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The properties of tissue interfaces — between separate populations of cells, or between a group of
DOI:00.0000/000000000x cells and its environment — has attracted intense theoretical, computational, and experimental study.
Recent work on shape-based models inspired by dense epithelia have suggested a possible “topological
sharpening” effect, by which four-fold vertices spatially coordinated along a cellular interface lead to
a cusp-like restoring force acting on cells at the interface, which in turn greatly suppresses interfacial
fluctuations. We revisit these interfacial fluctuations, focusing on the distinction between short length
scale reduction of interfacial fluctuations and long length scale renormalized surface tension. To do
this, we implement a spectrally resolved analysis of fluctuations over extremely long simulation times.
This leads to more quantitative information on the topological sharpening effect, in which the degree
of sharpening depends on the length scale over which it is measured. We compare our findings with a
Brownian bridge model of the interface, and close by analyzing existing experimental data in support

of the role of short-length-scale topological sharpening effects in real biological systems.

1 Introduction

Interfaces between populations of cells, or between cells and their
environment, is pivotal for a wide variety of biological processes,
ranging from embryonic development to wound healing to tu-
mor metastasis to lineage sortingm'@. The stability and structure
of the interface unveils information of cell and tissue mechan-
ics, and the corresponding pathological changes in certain dis-
eases. In perhaps the most famous model for cell-cell interfaces,
the differential adhesion hypothesis (DAH)E€distinct cell groups
are treated as immiscible liquids with effective surface tension
originating from different cell-cell adhesion. Other cellular mech-
anisms, such as cortical tension, can also contribute to the ef-
fective surface tension? 1Y, While theoretically appealing, there
have long been questions about whether the DAH and related the-
ories are sufficient to understand the boundaries between cellu-
lar populations®1214, At a qualitative level, it is often observed
that very sharp, low-roughness boundaries exist between coex-
isting groups of cells, and it is not clear at a quantitative level
whether the molecular mechanisms of generating adhesion and
tissue surface tension are sufficient to account for this observed
boundaries/Z.

Recently it has been observed that a popular simplified class of
models of dense epithelial tissues — vertex and Voronoi models of
confluent cells?517 _ might possess an unusual mechanism that
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could lead to sharp interfaces at very little energetic cost. We de-
scribe these geometrical, shape-based models in more detail be-
low, but the essential idea is that at interfaces they might possess
a non-analytic, cusp-like potential mediated by the coordination
of four-fold vertices (corresponding to either highly-coordinated
vertices or to very short edges in real cellular systems)18. This
cusp-like potential for cells at the interface can give rise to an ap-
parent effective surface tension larger than the microscopic sur-
face energy term — this can surpress interfacial fluctuations, lead-
ing to spatial registry of cells in which cell positions are highly
correllated across the interface, yet still lead to relatively compli-
ant behavior with respect to mechanical perturbations18+20,

This proposed underlying mechanism involves a cusp-like non-
analyticity on the scale of small numbers of cells affecting the
strength of the effective surface tension on a much larger length
scale. Much like any coarse-grained analyis of a specific system2L,
from this mechanism one would expect that on short length scales
the interface should be dominated by the specific microscopic
physics governing the model, and at very large length scales these
specific features should eventually average out into an interface
governed by a standard surface energy but with a renormalized
value of the surface tension. However, it is difficult to analytically
compute this renormalization, and existing numerical studies give
little quantitative indication of how strong the sharpening effect
is at different length scales.

Additionally, although previous studies showed that both
Voronoi and vertex models have cusp-like potentials near four-
fold vertices, the specific mechanisms are different and result in
different interfacial behavior from the perspective of microscopic
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restoring forces??. From the experimental perspective, although
four-fold vertices are observed in biological systems, there is as-
yet no evidence directly supporting the hypothesis that the effect
observed in these computational models plays a role in sharpen-
ing the boundary in real systems. This is in part due to the fact
that when only the average width of the experimental interfaces
is measured this allows one to estimate an effective surface ten-
sion; it is difficult to further estimate which part of the effective
surface tension originates from the explicit differences of cell-cell
adhesion and cortical tension, and which which part is due to the
proposed topological sharpening effect.

In this paper, we revisit the interfacial fluctuations of these
shape-based models, focusing on this distinction between a short
length scale reduction of interfacial fluctuations and long length
scale renormalized surface tension. We do this by studying both
the average width of cell-cell interfaces, and also implementing
a spectrally resolved analysis of interfacial fluctuations over ex-
tremely long simulation times. We show that the spectral analy-
sis provides us more quantitative information of this topological
sharpening effect, especially as it differently impacts fluctuations
of different wavelengths. We find substantial differences in the in-
terfacial behavior of vertex and Voronoi models. In Voronoi mod-
els on long length scales there is an essentially constant degree
of interfacial sharpening, independent of the imposed amount
of microscopic surface energy or the temperature of our simu-
lations. On short length scales, in contrast, the sharpening ef-
fect is extremely strong and strongly depends on the temperature
and microscopic surface energy. We compare these predictions
with a Brownian bridge model, suggesting that the interfacial ef-
fects we observe are due to a combination of a harmonic and a
cusp-like potential with a varying population of four-fold vertices
that changes the relative strength of these potentials. Unlike our
results on the Voronoi model, we do not observe an interfacial
sharpening effect in sufficiently equilibrated vertex models. Fi-
nally, we analyze existing experimental data?2, which we find
supports the role of a short length scale topological sharpening
effect in real biological systems.

