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1 INTRODUCTION

Most cyber-physical systems are highly complex systems with nonlinear behaviors that operate
in uncertain operating environments. As these systems are often safety-critical, it is desirable to
obtain strong assurances on their safe operation. To achieve this goal, recent research has been
focused on effective and sound verification algorithms [16, 17, 25, 26, 28, 49, 50], and scalable
best-effort approaches which lack explicit coverage guarantees [55]. However, factors like com-
plexity and stochasticity of the operating environments, curse of dimensionality, the nonlinearity
of dynamics pose a significant scalability challenge for verification procedures. In this article, we
address the problem of analyzing the effects of uncertainty in the environment on the correctness
of a given CPS model M. We assume that the uncertainty in the environment is modeled as a pa-
rameter vector (0) that takes values from some set O, distributed according to some user-provided
distribution Deg. Such a parameter vector could also include time-varying parameters (represent-
ing time-discretized input signals). For a sample of 6, we assume that the output trajectories of the
model (denoted &y) are deterministic, i.e., the model is free of any internal stochastic behavior.

We assume that the correctness of the given CPS model is expressed using a real-valued function
of its input/output trajectories. In many of our examples, we assume this function to be the robust
satisfaction value or robustness of a given Signal Temporal Logic (STL) [35]. Given a formula
¢ and a trajectory x(t), the robustness p(¢, x) approximates the degree of satisfaction of ¢ by
x [15, 18]. We are primarily interested in building a surrogate model /i to approximate the joint
distribution of 6 and p(¢, M(0)), and explore the use of such model to help answer the following
specific questions:

(1) Given a threshold €, and 6 ~ Dg, does the probability of the model satisfying a given STL
property ¢ exceed 1 — €?

(0~ Do) = PIM(O) = ¢) >1—¢ (1.1)

2) For some user-provided threshold €, an ~ o, can we find an interva ,u] s.t. the

) F provided threshold do ~ D find an i 1 [£,u] h
probability that the robustness value of a model behavior M(€) w.r.t. a given STL property
@ lies in [£, u] greater than 1 — €? i.e.,

0~ Do = P(p(p, M(0)) € [€,u]) >1—¢€ (1.2)

Statistical model checking (SMC) [2, 30, 45, 47, 56, 57] approaches have been used in the past
to establish the above two assertions. The most popular SMC methods use statistical hypothesis
testing procedures to check whether the hypothesis that (1.1) and (1.2) are true can be accepted
with confidence exceeding user-specified thresholds a, f§ for respectively committing a type I er-
ror (i.e., rejecting the hypothesis when it is true) or a type II error (i.e., accepting the hypothesis
when it is not true). SMC methods provide the user with conditions on the number of simulations
required, , f and € in order to accept or reject the hypotheses. Unlike SMC that requires a certain
number of samples to answer the above questions, our use of surrogate models can establish the
assertions without the requirements for sampling numbers, which will be explained later. Further-
more, our use of surrogate models can help automatically provide a new distribution of 6 ~ D,
such that (1.2) holds true.

Approach. To establish assertions such as (1.1) or (1.2), we present an approach based on confor-
mal inference, a technique for giving confidence intervals with marginal coverage guarantees. A
unique feature of our technique is that it does not make any assumptions on the user-provided
distribution on the parameter space or the dynamics represented by the model. While existing
techniques based on uncertainty quantification using Gaussian Process based surrogate models
assume that the joint distribution of sampled parameter values and target robustness values have
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Fig. 1. Overview of our approach.

a Gaussian distribution [38]. SMC techniques although make no assumption on the input distri-
bution, assume that the Boolean outcomes of successive runs of a given program have a bino-
mial distribution, and probabilistic guarantees are based on analyzing properties of the binomial
distribution.

The overview of our approach is shown in Figure 1. The first step of our approach is to learn a
surrogate model - this can be thought of as a statistical data-driven approximation of the black-box
model. For this step, we sample N parameter values from ©, obtain their corresponding trajectories
(£9) and then compute the robust satisfaction value p(¢, &y) for each trajectory. We then partition
this set into a training set and a test set. We then use an off-the-shelf regression technique on
the training set treating the sampled parameters in the training set as inputs and the robustness
values as outputs of the learned regressor. Here, we can use any parametric technique such as
polynomial regression, or a non-parametric technique based on Gaussian process regression or
neural networks [7].

Due to the generalizability inherent in regression, the surrogate model can predict the robust-
ness value for all parameter values in ©. However, most good regression techniques avoid over-
fitting to the data, and hence will result in some residual error (i.e., between the predicted values
and the actual values). Conformal inference is a technique that can leverage these residual errors
to give confidence intervals on predicted values. The main idea in conformal inference is: for any
given threshold 1 — ¢, there is a systematic way to find a prediction interval [1(8) — d, 1(0) + d]
where the answer must lie with probability greater than 1 — €. We couple this idea with a global
optimizer to obtain confidence intervals for regions in the parameter space rather than individual
parameter values. This allows us to provide the guarantee specified in Equation (1.3), where vmin
and vy are respectively under- and overapproximations of the predicted robustness over the
region ©.

0€® = P(p(¢,&) € [Umin —d, Umax +d]) > 1-€. (1.3)

A strictly positive or strictly negative interval indicates that the © is respectively safe or unsafe.
However, if the interval contains 0, then the status of ® remains unknown. The above procedure
naturally yields a refinement procedure which allows us to start with a larger region in the param-
eter space, and split it into smaller regions if the region is deemed unknown. In a smaller region,
the accuracy of the surrogate model improves (due to more data in a smaller region), and hence
previously inconclusive regions can be resolved as safe/unsafe. A naive version of this splitting
algorithm faces the curse of dimensionality—if the parameter space is high-dimensional, then the
branch-and-bound procedure ends up creating too many branches which can make the procedure
intractable.

The naive splitting algorithm crucially does not use any smart heuristic to decide where a re-
gion should be split, and this can lead to unnecessary exploration of larger regions that can be
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(statistically) verified as safe or unsafe. To overcome this shortcoming, we propose the use of
Gaussian Process (GP) [40] regression models. There is rich literature on the use of GP-based
models for black-box function optimization, and a key idea therein is to explicitly encode sam-
ple uncertainty as an optimization objective. This allows GP-based methods to tradeoff between
exploitation (searching in the vicinity of a local minimum) and exploration (searching in neighbor-
hoods with high sample uncertainty). We propose to use a similar heuristic that adaptively splits
regions based on sample uncertainty.

Our method can scale to CPS models encoding complex dynamics and large state spaces, as
well as reasonably large parameter spaces. The results of our method can be used to characterize
safe operating regions in the parameter space, and to build (probabilistic) safety assurance cases.
With respect to analysis times, our method compares favorably with approaches based on . A key
difference is that unlike SMC- and PAC-based methods, the first step in our method is to construct
a surrogate model. This crucially allows us to provided a guarantee that is not a function of the
number of samples. In fact, our method can potentially provide the needed level of probabilistic
guarantees with any number of samples. This is because we build a surrogate model from sam-
ples; if the surrogate model is of poor accuracy due to a limited number of samples, conformal
inference will predict a wider prediction interval with the same probability 1 — €, while for a more
accurate model, the prediction interval will be narrower. Thus, conformal inference allows a trade-
off between sample complexity and the tightness of the guarantee independent of the level of the
guarantee itself. Finally, while SMC-based methods focus solely on the problem of probabilistic
verification, our method can enable other model-based analyses: (1) we can give probabilistic safe
regions in the parameter space; for example, these can be used to define high-confidence oper-
ating regimes for the model, (2) our technique can be used for statistical debugging approaches
such as [6] and [14], and (3) we can extend our technique to identify parameter sensitivity by com-
bining the core regression procedure with dimensionality reduction techniques such as principal
component analysis [7].

