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1. Introduction characteristics of traffic flow could be transformed if
Traffic flow models are an indispensable tool for urban ~ AVs are designed to drive differently from humans. For
and suburban traffic management. However, the exist-  example, human driving could be unstable resulting in
ing traffic flow models are developed for human dri-  stop-and-go waves, whereas AVs could be designed ex

vers. With the advent of autonomous vehicles (AV), the ante to stabilize traffic. Such a microscopic behavioral
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change calls for new macroscopic models to predict traf-
fic flow in the era of autonomy. In this paper, we aim to
develop a game-theoretic counterpart of traffic flow
models, which allows us to devise the payoff or cost
functions for cars on a microscopic scale and transform
such a behavior to macroscopic traffic characteristics.

1.1. Motivation

Mean field game (MFG) is a game-theoretic framework
that has recently gained growing popularity to design
decision making processes in many-agent dynamical
systems (Huang, Malhamé, Caines 2006, Lasry and Lions
2007). It has been shown that the first-order traffic flow
models can be reinterpreted as an MFG (Huang et al.
2020a). In other words, classical traffic flow models that
depict how traffic states (represented by flux, density,
and velocity) propagate in time and space are a special
class of differential games, in which each car solves an
optimal control problem with an objective function,
whereas others do so simultaneously. All the cars inter-
act with one another on a microscopic scale through
coupled objective functions. When the number of cars
becomes large, the macroscopic traffic state evolution is
depicted by an equilibrium of the corresponding MFG.
However, the existing literature has primarily focused
on the first-order traffic flow MFGs, which assume that
each car controls its velocity instead of acceleration.
Directly controlling velocity could result in sudden
changes in speed such as an infinite changing rate of
speed, which is unrealistic. Thus, the key research ques-
tion is, whether the generic second-order traffic flow models
(GSOM) (Lebacque, Mammar, and Salem 2007) can be
reformulated as MFGs. It is desirable to establish a second-
order mean field game-theoretic framework that enables
optimal control of acceleration at a micro level, while
scaling up to the tempo-spatial evolution of macroscopic
traffic flow quantities. Reformulating GSOM with MFGs
would help design new driving acceleration decision
making processes for individual cars that could poten-
tially result in smooth traffic flow. More importantly,
building on the counterpart of GSOM in MFGs, we could
further develop new second-order traffic flow models
that encompass desirable mathematical properties.

This paper aims to develop a family of second-order
traffic flow MFGs that control vehicle acceleration.
First, an equivalence between the classical GSOM, Aw
Rascle and Zhang (ARZ) (Aw and Rascle 2000, Zhang
2002) in particular, and MFGs will be established,
denoted as GSOM-MFG. Aligned with the conclusion
that the GSOM is a family of parametrized first-order
models, we discover that the second-order traffic flow
MEFG is also a family of parametrized first-order traffic
flow MFGs. Thus, building on a cost function leading
to the ARZ model solution, a family of new second-
order traffic flow MFGs, that is, GSOM-MFG, will be
developed. We will explore on how the design of

various objective functions demonstrate different traf-
fic flow evolution. Numerical examples will be pro-
vided to demonstrate the properties of the new games.
Moreover, we will establish an adversarial inverse
reinforcement learning scheme to uncover the objec-
tive function latent in real-world data and validate the
value of our proposed GSOM-MFG.

1.2. Literature Review

We will first review literature on GSOMs and MFGs,
respectively, and then investigate a series of studies
that bridge these two topics. The research gap will be
identified on controlling acceleration in MFGs.

In classical traffic flow models, a classification can be
made between first-order models and second-order
models. The former type of models simplify reality by
assuming instantaneous accelerations and describing
traffic only in terms of equilibrium conditions. This
leads to failing in generating capacity drop, hysteresis,
relaxation, platoon diffusion, or spontaneous conges-
tion like stop-and-go waves that are typical features of
traffic dynamics (Cristiani and lacomini 2019, Géttlich,
Tacomini, and Jung 2020, Balzotti and Iacomini 2021).
To overcome these issues, second-order models have
been proposed (Aw and Rascle 2000, Zhang 2002,
Lebacque, Mammar, and Salem 2007). They take into
account the nonequilibria states, assuming that accel-
erations are not instantaneous. To do this, the equation
that describes the variation of the velocity in time has
to be added to the system, replacing the typical given
law of the first order models. In this work, we will
focus on the generalized second-order models GSOMs
that encompass a family of existing models, including
LWR and ARZ. The typical GSOM is formulated as

p; + (pu)y =0,
(pw); + (pwu), = prip,u,w),  (1.1)
u=Up,w).

[GSOM]

Here, p :=p(t,x) stands for traffic density, u :=u(t,x)
the speed, and w := w(t, x) the invariant or Langrangian
marker; r(-) is the general relaxation function, and U(")
the velocity function linked to fundamental diagrams.

The GSOM system (1.1) has been studied on varia-
tional formulation (Lebacque and Khoshyaran 2013, Li
and Zhang 2013, Costeseque and Lebacque 2014), fun-
damental diagram construction (Seibold et al. 2013),
empirical validation (Fan, Herty, and Seibold 2014, Yu,
Bayen, and Krstic 2019), vehicle control (Delle Mon-
ache, Piccoli, and Rossi 2017, Chiarello, Piccoli, and
Tosen 2021, Gong, Piccoli, and Visconti 2021), traffic
signal control (Khelifi et al. 2016), and junction model-
ing (Costeseque, Lebacque, and Khelifi 2015).