2  Models and methods

2.1 Voronoi and vertex models

We simulate Voronoi and vertex models in a 2D square box with
size L and periodic boundary conditions. In the Voronoi model
the cell shapes are determined by an instantaneous Voronoi tes-
sellation of the current cell positions. In the vertex model the
vertices themselves are the degrees of freedom, and cell shapes
are traced out by connecting vertices around a cell. We initialize
the system with strips of two different types of cells with width
L/2, as shown in the inset of Fig.[1| The forces on cells or vertices
are calculated as the negative gradient of a cell-shape dependent
energy 18123
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In this energy, N cells have a quadratic energy penalty between
instantaneous cell area a; and perimeter p; compared to the pref-
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Fig. 1 (a) Sample configuration of coexisting cell populations in the
Voronoi model. (b) Schematics of the energy-related changes when
a point or cell at the interface is perturbed for particle-based systems
with metric interactions (left) and systems with topological interactions
(right). Green: the related changes after the perturbation. (c) Sam-
ple trajectories for Brownian bridges in harmonic, cusp, and combined
potentials. Brownian bridge trajectories were generated by Eq. [9] using
the free energy in Eq. with (7,¢) = (1.0,0.0), (v,c¢) = (0.0,1.0), and
(7,¢) = (1.0,1.0) in the left, center and right plots respectively, with a
fixed value of kgT =0.5.

fered area ay and preferred perimeter py. The second sum in-
troduces an explicit interfacial tension over the edges /;; between
neighboring cells with different types ([i] means the type of cell
i). Here and below we use 7y, to denote the microscopic surface
energy, and y to denote the effective value of the surface energy
(e.g., as inferred from macroscopic observations of a simulation
or experiment) We set the parameter k4, which controls the rela-
tive area stiffness to perimeter stiffness, and the preferred area ay
to unity. The preferred perimeter py = 4.0 so that this confluent
cellular systems are deep in the fluid phase?4. Unless otherwise
specified we perform our simulations with overdamped Brownian
dynamics at temperature 7'

dri - -
L= Fi+ 2 /T fdri, ©)

where 1) is an uncorrelated Gaussian noise of zero
mean and unit variance. We use the cellGPU package
(https://github.com/sussmanLab/cellGPU) for all simula-
tions, and further details of the implementation of these equation
of motion for Voronoi and vertex models are contained in Ref.23,

2.2 Interfacial width and interfacial spectrum

The width of the interface between cell populations, w, is esti-
mated by analyzing the density profile of one type of cell across
the system. Given arrangements of cell populations as in Fig.
we average the density of a given cell type along the vertical
direction and fit the resulting density profile, p(x), to an error



function®?p (x,w) = % (1 +erf (ﬁ)) Here x is the position rel-
ative to the mean location of the interface. The fluctuation spec-
trum of the interface || can be obtained by applying a Discrete
Fourier transform (DFT) to evenly spaced points on the interface
h(y), which are generated through shape-preserving piecewise cu-
bic interpolation. The interpolation and DFT are implemented in
MATLAB R2024a with the functions interpl and fft. The relation

between the width and the spectrum is:

n n
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where iy = [ h(x)dx, as the average position of the interface, can
be set to zero. We choose the number of points on the interface,
n, to be equal to L — given that our unit of length is the square
root of the average cell size, this is approximately the number of
cells on the interface.

Based on the capillary wave theory (CWT)2€, in the absence
of external forces the spectrum of the thermal capillary waves is

expected to be:
kpT 1
(he?) = ===,
YL q

where g = 2rk/L and 7 is the effective surface tension. This can
be derived with the energy equipartition theorem applied to the

surface energy:
L
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which gives yLg?|hy|> = kT for each component of the spectrum.
As a result, the average width can be obtained based on Eq. [3]as:

o kgTL & 1 kgTL
<w>:7“y,§1k7”7y’ (6)
where the final approximate equality assumes n > 1.

