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Abstract

Context Boron-dipyrromethene (BODIPY) compounds have unique photophysical properties and have been applied in
fluorescence imaging, sensing, optoelectronics, and beyond. In order to design effective BODIPY compounds, it is crucial
to acquire a comprehensive understanding of the relationships between the structures of BODIPY and the corresponding
photoproperties. Fifteen molecular descriptors were identified to be strongly correlated with the maximum absorption wave-
length. The developed ML/QSPR model exhibited good predictive performance, with coefficients of determination (R?) of
0.945 for the training set and 0.734 for the test set, demonstrating robustness and reliability. A posterior analysis of some of
the selected descriptors in the model provided insights into the structural features that influence BODIPY compound proper-
ties; meanwhile, it also emphasizes the importance of molecular branching, size, and specific functional groups. This work
shows that applied combined cheminformatics and machine learning approach is robust to screen the BODIPY compounds
and design novel structures with enhanced performance.

Methods In the present study, all the BODIPY models studied were fully optimized, and the corresponding absorption
spectrum was obtained at DFT/TDDFT//B3LYP/6-311G(d,p) level. All the above calculations were executed by the Gauss-
ian 16 program. Based upon the theoretical computational results, the machine learning-based quantitative structure—prop-
erty relationship (ML/QSPR) model was employed for predicting the maximum absorption wavelength (A) of BODIPY
compounds by combining hand-crafted molecular descriptors (MD) and explainable machine learning (EML) techniques
using Scikit-learn python library. A dataset of 131 BODIPY compounds with their experimental photophysical properties
was used to generate a diverse set of molecular descriptors capturing information about the size, shape, connectivity, and
other structural features of these compounds using Chemaxon and Alvadesc software. A genetic algorithm (GA) variable
selection together with the multi-linear regression (MLR) method were applied to develop the best predictive model using
the Genetic Selection python library.
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Introduction

This manuscript is dedicated to Professor Alejandro Toro-Labbé,

on the occasion of his 70th birthday, 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (or boron pyr-

romethene, or bora-indacene, BODIPY) dyes are small

D4 Bakhtiyor Rasulev molecules with strong UV absorption that emit relatively
bakhtiyor.rasulev @ndsu.edu sharp fluorescence peaks with high quantum yields [1]. They
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compounds have been employed in the development of flu-
orescent sensors for detecting various analytes, including
metal ions, pH, and reactive oxygen species [11-13]. Their
selective response to specific analytes, coupled with their
robust photophysical properties, enables the design of highly
sensitive and selective sensing platforms for applications in
environmental monitoring, medical diagnostics, and biologi-
cal research [14-16].

In addition to fluorescence imaging and sensing, BODIPY
compounds have shown promise in optoelectronic devices,
such as organic light-emitting diodes (OLEDs) and organic
photovoltaics (OPVs) [17, 18]. Their excellent charge trans-
port properties, high luminescence efficiency, and facile
synthetic modification make them attractive candidates for
use as active materials in these devices. BODIPY-based
OLEDs have demonstrated impressive electroluminescence
performance, with high brightness, low operating voltages,
and narrow absorption spectra, making them suitable for
display and lighting applications. Furthermore, BODIPY
derivatives have been incorporated into organic photovoltaic
devices as electron-accepting materials, where they contrib-
ute to enhanced light absorption, efficient charge generation,
and improved device stability [19, 20]. The versatility of
BODIPY compounds, combined with their favorable pho-
tophysical and electronic properties, continues to drive their
exploration and application in diverse areas of science and
technology [21, 22].

One of the primary challenges in designing new BODIPY
(boron-dipyrromethene) compounds lies in achieving an
adequate balance between synthetic accessibility and desired
photophysical properties. BODIPY derivatives often demand
intricate synthetic routes, necessitating careful considera-
tion of reaction conditions, regioselectivity, and functional
group compatibility. Additionally, tuning the photophysical
characteristics of BODIPY molecules, such as absorption
and emission wavelengths, quantum yields, and fluorescence
lifetimes, presents a formidable challenge due to the com-
plex interplay of molecular structure, electronic effects, and
environmental factors. Achieving optimal stability under
various conditions, expanding functional diversity beyond
fluorescence imaging, and predicting biological activity fur-
ther enhance the challenges in BODIPY compound design,
necessitating innovative synthetic strategies and interdisci-
plinary collaborations.