MEFG is a game-theoretic framework to model com-
plex multiagent dynamics arising from the interactions
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of a large population of rational utility-optimizing agents,
whose dynamical behaviors are characterized by optimal
control problems (Huang, Malhamé, Caines 2006, Lasry
and Lions 2007, Cannarsa, Capuani, and Cardaliaguet
2021). By exploiting the “smoothing” effect of a large
number of interacting individuals, MFG assumes that
each agent only responds to and contributes to the den-
sity distribution of the whole population. At mean field
equilibria (MFE), an agent’s optimal strategy coincides
with the population density, characterized by two cou-
pled partial differential equations (PDEs):

1. A backward Hamilton-Jacobi-Bellman (HJB) equa-
tion (for representative agent dynamic): Given the den-
sity evolution of the population, each agent solves an
optimal control problem on a predefined time horizon
to reach a minimal cost. For a generic agent, the opti-
mal control problem can be solved by dynamic pro-
gramming that derives an HJB equation. The equation
is solved backward in time.

2. A forward Fokker-Planck equation (for population
dynamic): Given individual controls, the population’s
density evolution resulting from all agents” dynamics is
described by a Fokker-Planck equation. The equation is
solved forward in time.

MEFE is generally challenging to solve due to its
forward-backward structure. The numerical methods
of solving MFE include fixed-point, Newton’s method,
and the variational method (Achdou, Camilli, and
Capuzzo-Dolcetta 2012, Benamou and Carlier 2015,
Chow et al. 2018, Albi et al. 2022, Capuani and Mari-
gonda 2022). The numerical methods require a good
initial guess and could fail to converge when the cost
structure of the game is complex. Thus, learning based
methods, especially neural network based approxima-
tion, have emerged in recent years (Guo et al. 2019,
Lauriere et al. 2022, Shou et al. 2022, Chen, Liu, and Di
2023a, Fiedler et al. 2023, Zhou et al. 2024). Learning
based methods can learn MFEs with complex cost
functions and high-dimensional states and policies but
could take a long time to train. Thus, in this paper, we
will primarily focus on numerical methods, and these
methods will be revisited later.

MFG has demonstrated its benefits in modeling
dynamic decision making processes of many agents and
has become increasingly popular in finance (Lachapelle,
Salomon, and Turinici 2010, Guéant, Lasry, and Lions
2011), control (Djehiche, Tcheukam, and Tembine 2016),
crowd motion (Lachapelle and Wolfram 2011), autono-
mous driving (Huang et al. 2020a, 2021; Di and Shi 2021),
and mixed traffic stability (Huang et al. 2019, 2020b).

Regarding the linkage between MFGs and classical
traffic flow models, the Lighthill-Whitham-Richards
(LWR) model (Lighthill and Whitham 1955, Richards
1956) was shown to be a special MFG (Kachroo, Agar-
wal, and Sastry 2016, Huang et al. 2020a). Chevalier, Le
Ny, and Malhamé (2015) generalized the cost function

in Kachroo, Agarwal, and Sastry (2016) to one global-in-
time and global-in-space to model AVs. MFG was fur-
ther extended to model lane-change (Festa and Gottlich
2017) and routing on networks (Cristiani and Priuli
2014, Huang et al. 2021, Chen, Liu, and Di 2023b).

To the best of our knowledge, a majority of traffic
flow MFG models primarily focus on velocity control.
MFGs on acceleration were only proposed recently in
Achdou et al. (2020, 2021). The state contains a pair of
position and velocity. A separable cost function is used
consisting of two terms, a kinetic energy (ie., the
square of velocity) and the square of acceleration. The
dynamics of the generic agent is a double integrator.
The challenge lies in the state constraint and bounded-
ness to velocity (i.e., part of the state), which leads
to neither strictly convex nor coercive Hamilton and
potentially unbounded value functions. Achdou et al.
(2021) demonstrated that by imposing additional
assumptions to the support of the initial state distribu-
tion or cost function, the optimal trajectories could
form a compact set and guarantee the existence of an
equilibrium. In particular, mathematical properties of
equilibria can be ensured in a one-dimensional prob-
lem with a quadratic running cost function in accelera-
tion. Nevertheless, it still remains unclear as to how
these games can be applied to the traffic setting, given
that traffic flow has to satisfy certain physics con-
straints, thus allowing for a narrower set of cost func-
tions. Overall, MFGs on acceleration is still a nascent
field that entails a lot of open questions and challenges.

1.3. Contributions of this Paper

This paper aims to develop a game-theoretic frame-
work for GSOM using mean-field approximation. We
will start from identifying a counterpart of ARZ-like
MFGs, with a physically meaningful cost functions.
Building on the MFG formulation of ARZ models, we
will modify the cost function and develop new second-
order traffic flow MFGs.

In a nutshell, the contributions of this paper include
the following:

e Establish a linkage between GSOM and MFG and
offer a game-theoretical interpretation of GSOMs.

e Propose a broader class of second-order traffic
flow models by manipulating the objective function
of GSOM-MFG. Various cost functions are applied
on a ring road to demonstrate various traffic pattern
evolution.

e Develop a fixed-point algorithm to solve the MFE
of GSOM-MEFG. Fictitious play technique is applied to
stabilize the solution algorithm.

The remainder of the paper is organized as follows.
Section 2 states the problem to be solved in this paper.
In Section 3, we derive the GSOM-MFG, including con-
tinuity equation and HJB equation. In Section 4, we
develop a family of second-order traffic flow models of
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which objectives are modifications of those for GSOM-
MEFG to mitigate traffic flow. In Section 5, we develop a
numerical solution algorithm to solve the proposed
GSOM-MEGs. In Section 6, we aim to validate the pro-
posed framework with inverse reinforcement learning
on both synthetic and real-world data. Conclusions
and future research directions follow in Section 7.

2. Problem Statement
In this section, we will first revisit the existing first-order
traffic flow MFG developed in Huang et al. (2020a) and
then establish the problem statement for the second-
order traffic flow MFG, the focus of this paper.