An important insight of earlier work!®l is that in a Voronoi
model the perturbation of a cell center near the interface may
have a surface energy quite different from that of Eq. Near
interfaces there is a tendancy for these models to spatially coordi-
nate four-fold vertices along the interface, with cell displacements
from these highly-registered configurations results in a (topolog-
ical) discontinuous change in the set of interacting neighbors of
the displaced cell, as shown in Fig. [I{b). This suggests a sur-
face energy that contains both a standard harmonic contribution
(second term) as in CWT (Eq. |5) and a cusp-like term reflecting
discontinuities in the topology of the cellular neighbor network
(first term):

& = goll ()| + &1 (7). 7)

In the highly idealized geometry of square cells perfectly reg-
istered along the interface as in Fig. [I{b), the coefficients for
the cusp and harmonic terms above are g o y(v2 — 1) and

g1 =< 1(1 — 1/4/2)18, as determined by calculating the energetic
cost of cell configurations before and after a small perturbation.
The precise prefactors are not particularly relevant — they will be
sensitive to the density of four-fold vertices along the interface,
and the geometry of cells near the interface — but importantly y
sets the overall scale of both the cusp-like and harmonic terms.

The cusp-like potential gives a non-zero constant restoring
forces for very small perturbations, stronger than the restoring
forces proportional to the perturbations in the harmonic cases,
which results in a sharpening effect1820, In order to understand
the effect of the combined cusp-like and harmonic surface energy,
we combine large-scale simulations along with a numerical anal-
ysis of a toy model of these interfaces, as described below.

2.3 Brownian Bridge Simulations

In our cell-based simulations (e.g. Fig.[1)) the position of the inter-
face between cells of different type, h(y), is constrained by the pe-
riodic boundary conditions of our simulation to have #(0) = h(L),
and the position of the interface in between the periodic bound-
aries reflects some sort of effective transverse confining potential
for this interface. In this sense we can interpret each instance of
h(y) as the result of a “Brownian bridge” process?Z. Brownian
bridges involve stochastic processes that are, e.g., constrained to
both start and end at specific locations after a given amount of
time. We thus interpret y as the “time” over which a stochastic
process evolves, simultaneously subject to a transverse restoring
force of different functionals forms and the Brownian-bridge con-
straint that 4(0) = h(y) = 0.

This is, clearly, a highly idealized framework for thinking about
the interface between cellular populations. It assumes a complete
separation of length scale between whatever is generating the lo-
cal energetics of the interface and the size of the interface as a
whole - as such, at best it would be able to capture the scaling
of the longest-wavelength interfacial properties. Indeed, in the
appendix we show analytically how this Brownian bridge frame-
work can reproduce the same scaling of fluctuations predicted by
the capillary wave theory described above. That is, we explicitly
show that the width of interfaces generated by Brownian bridges
subject to the surface energy of Eq. [5|scales as (62) o< kgTL/7. It
also gives no insight into the properties of cells that might con-
trol the functional form or the strength of the transverse restoring
forces. This is further complicated by the fact that at an actual in-
terface different portions of the interface might be governed by
different transverse restoring forces (e.g., corresponding to local
arrangements of the cells that have three-fold vs four-fold coordi-
nation) — in this sense, the Brownian bridge framework gives only
a mean field prediction.

This is particularly relevant since, as discussed above, in the
Voronoi model one expects that the interface lives not in a har-
monic potential, but rather in a potential which combines har-
monic and a cusp-like terms which are each proportional to the
microscopic surface energy . Including these cusp-like poten-
tials makes analytic solutions to the Brownian bridge process
more difficult, and so we turn to straightforward numerical imple-
mentations of this toy model of the cellular interface. We proceed
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Fig. 2 Brownian bridge variance scaling. The scaling of the average vari-
ance of interfaces x(y) generated by numerical simulations of Eq. Elwith a
harmonic (left) and cusp (right) potential given by Egs. [5] and [L0] respec-
tively. Colors correspond to temperatures kgT € {0.005,0.01,0.02,0.04}
(blue to red), and dashed lines in the main plot are fits to o< (kgT/y)L
and o (kgT/c)’L. Insets in both figures demonstrate the expected col-
lapse of the variance of these processes by the quantities indicated in
the main text. Each contains data for y € {0.005,0.01,0.02,0.04} and
¢ € {0.004,0.008,0.016,0.032}, and in each the dashed black line denot-
ing the scaling o< L.

as follows. First, we assume that local fluctuations of the interface
away from h' = 0 obey Landau theory relaxation dynamics for a
non-conserved order parameter field2®, we write

OE;

[
M= S

where i/ = dh/dy, T is a constant of proportionality with units
of inverse energy, and 7 is a white noise process modulated by a
strength o. In order to impose the Brownian bridge constraint we

modify the above equation to%Z
di'(y) _ —h(y) _ SE[H(y)]
Ry S +0on(y). )

The (—h/(L—y)) term serves to enforce the Brownian bridge con-
straint 4(0) = h(L), and we work in units of I' = 1. In addition
to the analytical derivation in the Appendix, we explicitly show
in Fig. [2| that our numerical simulations of these equations using
the CWT free energy in Eq. [5|reproduces all of the scalings of the
CWT interfacial width result in Eq.[6}

With this framework in place, we consider instead a cusp-like
surface energy,

B0 = [ dvel].

where c is analogous to surface tension but has units of energy. As
shown in Fig.|2| we find that in this case that the average variance
of a bridge scales as

(10

T
(02 = "L, (11
Yeff
where
< 12
Yetf = kT (12)

is a temperature-dependent effective surface tension produced by
the cusp potential.