Machine learning (ML) techniques offer a promising
avenue to address the challenges associated with designing
BODIPY compounds [23-26]. For example, a recent study
carried out by Chebotaev et al. [27] found that data of 70
BODIPY structures in polar (45) and non-polar (39) have
R? between 0.73 and 91 with non-linear ML algorithms like
random forest and support vector machine, but the mecha-
nistic explanation does not show the structure—property
relationship in the fragment descriptors. Another interesting
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study was done by Buglak et al. [28], where three datasets
of 48, 45, and 41 were used to develop three models with R?
values between 0.88 and 0.91, using multi-linear regression
(MLR) as the fitting algorithm. However, the mechanistic
interpretation does not show the variations in the struc-
ture—property relationship. Besides, the above-mentioned
works do not use custom-generated libraries based on the
fragments extracted from the models.

Based on that, in the present study, we built a large data-
set comprising BODIPY structures and their correspond-
ing photophysical properties and then used ML models to
learn the complex relationships between molecular features
and desired properties. These models can then be used to
predict the photophysical characteristics of novel BODIPY
compounds, thereby accelerating the compound design pro-
cess. Moreover, ML algorithms such as neural networks,
random forests, and support vector machines can identify
those complex hidden patterns and correlations that may
escape traditional structure—property relationships [29-32],
enabling the discovery of innovative BODIPY structures
with tailored properties.

Furthermore, ML-driven virtual screening approaches
[33-35] can expedite the identification of lead BODIPY
candidates with desired characteristics. By screening vast
chemical space and prioritizing compounds with high pre-
dicted activity or desirable physicochemical properties,
ML algorithms can guide experimental efforts toward the
synthesis of promising candidates, thereby reducing time
and resource requirements. Moreover, ML models can
facilitate the exploration of structure—activity relationships
and guide the rational modification of BODIPY scaffolds to
optimize specific properties. Through the integration of ML
techniques into the BODIPY compound design workflow,
researchers can accelerate the discovery of novel compounds
with enhanced photophysical properties and diverse applica-
tions, unlocking new opportunities in fields such as fluores-
cence imaging, sensing, and optoelectronics.

Material and methods
Data collection

The experimental values of the A(nm) of 131 different
BODIPY compounds were collected from the literature [36],
and the data values are shown in Table S1 in Supplementary
Information. The data set of these BODIPY compounds was
split into training (105 chemicals) and prediction (26 com-
pound) sets representing approximately 80% and 20% of the
total data. The data set was divided by sorting in descending
order the data according to the response variable 1(nm) and
selecting in a ratio 4:1 for training: prediction sets.
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Molecular DFT structure optimization
and generation

Density functional theory (DFT) with hybrid exchange
correlation functional B3LYP [37-40] was applied in the
present study, with a basis set of the standard triple zeta
augmented by polarization functions 6-311G(d,p) [41-43].
To simulate the solvated environment of the correspond-
ing experimental conditions, the Barone-Tomasi polarizable
continuum model (PCM) with the related dielectric constant
of the solvents was applied [44]. The ground state geom-
etries of the studied BODIPY models were fully optimized
using the above-mentioned theoretical level. The harmonic
vibrational frequencies were analyzed to prove that all con-
sidered structures represent minimum energy geometries.
Time-dependent density functional theory (TDDFT) [45]
has been developed to theoretically study excitation energies,
absorption wavelengths, and oscillator strengths. TDDFT
has proved to be a useful tool in our previous work to explore
optical properties for large and medium size molecules [46].
The combination of DFT and TDDFT can provide efficient
and reasonably accurate predictions of excited state prop-
erties of BODIPY dyes. The results obtained through the
above methods show the consistency of the calculated max-
imum absorption wavelengths with the experimental data
(Table S2 in the Supporting Information). All the calcula-
tions were performed by Gaussian 16 [47]. The maximum
absorption wavelengths predicted from the above theoretical
calculations reveal a very good correlation relationship with
the corresponding experimental data (shown in Figure S1 in
Supporting Information), with R>=0.9979. This indicates
that DFT/TDDFT/B3LYP is appropriate and reliable for the
present study systems.