While conformal prediction has emerged as an important statistical technique to provide prob-
abilistic guarantees, an important concurrent development is the work on scenario-based verifica-
tion using the notion of risk measures [4]. Measures such as value-at-risk and conditional-value-at-
risk allow quantifying the risk of the given CPS application failing a particular quantitative speci-
fication (e.g., specified as an STL formula). In this article, we empirically compare the probabilistic
guarantees obtained using the risk estimation formulation with those obtained using conformal
prediction.

To summarize, the main contributions of this article are:

(1) A technique based on surrogate models to approximate the robustness of a given specifica-
tion learned using off-the-shelf regression techniques;

(2) A new technique for generating prediction intervals for the robustness of a specification
with user-specified probabilistic thresholds;

(3) Algorithms to partition the parameter space of a model into safe, unsafe, and unknown
regions based on conformal inference on the surrogate models;

(4) Experimental validation on CPS models demonstrating the real-world applicability of our
methods; and

(5) Empirical comparison with methods to provide probabilistic guarantees based on estimating
tail risk measures.

The rest of this article is organized as follows: Section 2 provides the background and notation;
Section 3 explains how we use conformal inference for providing probabilistic guarantees on satis-
faction/violation of a given STL property over a region in the parameter space; Section 4 presents
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our algorithm for refining parameter spaces using Gaussian Processes. Finally, Section 5 illustrates
our approach using several case studies, and Section 6 presents our conclusions.

2 PRELIMINARIES

Definition 2.1 (Signals, Black-box Models). We define a signal! or a trajectory ¢ as a function
from a finite set dom C [0, T] for some T € R>" to a compact set of values X. The signal value
at time ¢ is denoted as £(t). A parameter space © is some compact subset of R, A model M is a
function that maps a parameter value 6 € © to an output signal &y.

We note that the above definition permits parameterized input signals for the model. We can
define such signals using a function known as a signal generator that maps specific parameter
values to signals. For example, a piecewise linear signal containing k linear segments can be de-
scribed using k + 1 parameters, k corresponding to the starting point for each segment and 1 for
the end-point of the final segment.

We assume that 6 € © is a random variable that follows a (truncated) distribution Dy with
probability density function (PDF) f(0) and Y0 ¢ ©, f(0) = 0.1f we only wish to draw samples
fromasubset S C O (by dropping samples from ©\S), the corresponding distribution of the samples
is denoted by Dy | S and follows the PDF shown below:

£(0) ;
————— iff €S
F0) =1 Jesfdr (2.1)
0 otherwise.
Instead of closed form descriptions of the generator for & (e.g., differential or difference equations),
we assume that there is a simulator that can generate signals compatible with the semantics of the
model M.

Definition 2.2. A simulator for a (deterministic) set = of trajectories is a function (or a program)
sim that takes as input a parameter § € ©, and a finite sequence of time points t, ..., t;, and
returns the signal (g, sim(0, ty), . . ., tx, sim(6, t;)), where for each i € {0, ..., k},sim(0,t;) = & (t;).

In rest of this article, unless otherwise specified, we ignore the distinction between the signals
sim(0, -) and &p.

2.1 Signal Temporal Logic

Signal Temporal Logic [35] is a popular formalism that has been widely used to express safety
specifications for many CPS applications. STL formulas are defined over signal predicates of the
form f (&) > c or f(€) < ¢, where ¢ is a signal and f : R" — R is a real-valued function and
¢ € R. STL formulas are written using the grammar shown in Equation (2.2). Here, we assume that
I =[a,b], where a,b € R=°, a < b, and ~€ {<, >}.

gy =true| f(E)~cl-@lonyloVy|Fip|GrpleUry. (2.2)

In the above syntax, F (eventually), G (always), and U (until) are temporal operators. Given t € R=°
and I = [a,b], we use t +1 to denote [t +a, t + b]. Given a signal £ and a time t, we use (¢, t) |= ¢ to
denote that & satisfies ¢ at time t, and & |= ¢ as shorthand for (£, 0) |= ¢. The Boolean satisfaction

!Conventionally, signals are defined over continuous-time; however, in a practical setting, such as in a simulator, we only
obtain signal values at a finite set of time intervals. In such a case, it is common to assume that the underlying continuous-
time signal can be recovered using an appropriate interpolation scheme. The discrete-time vs. continuous-time interpreta-
tion is not of particular importance in this article. The only bearing it has is on the satisfaction of a given STL formula—we
use point-wise semantics of STL over piecewise constant interpolated signals that produce identical satisfaction values for
continuous/discrete-time signals.
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Fig. 2. Trajectories satisfying/violating STL formulas.

semantics of an STL formula can be recursively in terms of the satisfaction of its subformulas over
the a signal. For ~e {<, >}, &: (€,1) |= f(&) ~ cif f(E(t)) ~ cis true. The semantics of the Boolean
operators for negation (—), conjunction (A) and disjunction (V) can be obtained in the usual fashion
by applying the operator to the Boolean satisfaction of its operand(s). The value of (¢,t) |= Fro is
true iff A" € t + I s.t. (€,1") |= @, while (&,1) |= Gro ift Vi’ € t + I, (£,t) |= ¢. The formula Uy
is satisfied at time ¢ if there exists a time ¢’ > t s.t. {/ is true, and for all t" € [t, '], ¢ is true.

STL is also equipped with quantitative semantics that define the robust satisfaction value or
robustness —a function mapping a formula ¢ and the signal £ to a real number [15, 18]. Informally,
robustness can be viewed as a degree of satisfaction of an STL formula ¢. While many competing
definitions for robust satisfaction value exist [3, 27, 43], we use the original definitions [15] in this
article.

Definition 2.3. The robustness value is a function p mapping ¢, the trajectory £, and a time
t € £.dom as follows:

p(f(&) 2c.&t) = f(E@)—c
p(_'(P’ §7 t) = _p((Pv §’ t)
plo Ay, & t) = min(p(e. &, t), p(¥, &, 1))
pleUry) =

sup min(p(y, &, t1), . eiﬁft )p(@ &, 12))
2 EX

tiet+I

The robustness values for other Boolean and temporal operators can be derived from the above
definition; for example, G;¢ and F¢ are a special case of the semantics for until (Uy) respectively
evaluating to the minimum and maximum of the robustness of ¢ over the interval I.

Example 2.4. Consider the time-reversed van Der Pol oscillator specified as X1 = —x3, X2 =
4(xf — 1)x, + x1. Figure 2 illustrates the satisfaction (indicated in blue) and violation (indicated in
red) of two example specifications by x1(#): (a) @1 specifies that for any time t € [0, 10], the value
of the trajectory x(t) should be less than 0.5 and (b) ¢, specifies that from some time within the
first two time units, x(t) settles in the region [—0.3, 0.3] for eight time units.

2.2 Learning Surrogate Models

In this section, we discuss learning of surrogate models for a given black-box model M. A surro-
gate model is essentially a quantitative abstraction of the original black-box model. Quantitative
abstractions have been explored in the theory of weighted transition systems (WTS) [11]. A
WTS is a transition system where every transition is associated with weights, and a quantitative
property of the WTS maps sequences of states of the WTS to a real number computed using some
arithmetic operations on the weights. Quantitative abstractions focus on sound proofs for quanti-
tative properties. We observe that we can view the robustness of an STL property as a quantitative
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property evaluated on the system trajectory. We introduce two new notions of quantitative ab-
stractions defined on the trajectories of a system.