Finally, given the “topological sharpening” argument for the
Voronoi model presented in Ref18 and outlined above, we ex-
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Fig. 3 Large-scale interfacial sharpening. The interfacial spectrum is ob-
tained for systems with sizes L = 55,60, 65,70,80,90, 100 (colors from light
to dark) and % = 0.02, each being average of 5 independent simulations.
In each simulation, spectrum is calculated and averaged for data drawn
at 50 evenly spaced time points after the system has reached equilibrium
(r>3x1077). After rescaling, the interfacial spectra for the vertex model

and Voronoi models collapse onto separate curves. The solid lines are the

. 2

fits of the low-wavevector data (¢> < 5) to the expected form V";{li;'oL =4
B

q
for A=1/Yfr- Yo is the explicit surface tension in the models and .

is the effective surface tension. We find A =0.998 for vertex simulations
and A = 0.450 for Voronoi simulations. (inset) The rescaled interfacial
width for systems of different sizes. The dashed line is the prediction of
CWT.

tend this to the case of a surface energy with both cusp-like and
harmonic terms in the surface energy which are each proportional
to the microscopic surface energy. As such, below when compar-
ing with the results of the Voronoi model we present additional
Brownian bridge simulations governed by an energy cost
L

ElH )= [y (el + 207), (13
where both ¢ and y are set proportional to the microscopic sur-
face energy . We find numerically that over a broad range of
parameters the Brownian bridge “interfaces” generated by Eq.
have an effective surface tension which is approximately the sum
of the harmonic and renormalized cusp surface tensions:

32

ksT 19

Yet & +2y.

3 Large-scale sharpening in Voronoi models

In order to compare the interfacial fluctuations in Voronoi and
vertex models with CWT, we run simulations with system size L
ranging from 55 to 100 and explicit surface tension 9 = 0.02 for
a long enough time to make sure the system has reached equilib-
rium. For each system, we measure the average width w?, shown
in the inset of Fig.|[3] We find that vertex simulations’ results are in
fact consistent with CWT: at large length scales there is no obvious
sharpening effect. In contrast, our Voronoi model simulations do
show interfacial sharpening. Suprisingly, this sharpening effect
(w? /w3 ~ 1/2, with wy as the width predicted by CWT) is weak
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Fig. 4 Dynamics of interfacial Spectrum (a) The interfacial spectra be-
tween ¢ = 3000 and 7 = 24000 (from light to dark) are plotted Voronoi
Brownian Dynamics simulations in systems with sizes L = 65,70, 80,90, 100
and y=0.02, each with 5 independent simulations. We have confirmed
that after rescaling the spectrum by L the date from simulations of dif-
ferent sizes collapse onto a single curve. As such, data for multiple L are
combined here.. The dashed line is the theoretical prediction of classi-
cal CWT. (b) An example of fitting with equation for the interfacial
spectrum at r =2700. (c-d) &(7) for Voronoi and Vertex models with
Brownian Dynamics (c) and Molecular Dynamics (d), fitted with equa-
tion . The cutoff of & in (c) and (d) corresponds to ¢> = 1072 in
spectra of (a) and (b), when the plateau contains fewer than four data
points and results in fits with large variance.

compared to the findings in previous literaturel8,

To begin resolving this finding, we calculate the full spectrum
of interfacial fluctuations, as shown in Fig.[3| We see that, except
for the high-q regime (approximately ¢ > 5, which corresponds
to sizes smaller than roughly three cells), the spectrum is consis-
tent with the relation || o< 1/¢%. After rescaling, the spectra for
systems of different sizes collapse onto one. By fitting the col-
lapsed data with equation %‘:}"’L = ;‘—2, where A = /% is the
sharpening factor, we get A = 0.998 for vertex simulations and
A = 0.450 for Voronoi simulations. This is consistent with the con-
clusion we reached by directly measuring average width in the
last paragraph, but fitting the spectrum allows a much more pre-
cise estimate of the sharpening compared to the much rougher
estimate obtained from measuring interfacial widths. Given the
much weaker effect we observe in the Voronoi model, it is per-
haps understandable that the vertex model shows almost no ef-
fect at the relatively low surface tension used here, as the non-
analytical behavior near four-fold vertices have been found not
as strong as in Voronoi models?¥ (a subtlety compounded by the
fact that most standard implementations of vertex models do not
allow arbitrarily short edges between vertices; instead there is
often a minimum edge length below which a T1 transition is trig-