We first make the following assumptions for model-
ing MFGs:

e Each car observes traffic state information on the
road from all others.

e Each car plans its velocity control in a time horizon
by anticipating others’ behaviors.

e Cars act to use their predefined driving costs on
the time horizon in a noncooperative way.

The assumptions for taking mean field approxima-
tion include the following:

o All cars are indistinguishable.

e All cars have the same form of cost function.

2.1. First-Order Traffic Flow MFG
2.1.1. First-Order N-Car Differential Game [DG1]. We
consider a time horizon [0,T] (where 0 < T < o is a
finite time horizon), and a platoon of cars indexed by
ie€{1,2,...,N}, where N is the total number of cars. The
cars are driving in one direction on a closed highway of
length L without any entrance nor exit, with initial posi-
tions x1,0,...,%N,0, and evolving according to a given
velocity function.

Each car aims to select its optimal velocity control by
minimizing its driving cost functional defined over
[0,T] as

T
N0 = / NG, o) dt + V(D)) ,
0 ————— —

running cost terminal cost

i=1,...,N,

where for any i=1,2,...,N, we suppose car i knows
other cars’ positions:

x(t) = [x1(b), ... xio1(8),xi(), X1 (), . xn (D]

When one car selects its own driving velocity over the
planning horizon while everybody else does so simul-
taneously, we have a so called noncooperative differen-
tial game. A Nash equilibrium of the N-car differential
game is a tuple of controls v (), v5(t), ..., vy(t) satisfy-
ing

NG < V6w, =1, N

At equilibrium, no car can improve its driving cost by
unilaterally switching its velocity control.

2.1.2. First-Order Traffic Flow Mean Field Game [LWR-
MFG]. If the number of cars goes to infinity N — co in
[DG1], we recover the MFG game for the first-order
LWR model. In the MFG setting, a representative agent,
starting from an initial position x, selects driving speed
u(t),t € (0,T] at time ¢ for the entire time horizon (0, T]
to minimize a cumulative cost f(-) with a terminal cost
Vr(:). The cost function depends on not only the control
of the representative agent v(f), but also traffic density
p(t,x) at time t and location x. Thus, to solve this opti-
mal control problem, p(t,x) is assumed to be known.
Accordingly, this problem can be formulated as an
optimal control with the constraints that are an ODE
for a representative agent and a PDE that is the conser-
vation law or continuity equation (CE) governing the
traffic density p(t, x):

[Optimal Control of the Representative Agent]

T
u(t, ) = argmin /0 FCo(t) plt, X)) di + Vr(x(T)),

oz wewn
[LWR-CE] {Z Eg?;t;p ((';;C Jult:x))e =0, (2.1b)
X)) = PoXx)-

By referring to Huang et al. (2020a) as a source, we
derive the HJB equation to determine the velocity:

Vilt, x) + f*(Va(t, %), p(t, x)) = 0,

8] { vt
where the function f*(-) is the the Legendre transform
of f(-) and f;; is the derivative with respect to the first
argument of f*. Denote V = V. The HJB is meant to be
integrated backward in time from the terminal cost
V(x,T) = Vr(x). The equilibrium solution of this mean-
field game is an optimal velocity field u*(x,t) and the
corresponding optimal density p*(x, t).

We can substitute [LWR-H]B] into [Representative
agent’s optimal control] and have the LWR-MFG sys-
tem written in PDEs:

{ (CE)  p,+(pu), =0,
[LWR-MFG] (HJB) Vi+f(Vy,p)=0, (22)
M(t, x) :f{;(VX/ P)

Here, V =V,.
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2.2. From First- to Second-Order Traffic

Flow MFGs
Following a similar procedure as above, we start from a
microscopic description to recover later the continuity
equations and the HJB equation for the second order
case.

2.2.1. Acceleration-Based N-Car Differential Game
[DG2a]. Also in this case, we consider a total of N cars
indexed by i€{1,2,...,N} that are running in one
direction along a highway of length L. Denote the ith
car’s position by x;(t), speed by v;(f), and acceleration
by a{(i’).

Each car aims to control its velocity via selection of
optimal acceleration by minimizing its driving cost
functional J(x,v,4;) over a predefined planning horizon
[0,T].

A Nash equilibrium of the acceleration-based N-car
differential game [DG2a] is a tuple of controls a;(t),
ay(t), ..., ay(t) satisfying

N, 0ha) < N 0%,a), i=1,..,N.

2.2.2. Parametrized N-Car Differential Game [DG2p].
Taking inspiration from the ideas presented in the
cited works, namely, Aw and Rascle (2000), Aw et al.
(2002), and Lebacque, Mammar, and Salem (2007), we
adopt a different approach to handle the acceleration
term in the model. Instead of directly dealing with it,
we focus on a specific characteristic of drivers, which
could be for example their free flow velocity. By con-
sidering this attribute, we are able to parameterize
both the model and the corresponding mean
field game.

This choice of parameterization has several advan-
tages. First, it allows our model to be in line with the
existing body of research and knowledge within the traf-
fic community. It ensures that our formulation aligns
with established theories and findings in the field. Sec-
ond, this approach provides a natural extension of the
previously mentioned reference (referred to as [DG1]).
By incorporating the Lagrangian marker as a parameter,
we enhance the flexibility and applicability of the model,
enabling it to capture a wider range of traffic scenarios
and dynamics.

In the subsequent analysis, we classify vehicles based
on their specific attributes, with each category repre-
sented by the corresponding class denoted as w. This
classification scheme helps us better understand and
describe the behavior of vehicles within the context of
the model, allowing for more detailed and nuanced
analysis of the system.

