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Abstract
Context  Boron-dipyrromethene (BODIPY) compounds have unique photophysical properties and have been applied in 
fluorescence imaging, sensing, optoelectronics, and beyond. In order to design effective BODIPY compounds, it is crucial 
to acquire a comprehensive understanding of the relationships between the structures of BODIPY and the corresponding 
photoproperties. Fifteen molecular descriptors were identified to be strongly correlated with the maximum absorption wave-
length. The developed ML/QSPR model exhibited good predictive performance, with coefficients of determination (R2) of 
0.945 for the training set and 0.734 for the test set, demonstrating robustness and reliability. A posterior analysis of some of 
the selected descriptors in the model provided insights into the structural features that influence BODIPY compound proper-
ties; meanwhile, it also emphasizes the importance of molecular branching, size, and specific functional groups. This work 
shows that applied combined cheminformatics and machine learning approach is robust to screen the BODIPY compounds 
and design novel structures with enhanced performance.
Methods  In the present study, all the BODIPY models studied were fully optimized, and the corresponding absorption 
spectrum was obtained at DFT/TDDFT//B3LYP/6-311G(d,p) level. All the above calculations were executed by the Gauss-
ian 16 program. Based upon the theoretical computational results, the machine learning-based quantitative structure–prop-
erty relationship (ML/QSPR) model was employed for predicting the maximum absorption wavelength (λ) of BODIPY 
compounds by combining hand-crafted molecular descriptors (MD) and explainable machine learning (EML) techniques 
using Scikit-learn python library. A dataset of 131 BODIPY compounds with their experimental photophysical properties 
was used to generate a diverse set of molecular descriptors capturing information about the size, shape, connectivity, and 
other structural features of these compounds using Chemaxon and Alvadesc software. A genetic algorithm (GA) variable 
selection together with the multi-linear regression (MLR) method were applied to develop the best predictive model using 
the Genetic Selection python library.

Keywords  BODIPY · DFT · TDDFT · Explainable machine learning · Absorption wavelength

Introduction

4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (or boron pyr-
romethene, or bora-indacene, BODIPY) dyes are small 
molecules with strong UV absorption that emit relatively 
sharp fluorescence peaks with high quantum yields [1]. They 
were first discovered by Treibs and Kreuzer in 1968 [2]. 
BODIPY dyes have since been applied as labeling reagents 
[3, 4], fluorescent switches [5–7], chemosensors [8, 9], and 
laser dyes [10]. Their high quantum yields, photostability, 
and tunable absorption wavelengths make them invaluable 
tools for visualizing biological structures and dynamics 
with high sensitivity and precision. Additionally, BODIPY 
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compounds have been employed in the development of flu-
orescent sensors for detecting various analytes, including 
metal ions, pH, and reactive oxygen species [11–13]. Their 
selective response to specific analytes, coupled with their 
robust photophysical properties, enables the design of highly 
sensitive and selective sensing platforms for applications in 
environmental monitoring, medical diagnostics, and biologi-
cal research [14–16].

In addition to fluorescence imaging and sensing, BODIPY 
compounds have shown promise in optoelectronic devices, 
such as organic light-emitting diodes (OLEDs) and organic 
photovoltaics (OPVs) [17, 18]. Their excellent charge trans-
port properties, high luminescence efficiency, and facile 
synthetic modification make them attractive candidates for 
use as active materials in these devices. BODIPY-based 
OLEDs have demonstrated impressive electroluminescence 
performance, with high brightness, low operating voltages, 
and narrow absorption spectra, making them suitable for 
display and lighting applications. Furthermore, BODIPY 
derivatives have been incorporated into organic photovoltaic 
devices as electron-accepting materials, where they contrib-
ute to enhanced light absorption, efficient charge generation, 
and improved device stability [19, 20]. The versatility of 
BODIPY compounds, combined with their favorable pho-
tophysical and electronic properties, continues to drive their 
exploration and application in diverse areas of science and 
technology [21, 22].