Definition 2.5 (§-surrogate model). Let &g be the trajectory obtained by simulating the M with
the parameter 0, where 6 € ©. Let y be a quantitative property on &g, i.e., y maps &y to a real num-
ber. We say that a model /i that maps 6 to a real number is an §-distance-preserving quantitative
abstraction or an §-surrogate model of M and y if

VO € ©: ly(Z) - O)] < 5. (2:3)

Essentially, the §-surrogate model guarantees that the value of the quantitative property y eval-
uated on &y (obtained from the original model M) is no more than § away from the value that it
predicts. The idea is that the §-surrogate model could be systematically derived from the original
model, and could be significantly simpler than the original model making it amenable to formal
analysis. For example, if we have an §-surrogate model, then we can prove that a given property
holds by systematically sampling the parameter space ©.

In general, such models could be hard to obtain; hence, we propose a probabilistic relaxation
known as the (6, €)-probabilistic surrogate model, where condition (2.3) is replaced by (2.4).

Definition 2.6 (5, €)-probabilistic surrogate model). Given a model M, a quantitative property y,
and a user-specified bound € € [0, 1), we say that /I is a (J, €)-probabilistic surrogate model if:

P(ly(¢e) —(0) <6160 ~ Dg) = 1 - €. (2.4)

We now explain how we can obtain (J, €)-probabilistic surrogate models for an arbitrary quan-
titative property y. The basic idea is to use statistical learning techniques: we sample © in accor-
dance with the distribution Dy to obtain a finite set of parameter values 0. For each 0; € @), we
simulate the model to obtain &p, and compute y(&p,). We then compute the surrogate model /i us-
ing parametric regression models (e.g., linear, polynomial functions) or nonparametric regression
methods (e.g., neural networks and Gaussian Processes) [5, 20, 40]. We now briefly review some of
these regression methods, and in Section 3 explain how we can obtain § values for a user-provided
bound e.

Polynomial Regression. Polynomial regression assumes a polynomial relationship between inde-
pendent variables X and the dependent variable Y. It aims to fit a polynomial curve to the input
and output data in a way that minimizes a suitable loss function. A commonly used loss function
is the least square error (or the sum of squares of residuals). Typically, a polynomial regression
requires the user to specify the degree of the polynomial to use. Polynomial regression generally
has high tolerance to the function’s curvature level, but has high sensitivity to the outliers. In our
experiments, we restrict the polynomial degree to 2.

Neural Network Regression. Neural networks [7] offer a high degree of flexibility for regressing
arbitrary nonlinear functions. While there are many different NN architectures, we use a simple
multi-layer perceptron model with a stochastic gradient-based optimizer. This model simply up-
dates its parameters based on iterative steps along the partial derivatives of the loss function.
Gaussian Process based Regression Model [40]. A Gaussian Process (GP) is a stochastic process,
i.e., it is a collection of random variables Wy indexed by 6, where 0 ranges over some discrete or
dense set. The key property of GP is that any finite sub-collection of these random variables has a
multi-variate Gaussian distribution. GP models are popular as non-parametric regression methods
used for approximating arbitrary continuous functions with the appropriate kernel functions. A GP
can be used to express a prior distribution on the space of functions, e.g., from a domain R” to R.
Let F : R™ — R be a random function. Then, we say that F is a centered Gaussian process with
kernel k, if for every (xi,...,x,) € R", there exists a positive semi-definite matrix ¥ such that
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[F(x1),...,F(xs)] ~ (0,%). The (i, j)*" entry of 3, i.e., 3ij = k(x;,x;) for some kernel function k.
The matrix ¥ is called the covariance matrix, and the function k measures the joint variability of x;
and x;. There are several kernel functions that are popular in literature: the squared exponential
kernel, the 5/2 Matérn kernel, and so on. In our experiments, we use a sum kernel function that is
the addition of a dot product kernel and a white noise kernel (explained in Section 3.4).

3 CONFORMAL INFERENCE

Conformal inference [31, 32] is a framework to quantify the accuracy of predictions in a regres-
sion framework [52]. It can provide guarantees using a finite number of samples, without making
assumptions on the distribution of data used for regression or the technique used for regression.
We explain the basic idea of conformal inference, and then explain how we adapt it to our problem
setting.

3.1 Conformal Inference Recap

Consider i.i.d. regression data Zi, - - - , Z,, drawn from an arbitrary joint Dxy, where each Z; =
(Xi,Y;) is a random variable in R"” x R, consisting of n-dimensional feature vectors X; and a re-
sponse variable Y;. Suppose we fit a surrogate model to the data, and we now wish to use this
model to predict a new response Y41 for a new feature value X,, 1, with no assumptions on
Dxy. Formally, given a positive value « € (0, 1), conformal inference constructs a prediction band
C CR" xRbased on Z3, - - - , Z, with property (3.1).

P(Ymi1 € C(Xm41)) 21— a. (3.1)

Here, the probability is over m + 1 ii.d. draws Zy, -+ , Zpm+1 ~ Dxy, and for a point x € R” we
denote C(x) = {y € R : (x,y) € C}. The parameter « is called the miscoverage level and 1 — « is
called the probability threshold. Let

px) =E(Y | X =x),x e R"

denote the regression function, where E(W) denotes the expected value of the random variable W.
The regression problem is to estimate such a conditional mean of the test response Y, given the
test feature Xj,,11 = x. Common regression methods use a regression model g(x, ) and minimize
the sum of squared residuals of such model on the m training regression data Zy, - - - , Z,,, where
1 are the parameters of the regression model. An estimator for y is given by fi(x) = g(x, 7j), where

m
7 = arg min 3 (= g0 ) + RO
i=1
and R(n) is a regularizer. In [31], Lei et al. provide a technique called split conformal predic-
tion that we use to construct prediction intervals that satisfy the finite-sample guarantees as in
Equation (3.1). The procedure is described in Algorithm 1 as a function ConfInt which takes as
input the ii.d. training data {(X;, Y;)}!",, miscoverage level « and any regression algorithm Reg.
Algorithm 1 begins by splitting the training data into two equal-sized disjoint subsets. Then a re-
gression estimator / is fit to the training set {(X;, Y;)} : i € 1) using the regression algorithm Reg
(Line 2). Then the algorithm computes the absolute residuals R;s on the test set {(X;, Y;)} : i € 15)
(Line 3). For the desired probability threshold & € [0, 1), the algorithm sorts the residuals in
ascending order {R; : i € I3} and finds the residual at the position given by the expression:
[(n/2 +1)(1 — a)]. This residual is used as the confidence range d. In [31], Lei et al. prove that
the prediction interval at a new point X, is given by such /i and d that Theorem 3.1 is valid.

THEOREM 3.1 (THEOREM 2.1 IN [31]). If (X;,Y;),i = 1,---,m are iid., then for an new i.id.
draw (Xm+1, Ym+1), using fi and d constructed in Algorithm 1, we have that P(Yy11 € [1(Xm+1) —
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ALGORITHM 1: Conformal regression algorithm ConfInt({(X;, Y;)}!?,, a, Reg)

input: Data {(X;, Y;) };;’ |» miscoverage level a, regression algorithm Reg
output: Regression estimator /I, confidence range d

Randomly split {1, - - - , m} into two equal-sized subsets 17, I3;

ﬁ = Reg((Xi,Yi) RS Il) ;

Ri =Y — p(Xi)l,i € Iy ;

d = the kth smallest value in {R; : i € I}, where k = [(m/2 + 1)(1 — «)];
return [1,d

-

N}

@

'S

(5

d, i(Xm+1) +d]) = 1 — a. Moreover, if we additionally assume that the residuals {R; : i € 1,} have a

continuous joint distribution, then P(Y11 € [A(Xm+1) — dy f(Xm41) +d]) <1 —a + ﬁ |

Generally speaking, as we improve our surrogate model /i of the underlying regression func-
tion p, the resulting conformal prediction interval decreases in length. Intuitively, this happens
because a more accurate /i leads to smaller residuals (or € in Section 2.2), and conformal inter-
vals are essentially defined by the quantiles of the (augmented) residual distribution. Note that
Theorem 3.1 asserts marginal coverage guarantees, which should be distinguished with the condi-
tional coverage guarantee P(Y;,+1 € C(x) | X;nt1 = x) = 1 — « for all x € R”. The latter one is a
much stronger property and hard to be achieved without assumptions on Dxy.

