Recent work on using conformity measures is quite relevant to our work [8, 9]; the main contri-
bution here is that, in order to handle high-dimensional inputs in real-time, the authors compute
a nonconformity score using an embedding representation of deep neural network models. This
work however focuses on a classiocation problem and not on obtaining probabilistic guarantees
on (closed-loop) system correctness. The idea of obtaining trusted conodence bounds is however
similar, albeit applied in a diferent context. The work in [10] and [22] focuses on detecting regions
of the input space of a learning-enabled component that lack training data and hence can poten-
tially have large (prediction) errors. These approaches are more suitable for runtime assurance or
statically characterizing uncertainty in predictions performed by learning-enabled components.
In our article, we use regression-style learning algorithms to approximate the model itself and
use such surrogate models to obtain probabilistic guarantees. While the models we consider may
themselves have learning enabled components (LECs), our approach is black-box: it does not
reason about the LECs themselves.
Risk is an excellent way to analyze the robustness of systems. Control design sees risk as es-

sential to calculate and optimize during the process. Works on stochastic system veriocation ond
risk measures give more information than just expectation values of cost. We perform a detailed
comparison of our work in [39] with the guarantees obtained using risk measures. We see that the
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Fig. 9. F16 - Pull up 100 samples per region.

veriocation results of our proposed methods agree with each other in most cases. We argue that
when the two guarantees do not agree, regions where such disagreements occur would require
further investigation. A potential reason for mismatch is that the empirical distribution of residual
error (when training the surrogate model) may difer from the distribution of robustness values
in this region (due to non-linearities in the CPS model’s dynamics, how well the chosen surrogate
model ots the data, etc.).

7 CONCLUSION

In this article, we proposed a veriocation framework that can search the parameter space to ond
the regions that lead to satisfaction or violation of given speciocation with probabilistic coverage
guarantees. There are a couple of directions we aim to explore as future work: (1) We used a very
basic version of conformal regression in Algorithm 1, which gives a constant conodence range
d across all X . Techniques based on quantile regression [44] and locally weighed conformal [31]
can make d a function of X and give much shorter prediction intervals and (2) We plan to explore
probabilistic regret bounds for Gaussian process optimization to help obtain (probabilistic) upper
and lower bounds on the value of the surrogate model when using GP-based regression.
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APPENDIX

Fig. A.1. Experimental results for the F16 case study.
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