One of the primary challenges in designing new BODIPY 
(boron-dipyrromethene) compounds lies in achieving an 
adequate balance between synthetic accessibility and desired 
photophysical properties. BODIPY derivatives often demand 
intricate synthetic routes, necessitating careful considera-
tion of reaction conditions, regioselectivity, and functional 
group compatibility. Additionally, tuning the photophysical 
characteristics of BODIPY molecules, such as absorption 
and emission wavelengths, quantum yields, and fluorescence 
lifetimes, presents a formidable challenge due to the com-
plex interplay of molecular structure, electronic effects, and 
environmental factors. Achieving optimal stability under 
various conditions, expanding functional diversity beyond 
fluorescence imaging, and predicting biological activity fur-
ther enhance the challenges in BODIPY compound design, 
necessitating innovative synthetic strategies and interdisci-
plinary collaborations.

Machine learning (ML) techniques offer a promising 
avenue to address the challenges associated with designing 
BODIPY compounds [23–26]. For example, a recent study 
carried out by Chebotaev et al. [27] found that data of 70 
BODIPY structures in polar (45) and non-polar (39) have 
R2 between 0.73 and 91 with non-linear ML algorithms like 
random forest and support vector machine, but the mecha-
nistic explanation does not show the structure–property 
relationship in the fragment descriptors. Another interesting 

study was done by Buglak et al. [28], where three datasets 
of 48, 45, and 41 were used to develop three models with R2 
values between 0.88 and 0.91, using multi-linear regression 
(MLR) as the fitting algorithm. However, the mechanistic 
interpretation does not show the variations in the struc-
ture–property relationship. Besides, the above-mentioned 
works do not use custom-generated libraries based on the 
fragments extracted from the models.

Based on that, in the present study, we built a large data-
set comprising BODIPY structures and their correspond-
ing photophysical properties and then used ML models to 
learn the complex relationships between molecular features 
and desired properties. These models can then be used to 
predict the photophysical characteristics of novel BODIPY 
compounds, thereby accelerating the compound design pro-
cess. Moreover, ML algorithms such as neural networks, 
random forests, and support vector machines can identify 
those complex hidden patterns and correlations that may 
escape traditional structure–property relationships [29–32], 
enabling the discovery of innovative BODIPY structures 
with tailored properties.

Furthermore, ML-driven virtual screening approaches 
[33–35] can expedite the identification of lead BODIPY 
candidates with desired characteristics. By screening vast 
chemical space and prioritizing compounds with high pre-
dicted activity or desirable physicochemical properties, 
ML algorithms can guide experimental efforts toward the 
synthesis of promising candidates, thereby reducing time 
and resource requirements. Moreover, ML models can 
facilitate the exploration of structure–activity relationships 
and guide the rational modification of BODIPY scaffolds to 
optimize specific properties. Through the integration of ML 
techniques into the BODIPY compound design workflow, 
researchers can accelerate the discovery of novel compounds 
with enhanced photophysical properties and diverse applica-
tions, unlocking new opportunities in fields such as fluores-
cence imaging, sensing, and optoelectronics.

Material and methods

Data collection

The experimental values of the λ(nm) of 131 different 
BODIPY compounds were collected from the literature [36], 
and the data values are shown in Table S1 in Supplementary 
Information. The data set of these BODIPY compounds was 
split into training (105 chemicals) and prediction (26 com-
pound) sets representing approximately 80% and 20% of the 
total data. The data set was divided by sorting in descending 
order the data according to the response variable λ(nm) and 
selecting in a ratio 4:1 for training: prediction sets.
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Molecular DFT structure optimization 
and generation

Density functional theory (DFT) with hybrid exchange 
correlation functional B3LYP [37–40] was applied in the 
present study, with a basis set of the standard triple zeta 
augmented by polarization functions 6-311G(d,p) [41–43]. 
To simulate the solvated environment of the correspond-
ing experimental conditions, the Barone-Tomasi polarizable 
continuum model (PCM) with the related dielectric constant 
of the solvents was applied [44]. The ground state geom-
etries of the studied BODIPY models were fully optimized 
using the above-mentioned theoretical level. The harmonic 
vibrational frequencies were analyzed to prove that all con-
sidered structures represent minimum energy geometries. 
Time-dependent density functional theory (TDDFT) [45] 
has been developed to theoretically study excitation energies, 
absorption wavelengths, and oscillator strengths. TDDFT 
has proved to be a useful tool in our previous work to explore 
optical properties for large and medium size molecules [46]. 
The combination of DFT and TDDFT can provide efficient 
and reasonably accurate predictions of excited state prop-
erties of BODIPY dyes. The results obtained through the 
above methods show the consistency of the calculated max-
imum absorption wavelengths with the experimental data 
(Table S2 in the Supporting Information). All the calcula-
tions were performed by Gaussian 16 [47]. The maximum 
absorption wavelengths predicted from the above theoretical 
calculations reveal a very good correlation relationship with 
the corresponding experimental data (shown in Figure S1 in 
Supporting Information), with R2 = 0.9979. This indicates 
that DFT/TDDFT/B3LYP is appropriate and reliable for the 
present study systems.