gered, which may in turn mask the effect of stable higher-order
29)‘

vertices

Analyzing the full spectrum of interfacial fluctuations indeed
helps address why we find much weaker sharpening effects in
our Voronoi simulations. In Fig.[4(a) we plot the spectrum of in-
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Fig. 5 Interfacial Spectrum with different ¥ and kgT. All the red sym-
bols are for kgT = 0.005 and the blue ones are for kg7 = 0.001. For
each temperature group, from light to dark, the }y increases. Specif-
ically, for kgT = 0.005, 1 = 0.02,0.04,0.16,0.32 respectively and for
kgT = 0.001, y = 0.32,0.64,1.28,2.56 respectively. The black dashed
line is for kyg—?(\h;ﬁ) = Aq~? with A = 0.45 obtained from the fitting in
Fig.[3l The original time step used in our simulation is dt = 0.01, but for
larger surface tension, to maintain numerical accuracy, we use smaller
dt. Specifically, for yp =0.64,1.28, dr = 0.001 is used and for y = 2.56,
dt = 0.0001 is used. (inset) The sharpening factor A = Y/Yf versus
Y/ksT measured for high-q regime corresponding to about single-cell
size (within the dotted box in the main figure) on the left y axis, and
percentage of very short edges (smaller than 0.05) on the interface on
the right y axis. Dashed black line denotes a fit to the the Brownian
model prediction in Eq. With B; =0.093 and B; = 1.565.

terfacial fluctuaions over time in our simulations. The magnitude
of each fluctuation mode, (|i|?), grows over time until reaching
the equilibrium state, and naturally the small-¢ modes take the
longest time to equilibrate. Not only does this lead to spuriously
low interfacial widths if the interfacial width is measured before
the small-g modes equilibrate, but the correlation time for the
small-g modes is also quite long. Thus, within a fixed-duration
window of observation time, fewer time points can be used as in-
dependent data in the ensemble averaging. This is why in Fig.
the data points for small ¢ modes are more noisy. In a linear re-
gression as shown in Fig. |3} the noisy data points in the low-q
regime do not influence the fitting result greatly. However, as the
magnitude for the small ¢ modes dominate in the width, the in-
terfacial width measurement are less precise, as revealed in the
inset of Fig. We thus argue that spectral analyses are a pre-
ferred way to quantify the effective surface tension than directly
measuring the interfacial width. We believe these issues affected
previous measurements of interfacial sharpening in the Voronoi
modell8 and also measurements of surface fluctuations in a vari-
ety of other soft-matter systems. It is worth checking whether the
plateau in the spectrum within the low-q regime or sharpening
effect for large-scale systems observed in some previous studies
reflects the long equilibration times hinted at above 3931,

We additionally point out that both our and many other mea-
surements have been done for systems evolving according to
Brownian dynamics. It is perhaps underappreciated that the ap-
proach to equilibrium under Brownian dynamics can be surpris-
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ingly slow, especially for the low-g modes at the interface. To
quantify this, we fit the spectra before equilibrium with the equa-

tion s
2
e ll)P)

_ A

P HEN)

where & is defined as a characteristic length. When & > ¢!,
Eq.[15]reduces to the equilibrium spectrum (Eq.[4). One example
of the fitting is shown in Fig. [4)(b) and the fitted &(r) for Voronoi
and vertex simulations is shown in Fig. [4(c). As a comparison,
we implement the same process for simulations with Molecular
Dynamics, which is suitable for regular liquids with momentum
conservation, as shown in Fig. [4[(d). The &(t) within a certain
range, can be well fitted with power functions &(r) = Br'/?, with
7z~ 2.5 for systems with Brownian Dynamics and z ~ 1.3 for sys-
tems with Molecular Dynamics. This means that for the inter-
face of length L to equilibrate, the characteristic time T o< L> for
Brownian Dynamics and 7 o L'3 for Molecular Dynamics. Be-
cause of this, although the simulation time in previous litera-
turel¥ is long enough for the interface of a regular liquid system
to reach equilibrium, the Brownian Dynamics simulations have
not equilibrated so that the measured width (dominated by the
low-q modes) is much smaller. This large-scale slow dynamics in
systems with microscopic Brownian Dynamics, as also shown in
a recent paper on coalescence®2, again underscores the need for
extra caution when studying the equilibrated state of highly dissi-
pative biological systems. For example, in the advancing front of
an epithelial monolayer, determining quasi-equilibrium is difficult
without comparing the time scales of boundary equilibration and
boundary movement. The time scale for boundary equilibration
can be signifcantly increased by cell-substrate friction, particu-
larly in large systems. Only when the front stops, such as due
to contact inhibition when confronting another piece of epithe-
lial monolayer, can measurements be confidently considered at
equilibrium.