Molecular descriptors calculation

A specific set of molecular features/descriptors was calcu-
lated for all compounds in this work, where descriptors are
mathematical representations of chemical information con-
tained in a molecule. The studied BODIPY models were
fully optimized at B3LYP/6-311G(d,p) level. The optimized
structures were used in further steps by cheminformatics

Fig. 1 Workflow for ML model
assembled and validation in this
study
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methods to generate descriptors by alvaDesc software [48].
The alvaDesc software generated 5666 molecular descriptors
corresponding to 0D-, 1D-, 2D-, and 3D- indexes, includ-
ing a total of 33 different classes of descriptors comprising
constitutional, topological, walk and path counts, connectiv-
ity indices, information indices, 2D autocorrelations, edge
adjacency indices, Burden eigenvalues, topological charge
indices, eigenvalue-based indices, Randic molecular pro-
files, geometrical descriptors, RDF descriptors, 3D-MoRSE
descriptors, WHIM descriptors, GETAWAY descriptors,
functional groups, atom-centered fragments, charge descrip-
tors, and molecular property descriptors [49]. After filter-
ing constant, missing values, and near-constant descriptors
(> 0.95 similarity), about 790 descriptors were generated per
each BODIPY chemical structure. The workflow of the ML
model is shown in Fig. 1.

Feature selection and explainable machine learning
model

Based upon the generated molecular descriptors, the opti-
mal linear correlations between the descriptors (quantita-
tive features) and the A(nm) are examined. Various machine
learning algorithms are used as a foundation for determining
the ideal relationship between the structure and the property
[30, 50, 51]. They help to discover the features with greatest
effects on the property. This greatest combination of char-
acteristics is coupled in a mathematical equation where the
physical property might be predicted for new chemical enti-
ties based on the same features retrieved from its structure
as those included in the machine learning models [23, 31,
52, 53].

In the current work, the feature selection procedures use a
genetic algorithm (GA) wrapper with multi-linear regression
as the fitting method [32, 54-56] for variable selection and
multiple linear regression analysis (MLRA) for ML model
generation using the sklearn-genetic package. The GA
started with a population of 2500 random variable combi-
nations and 27,000 iterations for evolution with the mutation
probability specified at 40%, where a subset of 15 variables
was selected. The MLR model was optimized and used for
the development of machine learning models [57, 58].

ML Modeling Structure-Property Relationships
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The quality of models should be assessed to get robust mod-
els and hence reliable predictions gathered from them, where
the different external and internal validation procedures play a
fundamental role at time to check for the robustness and stability
of the QSPR models [59-61]. The cross-validation technique
“leave-one-out” was used in the internal validation process of
the QSPR models obtained from the GA-MLR feature selection.
This procedure removes one molecule at each time from the
training set and re-runs the selected model against the individual
molecules (Q? 100) 153, 62]. Both of the observed response val-
ues and the predicted response values calculated by the models
are used to obtain the correlation coefficients, R> (Eq. 1) and the
root mean square errors RMSE (Eq. 2), which function as statis-
tical parameters to evaluate the performance of each model. This
process is carried out through training, cross-validation data, and
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where yi"bS is the A(nm) from data (observed) value of the
property for the i compound; y” "d is the predicted value
for i compound. 7 is the mean experimental value of the
property in the training and validation set, respectively; 7 is
the number of compounds in the training or validation set.
Concurrently, the chemical applicability domain (AD) is
calculated for best model by the leverage approach in order to
verify the reliability of the predictions [63]. The Williams plot
was used to visualize the applicability domain of the QSPR
models. The Williams plot of the standardized cross-validated
residuals (RES) vs. leverage (Hat diagonal) values (HAT)
clearly illustrates both of the response outliers (Y outliers) and
structurally influential compounds (X outliers) in a model [64].