3.2 Computing (d, €)Probabilistic Surrogate Models

We assume that the parameter value 6 and p(¢, &) follow a joint (unknown) distribution Dyg_,(,)
that we wish to empirically estimate. As indicated in Section 2.2, the first step to learning a (J, €)-
probabilistic surrogate model is based on sampling Dy, ,(,) and applying regression methods. We
draw m i.i.d samples 0= {61, -, 64} from Dy and compute the robustness values p; = p(¢, &,)
for each model trajectory corresponding to the parameter 6;. Lemma 3.2 follows from Theorem 3.1.

LEmMA 3.2. Let (fi,d) = ConfInt({0;, p;},€,Reg), where ConfInt is as defined in Algorithm 1,
1 — € is a user-provided probability threshold, Reg is some regression algorithm, and d € R, then [I is
a (d, €)-probabilistic surrogate model.

We now show how we can use (d, €)-probabilistic surrogate models to perform statistical veri-
fication. Theorem 3.3 shows that the confidence range returned by the conformal inference proce-
dure can be extended over the entire parameter space.

THEOREM 3.3. Let

(1) (65, pi),i = 1,--- ,m be i.i.d. samples drawn from the joint distribution Dy ,(,) of 0 € © and
p(@. &),

(2) Reg be a regression algorithm,

(3) 1 — € be a user-provided probability threshold,

(4) (4, d) = ConfInt({0;, pi},€,Reg), i.e., jI is the surrogate model and d is the confidence range
returned by Algorithm 1,

(5) Vpax = Maxgee fi(0), and, v; . = mingee fi(0).

Then,
P (p(p, £9) € [Vhin = d U +d] | 0~ Dg) = 1 - €. (3.2)

ProoF. From Theorem 3.1, we know that any new ii.d. sample (0’, p(¢, o)) from Dy ,(p)
satisfies:

P(p(p.&p) € [A(0") —d, 4(0") +d]) > 1 - e. (3.3)
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By definition, v} .~ < [(0') < vp,,. Combining this with Equation (3.3), we get the desired

- max*
result. O

Theorem 3.3 requires us to obtain the minimum/maximum values of the surrogate model over a
given region in the parameter space. If /1(0) is a non-convex function and the chosen optimization
algorithm cannot compute the perfect optimal value v . or vy, but can only give conservative
estimates of the optimal value, we can update the predicted interval in Theorem 3.3 as follows:

*

COROLLARY 3.4. Let Upin and vmay be respectively under- and over-approximations of (2 and

Upnays then
P(p(¢,80) € [Vmin —d, Umax +d] | 0 ~ Dp) 2 1—€ (3.4)
The bounds v, and vy in Corollary 3.4 can be computed using global optimization solvers,
SMT sovlers, or range analysis tools for neural networks [17, 50] (for neural network regression).
We can use the bounds obtained in Theorem 3.3 (similarly those with Corollary 3.4) to de-
rive probabilistic bounds on the Boolean satisfaction of a given STL property ¢, as expressed in
Theorem 3.5.

THEOREM 3.5. Ifv’. —d > 0, then Pp,(ég F ¢ | 0 € ©) > 1 —€. Ifvy, +d < 0, then

min
Pp,(lo @ |0€®) 21~
Proor. From [18], we know that p(p, &) > 0 = &y |= ¢. Thus, if the lower bound of the
prediction interval in Theorem 3.3 is positive, then & |= ¢. The second case follows by a similar
argument. a

If the first statement in the above theorem holds, we say that © safe, if the second statement
holds, we say that © is unsafe, and if neither statement holds (i.e., the predicted interval con-
tains 0), then we say that © is unknown. While Theorem 3.5 allows us a way to identify whether
a region in the parameter space is is safe (or unsafe), unfortunately there are two challenges:
(1) the function mapping 0 to p(¢, sim(0)) is a highly nonlinear function in general, and an a
priori choice for a regression algorithm Reg that fits this function with small residual values may
be difficult and (2) if there is large variation in the value of the regression function over 0, it is
likely that the conformal interval contains 0, thereby marking © as unknown. To circumvent this
issue, one solution is to split the parameter space © into smaller regions where it may be possible
to get narrow conformal intervals at the same level of probability threshold. We present a naive
algorithm based on parameter-space partitioning next.

3.3 Naive Parameter Space Partitioning

We now present an algorithm that uses Theorem 3.3 (or Corollary 3.4) to provide probabilistic
guarantee by recursively splitting the parameter space © into smaller regions such that each region
can be labeled as safe, unsafe or unknown. The basic idea of this algorithm is to compute the
conformal interval using Theorem 3.3 and then checkif v} . —d < 0and vy, +d > 0.If yes, we need
to partition the region. After partitioning the region, we have to repeat the process of computing
the conformal interval for each of the sub-regions. Note that the probability in Theorem 3.3 (and
Theorem 3.1 ) is marginal, being taken over all the ii.d. samples {0;, p;} from Dy ,(,). Therefore,
when we work on each subset S C © after the partitions, we will have to restrict 6 to be in S
(according to Equation (2.1)) to ensure that the Theorem 3.3 is valid. We abuse the notation and
denote the joint distribution Dy, ,(,) When 0 is restricted to be sampled from S € © by Dy () | S.

Algorithm 2 searches over the parameter space © and partitions it to sets ©*, ®, and ®V, along
with the prediction intervals for the robustness values in each set. We first check if the robustness
value is strictly positive or negative and accordingly add the region being inspected S into ©* or
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ALGORITHM 2: Parameter space partition with respect to STL formulas using conformal regression.

input: Parameter space © and corresponding distribution Dy, simulator sim and interpolation method
to provide sim, miscoverage level a, regression algorithm Reg, an STL formula ¢, a vector A
output: Parameter set ©" that lead to satisfaction of ¢, ©~ that lead to violation of ¢, and the rest
parameter set ©U that is undecided
1 0%,07,0V « 0,0" « {0}
2 while ©" #0 do

3 S « Pop(©7) ;

4 01, ,0m <« IID_Sample(Dy | S);

5 fori=1,--- ,mdo

6 pi < ple.&o,) s

7 f,d < ConfInt({(6;, pi)}2;, @, Reg);

8 Umax ¢ Maxges f(0), Umin < mingcs [1(0);
9 if Ui —d > 0 then

10 ‘ 01 « 0% U (S, [vmin — d, Vmax + d]) ;
1 else if vyax + d < 0 then

12 | " « 07 U (S, [Umin — d Umax +d]) ;
13 else if Diameters(S) < ADiameters(©) then
14 ‘ eV —eVu (S [Umin — d, Vmax + d]) ;
15 else

16 | ©".Push(Partition(S,Reg)) ;

17 return ©7,0,0U;

©~ (Lines 10 and 12). When Algorithm 2 cannot decide whether S belongs to ©* or ©~ the interval
contains 0, we first check if for all n, the diameter of S along the nth parameter dimension less
than the fraction A,Diameters(©),. We assume that the vector A is provided by the user. If yes,
the region is marked as unknown. Otherwise, we partition S into a number of subregions, that are
then added to a worklist of regions (Line 16). In our implementation, in order to keep the number
of subsets to be explored bounded, we randomly pick a dimension in the parameter space, and split
the parameter space into two equal subsets along that dimension. Note that the partitioning can
be accelerated by using parallel computation, but we leave that for future exploration. For each
subset S, Algorithm 2 additionally gives the corresponding prediction interval, which indicates
how good (or bad) the trajectories satisfy (or violate) ¢.