Assume car i belongs to class w € VW C R. The motion
of car i in class w over [0, T] is dictated by the following
dynamical system for i=1,2,...,N (where we assume
that there is a functional relation between v;, w; and x;

that is specified later):

{Xi(t) =vi(t),

w;(t) = r(x, v, w;), wi(0)=wpo.

x(0) = Xi,0,

Note here that w;(t) somehow describes the acceleration
of car i. Relations between w; and v, have been discussed
and are known as generic second-order models (GSOMs)
(Seibold et al. 2013). In the following, we assume the

relation
1
. u( w) 3)
Xit1 — Xi

We will work with the variables (x;,v;,w;) instead of
(xi, v, a;).

To select a velocity profile, the ith car solves a param-
etrized optimal control problem over [0, T]. Define the
new ith car’s driving cost functional as

TN (x,v;,0;) = / Tf,-N (x(t), vi(t), wit))dt
0

+ Vr(xi(T), wi(T)).

The output of the above optimal control problem is
denoted as a best velocity control v;(t), t € [0, T] for car i
of class w. The control of car i depends on cars’ velocity
of all other classes.

Example 2.1. In the ARZ microscopic model, the
acceleration is given by

i1 (t) — vi(t)
(xi1 (D) — xi(1))*!

for y > 1 and where

r(x/ i, wi) =A (U< ! /wi) - 'Uj),
Xiy1 — Xi

with A a positive constant. We recall that U(:) is the
velocity function linked to a fundamental diagram.
The relation between v; and w; in Equation (2.3) can be
expressed, in this particular case, as

1 4
w; =0;+ < ) .
Xit1 — Xi

3. GSOM MFGs

In this section, we establish the link from the micro-
scopic second-order traffic model [DG2p] to the macro-
scopic perspective. This allows us to bridge the gap and
transition from the microscopic to the macroscopic
level of analysis. By doing so, we can recover the corre-
sponding continuity equation (CE) and HJB.

In preparation for our discussion, it is important to
revisit and explore the relationship between the LWR
model and the GSOM model. In this way, we can gain a
deeper understanding of the connections and similari-
ties between the two traffic flow models.

a;(t) = 0,(t) = +r(x, v, wy),
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The LWR model represents traffic flow as a conserva-
tion law, where the density and velocity are the primary
variables. It assumes a single homogeneous vehicle type
and considers the fundamental diagram, which relates
traffic density to the velocity and flow rate. To extend the
LWR model, we introduced an additional parameter
w € R* that accounts for driver behavior and traffic het-
erogeneity. It allows for variations in parameters such as
the free-flow velocity, maximum density, and fundamen-
tal diagram shape. These parameters can be adjusted to
capture different traffic conditions and driver characteris-
tics. This leads to a continuity equation with parameter-
ized flux that can be seen as the GSOM model where an
additional Eulerian variable w = w(t, x) appears. Indeed,
the GSOM model incorporates the concept of traffic het-
erogeneity and driver behavior by including an extra var-
iable w, which depends on time and space. By
considering this variable, the GSOM model can better
capture the evolution of traffic flow. The relationship
between the models can be seen as a progression from
the basic LWR model to the parametrized LWR model
and further to the GSOM model, with increasing levels of
complexity and sophistication in modeling driver behav-
ior and traffic heterogeneity.

Remark 3.1. From now on, we will use the following
terminologies to refer to w interchangeably, namely,
property, class, attribute, or Lagrangian marker.

Building on the LWR-MFG model (2.1), for the second-
order case, we will define the optimal control problem
for a representative agent and identify the continuity
equation.

3.1. Derivation of HJB Equation

As we did for the LWR in Equation (2.1a), we consider
the new constrained minimization problem for a repre-
sentative agent, coupled with the CE of GSOM:

[Optimal Control of the Representative Agent|
ii(t, %, w) = arg min / " o(t); p(t, 1), (e, 1)) de
o JO
+ Vr(x(T), w(T)),
x(t) = o(t),
s.t. w(t) = r(p(t, x), v(t), w(t, x)), (3.1a)
x(0)=x, w(0)=w,
p(t,x); + (p(t, x) u(t,x,w)), =0,
(p(t, V)w(t,x));
+ (p(t, x)w(t, x) u(t, x)),
= p(t,x) r(p(t, x), u(t, x), w(t, x)),

p(0,x) = py(x), @(0,x) = wo(x).
(3.1b)

[GSOM-CE]

We are now ready to state the theorem that derives the
HJB to express the correspondent GSOM model as a
MFG.

Theorem 3.1. Consider the constrained minimization
problem (3.1). If we assume the function f(p,v,w) to be
strictly convex with respect to the second argument v, and
the relaxation function r(p,u,w) to be affine linear in u
(e, r(p,u,w)=au+s(p,w), a €R), then the correspond-
ing HJB equation can be derived and it reads as

Vi(t, x,w) +f*(V; p(t, x), w(t, x))

+s(p(t, x), w(t,x)) Vo(t,x) =0
i(t,x,w) = f(V; p(t, x), wlt, x)),
V(T,x,w) = V(x,w),

[GSOM-HJB]

(3.2)
where V =V, +a V.

Proof. We define the problem by taking V(t,x,w) to
be the optimal cost for a generic car starting from loca-
tion x and class w at time t:

V(t,x,w) = mvin {/tTf(ZJ(T);p(T, x), w(T,x)) d’c}

+ Vr(x(T), w(T)),
s.t. x(1)=v(1), x(t)=x,

w(t) =r(p(t,x),v(1),w(t,%)), wt)=w, teltT].
(3.3)

Suppose a generic car of class w starts from position x
at time f. Consider a small time step At, we can divide
the driving cost in Equation (3.3) into two parts on
[t,t+At] and [t + At, TT:

T
/t fo(); p(t,x(1)), (7, x(7))) dT

t+AL

=), f(@(7); p(t,x(7)), w(T,x(1))) dT

T
+ [ A o) ol 3@
t+At

Correspondingly, the generic car’s decision process is
also divided into two stages. First it selects velocity
v(t) = v on the horizon [f,t+ At]. Then it moves to x +
VAt at time t + At and selects its velocity profile on the
rest of the planning horizon [t + At, T].