Molecular descriptors calculation

A specific set of molecular features/descriptors was calcu-
lated for all compounds in this work, where descriptors are 
mathematical representations of chemical information con-
tained in a molecule. The studied BODIPY models were 
fully optimized at B3LYP/6-311G(d,p) level. The optimized 
structures were used in further steps by cheminformatics 

methods to generate descriptors by alvaDesc software [48]. 
The alvaDesc software generated 5666 molecular descriptors 
corresponding to 0D-, 1D-, 2D-, and 3D- indexes, includ-
ing a total of 33 different classes of descriptors comprising 
constitutional, topological, walk and path counts, connectiv-
ity indices, information indices, 2D autocorrelations, edge 
adjacency indices, Burden eigenvalues, topological charge 
indices, eigenvalue-based indices, Randic molecular pro-
files, geometrical descriptors, RDF descriptors, 3D-MoRSE 
descriptors, WHIM descriptors, GETAWAY descriptors, 
functional groups, atom-centered fragments, charge descrip-
tors, and molecular property descriptors [49]. After filter-
ing constant, missing values, and near-constant descriptors 
(> 0.95 similarity), about 790 descriptors were generated per 
each BODIPY chemical structure. The workflow of the ML 
model is shown in Fig. 1.

Feature selection and explainable machine learning 
model

Based upon the generated molecular descriptors, the opti-
mal linear correlations between the descriptors (quantita-
tive features) and the λ(nm) are examined. Various machine 
learning algorithms are used as a foundation for determining 
the ideal relationship between the structure and the property 
[30, 50, 51]. They help to discover the features with greatest 
effects on the property. This greatest combination of char-
acteristics is coupled in a mathematical equation where the 
physical property might be predicted for new chemical enti-
ties based on the same features retrieved from its structure 
as those included in the machine learning models [23, 31, 
52, 53].

In the current work, the feature selection procedures use a 
genetic algorithm (GA) wrapper with multi-linear regression 
as the fitting method [32, 54–56] for variable selection and 
multiple linear regression analysis (MLRA) for ML model 
generation using the sklearn-genetic package. The GA 
started with a population of 2500 random variable combi-
nations and 27,000 iterations for evolution with the mutation 
probability specified at 40%, where a subset of 15 variables 
was selected. The MLR model was optimized and used for 
the development of machine learning models [57, 58].

Fig. 1   Workflow for ML model 
assembled and validation in this 
study
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The quality of models should be assessed to get robust mod-
els and hence reliable predictions gathered from them, where 
the different external and internal validation procedures play a 
fundamental role at time to check for the robustness and stability 
of the QSPR models [59–61]. The cross-validation technique 
“leave-one-out” was used in the internal validation process of 
the QSPR models obtained from the GA-MLR feature selection. 
This procedure removes one molecule at each time from the 
training set and re-runs the selected model against the individual 
molecules (Q2 LOO) [55, 62]. Both of the observed response val-
ues and the predicted response values calculated by the models 
are used to obtain the correlation coefficients, R2 (Eq. 1) and the 
root mean square errors RMSE (Eq. 2), which function as statis-
tical parameters to evaluate the performance of each model. This 
process is carried out through training, cross-validation data, and 
the external set 

(
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.

where yi
obs is the λ(nm) from data (observed) value of the 

property for the ith compound; ypred
i

 is the predicted value 
for ith compound. ỹ is the mean experimental value of the 
property in the training and validation set, respectively; n is 
the number of compounds in the training or validation set.