THEOREM 3.6. In Algorithm 1, P(&g [= ¢ | 0 ~ Dg p(p) L US €0%) 2 1—¢,andP(&g ¢ | 0 ~
Do, pp) L US€OT) > 1—e.

Theorem 3.6 directly follows from Theorems 3.3 and 3.5 and the total probability theorem.

3.4 Gaussian Processes for Refinement

A drawback of Algorithm 2 is that the naive splitting procedure is not scalable in high dimensions,
and may have poor performance if the safe/unsafe regions have arbitrary shapes. In this section,
we instead suggest the use of Gaussian Processes (GP) coupled with Bayesian updates to intel-
ligently partition regions. Recall from Section 2, for each parameter value 6, the GP model allows
representing the mean p(6) and o%(0) in terms of samples already explored in the parameter space.
In a GP model, at sampled parameter values, the variance is zero, but at points that are away from
the sampled values, the variance could be high. We now give the symbolic expressions for the
mean and variance of a GP model in terms of a kernel function k(6, ). A kernel function in GP is
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a covariance function of the random variables inside GP. It influences the flexibility and capacity
of the GP, as well as its ability to generalize to new data points. For ease of exposition let O denote
the vector of parameter values already sampled. Then, let Y denote the vector of robustness val-
ues for parameter values in ©. Then, from [40], Chapter 2, the posterior of the distribution given
observed samples we have: 11(0) = k(0,0)T k(©,0)71Y, %(0) = k(6,0) — k(6, ©) k(6,0) ' k(6, 0),
and o(0) = 4/2(0). The main idea is to use the mean and variance of the GP model to prioritize
searching parameter values where: (a) the robustness may be close to zero and (b) the variance of
the GP model may be high. These two choices give us two different ways to partition the parameter
region that we now explain.

In the literature on GP-based Bayesian optimization, there is work on defining acquisition func-
tionsthat are used as targets for optimization. Examples include UCB (Upper Confidence Bound)
acquisition function that is a combination of the mean and variance of the GP, EI (Expected Im-
provement) which focuses on the expected value of the improvement in the function value, and
so on. Inspired by the UCB function that allows a tradeoff between exploration and exploitation,
we consider two acquisition functions: (1) the first is focused on pure exploration and uses the
variance of the GP as the objective for maximization and (2) the second is the difference between
the mean and the standard deviation. The rationale for the second function is that if ;(0) — o (0)
is lower than 0, then it is an indicator of a low robustness region.

ALGORITHM 3: Parameter Space Partition using GP models Partition(S, Reg)

input: Parameter set S, regression algorithm Reg

output: parameter sets Sy, . . . that will be pushed into the set ®"
1 f(0) « acquisition(u(6),o(0)) ;
2 0’ «— argmaxgy f(0) ;
3 return Split(S, 0’) ;

Algorithm 3 presents the new Partition function of Algorithm 2 using GP-based acquisition.
The function Split(S, 8”) partitions the given region S into 2!°! new regions that all share 6" as a
vertex.

4 RISK ESTIMATION

In previous sections, we explored how surrogate models and conformal inference can be used
to obtain probabilistic guarantees on the behavior of black-box cyber-physical system models. A
different way of obtaining high-confidence probabilistic statements about correctness of systems
that has recently emerged is based on the idea of risk-estimation [4, 12, 33, 34]. Such a correctness
statement provided by risk estimation is quantitative and takes the uncertainty of the behaviors
of the system into account. A risk measure is simply a function g that maps a scalar random vari-
able X to a real value g(X). Typically, the random variable X may represent an observed state of
the system, where the probability distribution of X may depend on particular decision parameters
for the system. The distribution of X allows us to estimate how risky a particular set of system’s
design parameters are, and ¢g(X) is a function that can be thought of as an empirical estimate of
the magnitude of risk at a given confidence threshold ¢. For example, consider the risk-aware ver-
ification problem considered in [4]. Here, Akella et al. treat the robustness of a given STL formula
with respect to a given model trajectory as a scalar random variable. The probability distribution
of this random variable is induced by the uncertainty in the initial states and parameters of the
model.
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A popular risk measure is known as Value-at-Risk (VaR). In risk-aware verification, given a
risk level ¢ € [0, 1], Value-at-Risk level? ¢ computes the value p* s.t. the probability of the robust-
ness for a trajectory being less than p* is greater than ¢. Clearly, this is yet another way to obtain
probabilistic guarantees on a model’s behavior through simulations (which can be used to obtain
empirical estimates of the probability distribution of the desired quantity, e.g., robustness w.r.t.
a given formula). In what follows, we formally recap two important tail risk measures that are
commonly used and compare the bounds we obtain through risk estimation with those obtained
through conformal inference.

4.1 Risk Measures

The behavior of a given CPS application can vary with the values of the system parameters. If
we assume that the parameter values of a system are a priori unknown, then we can consider
the system behavior as uncertain — where the uncertainty is induced by the distribution on the
parameter values. Risk measures can then be used to quantify if the system is safe with a given
probability threshold. We assume that the parameter value 6 and p(¢, &9) follow a joint (unknown)
distribution Dy, ,(,). A risk measure 7 can provide the following probabilistic guarantee about the
robustness of the system, given an STL specification and a confidence level :

Pr(—p(p,&9) <) 2 ¢. (4.1)
We now include two important risk measures used in the literature [33].

Definition 4.1 (Value-at-Risk (VaR), Conditional-Value-at-Risk (CVaR) [33]). Let Z be shorthand
for p(¢, £p). The Value-at-Risk is defined as follows:

VaR.(-Z) = sm&{{ |Pr(-Z <) > ¢}. (4.2)
€
The conditional-value-at-risk is defined as follows:
CVaR.(-Z) = E -Z 4.3
WR(-Z)= | E (-2) @3)

Essentially, both risk measures provide probabilistic upper bounds on the negative of the robust-
ness value, or provide lower bounds on the actual robustness value, as is required in risk-aware
verification [4, 33]. Figure 3 demonstrates the relationship between the two risk measures.

To compare with the bounds provided by conformal inference, we also need to compute prob-
abilistic guarantees on upper bounds on the robustness. These can be simply given by the risk
measures VaR, (p(¢, &9)) and CVaR, (p(p, &)). For brevity, we refer to VaR,(—p(¢, &)) as VaR’
and VaR, (p(p, &p)) as VaR*. We will use similar notation CVaR’ and CVaRY.

4.2 Computing Risk Against Different System Parameters

Algorithm 2 returns regions of space that satisfy or do not satisfy a given STL formula. We now
investigate whether conformal inference and risk measures will give the same conclusion on the
safety of a region. We remark that the system under consideration is deterministic, but the random
choice of the model parameter values 0 induces a distribution of the robustness values p(¢, &) of
the given STL formula ¢. Thus, the probability appearing in Equation (4.2) is associated with this
distribution.

20ur definition is slightly different from the one in [4] and is consistent with the definitions in [41], [42], and [51]. The
main difference is that in [4], the authors denote VaR at level ¢ to denote inf; P(x < {') > 1 - &, while the probability
threshold in our technique is ¢.
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Fig. 3. lllustration of the Value-at-Risk, and the Conditional Value-at-Risk with ¢ = 0.7.