The running cost on [f, f + At] is approximated by

t+AE

f((1); p(t,x(1)), (T, x(1))) dT

= f(v; p(t, x), (t, X)) At + O(AL?).

From the new position x + vAt, the optimal cost on [f + Af,
T] the car can obtain is V(t + At, x + vAt,w +1(p, v, w)At).
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By the dynamic programming principle, we have
V(t,x,w) = min{f (v; p(t, x), w(t, x)) At + O(At?)

+ V(t+At,x +vAt,w+rAt)},  (34)

where 7 :=r(v; p, ).

Take the first-order Taylor’s expansion of V(t+ At,
X+ VAL, w + rAt) near (¢, x, w) and denote V,, V,, and V,
as the partial derivatives dV/dt, dV/dx, and IV /dw.
Equation (3.4) yields

V(t,x,w) = min{f(p, v, w)At + V + AtV,

+ VALV + 1AtV + O(AP)},

where we removed the arguments dependencies to sim-
plify the notation to the reader. Eliminating V(t,x,w)
from both sides, dividing both sides by At and letting
At — 0, we get

Vi+min{f(v;p,w) + vV + 1V} =0.

Because r is an affine linear function with respect to v,
we can write it as

r(p,v,w) =av+s(p,w), a €R,

Vi + min{f(p,v, w) + v(Vy + a Vy)} + s(p, 0)Vy = 0.
(3.5)

Because, by hypothesis, f(v;p,w) is strictly convex
with respect to v, Equation (3.5) can be written as

Vi+f (V;p,w)+s(p,w)Vy =0, (3.6)

where V =V, + aV,, and f*(-) is the Legendre transform
of f(-), defined as

ffWVpw) = mvin{f(v; p,w)+vV}.

As a result, the w-specific optimal velocity field i :=
il(t, x,w) is given by

ii(t,x, w) = arg min{f(v; p,w) + vV}

=V p, ). (3.7)

Recall that V =V, +aVy, and f;; is the derivative with

respect to the first argument V of f*. We drop the term

s(p, w)Vy, because it does not depend on the control v.
This ends the proof. O

We provide Corollary 3.2 to discuss the solution exis-
tence of the HJB equation (Equation (3.2)).

Corollary 3.2. Given p(t,x) and @(t,x), V(t,x) € [0,T] x
X obtained from the continuity equation, the H|B Equation
(3.2) admits a solution if the following conditions hold:

1. The running cost f(v(t), p(t, x),@(t,x)) is continuous
with regard to v;

2. The terminal cost Vr(x,w) is continuous;

3. The term |f(v(t), p(t, x),@(t,x))| + | Vr(x,w)| is bounded;

4. The relaxation function r(p,v, @) to be affine linear in
v(ie, r(p,v,@)=au+s(p,®) a €R).
Proof. We denote X = (x,w) and VV (t, X) = (V.(t,x, w),
Vu(t, x,w)). Given p(t,x) and @(t,x), V(t,x) € [0, T] x X
obtained from the continuity equation, we introduce the
following Hamiltonian:

H(t, X, VV (t, X)) = f*(V(t, X); p(t, %), @(t,x))
+s(p(t,x), w(t, x))Vault,x,w). (3.8)
We then reformulate Equation (3.2) as

{ 2,V (t, X) + H(t, X, VV (t, X)) = 0

A (3.9)
V(T, X) = Vi(x, w).

The reformulated HJB equation (Equation (3.9)) admits
a solution by theorem 3.2 in Nisio (2015). Corollary 3.2
holds. In Section 4, we will demonstrate that conditions
(1), (2), and (3) in Corollary 3.2 hold for the running and
terminal costs used in this work. O

Before delving into the derivation of continuity equa-
tion, we need to define a mean velocity field, which
averages over class w, Yw € R*, mathematically,

u(t,x) = /ﬁ(t,x,w)dw: /f{;(]/;p,a))dw. (3.10)

The mean velocity field will be fed into CE to propagate
the population dynamics.

3.2. Derivation of the CE

Regarding the GSOM CE, it is well known (Aw et al.
2002) that by passing the macroscopic limit of the system
(2.2), we achieve the conservation laws for a macro-
scopic density quantity p = p(t,x), a macroscopic veloc-
ity quantity 1 = u(t, x), and w = w(t, x), which are

p(t,3), + (p(t, ) u(t, 1)), =0,
(Pt D) (t, 1)), + (p(t )t ) u(t, 1)),
= p(t,x) r(p(t, x), u(t, x), w(t, x)).
(3.11)

[GSOM-CE]

The relations between the macroscopic and microscopic
quantities are

1

—, ult,x;) =v, t,x;) = w;.
wa® - M= @)=

p(t/ xi) =

Remark 3.2. We would like to pinpoint the difference
between the notations w(f, x) and w(t); w is an Eulerian
quantity and w the correspondent Lagrangian one.
Eulerian coordinates capture the motion of fluid flow
through moving points for visualization, whereas
Lagrangian coordinates directly track individual fluid
particles.
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Below we will detail the micro-macro limit. Consider-
ing the time-dependent Lagrangian variables x; := x;(t),
v; := v;(t), w; := w;(t), the microscopic model related to
the generic second order traffic model GSOM is

X;i =10, x;(0) = x; 0,
{ .l i l( ) i,0 (312)
w; = r(x,v;,w;), wi(0)=w;o.