(15)

We note that our estimates of the scaling exponent z is
roughly consistent with field theoretical calculations of interfa-
cial roughening in the presence or absence of momentum conser-
vation@3"30, 1t is well-known that even for small fluctuations in
equilibrium surfaces one does not expect Edwards-Wilkinson dy-
namics — which would predict z = 2 — since there are bulk fluxes
whose relaxation is fast on the time scale of long fluctuations of
the interfacial height3334, In the absence of momentum con-
servation (as in our Brownian dynamics), a non-linear one-loop
renormalization predicts z =3 — 1/3 for an interface of spatial di-
mension d; < 22¢. The prediction for fully wet systems is z = 137,
Considering the difficulty of extracting these exponents, our re-
sults of z &~ 2.5 and z &~ 1.3 may be consistent with these predic-
tions. We also note other potential discrepancies, such as the
non-monotonic behavior for the early stage spectrum. It cannot
be well-fit to a Mﬁ form, as seen in Fig. [4{(b). Both of these
points will be investigated in future studies targeted at more pre-
cise scaling analyses of interface roughening. It would also be
interesting to extend these studies to models with self-propulsion
or other non-equilibrium dynamics, to more explicitly test theo-
ries of active phase separation=#36137,

The above results are for systems with relatively low surface
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tension. Then, we run more simulations by varying y and kgT
to check how they influence the sharpening factor A, as shown in
Fig. For Voronoi models, on large scales (¢ > 1), after rescal-
ing, all the spectra collapse onto one and the sharpening factor A
is always around 0.5. However, on small scales (g < 1), the sharp-
ening factor varies, which we will dig into in the next section.

4 Small-scale sharpening in Voronoi models

In contrast to the relatively weak but robust sharpening effects at
the longest length scales, we continue to find very strong sharp-
ening effects at smaller length scales. From Fig. |5} in the regime
g > 1, corresponding to length scale of about a few cells, the mag-
nitude of the modes decreases as we increase yy/kpT (and the
effect grows strong at higher ¢). In the inset of Fig. [5| (left y axis),
we show that the sharpening factor A = yy/7.¢ on the length scale
of about one cell decreases from around 0.7 to about 0.2 when
we increase yy/kgT from 4 to 2560. This change is consistent with
the trend of increasing percentage of short edges on the inter-
face, as shown on the right y axis in the inset of Fig. |5} supporting
our hypothesis that this small-scale sharpening is due to the four-
fold vertices in the Voronoi model. To better understand how
the cusp-like potential near the four-fold vertices influences the
sharpening, we build a Brownian bridge model to compare with
the Voronoi model simulations.

As discussed in Section our Brownian bridge model pre-
dicts that an interface in the presence of a cusp potential should
have a temperature-dependent effective surface tension (Yof) given
by Eq. The corresponding predicted sharpening factor is then
given by

o _ 0 (16)

Yt 7 +2v
As noted above, both the cusp and harmonic terms have strength
set by the microscopic surface energy. In the real cell systems we
do not a priori know the relative density of four-fold vertices gen-
erating the cusps nor the precise geometry which sets the balance
between the harmonic and cusp terms. Although they are in prin-
ciple themselves dependent on the ratio yy/(kpT), for simplicity
we simply adopt parameters B and B, in the expression

Yett B (W/kgT)+ By

as free but constant parameters quantifying these effects.

We see that even with this simplifying assumption, Eq. [I7] pro-
vides a reasonable fit to the observed sharpening in the Voronoi
model simulations over several orders of magnitude of yy/kgT, as
shown by the comparison between the black diamonds and the
dashed curve in the inset of Fig. |5} In the limit yy/kpT — oo our
Brownian bridge model predicts infinite sharpening as Yug — oo,
whereas in Voronoi model simulations the sharpening appears
to plateau at a non-zero value. The fact that the plateau in
sharpening coincides with a plateau in the number of four-fold
defects populating the interfaces suggests that the discrepancy
with the Brownian bridge model is likely connected to non-
negligible geometry-based variations of the parameters B; and
B, in the y.¢ — oo regime. Regardless, these results demonstrate



that the small wavelength deviations from CWT scaling observed
in Voronoi models can be understood as a consequence of the
presence of four-fold vertices along the interface inducing a de-
pendence of the effective surface tension on yy/kpT .