Estimation of VaR, CVaR. The definition of VaR, presumes that we know the joint probability
distribution of p(¢, £p) and 0. However, in our problem setting, this distribution is unknown. We
use the (100 * ¢)-percentile of the samples values to approximate the VaR, [24].

To estimate CVaR,, we note that CVaR, can be rewritten as the following integral:

£
CVaR.(-Z) = f VaR, (—Z)dy (4.9)

0
The value of the above integral can be estimated using standard Monte Carlo integration by ran-
domly sampling the values of y.

5 CASE STUDIES

In this section, we present case studies of CPS models, and identify regions in the parameter space
that we can mark as safe, unsafe or unknown with high probability. We tried each of the case
studies with different regression algorithms, with Gaussian Process regression leading to smaller
residuals, ergo, narrower conformal intervals. We tried both (a) the naive algorithm that recursively
splits the parameter space, and (b) the algorithm which adaptively partitions the parameter space
exploiting the uncertainty as expressed by a Gaussian Process prior. For all case studies, we used
a miscoverage level of € = 0.05 (i.e., providing a correctness threshold of 95% probability).

We first compared the performance of Algorithm 2 while using different partition splitting meth-
ods. For the GP-based partitioning method, we use the sum kernel k(0;, 0;) = k1(0;,0;) + k2(0;, 0;),
where k; is the dot product kernel, i.e., k1(6;, 0;) = Gg + 0; - 0, and k; is the white kernel, where
kz(@i, 9]) =1if 91' = Gj and 0 otherwise.

Comparing Partitioning Schemes using Mountain Car. For the comparison experiment, we used
a model known as mountain car popular in the reinforcement learning literature [56]. Here, the
model describes an under-powered car attempting to drive up a hill. A successful strategy involves
the car accumulating potential energy by going in the opposite direction and then use the gained
momentum. Details of this model can be found in [56]. The parameter space for mountain car
is defined by the initial position xinit and velocity vinit of the car. We wish to identify regions of
space that satisfy or violate the property of reaching the goal. The region we choose for analysis is
defined as as © = (X, Vinit) € [—0.7,0.2] X [-0.5,0.5], which is comparable to the region used in
[56]. We consider the parameter value safe if it satisfies the STL formula @yc = Fio,107(x(t) > 0.45).
In Figure 4(c), we show an approximation of the ground truth obtained by a uniform grid sampling
of the parameter space3; here, green and red dots, respectively, denote satisfaction and violation

of Pye.

3Note that the number of grid samples used to generate the approximate ground truth far exceeds the number of simulations
required for the experiments, and is only provided to enable validation of our results.
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Fig. 4. Mountain Car parameter space partitioning using different approaches

Table 1. Comparison of Algorithm 2 for Different Partitioning Strategies

num. regions  Ratio of Volumes (%)

explored Safe  Unsafe Unk.
Naive (Section 3.3) 457 89.01 10.99 0.00
Greatest uncertainty (Section 3.4) 364 88.72 11.28  0.00
(1 —€) =0.95. Caption here (1 — €) got splitted into a different line.

Partition method

Results of comparing the naive splitting method (Figure 4(a)) and GP-based partitioning
(Figure 4(b)) are shown in Table 1. We note that the number of regions explored is much lower
than the one with naive splitting. As fewer number of regions explored translates into fewer num-
ber of simulations, it is clear that the GP-based method has superior performance. We observed
similar results for other case studies in this article, but we skip the results for brevity. Due to the
superiority of the GP-based method, we use this method for rest of the case studies in this article.

. Reinforcement Learning Lane-Keep Assist. Lane-keep assist (LKA) is an automated driver as-
sistance technique used in semi-autonomous vehicles to keep the ego vehicle traveling along
the centerline of a lane. We consider a reinforcement learning (RL)-based agent to perform LKA
from the Matlab® RL toolbox (based on [37]). The agent has a Deep Q-Network (DQN) inside,
which makes this case study a learning-enabled application. The inputs to the agent are lateral
deviation ey, relative yaw angle (i.e., yaw error) e, their derivatives and their integrals. The pa-
rameter space for this model consists of initial values for e; and e,, where we looked at region
© = (e, e3) € [-0.3,0.3] X [-0.2,0.2]. We are interested in checking properties such as over-
shoot/undershoot bounds and the settling time for the lateral deviation and yaw error signals. In
this experiment, we consider two properties characterizing bounds on e, and settling time for ey;
Qrxasetile © Gz 15](le1] < 0.025) and @ria bounds : Go,15](e2 < 0.4 A ez > —0.4). Figure 5 shows the
parameter space partitioning results and the ground truth with respect to @;xx_settle. Our technique
was able to certify that ¢ixa bounds is satisfied by the entire region with 95% confidence.

F-16 Control System. Next, we consider the verification challenge presented in [23]. This is the
model of a F-16 flight control system—a hierarchical control system containing an outer-loop au-
topilot and an inner-loop tracking and stabilizing controller (ILC), and a 13 dimensional non-
linear dynamical plant model. The plant dynamics are based on a 6 degrees of freedom standard
airplane model [48] represented by a system of 13 ODEs describing the force equations, kinematics,
moments, and a first-order lag model for the afterburning turbofan engine. These ODEs describe
the evolution of the system states, namely velocity vt, angle of attack «, sideslip f, altitude h, atti-
tude angles: roll ¢, pitch 6, yaw 1/, and their corresponding rates p, g, r, engine power and two more
states for translation along north and east. The non-linear plant model uses linearly interpolated
lookup tables to incorporate wind tunnel data. The control system is composed of an autopilot
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Fig. 5. Lane Keep Assist.

that sets the references on upward acceleration, stability roll rate and the throttle. The ILC uses
an LOR state feedback law to track the references and computes the control input for the aileron,
rudder and the elevator. We consider three separate scenarios capturing specific contexts; each
scenario defines the parameter set and an associated specification.

F16-Pull-Up Maneuver. This scenario demonstrates the tracking of a constant autopilot command
requesting an upward acceleration (N, = 5¢). The ILC tries to track the reference without unde-
sirable transients like pitch oscillations and exceeding pitch rate limits. We modify the controller
gains to highlight the violations of the spec @16 puiiue : Glo,1019 < 120°/s. The parameter space is
described by initial values of @ € [-10°,0°], 8 € [-30°,0°] and the results are shown in Figure 6(a)
(results of Algorithm 2) and Figure 6(b) (ground truth).

F16-Level Flight. This scenario describes straight and level flight with a constant attitude and 0
initial angular rates. The bounded parameter space is defined by the initial altitude h € [500, 65000]
and velocity vt € [130, 1200]. The autopilot references are set to zero, and the ILC tries to maintain
a constant altitude and angle of attack a. As the F-16 can fly over a large range of altitudes and
velocities, a single LQR computed against the linearzied model can not satisfy the goal and results
in a stall defined by @s16,ever : Gpo,10]( < 35°). This is shown Figure 6.

F16-Ground Collision Avoidance (GCAS). The final scenario describes the F-16 diving towards the
ground and the GCAS autopilot trying to prevent the collision. The GCAS brings the roll angle
and its rate to 0 and then accelerates upwards to avoid ground collision as defined by the spec
@r16,6eas © Glo,101(h > 0ft). The parameter space is described by initial values of & € [0.075,0.1]¢
and ¢ € [-0.1,-0.075]¢ . In this case study, the ground truth and our results seem to be less
well-matched than other case studies. There are a couple of reasons for this. First, observe that
the ground truth is highly non-monotonic. Given the nonlinearity of the ground truth, the fitted
surrogate model could tend to fit the value of the majority of the points better, which in this case
are negative values, making the optimization results errs on the negative values and resulting in a
region being marked unsafe. To remedy this, we would have to increase the number of simulations
per region used to train the GP regression model and possibly experiment with other regression
models (such as a deep neural network regressor). (We provide an illustration of the results in the
Appendix in Figure A.1(c) and A.1(d).)