Concurrently, the chemical applicability domain (AD) is 
calculated for best model by the leverage approach in order to 
verify the reliability of the predictions [63]. The Williams plot 
was used to visualize the applicability domain of the QSPR 
models. The Williams plot of the standardized cross-validated 
residuals (RES) vs. leverage (Hat diagonal) values (HAT) 
clearly illustrates both of the response outliers (Y outliers) and 
structurally influential compounds (X outliers) in a model [64].

Results and discussion

Aromatic [b]-fused BODIPY are promised as near-infrared 
dyes. Therefore, 131 aromatic [b]-fused BODIPY dyes 
with diverse structural features were selected as the studied 
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models [36]. All the compounds were optimized, and the 
compatible absorption spectra were obtained through 
applied DFT/TDDFT methods. The corresponding experi-
mental data for the maximum absorption wavelength were 
collected. A QSPR model was therefore developed through 
finding the relationships between the chemical structure and 
the maximum absorption wavelength values. The QSPR 
model is built systematically, starting from a one-variable 
model to a fifteen-variable model for response value. The 
regression coefficient of the training and prediction set is the 
main fitting parameter. Our results reveal that the 15-vari-
able model shows a good combination of R2 for both train-
ing and prediction sets and is the best model of all. Other 
statistical parameters are listed in Table 1.

The selected QSPR-MLR model with 15 variables pre-
dicts the absorption wavelength for the BODIPY dataset 
according to the following equation (Eq. 3):

The statistical parameters for the models are explained 
in the “Materials and methods” section and Table 1, and the 
descriptors related to each model are depicted in Table 2, 
together with the specific family-type descriptors.

The descriptors involved in the 15-variable model for the 
λ(nm) are shown in Table 2, including the charge descrip-
tors, 2D autocorrelations, information indices, 2D matrix-
based descriptors, 2D atom pairs, atom-type E-state indices, 
molecular properties, walk and path counts, functional group 
counts, Burden eigenvalues, Chirality descriptors, atom-cen-
tred fragments, and edge adjacency indices.

Moreover, the influence of each descriptor for the 15-vari-
able QSPR model is shown in Fig. 2. The coefficient values 
are graphically represented in this figure, and their positive 
or negative effect in the QSPR-MLR model is illustrated. 
In this model, nine variables have a positive contribution to 
the property in the following order: HVcpx > Chi_Dz(Z) > 
MWC10 > nArNR2 > PCR > SM11_AEA(bo) > NsssN > G

(3)

�(nm) = 306.02 + 216.523 ∗ MWC10 + 68.255 ∗ PCR

+ 377.08 ∗ HVcpx + 258.906 ∗ Chi_Dz(Z)

+ 31.778 ∗ GATS5s + −98.247 ∗ SpMin4_Bh(m)

+ −9.962 ∗ SpMin4_Bh(p) + 51.199 ∗ SM11_AEA(bo)

+ 76.248 ∗ nArNR2 + −53.625 ∗ C − 035

+ 34.163 ∗ NsssN + 23.698 ∗ B08[S − S]

+ −47.063 ∗ RNCG + −131.427 ∗ PBF

+ −34.605 ∗ s4_numAroBonds

Table 1   List of models and statistical parameters in the selection process

Model Descriptors R2 Train RMSEtr Q2 LOO RMSEcv F-Test R2 Test RMSETest

Equation 3 MWC10, PCR, HVcpx, Chi_Dz(Z), GATS5s, SpMin4_Bh(m), 
SpMin4_Bh(p), SM11_AEA(bo), nArNR2, C-035, NsssN, 
B08[S–S], RNCG, PBF, s4_numAroBonds

0.945 16.442 0.923 15.467 102.3 0.734 35.553
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ATS5s > B08[S–S]. On the other hand, six variables show 
negative contribution towards the property in the following 
order: SpMin4_Bh(p) > s4_numAroBonds > RNCG > C-0
35 > SpMin4_Bh(m) > PBF; notice that the ranking of the 
variables is displayed in the order of the absolute value of 
the coefficient to reflect the impact of the variables in the 
model in the opposite direction.