Results and discussion

Aromatic [b]-fused BODIPY are promised as near-infrared
dyes. Therefore, 131 aromatic [b]-fused BODIPY dyes
with diverse structural features were selected as the studied

Table 1 List of models and statistical parameters in the selection process

models [36]. All the compounds were optimized, and the
compatible absorption spectra were obtained through
applied DFT/TDDFT methods. The corresponding experi-
mental data for the maximum absorption wavelength were
collected. A QSPR model was therefore developed through
finding the relationships between the chemical structure and
the maximum absorption wavelength values. The QSPR
model is built systematically, starting from a one-variable
model to a fifteen-variable model for response value. The
regression coefficient of the training and prediction set is the
main fitting parameter. Our results reveal that the 15-vari-
able model shows a good combination of R? for both train-
ing and prediction sets and is the best model of all. Other
statistical parameters are listed in Table 1.

The selected QSPR-MLR model with 15 variables pre-
dicts the absorption wavelength for the BODIPY dataset
according to the following equation (Eq. 3):

A(nm) = 306.02 + 216.523 * MWCI10 + 68.255 « PCR
+377.08 * HVcpx + 258.906 + Chi_Dz(Z)
+31.778 x GATSSs + —98.247 % SpMin4_Bh(m)
+ —9.962 = SpMin4_Bh(p) + 51.199 = SM11_AEA(bo)
+ 76.248 + nArNR2 + —53.625 « C — 035
+34.163 = NsssN + 23.698 + BO§[S — S]
+ —47.063 * RNCG + —131.427 = PBF
+ —34.605 * s4_numAroBonds

The statistical parameters for the models are explained
in the “Materials and methods” section and Table 1, and the
descriptors related to each model are depicted in Table 2,
together with the specific family-type descriptors.

The descriptors involved in the 15-variable model for the
A(nm) are shown in Table 2, including the charge descrip-
tors, 2D autocorrelations, information indices, 2D matrix-
based descriptors, 2D atom pairs, atom-type E-state indices,
molecular properties, walk and path counts, functional group
counts, Burden eigenvalues, Chirality descriptors, atom-cen-
tred fragments, and edge adjacency indices.

Moreover, the influence of each descriptor for the 15-vari-
able QSPR model is shown in Fig. 2. The coefficient values
are graphically represented in this figure, and their positive
or negative effect in the QSPR-MLR model is illustrated.
In this model, nine variables have a positive contribution to
the property in the following order: HVcpx > Chi_Dz(Z) >
MWC10>nArNR2 >PCR >SM11_AEA(bo) > NsssN> G

Model Descriptors

R? RMSE, Q?,,, RMSE, F-Test R? RMSEr

Train Test

Equation 3 MWCI10, PCR, HVcpx, Chi_Dz(Z), GATSS5s, SpMin4_Bh(m),
SpMin4_Bh(p), SM11_AEA(bo), nArNR2, C-035, NsssN,

BO8[S-S], RNCG, PBF, s4_numAroBonds

0945 16442 0923 15467 1023 0.734 35.553
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Table 2 Descriptors that were included in the QSPR-MLR models with a short explanation

Descriptor Descriptor information Type

MWCI10 Molecular walk count of order 10 Walk_and_path_counts

PCR Ratio of multiple path count over path count Walk_and_path_counts
HVcpx Graph vertex complexity index Information_indices
Chi_Dz(Z) Randic-like index from Barysz matrix weighted by atomic number 2D_matrix-based_descriptors
GATSS5s Geary autocorrelation of lag 5 weighted by I-state 2D_autocorrelations

SpMin4_Bh(m)
SpMin4_Bh(p)
SM11_AEA(bo)

nArNR2
C-035
NsssN
BO8[S-S]
RNCG
PBF

Smallest eigenvalue n. 4 of Burden matrix weighted by mass
Smallest eigenvalue n. 4 of Burden matrix weighted by polarizability

Spectral moment of order 11 from augmented edge adjacency mat. weighted by
bond order