Artificial Pasncreas. Type-1 diabetes (juvenile diabetes) is a chronic condition caused by the
inability of the pancreas to secrete the required amount of insulin. Simglucose [54] is a Python im-
plementation of the FDA-approved Type-1 Diabetes simulator [36] which models glucose kinetics.
We input a list of tuples of time and meal size to Simglucose and set the same scenario environment.
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Fig. 6. F16 - Pull up (Top) Level Flight (bottom).

Choosing patients in different age will result in different simulation trace. The parameter meal time
is constrained to be strictly increasing and the last meal of a day to be taken in less than 24 hours.
For each scenario, the simulator provides traces records of different blood indicators based on a
given environment setting. We are interested in checking if patients do not become hyperglycemic
on the first day (i.e., when the blood glucose (BG) exceeds a certain threshold). We use é = 0.5 as
the termination criteria for region splitting. We study 4 scenarios describing an adolescent patient
who takes 2, 3, 4, and 5 meals a day, respectively. The meals of size s; are consumed at time ¢;. The
parameters space is then defined by S; X Sz X - - - X S, the dimension of the parameter space equals
the number of meals taken. We denote n as the total number of meals. We can calculate ¢; using
equation t; = [(i — 1) * % + 1,0 % %], and S; C [1, 20].

The property @nyper,c specifies that the patient should not become hyperglycemic. Our results
predict the entire region as 100% safe region with 95% confidence for all cases where the patient
had 3 or more meals. For the two meal case for the property @nyper,155 our implementation result
of 54.44% matches well with the ground truth where we see a 52.47% unsafe volume (obtained
by expensive grid-based sampling). For higher dimensional cases, the initial S; considered are
different. This could imply more frequent meals with less amounts each can help control blood
glucose.

Impact and Discussion of Results. The results obtained for all the case studies are summarized
in Table 2. Our tool is capable of producing heatmap style representation of the unsafe parameter

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 2, Article 22. Publication date: May 2024.



22:18 X. Qin et al.

Table 2. Performance of Algorithm 2 using the GP-based Greatest Uncertainty Split Method with 95%
Confidence Level

Ratio of Volumes (%) Sims./
Case Study Safe Unsafe Unk. region Spec.
Mountain Car 1 88.72 11.28 0.00 100 Puc
Lane Keep Assist 1 100 0.00 0.00 100 (rxa, bounds
Lane Keep Assist 2 77.23 21.97 0.80 100 (Prxa, settle
F16 Level Flight 67.18 32.81 0.00 100 OF16,LEVEL
F16 Pull up 43.52 56.09 0.40 100 (Pr16,pPULLUP
F16 GCAS 3.91 96.09 0.00 100 Pr16,GCAS
Simglucose 2D 45.45 54.55 0.00 10 ®hyper, 155
Simglucose 2D 100 0.00 0.00 10 @hyper, 170
Simglucose 3D 100 0.00 0.00 10 ®hyper, 155
Simglucose 4D 100 0.00 0.00 10 ®hyper, 155
Simglucose 5D 100 0.00 0.00 10 ®hyper, 155

regions when projected to two parameter dimensions. For higher number of parameter dimensions,
visualization is more difficult. Hence, we also report the percentage volume of regions found safe
or unsafe by our method. We observe that, in most cases, the volume of regions that remain un-
known is quite low. As some of the case studies are those of learning-enabled CPS applications,
it is expected to see a high volume of unsafe regions—this can happen if the learning-enabled
components (LECs) are effectively trained in all parameter regions. Thus, our tool can provide
useful information to algorithms for training such LECs.

We remark that the runtime for our method is dominated by the time required for running
the simulations—a step that is easily parallelizable. We can also reuse simulations performed on a
given sub-region of a coarser region when the region is split. Our prototype tool also does not in-
clude either of these optimizations. The time required for training the GP surrogate with 100 data
points takes 0.035 seconds on an average. The naive refinement procedure takes around 7.1 us for
models with 2D parameter spaces and 24 ps for 3D parameter spaces. With GP-based refinement
(which requires the use of optimization with acquisition functions), the runtime is 0.006 seconds.
Thus, with the ability to parallelize and reuse simulations, the additional overhead induced by our
method (e.g., in comparison to an SMC method) is minimal. We do acknowledge that SMC meth-
ods can perhaps obtain guarantees with a fewer number of simulations using statistical hypothesis
testing; however, SMC methods typically do not learn surrogate models and cannot generate pa-
rameter space partitioning. We finally remark that if the model parameters are being chosen by an
outer loop supervisory control, then the partitions that we generate create conditional contracts
on the safety of the CPS model; such contracts can be used for constructing safety assurance
cases [46].

5.1 Comparing with Risk Measures

Figures 7-9 demonstrate the VaR, and CVaR, risk assessment for each region. For the same con-
fidence level ¢ = 95%, the conformal inference procedure computes [Unin, Umax] as the bounds on
the robustness value, while with a given risk measure r,, let [r’, *] indicate the (probabilistic)
lower and upper bounds on the robustness values. Recall that, if v < 0, then note the region is
red; and if Uiy > 0, the region is green. We use the following color coding:

(1) For red regions: If vpax < r* < 0, then we use a lighter shade of red, and if 0 > vy > 1Y%,
we use a darker shade. Intuitively, a lighter shade indicates that the risk-based probability
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Table 3. Number of CVaR and VaR Not Bounded by the upper and Lower Bound of Conformal Inference,
with —p as Loss Function and 95% as Confidence Level

Sims./

region CVaR Lower CVaR Higher Diff #Region VaR Lower  VaR Higher Diff # Region
5 17 (54.84%) 0 (0.0%) 3(9.68%) 31 17(60.71%) 2 (7.14%)  1(3.57%) 28

10 34 (55.74%) 7 (11.48%) 3(492%) 61 26 (65.0%)  2(5.0%) 6(15.0%) 40

50 148 (62.18%)) 0 (0.0%) 24 (10.08%) 238 158 (55.83%) 1(0.35%) 17 (6.01%) 283

100 879(35.37%)  1(0.04%) 61(2.45%) 2485 647 (27.79%) 0 (0.0%) 30 (1.24%) 2425

200 830(36.24%) 3 (0.13%) 50 (2.18%) 2290 637 (28.0%) 0 (0.0%) 15 (0.66%) 2275

300 801(33.61%) 2 (0.08%) 50 (2.10%) 2383 612 (27.70%)  2(0.09%) 13 (0.59%) 2209

500 757 (32.50%) 2 (0.09%) 34 (1.46%) 2329 592 (25.19%) 6 (0.26%) 10 (0.43%) 2350
1000 739 (31.73%) 8 (0.34%) 35(1.50%) 2329 579 (24.21%) 11(0.46%)  7(0.29%) 2392

measures deem the region “less unsafe” (as compared to the bounds computed by the split
conformal predictor), and a darker shade indicates riskier or more unsafe regions (for the
same comparison).

(2) For green regions: If rl > vmin > 0, then we use a lighter shade of green, and if 0 < r* < Uy,
we use a darker shade. Intuitively, a darker shade indicates that the risk-based probability
measures deem the region “less safe”, and a lighter shade indicates a more robustly safe
region (according to risk estimation).