Besides, the predictive ability of the QSPR-MLR model 
was evaluated, R2 = 0.945 for the training and R2 = 0.734 for 
the test sets. This proves a good correlation between the pre-
dicted and the observed values for our dataset 131 BODIPY 
compounds as reflected in Fig. 3A.

Williams’s plot, shown in Fig. 3B for the ML model, 
gives a mathematical representation of the chemical space 
based on the training set. The standardized residuals are 
plotted on the Y-axis, and the leverage value is plotted on 
the X-axis, and both values were obtained from the QSPR-
MLR model. The outlier response is considered when the 
data points with standardized residuals are greater than 
the (− 3σ; + 3σ) range. On the other hand, the hat/leverage 
values account for how much every single compound has 
the effects on the QSPR-MLR model. As shown in Wil-
liams’s plot, Fig. 3B, all the data points are located within 
the 3σ error limit zone (Y-axis) which reveals the absence of 

Table 2   Descriptors that were included in the QSPR-MLR models with a short explanation

Descriptor Descriptor information Type

MWC10 Molecular walk count of order 10 Walk_and_path_counts
PCR Ratio of multiple path count over path count Walk_and_path_counts
HVcpx Graph vertex complexity index Information_indices
Chi_Dz(Z) Randic-like index from Barysz matrix weighted by atomic number 2D_matrix-based_descriptors
GATS5s Geary autocorrelation of lag 5 weighted by I-state 2D_autocorrelations
SpMin4_Bh(m) Smallest eigenvalue n. 4 of Burden matrix weighted by mass Burden_eigenvalues
SpMin4_Bh(p) Smallest eigenvalue n. 4 of Burden matrix weighted by polarizability Burden_eigenvalues
SM11_AEA(bo) Spectral moment of order 11 from augmented edge adjacency mat. weighted by 

bond order
Edge_adjacency_indices

nArNR2 Number of tertiary amines (aromatic) Functional_group_counts
C-035 R–CX..X Atom-centred_fragments
NsssN Number of atoms of type sssN Atom-type_E-state_indices
B08[S–S] Presence/absence of S – S at topological distance 8 2D_Atom_Pairs
RNCG Relative negative charge Charge_descriptors
PBF Plane of best fit Molecular_properties
s4_numAroBonds Number of aromatic bonds of the substituent 4 Chirality_descriptors

Fig. 2   The magnitude of influ-
ence of different descriptors 
of a 15-variable model on the 
BODIPY dataset according to 
Eq. 3
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outliers for our maximum absorption wavelength model. It 
is also noted that all the predicted values are included inside 
the applicability domain, and this makes the predictions for 
both test sets reliable for all the compounds. The leverage 
values suggest that only two compounds for the QSPR model 
showed values higher than the critical leverage value, which 
may be caused by some substructural differences in respect 
to the other compounds in the training set [65]. All the other 
remaining points have values lower than the critical leverage 
for both training and prediction set.

A detailed analysis of the descriptors of the 15-variable 
model was performed to get further understanding of the 
main features that implicate the tendency of the descrip-
tors regarding the property. A density plot was hence per-
formed for some of the most relevant descriptors in the 
EML model, where the x-axis are the original descrip-
tors values, and the y-axis corresponds to the experimen-
tal maximum absorption wavelength λ(nm) (Fig. 4). The 
density plot for two of the most relevant descriptors in 
the model is depicted in Fig. 4. In the case of MWC10 
descriptor (Fig. 4A) which is related to the molecular walk 
count of order 10 [66], the structures with higher values in 
the descriptor also correspond to the highest values in the 
wavelength λ(nm). These structures match with the more 
branched molecular structures, as can be seen in some 
example compounds in Fig. 4B.

The same phenomenon could be noticed in Fig. 4C for 
the HVcpx. It is a molecular descriptor associated with the 

graph vertex complexity index [67]. More vertex for the 
molecular graph indicates more branches in the chemical 
structures. High values of the response variables are associ-
ated with high HVcpx values. PCR is the ratio of multiple 
paths count over path count, and it also has a positive impact 
in the property under study. Both above-mentioned descrip-
tors are molecular descriptors that are related with the 
branching and size of the molecular structures. Furthermore, 
the Chi_Dz(Z) descriptor, which is the Randic-like index 
from Barysz matrix weighted by atomic number, also takes 
into consideration the size and the atoms in the molecules.