Because in a typical traffic model we have that r(x,v;,
w;) = r(AX /(xi-1 —x;), U,-,w,-), we can consider the local
density and the specific volume

AX 1
p,(x) = Yol —% ci(x) = m,

and rewrite the microscopic system (3.12) as

. 1
{ ¢ = R(Um —v;), xi(0) =x;0,

w; = T(Pi/ Oi, wi)/ wl(o) = Wj,0-
Introducing the Lagrangian “mass” coordinates (X, T),
we can then write

drc = dxo,
{TC X (3.13)

aTT’U = r(P/ u, C‘))/

because u(t, x;) = v;, w(t,x;) = w;.

Note that X describes the total space occupied by
cars up to point x. Now, we can consider the following
relations

dxx = p_l =¢, dxt=0, drx=u, Jdrt=0,
and we rewrite them as
X=p, IhX=-pu T=t

Zooming in Equation (3.13), that is, multiplying space

and time variables by a small parameter ¢, we get the
limit

+ =0,

{ o+ (P (3.14)

(pw); + (pwu), = pr(p,u, w),

which is the macroscopic system written in the Euler-
ian coordinate, because the variables like density,
velocity, and specific volume do not change in this
scaling. Moreover, the microscopic model (3.13) can
be seen as a semidiscretization of the macroscopic
one (3.14).

3.3. GSOM-MFG Model Summary

Summarizing the HJB equation derived in Equation
(3.2) and the CE in Equation (3.11), we present the
GSOM-MFG model here. In a nutshell, [GSOM-MFG] is
a forward-backward PDE system with initial, boundary,

and terminal conditions, summarized below:

[GSOM-MFG]
(CE) p,+(pu), =0,
(pw); + (pw u),

= p(t,x) r(p(t, x), u(t, x), w(t, x)),
(HJB) Vi+f(V;p,w)+s(p,w)Vy =0,

i =fV;p,w),
u=|[fV;p wdw.
w

(3.15)

IC)  p(0,x) = py(x), w(x,0) = wo(x),
(BC) p(t,0),p(t, L), w(t0),w(t L),
(TC) V(T, x,w) = Vy(x, w).

The MFE solution is denoted as
SOL(|[GSOM-MFG])

={p(x, 1), w(x, t), ult,x),

i(t,x,w), Vit x, w)}VxeR+, t€[0, T], weR™" -

3.4. First-Order and GSOM Traffic Flow
MFGs Comparison

To emphasize the coherence of the computation, we
revisit the mean-field game systems of LWR and GSOM.
Notably, the models exhibit a comparable structure, with
the GSOM model incorporating an extra variable along-
side the other ones. To remind, we summarize [LWR-
MFG] (2.2) and [GSOM-MFG] (3.15) here:

py+ (pu)y =0

[LWR-MFG] <{ Vi+f*(Vy,p) =0,
ut, x) = f5(Vx, p)
where V = V,. (3.16)
[GSOM-MEFG]
p;+ (pu), =0

(Pw)t + (pw u)x = P”(Pr u, C())
Vi+f'(V;p,w)+s(p,w)Vy =0

i =f(V;pw),
u= [V p w)dw.
w
where V =V, +aVy,. (3.17)

When we set a =5s(p,w) =0 (and as a consequence
r(p,u,w) = au+s(p,w) = 0) in the GSOM-MFG model,
we recover the LWR-MFG model together with the
second PDE of the system (3.17). Note that they
are decoupled because the LWR-MFG is independent
from w.
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In the first-order traffic flow MFG, all the equations are
defined in terms of the time t and spatial coordinate x
variables. However, in the new GSOM system, we
encounter a mixed situation. Specifically, two equations
are defined in terms of (¢, x), whereas the other two equa-
tions appear to be defined in (f, x, w), where w represents
an additional parameter. However, it is important to note
that only the value fit V and the Eulerian velocity u in the
GSOM system depend additionally on the parameter w.
This setup is reasonable because the GSOM system can
be seen as a parameterized model. The parameter w
serves as an additional factor influencing the model and
allowing for more versatility adaptability. Alternatively,
one could consider solving the LWR model for various
fluxes, where each flux is determined by a specific value
of w. This perspective highlights the possibility of investi-
gating and analyzing the LWR model under different sce-
narios represented by different flux values.

4. GSOM-MFG Cost Specification
The interpretation of GSOM as an MFG allows us to
modify the cost functional and derive a new class of
second-order traffic flow models. There are infinite
choices of respective cost functions. Below we start
from those inspired by traffic flow models.

4.1. ARZ Cost Function
We first specify U(p,w) as the Greenshields form for
the equilibrium velocity that corresponds to the first-
order model. Then we get

U(p, w) = uLWR(p) + (w — Urwr(0))

( _ﬂ)m_um:um(ﬁ_ﬂ).
pm Um pm

4.1

Note that if w = u,,, we recover the LWR Greenshields
relation.

Following the similar idea in Huang et al. (2020a),
here we choose the following cost function:

fesom = %(U(P/ w) — u)?,

and the ARZ relaxation function
r=AMU(p, w) —u),

then [GSOM-MEFG] (3.15) becomes
pi+(pu) =0
(p@); + (pwu), = pAU(p, @) — u)
Vi + U(p, @) Vy — %(Vx —AVy)* =0
i =Ulp,w) = (Ve = AVy)

u:/ﬁdw.

[ARZ-MFG]

Corollary 4.1. Given cost function
1
farz(t; p,@) = o (Ulp.w) —w)*,  (42)
where u,, is maximum speed and U(p, w) is defined in (4.1).
Define
r(p, u, w) = MU(p, w) — u). (4.3)

In other words, let a = —Au,s(p, w) = AU(p, w).
[ARZ-MFG] can be reformulated as

[ARZ-MFG]
(CE)  p+(pu) =0,

(pw) + (pwu), = pAU(p, w) — u),

1 (4.4)
(HJB) Vi +Ulp, )V =5 (Ve = AV, =0,

i =U(p,w) — u2 (Vy — AVy).