(3) For blue regions: If vy < 0 < r* (i.e., the conformal bound deems the region unsafe, but the
risk measure either deems the region safe or inconclusive), then we color the region light
blue. If r{ < 0 < Upin (i.e., the conformal bound deems the region safe, but the risk measure
either deems it unsafe or inconclusive), then we color the region dark blue. Blue regions
indicate that the two methods are unable to agree on the classification of a region as safe or
unsafe.

l

In conclusion, conformal inference bounds are not guaranteed to bound the risk (as computed by
using risk measures). However, risk measures largely agree with conformal inference on region
safety. Table 3 and Table 4 show risk measure performance compared to the bounds computed
by conformal inference as a function of the number of samples used per region to compute ei-
ther kind of bounds. The column labeled “Dift” counts regions where the conformal inference is:
(1) not assigned unknown to the region, and (2) the risk measure has a different conclusion about
the safety of that region. We can see that the maximum disagreement is still less than 5%, and the
two methods tend to agree more when we sample more per region. We remark that a surrogate
model’s training set could still miss rare unsafe points due to sampling vagaries, so the surrogate
model can provide an optimistic vy, which may mark some regions containing unsafe points
as safe (because the regression-based surrogate model lacks some critical data points). However,
risk-based analysis directly does quantile estimation on the robustness values (without fitting a
surrogate model), and hence, in some cases, may help (conservatively) label regions as unsafe.

6 RELATED WORK AND CONCLUSIONS

Related Work. Methods based on Statistical Model Checking (SMC) [29, 30, 57] can overcome
the hurdles like scalability and nonlinearity and provide probabilistic guarantees [1, 13, 45, 53,
56]. These methods are based on statistical inference methods like sequential probability ratio
tests [13, 29, 45, 47], Bayesian statistics [57], and Clopper-Pearson bounds [56]. Another line of
works use Probably Approximately Correct (PAC) learning theory to give probabilistic bounds
for Markov decision processes and black-box systems [19, 21].

In contrast to SMC- and PAC-learning techniques, our approach is sample independent and can
provide the required probabilistic guarantees with any number of samples. This is because we build
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(a) CVaR with —p as loss. Partitioning using greatest (b) Comparing Conformal Inference and CVaR. Regions
uncertainty split (Smin = 0.1) with the color blue indicate they have different
conclusions on the safety of the region.
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(c) VaR with —p as loss. Partitioning using greatest (d) Comparing Conformal Inference and VaR. Regions
uncertainty split (Smin = 0.1) with the color blue indicate they have different
conclusions on the safety of the region.

Fig. 7. F16 - Pull up. 100 samples per region.

Table 4. Number of CVaR and VaR Not Bounded by the Upper and Lower Bound of Conformal Inference,
with p as Loss Function and 95% as Confidence Level

f:;é  CVaRLower CVaR Higher Diff #Region VaR Lower VaR Higher Diff # Region
5 0 (0.0%) 10 (625%)  9(56.25%) 16 0(0.0%)  5(71.43%) 5(71.43%) 7

10 0 (0.0%) 15 (48.39%)  9(29.03%) 31 1(357%) 16 (57.14%) 13 (46.43%) 28

50 0 (0.0%) 97 (62.99%) 40 (25.97%) 154 1(1.06%) 57 (60.64%) 26 (27.66%) 94

100 1(0.04%) 37(151%)  1(0.04%) 2458 8(0.34%)  1(0.04%)  0(0.0%) 2350

200 3(0.13%) 150 (6.34%)  8(0.34%) 2365 5(0.21%)  30(1.28%)  4(0.17%) 2338

300 3(0.13%) 169 (7.16%)  7(0.30%) 2359 9(0.37%)  27(1.10%)  0(0.0%) 2446

500 5(0.21%) 208 (8.62%)  4(0.17%) 2413 8(0.35%)  48(2.09%)  1(0.04%) 2293
1000 16(0.70%)  223(9.80%) 14 (0.62%) 2275 17(0.74%) 60 (2.61%)  2(0.09%) 2299

a guaranteed regression model from the system parameters with respect to the robust satisfaction
value of the corresponding STL properties. If the regression model is of poor quality (due to few
samples), using the calibration step in conformal regression, the predicted (but wider) interval can
still have the same level of guarantee. Conformal regression lets us trade off the quality of the
regression model (w.r.t. the data) and the width of the interval for which we have high-confidence
property satisfaction, and not the level of the guarantee itself.
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(a) CVaR with —p as loss. Partitioning using greatest  (b) Comparing Conformal Inference and CVaR. Regions
uncertainty split (Smin = 0.1) with the color blue indicate they have different
conclusions on the safety of the region.
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(c) VaR with —p as loss. Partitioning using greatest (d) Comparing Conformal Inference and VaR. Regions
uncertainty split (Smin = 0.1) with the color blue indicate they have different
conclusions on the safety of the region.

Fig. 8. F16 - Pull up. With more samples (1000) per region.

Recent work on using conformity measures is quite relevant to our work [8, 9]; the main contri-
bution here is that, in order to handle high-dimensional inputs in real-time, the authors compute
a nonconformity score using an embedding representation of deep neural network models. This
work however focuses on a classification problem and not on obtaining probabilistic guarantees
on (closed-loop) system correctness. The idea of obtaining trusted confidence bounds is however
similar, albeit applied in a different context. The work in [10] and [22] focuses on detecting regions
of the input space of a learning-enabled component that lack training data and hence can poten-
tially have large (prediction) errors. These approaches are more suitable for runtime assurance or
statically characterizing uncertainty in predictions performed by learning-enabled components.
In our article, we use regression-style learning algorithms to approximate the model itself and
use such surrogate models to obtain probabilistic guarantees. While the models we consider may
themselves have learning enabled components (LECs), our approach is black-box: it does not
reason about the LECs themselves.

Risk is an excellent way to analyze the robustness of systems. Control design sees risk as es-
sential to calculate and optimize during the process. Works on stochastic system verification find
risk measures give more information than just expectation values of cost. We perform a detailed
comparison of our work in [39] with the guarantees obtained using risk measures. We see that the
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(a) CVaR with p as loss. Partitioning using greatest (b) Comparing Conformal Inference and CVaR. Regions
uncertainty split (Smin = 0.1) with the color blue indicate they have different
conclusions on the safety of the region.
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(c) VaR with p as loss and Partitioning using greatest (d) Comparing Conformal Inference and VaR. Regions
uncertainty split (Smin = 0.1) with the color blue indicate they have different
conclusions on the safety of the region.

Fig. 9. F16 - Pull up 100 samples per region.

verification results of our proposed methods agree with each other in most cases. We argue that
when the two guarantees do not agree, regions where such disagreements occur would require
further investigation. A potential reason for mismatch is that the empirical distribution of residual
error (when training the surrogate model) may differ from the distribution of robustness values

in this region (due to non-linearities in the CPS model’s dynamics, how well the chosen surrogate
model fits the data, etc.).

7 CONCLUSION

In this article, we proposed a verification framework that can search the parameter space to find
the regions that lead to satisfaction or violation of given specification with probabilistic coverage
guarantees. There are a couple of directions we aim to explore as future work: (1) We used a very
basic version of conformal regression in Algorithm 1, which gives a constant confidence range
d across all X. Techniques based on quantile regression [44] and locally weighed conformal [31]
can make d a function of X and give much shorter prediction intervals and (2) We plan to explore
probabilistic regret bounds for Gaussian process optimization to help obtain (probabilistic) upper
and lower bounds on the value of the surrogate model when using GP-based regression.
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APPENDIX
GP Model in a Random Region
“nitial Alpha
(a) Gaussian Process Regression (b) F16 - Pull up 100 samples per region
Visualization for the Mountain Car with smaller 6,,in = 0.001, partitioning
model using greatest uncertainty split
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Fig. A.1. Experimental results for the F16 case study.
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