The absorption wavelength data set also demonstrated 
some interesting findings (shown in Fig. 5) for the nArNR2 
and NsssN molecular descriptors that are both related with 
the number of nitrogens in the molecules. The nArNR2 
descriptor is related to the number of tertiary amines bonded 
to one aromatic group (Ar) and two R groups (R2) where 
high values (n = 2) correspond to high absorption wave-
length values. As described in Fig. 5A, the right side of 
the figure shows two nArNR2 groups of compounds 36b 
and 36a that are highlighted in red, and λ(nm) equal to 812 
and 783, respectively. The left part of Fig. 5A showed some 
compounds such as 55d and 5i, with nArNR2 highlighted in 
red and values equal to one but with medium to low values 
in the absorption wavelength. It suggests that the addition of 
two nArNR2 group fragment types increases the absorption 
wavelength significantly, which is in opposite of the case 

Fig. 3   A The correlation plot between the observed and predicted values of photovoltaic dataset. B Williams’s plot of standardized residual ver-
sus leverage of BODIPY compounds dataset. Training set (blue dots), test set (orange dots)
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Fig. 4   Density distribution plots. A MWC10 molecular descriptor. B Representative structures with highest and lowest absorption values. C 
HVcpx molecular descriptor

Fig. 5   Density distribution plots. A nArNR2 molecular descriptor. B NsssN molecular descriptor



	 Journal of Molecular Modeling           (2025) 31:18    18   Page 8 of 13

of molecule 34a with a relatively large size but without a 
nARNR2 group showing a medium λ(nm) = 564.

The molecular descriptor NsssN also plays an important 
role in the same kind of fragments which involve nitro-
gen atoms (Fig. 5B). It counts for the number of nitrogen 
atoms connected through 3 single bonds (> N-), where “ > ” 
means two single bonds. NsssN has a smaller contribution 
in the model than the nArNR2 descriptor. The same trend 
is observed in Fig. 5B. BODIPY-compounds (36b, 61c, 
61a, and 36a) show the value of NsssN by 2 and with high 
absorption wavelength values. It is interesting to notice that 
for the compounds 9 and 60, where absorption wavelengths 
fall within the range of 595–625, the > N- fragment is sit-
ting inside the rings of the chemical structure, which can be 
seen from the structure of BODIPY 60 in the bottom right 
part of Fig. 5B. This is on the contrary with the previously 
described 36b where the bonds are not forming parts of ring 
systems. For the structures with the number of three single 
bonds connected to nitrogen atoms as one, the absorption 
wavelengths are in the middle zone of the graph, such as 
5i and 50a (depicted in the left part of Fig. 5B). For those 
molecules with NsssN = 0, the λ(nm) < 761, except for the 
compounds of 34bR, 58c and 20, but these could be done to 
other factors/descriptors influencing the property, since this 
is a multi-factor model accounting for different substructures 
contributing to the overall value of the absorption wave-
lengths, as was discussed previously.

In our QSPR model, it is important to mention the 
B08[S–S] molecular descriptor which has a positive contri-
bution to the absorption wavelength. Although this encoded 
feature shows a smaller contribution in comparing with the 
other descriptors in the model, it belongs to the 2D atom 

pairs family of descriptors that set structural features in the 
molecules as B08[S–S] descriptor. This descriptor encodes 
the presence/absence of S–S walk counts at topological dis-
tance 8 (separated by eight bonds), where the beginning and 
ending atoms are both sulfurs. It is encoded as zero where 
there are no any fragments fitting the pattern and as one 
when at least one fragment type is found in the structure. 
Figure 6 depicts the density plot of this descriptor vs the 
experimental λ(nm) in order to show the trends related with 
this feature. As shown in the right part of Fig. 6, compounds 
34bR and 36b have sulfurs connected at a distance of eight 
bonds (highlighted in red), and both compounds show high 
absorption wavelengths.

It is noted that the compounds with B08[S–S] = 1 have 
higher λ(nm) and are more concentrated in the top part of 
the density plot 18/24 (76%), while those compounds with 
B08[S–S] = 0 are more distributed in the lower part of the 
density plot representing 77 out of 107 compounds (72%), 
as the case of compounds 55d and 3d. As discussed previ-
ously, there are other factors that contribute to the values of 
the absorption wavelength and also play a role in the shifting 
of this characteristic.