This includes the initial condition (IC), the boundary condi-
tion (BC), and the terminal condition (TC) specified here:

(IC)  p0,%) = py(x), w(0,x) = wo(x),
(BC) p(t,0), p(t,L), w(t,0),w(t L),
(TC) V(T,x,w) = Vr(x, w).

Proof. We first expand the cost function defined in
(4.2) using (4.1) as follows:

Farrlis p, w) = %(umw) —up (452)
1 2
:Mn{[um<1—ppm>+w—um} —u} (4.5b)
1 2
= @ {um (% — P%;) — u} (4.5¢)
1 /u 2 ) P 1/fw p 2
-2 () |Gl ()
(4.5d)

Plugging (4.2) into (3.7), we can compute the optimal
velocity field as

ii(t, x,w) = arg min{farz(v; p, w) + v(Vy + aVy,)}

(4.6a)
1/ v\? w P
= arg min E ﬁ — u—z — ump
— (Vy+aVy) v} (4.6b)
= U, (i — i) — ufn(Vx +aVy)
Um pm

L2U(p,w) — U2 (Vy +aVy). (4.6¢)
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In the second line above, we substitute the optimal veloc-
ity field into the cost function and drop all the terms that
are independent of v without loss of generality.

Then substituting the above optimal velocity field
into (3.6), we have

Vi + min{farz(v; p, @) + v(Vy + aViy)} + s(p, @)V = 0

(4.7a)
1 2
=V + {% {um (;‘:’ = p‘;) (V, + ach)]

2 2
(P Lo _»p
[”m ( ) (Vit+aVy)| + > <um pm)

m pm
+v(V,+ an)} +AU(p,w)Vy =0

2
+ 1 <a) _pp) +AU(p,w)Vy =0. (4.7b)

m

Below we show the HJB equation in [ARZ-MFG] admits
a solution.

Corollary 4.2 Given p(t,x) and w(t,x), ¥(t,x) € [0,T] x X
from the continuity equation, the HJB equation with the run-
ning cost farz admits a solution if the terminal cost V(x,w) is
continuous and bounded.

Proof. Conditions (1) and (2) in Corollary 3.2 hold
for the running and terminal costs, respectively. We
only need to show the running cost is bounded. We
have farz(u;p,w) = (U(p, w) —u)* J2u <2 J2u3 =1/2.
Corollary 4.2 holds. O

Summarizing the above game-theoretic interpreta-
tion, we can rewrite ARZ models using an MFG repre-
sentation shown in Equation (3.15), which concludes
the proof. O

Theorem 4.3. The solution of [GSOM] (1.1) is a solution
of [ARZ-MFG] (4.4) under the conditions that (i) [ARZ-
MFG] and [GSOM)] have the same initial conditions and
boundary conditions, and (ii) Vr(x,w) = C where C is an
arbitrary constant for [ARZ-MFG].

Proof. Denote p*(f,x),w(t,x),u*(t,x) the solution of
[GSOM]. Note that the CE defined in Equation (1.1) is
the same as that in Equation (4.4). Now it suffices to
show that 1" satisfy the HJB Equations (3.2) for some V".
Take V* =C, then the terminal condition V*(T,x,w) =
Vr(x,w) = C is satisfied, and Equation (3.2) becomes a
single equation " (t,x,w) = U(p*, "), defined in Equa-
tion (1.1). Because i1*(-) does not depend on w anymore,

we can drop its argument w and define u*(t,x) := @i"(¢,
x,w) without loss of generality. In conclusion, p*, w*, u*,
and V* = C is also a solution of [ARZ-MFG]. O

4.2. GSOM Nonseparable Cost Function

Building on the ARZ cost function, we propose a modi-
fied version and call it GSOM nonseparable cost func-
tion with three terms, representing kinetic energy,
driving efficiency with dependence on the Lagrangian
marker, and traffic safety; mathematically,

fAszNonSep (u; P, w)

~2u z(ll(pw) ul+ - (1_%>2_%( —i)z

equilibrium speed flow heterogeneity safety
(4.8a)
2 2
YA U(p, ) 1(Ulpw)
2 \um 202\ Uy
2 2
FEYPINCA D CURA (4.8b)
2 Um 2 P

To elaborate, the reason we come up with three terms in
line 1 is as follows. First, minimizing (U(p, ) — u)*/ 2u?,

is equivalent to imposing the velocity field to move
toward the equilibrium speed defined by U(p, w). Sec-
ond, minimizing (1 — w/ Um)? /2 equals to forcing w(t, x)
toward the max1rnurn speed Upy. Third, minimizing
—(1-p/p,, )? /2 equals to pushing p(t,x) away from the
jam density p . In the second line, we further expand
the first term (U(p,w) — u)* into three subterms with
physical meanings. First, minimizing u?/2u2 equals to
minimizing kinetic energy defined by the square of veloc-
ity. Second, minimizing —wu/u, amounts to increasing
w and u as close to the maximum speed uy, as possible.
Third, minimizing pu/p,  uyn equals to when u is high, p
needs to be low, and vice versa. In other words, speed
choice should account for the congestion effect, that is,
congestion-aware.

Following the same procedure as done for ARZ-MFG
derivation, we can plug this cost function into (3.7) and
compute the w-specific optimal velocity field as

ii(t, x,w) = arg min{farz Nonsep(V; p, @) + V(Vy + aVy)}

v m

1w v
= arg mm{i (ﬂ) — U(p, a))u—2+ v(Vy + onw)}

. 1 w P
= arg mm{Zufn V- [— ————— (Vi + an)]v}

2
Um umpm

= Uy, <ﬂ — i) — uzm(Vx +aVy)

m

2U(p, w) — u2(Vy + aVy).
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In the second line above, we substitute the optimal veloc-
ity field into the cost function and drop all the terms that
are independent of v without loss of generality.