Number of tertiary amines (aromatic)

R-CX..X

Number of atoms of type sssN

Presence/absence of S — S at topological distance 8
Relative negative charge

Plane of best fit

Burden_eigenvalues
Burden_eigenvalues

Edge_adjacency_indices

Functional_group_counts
Atom-centred_fragments
Atom-type_E-state_indices
2D_Atom_Pairs
Charge_descriptors
Molecular_properties

s4_numAroBonds

Number of aromatic bonds of the substituent 4

Chirality_descriptors

Fig.2 The magnitude of influ-

ence of different descriptors MWC10
of a 15-variable model on the PCR
BODIPY dataset according to HVcpx
Eq.3 Chi_Dz(Z)

GATS5s

SpMin4_Bh(m)
SpMin4_Bh(p)
SM11_AEA(bo)
nArNR2

C-035

NsssN

BO8[S-S]

RNCG

PBF
s4_numAroBonds
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ATS5s >B08[S—S]. On the other hand, six variables show
negative contribution towards the property in the following
order: SpMin4_Bh(p) > s4_numAroBonds > RNCG > C-0
35> SpMin4_Bh(m) > PBF; notice that the ranking of the
variables is displayed in the order of the absolute value of
the coefficient to reflect the impact of the variables in the
model in the opposite direction.

Besides, the predictive ability of the QSPR-MLR model
was evaluated, R = 0.945 for the training and R%=(.734 for
the test sets. This proves a good correlation between the pre-
dicted and the observed values for our dataset 131 BODIPY
compounds as reflected in Fig. 3A.

o._l

100 200 300 400

Coefficient Values

Williams’s plot, shown in Fig. 3B for the ML model,
gives a mathematical representation of the chemical space
based on the training set. The standardized residuals are
plotted on the Y-axis, and the leverage value is plotted on
the X-axis, and both values were obtained from the QSPR-
MLR model. The outlier response is considered when the
data points with standardized residuals are greater than
the (—30;+30) range. On the other hand, the hat/leverage
values account for how much every single compound has
the effects on the QSPR-MLR model. As shown in Wil-
liams’s plot, Fig. 3B, all the data points are located within
the 3o error limit zone (Y-axis) which reveals the absence of

@ Springer
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Fig.3 A The correlation plot between the observed and predicted values of photovoltaic dataset. B Williams’s plot of standardized residual ver-
sus leverage of BODIPY compounds dataset. Training set (blue dots), test set (orange dots)

outliers for our maximum absorption wavelength model. It
is also noted that all the predicted values are included inside
the applicability domain, and this makes the predictions for
both test sets reliable for all the compounds. The leverage
values suggest that only two compounds for the QSPR model
showed values higher than the critical leverage value, which
may be caused by some substructural differences in respect
to the other compounds in the training set [65]. All the other
remaining points have values lower than the critical leverage
for both training and prediction set.

A detailed analysis of the descriptors of the 15-variable
model was performed to get further understanding of the
main features that implicate the tendency of the descrip-
tors regarding the property. A density plot was hence per-
formed for some of the most relevant descriptors in the
EML model, where the x-axis are the original descrip-
tors values, and the y-axis corresponds to the experimen-
tal maximum absorption wavelength AM(nm) (Fig. 4). The
density plot for two of the most relevant descriptors in
the model is depicted in Fig. 4. In the case of MWCI10
descriptor (Fig. 4A) which is related to the molecular walk
count of order 10 [66], the structures with higher values in
the descriptor also correspond to the highest values in the
wavelength A(nm). These structures match with the more
branched molecular structures, as can be seen in some
example compounds in Fig. 4B.