5 Discussion and outlook

In this paper we investigated in detail the strength of interfa-
cial fluctuations in models of cellular monolayers. Our focus has
been on the quantification of how an unusual proposed “topo-
logical sharpening” effect at the microscopic scale renormalizes
the effective surface tension at different length scales. Combin-
ing long-time simulations of Voronoi models with a spectrally re-
solved analysis of interfacial fluctuations, we quantitatively mea-
sured this sharpening effect on different lengths scales. We find
that on large scales (more than ~10 cells), this non-analytical lo-
cal potential is renormalized to an equivalent harmonic potential
with a modestly larger effective surface tension. In contrast, on
small scales the interfacial fluctuations are strongly suppressed
by the presence of cusp-like contributions to the restoring force
at the interface. We verified that the broad features of this sharp-
ening effect on small scales can be captured by a Brownian bridge
model of the interface that combines cusp and harmonic contri-
butions; the coefficients of this model would in general depend
on both the fraction of four-fold vertices at the interface and the
precise geometry cells adopt near it. It is worth mentioning that
although our simulations are based on Voronoi and vertex mod-
els, the underlying mechanism is the cusp-like potential energy.
Thus, we expect that these results will also be of relevance for
other tissue models with topological interactions. This could po-
tentially include deformable polygon models=8 in density regimes
where perturbation of interfacial cells results in an energy cost
with a cusp-like term.

The fact that there are short length scale deviations from the
predictions of CWT is, of course, not in itself surprising: long
lengthscale descriptions of physical systems always coarse grain
over microscopic details, but at the scale of interacting particles
these coarse grained descriptions discard relevant physical inter-
actions. Importantly, we note that the trend of this effect when
studying interfacial fluctuations in particulate systems is typically
in the opposite direction of what we find in these models of cel-
lular interfaces: rather than a sharpening effect, the finite size of
the interacting particles lead to a roughening of the interface rel-
ative to CWT scaling213240, Similar roughening effects are also
observed in vertex models (Fig.|3) with small 3, when the topo-
logical effect of shape-based models is weak.

Interestingly, this behavior may be a point of difference be-
tween Voronoi and vertex models. The properties of both of these
similar shape-based models are often quite similar, and although
there are some subtle differences between them (for instance, it
has been found that they have different athermal jamming transi-
tions4!), they are often regarded as largely interchangable when
it comes to modeling. However, when we study their interfa-
cial fluctuations we find qualitatively different behavior which
is strongly sensitive to the imposed microscopic surface energy
. For small values of yy, Fig. [3| shows that for sufficiently equi-
librated vertex models clear sharpening effects do not seem to
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Fig. 6 Interfacial width for Voronoi and vertex models with different kT
and Y.

be present. Furthermore, the large wavevector behavior shows a
roughing effect that is similar to the typical behavior of particu-
late systems. This may be understandable, since in vertex models
the perturbation of a single vertex does not necessarily lead to
topological changes around the whole cell of the sort shown for
Voronoi tessellations in Fig. [1} Previous studies have also indi-
cated at most weak topological sharpening effects in vertex mod-
els by measuring the cusp-like restoring forces with small pertur-
bations2?,

The interfacial behavior of vertex models seems more compli-
cated for large values of y. The inset of Fig.[6) shows a plateau in
the interfacial width over a broad range of non-dimensionalized
surface energies, where the magnitude of the plateau indicates an
interface substantially rougher than that predicted by CWT. This
is further reflected in the complicated changes in the spectrum
seen in Fig.[6] We speculate that this roughening is, again, con-
nected to the very different microscopic interfacial behaviors near
four-fold vertices in Voronoi and vertex models observed in previ-
ous studies??. The authors of that work found that the non-zero
plateau of restoring forces due to the cusp-like potential have a
very different dependence on explicit surface tension y,. A natural
speculation is that this may also be connected to the introduction
of short length scales that trigger topological transitions in com-
mon implementations of vertex models, but we have not found
any direct evidence that varying this T1 length scale affects our
findings. Further work may be needed to disentangle the sub-
tle difference in interfacial behavior between Voronoi and vertex
models.

Given the above discussion, an important question is whether
topological sharpening effect can be seen in real biological sys-
tems. Previous studies have certainly observed the presence of
four-fold vertices and of cell registration in epithelial tissues<%42|
but this does not on its own imply that, e.g., four-fold vertices in
cells play the same role that they do in highly simplified models
of dense tissue. Measurements of interfacial width give an esti-
mation of the effective surface tension, but without knowning the
microscopic details (such as precise measurements of cellular ad-
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Fig. 7 Interfacial spectrum calculated from experimental images (ex-
tracted from movie "Confrontation of MCF10A E-cad KD/MDA-MB-231
monolayers yields a straight interface" of Ref.?2). Yellow data points are
estimated from a single snapshot at an early time (before the two types
of epithelial cells contact). Blue data points are from a snapshot af-
ter a stable interface between the cell sheets has formed . The black
dashed line is guide to the eye with the expected CWT scaling relation
|he|?L=0.5/4>.

hesion energies, cortical tensions, etc.), one cannot tell whether
the effective surface tension does or does not match the micro-
scopic one. We suggest that spectral analyses are a robust way to
probe this question.