Finally, a virtual library was designed with the aim 
to explore the capabilities of the developed model in the 
findings of new BODIPY compounds with better absorp-
tion wavelength values. For this, we used three main cores 
distributed within three different ranges of absorption val-
ues. The first BODIPY compound was 3b (λ = 512 nm), the 
second selected core was BODIPY 23c with λ = 662 nm, 
and the third one was BODIPY 36b (λ = 821 nm) as can be 
seen in Fig. 7. In order to assemble a custom design library, 
we selected some of the fragments previously discussed 

Fig. 6   Density distribution plots and representative chemical structure for B08[S–S] molecular descriptor



Journal of Molecular Modeling           (2025) 31:18 	 Page 9 of 13     18 

and responsible for increasing the λ values for some of the 
BODIPY compounds resulting in a total of seven fragments 
as shown in the bottom part of Fig. 7. Then, the selected 
fragments were attached to six R-positions of the main cores 
as shown in the figure. This combination ends up with a 
total of 117,649 per core with a total of 352,947 BODIPY 
compounds in the virtual library that were attached in a sys-
tematic way using the ChemAxon’s MarvinSketch suite [68].

After generating the virtual library, the ML-QSPR 
model was re-run to generate predictions for this new set 
of BODIPY compounds. Figure 8 shows the distribution of 
the three derivative types using a UMAP-based approach 
where the intensity in each family reflects the absorption 
wavelength values being the BODIPY 36b derivatives, the 
ones with the highest absorption values as could be observed 
from the bars in Fig. 2. Besides, Fig. 9 shows the BODIPY 
compounds from the virtual library with the highest absorp-
tion, all of them belonging to the 36b derivatives.

Conclusions

In this work, we have developed a quantitative struc-
ture–property relationship (QSPR) model for predicting 
the maximum absorption wavelength (λ) of Boron-dipyr-
romethene (BODIPY) compounds using a combination of 

molecular descriptors and machine learning techniques to 
address the challenges associated with hand-crafted design 
of BODIPY compounds, by leveraging computational meth-
ods and datasets of BODIPY structures and their corre-
sponding photophysical properties. Through the systematic 
optimization of BODIPY compounds using density func-
tional theory (DFT) calculations, we generated a diverse 
dataset comprising 131 BODIPY compounds with experi-
mentally determined maximum absorption wavelengths. 
We then employed a wide range of molecular descriptors to 
represent the structural features of these compounds, cap-
turing information about their size, shape, connectivity, and 
chemical composition.

Using a genetic algorithm (GA) wrapper with multi-linear 
regression (MLR) as the fitting method, we identified a sub-
set of 15 molecular descriptors that exhibited the strongest 
correlations with the maximum absorption wavelength. The 
developed QSPR-MLR model demonstrated good predic-
tive performance, with adequate coefficients of determina-
tion (R2) of 0.945 and 0.734, for the training and test set, 
respectively. The model exhibited robustness and reliability, 
as evidenced by the low root mean square errors (RMSE) 
and the absence of outliers in both the training and test sets.

Furthermore, our analysis of the selected molecular 
descriptors provided valuable insights into the structural 
features influencing the maximum absorption wavelength 

Fig. 7   Main cores and R-groups selected for the virtual library
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of BODIPY compounds. We observed significant contribu-
tions from descriptors related to molecular branching, size, 
and presence of specific functional groups like the presence/
absence of S–S fragments separated by eight bonds, and the 
number of tertiary amines bonded to one aromatic group 
(Ar) and two R groups (R2), highlighting the importance of 
these factors in determining photophysical properties.

Overall, our study demonstrates the utility of machine 
learning approaches in accelerating the design of BODIPY 

compounds with tailored photophysical property and help-
ing to expedite the discovery of novel BODIPY structures 
with improved performance for applications in fluorescence 
imaging, sensing, optoelectronics, and so on. Our findings 
show the potential of interdisciplinary research between 
computational chemistry, machine learning, and experi-
mental research to advance the field of molecular design 
and materials science.
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