The same phenomenon could be noticed in Fig. 4C for
the HVcpx. It is a molecular descriptor associated with the
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graph vertex complexity index [67]. More vertex for the
molecular graph indicates more branches in the chemical
structures. High values of the response variables are associ-
ated with high HVcpx values. PCR is the ratio of multiple
paths count over path count, and it also has a positive impact
in the property under study. Both above-mentioned descrip-
tors are molecular descriptors that are related with the
branching and size of the molecular structures. Furthermore,
the Chi_Dz(Z) descriptor, which is the Randic-like index
from Barysz matrix weighted by atomic number, also takes
into consideration the size and the atoms in the molecules.
The absorption wavelength data set also demonstrated
some interesting findings (shown in Fig. 5) for the nArNR2
and NsssN molecular descriptors that are both related with
the number of nitrogens in the molecules. The nArNR2
descriptor is related to the number of tertiary amines bonded
to one aromatic group (Ar) and two R groups (R2) where
high values (n=2) correspond to high absorption wave-
length values. As described in Fig. 5A, the right side of
the figure shows two nArNR2 groups of compounds 36b
and 36a that are highlighted in red, and A(nm) equal to 812
and 783, respectively. The left part of Fig. 5A showed some
compounds such as 55d and 5i, with nArNR2 highlighted in
red and values equal to one but with medium to low values
in the absorption wavelength. It suggests that the addition of
two nArNR2 group fragment types increases the absorption
wavelength significantly, which is in opposite of the case
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of molecule 34a with a relatively large size but without a
nARNR?2 group showing a medium A(nm) =564.

The molecular descriptor NsssN also plays an important
role in the same kind of fragments which involve nitro-
gen atoms (Fig. 5B). It counts for the number of nitrogen
atoms connected through 3 single bonds (> N-), where “>"
means two single bonds. NsssN has a smaller contribution
in the model than the nArNR2 descriptor. The same trend
is observed in Fig. 5B. BODIPY-compounds (36b, 61c,
61a, and 36a) show the value of NsssN by 2 and with high
absorption wavelength values. It is interesting to notice that
for the compounds 9 and 60, where absorption wavelengths
fall within the range of 595-625, the > N- fragment is sit-
ting inside the rings of the chemical structure, which can be
seen from the structure of BODIPY 60 in the bottom right
part of Fig. 5B. This is on the contrary with the previously
described 36b where the bonds are not forming parts of ring
systems. For the structures with the number of three single
bonds connected to nitrogen atoms as one, the absorption
wavelengths are in the middle zone of the graph, such as
5i and 50a (depicted in the left part of Fig. 5B). For those
molecules with NsssN =0, the A(nm) <761, except for the
compounds of 34bR, 58c and 20, but these could be done to
other factors/descriptors influencing the property, since this
is a multi-factor model accounting for different substructures
contributing to the overall value of the absorption wave-
lengths, as was discussed previously.

In our QSPR model, it is important to mention the
BO8[S-S] molecular descriptor which has a positive contri-
bution to the absorption wavelength. Although this encoded
feature shows a smaller contribution in comparing with the
other descriptors in the model, it belongs to the 2D atom

pairs family of descriptors that set structural features in the
molecules as BO8[S—S] descriptor. This descriptor encodes
the presence/absence of S—S walk counts at topological dis-
tance 8 (separated by eight bonds), where the beginning and
ending atoms are both sulfurs. It is encoded as zero where
there are no any fragments fitting the pattern and as one
when at least one fragment type is found in the structure.
Figure 6 depicts the density plot of this descriptor vs the
experimental A(nm) in order to show the trends related with
this feature. As shown in the right part of Fig. 6, compounds
34bR and 36b have sulfurs connected at a distance of eight
bonds (highlighted in red), and both compounds show high
absorption wavelengths.

It is noted that the compounds with BOS[S—-S] =1 have
higher A(nm) and are more concentrated in the top part of
the density plot 18/24 (76%), while those compounds with
BO8[S—S]=0 are more distributed in the lower part of the
density plot representing 77 out of 107 compounds (72%),
as the case of compounds 55d and 3d. As discussed previ-
ously, there are other factors that contribute to the values of
the absorption wavelength and also play a role in the shifting
of this characteristic.