As an example, we analyzed video data of epithelial cell sheets
presented as supplemental material in Ref. 22 with estimates
of two interfacial spectra shown in Fig. A relevant experi-
ment in that paper involved the confrontation of two epithelial
monolayers, composed of MCF10A-E-cad KD and MDA-MB-231
cells. At early times in the experiment — before the two mono-
layers are in contact and, hence, before the possibility of form-
ing any four-fold vertices — we observe a spectrum of fluctuations
consistent with CWT even at the highest wavevectors. In con-
trast, when the two cell sheets come into contact there is an ob-
vious regime of high-qg sharpening, starting near ¢ ~ 1. Fitting
the low-q regime of this data to the predictions of CWT, we find
kBT/yé'ff ~0.538(0.3277,0.7482) for the cells before the sheets con-
tact and kgT/ yé’ff ~0.3981(0.2654,0.5307) after the two cell sheets
have formed a stable interface (where the numbers in parenthe-
ses represent a 95% confidence bound). Thus, within the preci-
sion of our analysis of this existing experimental data, by looking
at only the low-¢ modes it is hard to determine whether there is
an overall two-fold sharpening that our Voronoi model simula-
tions would predict. On the other hand, the transition between
the low-g and high-¢q regimes shows an effect quite like that in
Fig.[5] and supports the Voronoi model prediction of strong inter-
facial sharpening at small lengthscales. This reiterates the value
of spectral analysis in the study of biological interfaces.

We note that there are still some quantitative differences be-
tween our analysis of these experiments and our model simula-
tions. Based on Fig. |5 the high-¢ regime sharpening becomes
most obvious when the effective surface tension as estimated

8 | Journal Name, [year], [vol.], 1

from the low-g regime is of order ¢ ~ 2y = 200kgT. In Fig.|[7]
the effective surface tension for blue points, which already show
obvious high-q sharpening, is apparent even at our estimate of
Yetf = 2.5kpT. As the obvious high-g regime sharpening is en-
hanced when there are a large percentage of short edges (inset
of Fig. [5), the above inconsistency may suggests that in the ex-
periments, the interfaces between two epithelial monolayers can
have high-level of four-fold vertices, i.e. cell registration, even
when the large-scale effective surface tension is not very strong.
In the Voronoi model registration between cells across an inter-
face is only enforced by the surface tension term, but of course
in biological systems there may be other molecular mechanisms
that support this. For example, previous studies found that actin-
based protrusions, like filopodia and lamellae, help with the cor-
rect matching of opposing cells along the fusion seam during dor-
sal closure®2i43,

To further verify the above speculations, we propose the need
for more experiments that combine large enough systems to pro-
vide a large range of the spectrum (as in Refs.2244) which also
have clear images of cell membranes that can clearly show rel-
ative fractions of highly-coordinated vertices along the interface
(as in Refs.42M5)  We believe that integrating modeling studies
like those presented here with biological experiments involving
genetic mutations of adhesion or actin cortex-related proteins is
a promising route to enhancing our understanding of the specific
roles these proteins play in the interfacial behaviors of epithelial
tissues.
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6 Appendix: Variance of Brownian bridge processes

Here we derive the scaling relationship for the interfacial widths
expected in our Brownian bridge framework. Brownian bridges

h(y) satisfy

P(h=38,y=L|hg=h,yo=y)P(h,y|hg=8,y0=0)

() =
Pbrldge( ,Y) P(h:57y2L|hQ:5,y0:0)

(18

As in the main text, we begin by assuming that local fluctua-
tions of the interface away from 4’ = 0 obey Landau theory relax-
ation dynamics for a non-conserved order parameter field:

OE;
on

hh' = —y— +on(). 19
As before, 1 is a white noise process modulated by a strength o
and v is a constant of proportionality with units of inverse energy
(which we here take to be proportional to the harmonic surface
energy term in Eq.[5). In the smoothly varying (over-damped)



limit, |dyh’| < 1, Eqs. [5|and [8|simplify to
dh

Y;y:cn(y), (20)
where in thermal equilibrium
o =\/2vkgT. (21)

The free-particle Smoluchowski equation corresponding to
Eq.[20]is given by

9yP(h,y|ho,y0) = DI P(h,y | ho,¥0), (22)
where D = % (6/(7))* = (kgT)/(y), and admits the solution
_ (h=hg)?
P(h,ylho,y0) = ey (23)
VAD(y - y0)
Inserting Eq. [23]into Eq.[18] then yields
Pﬁ\i’gge(h,y) = % meiﬁf’” . 24

The variance of this distribution is computed straight-forwardly
to be

L—
which, averaged across the entire bridge, reduces to
1 kgT
Vi =-— 26
(Var(y)) = 5 (26)

Although there is a difference in prefactor, we note that Eq.
yields precisely the temperature, length, and surface-tension scal-
ing relation expected for a two-dimensional interface by standard
CWT.
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