Finally, a virtual library was designed with the aim
to explore the capabilities of the developed model in the
findings of new BODIPY compounds with better absorp-
tion wavelength values. For this, we used three main cores
distributed within three different ranges of absorption val-
ues. The first BODIPY compound was 3b (1=512 nm), the
second selected core was BODIPY 23c¢ with =662 nm,
and the third one was BODIPY 36b (A1=821 nm) as can be
seen in Fig. 7. In order to assemble a custom design library,
we selected some of the fragments previously discussed

Presence/absence of S-S at topological distance 8 (bonds)

W) I
.Y |
| >/ =y
: QAN VAR | 1000
Y B°
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| \ = | 900
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e s J: S
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| o g s
| o} 8 ®
I ™ g - 3
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e 4 72% .
I &/ \ \\
| WY

‘) |
: = il
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| | -050 -025 000 025 050 075 100 125 150
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Fig.6 Density distribution plots and representative chemical structure for BO8[S—S] molecular descriptor
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23c

CHs

Fig. 7 Main cores and R-groups selected for the virtual library

and responsible for increasing the A values for some of the
BODIPY compounds resulting in a total of seven fragments
as shown in the bottom part of Fig. 7. Then, the selected
fragments were attached to six R-positions of the main cores
as shown in the figure. This combination ends up with a
total of 117,649 per core with a total of 352,947 BODIPY
compounds in the virtual library that were attached in a sys-
tematic way using the ChemAxon’s MarvinSketch suite [68].

After generating the virtual library, the ML-QSPR
model was re-run to generate predictions for this new set
of BODIPY compounds. Figure 8 shows the distribution of
the three derivative types using a UMAP-based approach
where the intensity in each family reflects the absorption
wavelength values being the BODIPY 36b derivatives, the
ones with the highest absorption values as could be observed
from the bars in Fig. 2. Besides, Fig. 9 shows the BODIPY
compounds from the virtual library with the highest absorp-
tion, all of them belonging to the 36b derivatives.

Conclusions

In this work, we have developed a quantitative struc-
ture—property relationship (QSPR) model for predicting
the maximum absorption wavelength (A) of Boron-dipyr-
romethene (BODIPY) compounds using a combination of

molecular descriptors and machine learning techniques to
address the challenges associated with hand-crafted design
of BODIPY compounds, by leveraging computational meth-
ods and datasets of BODIPY structures and their corre-
sponding photophysical properties. Through the systematic
optimization of BODIPY compounds using density func-
tional theory (DFT) calculations, we generated a diverse
dataset comprising 131 BODIPY compounds with experi-
mentally determined maximum absorption wavelengths.
We then employed a wide range of molecular descriptors to
represent the structural features of these compounds, cap-
turing information about their size, shape, connectivity, and
chemical composition.

Using a genetic algorithm (GA) wrapper with multi-linear
regression (MLR) as the fitting method, we identified a sub-
set of 15 molecular descriptors that exhibited the strongest
correlations with the maximum absorption wavelength. The
developed QSPR-MLR model demonstrated good predic-
tive performance, with adequate coefficients of determina-
tion (Rz) of 0.945 and 0.734, for the training and test set,
respectively. The model exhibited robustness and reliability,
as evidenced by the low root mean square errors (RMSE)
and the absence of outliers in both the training and test sets.

Furthermore, our analysis of the selected molecular
descriptors provided valuable insights into the structural
features influencing the maximum absorption wavelength
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Fig.9 New generated BODIPY compounds from the virtual libraries
with the highest A values

of BODIPY compounds. We observed significant contribu-
tions from descriptors related to molecular branching, size,
and presence of specific functional groups like the presence/
absence of S—S fragments separated by eight bonds, and the
number of tertiary amines bonded to one aromatic group
(Ar) and two R groups (R2), highlighting the importance of
these factors in determining photophysical properties.
Overall, our study demonstrates the utility of machine
learning approaches in accelerating the design of BODIPY

@ Springer

compounds with tailored photophysical property and help-
ing to expedite the discovery of novel BODIPY structures
with improved performance for applications in fluorescence
imaging, sensing, optoelectronics, and so on. Our findings
show the potential of interdisciplinary research between
computational chemistry, machine learning, and experi-
mental research to advance the field of molecular design
and materials science.
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