Assume () follows (4.3). We substitute the above
optimal velocity field into (3.6), the optimal value func-
tion is computed as

Vi+ n’}/in{fARZfNonSep(V} P, w) +v(Ve+aVy)}

+ S(pr w)vw =0,

: 1, w p
:>Vt+rr}’1n{2u’2nv Llfn rmpm (Vx+0sz)}v}
1 w)* 1 P\’
+/\U(p,a))Vw+§<1—ﬂ) —§< —a) =0.

The second row holds because we substitute the opti-
mal w-specific velocity field into the cost function.
Below we show the HJB equation admits a solution.

Corollary 4.4. Given p(t,x) and @(t,x), V(t,x) € [0, T] x X
from the continuity equation, the HJB equation with the non-
separable cost admits a solution if the terminal cost V(x,w)
is continuous and bounded.

Proof. We only need to show the running cost is
bounded. We have farz Nonsep(1; p, ) = (U(p, ) — u)z/
212 +(1 - w/um)*/2— (1 —p/p,)*/2 < 1. Corollary 4.4
holds. O

In summary, we have

[GSOM-MFG-NonSep]
(CE)  py+(pu); =0,

(pw)t + (Pw u)x = A(U(Pzw) - u)/
(HIB) Vi~ 5 o [U(p.w) ~ Vit aVi)

m

1 w)® 1 p\?
FAU(p @)V t5(1--=) —5(1-2=) =0,

2 m 2 P
L= U(le)_ufn(vx_/lvw)/
u:/ﬂdw. (4.9)

4.3. GSOM Separable Cost Function

We propose another modified version and call it GSOM
separable cost function with three terms, representing
kinetic energy, driving efficiency with dependence on the
Lagrangian marker, and traffic safety. Mathematically,

w02l u) 10w\’
fARZ-sep(1; p, @ o\t T o\ T

m um

RYSAY
2 P/

(4.10a)

In a comparison with the nonseparable cost, the GSOM
separable cost does not have crossing terms among
speed choice, Lagrangian marker, and road density.
We can plug this cost function into (3.7) and compute
the optimal velocity field as

il(t/ X, w) = arg min{fARZ—Sep(V; p/ Cl)) + V(VX + an)}

2
arg min{% (1 - ul> +v(Vy + an)}

= Uy, — ui(Vx +aVy).

We substitute the above optimal velocity field into
(3.6); the optimal value function is computed as

Vi+ n’}/in{fARZ—Sep(V} P, a)) + V(Vx + an)}

+s(p,w)Vy =0,

2
=V + min{1 (1 — L) + (Vo + an)v}
v |2 u

m

2
£ AU(p, @)V +% (1 - ‘”>

Um

Below we show the HJB equation admits a solution.

Corollary 4.5. Given p(t,x) and @(t,x), V(t,x) €[0,T] x X
from the continuity equation, the H]B equation with the sepa-
rable cost admits a solution if the terminal cost Vr(x,w) is
continuous and bounded.

Proof. We only need to show the running cost is
bounded. We have farz sep(it;p,@)=(1 —u/um)z/
2+ (1—w/um)?/2—(1— p/pm)2/2 < 1. Corollary 4.5
holds. O

In summary, we have

[GSOM-MFG-Sep] 4.11)

(CE)  p+(pu), =0,
(pw); + (pwu), = A(U(p, w) — u),

(HJB) V;+ minv{%(l - ul)2 +(Vet an)v}

1 w\?

u= /ﬁdw.
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5. MFE Solution Approach and

Numerical Results
In this section, we will first develop a fixed-point algo-
rithm to solve [GSOM-MFG] and then demonstrate
how different cost functions affect traffic flow patterns
on aring road.

5.1. Related Work

The existing literature primarily uses three types of
numerical methods, namely, fixed-point iteration, varia-
tional method, and Newton’s method. The majority of
work on MFGs (Couillet et al. 2012, Chevalier, Le Ny,
and Malhamé 2015) are solved using fixed-point method,
but it only works well for MFGs with special cost func-
tional structures, for example, when there are no cross
terms between representative agent’s control (i.e., veloc-
ity) and population mass (ie., traffic density) in cost
functions. Traffic flow inspired MFGs, however, exhibit
unique characteristics that the cost functional is nonsepar-
able arising from the traffic congestion effect. In other
words, vehicles have to slow down when encountering
traffic congestion (i.e., lower speed at higher density) and
speed up in less congestion areas (i.e., higher speed at
low density). Because of the coupling between traffic den-
sity and velocity, traffic flow MFGs are generally not
potential games and accordingly cannot be solved with
variational method either. To solve LWR-MFG, in Huang
etal. (2019, 2020a, b) instead, the forward and backward
equations are reformulated as a large nonlinear system
and finite-difference Newton’s method is used. Multi-
grid preconditioning techniques are further applied to
improve and accelerate the convergence. This method,
however, involves solving a large system of equations
of which the dimensions are determined by the product
of discretized time and space dimensions, and are thus
not scalable. Recent work on MFG has developed tech-
niques such as fictitious play (FP) (Perrin et al. 2020),
which uses historical control information of the repre-
sentative agent to update the control profile before
feeding it into the FPK equation, which is shown to
help stabilize policy learning. In this paper, we will use
fixed-point method coupled with FP for the solution
algorithm.

5.2. Numerical Schemes

Denote L € [0, c0) as the length of the road and T € [0, o0)
as the planning horizon. To numerically solve GSOM-
MEFG, a space-time meshgrid needs to be first defined.
Denote the spatial and temporal step sizes as Ax, At,
respectively, and the numbers of spatial and temporal
points as N,, N, respectively. The relations between the
step size and the number of points follow that Ax =
L/N, and At = T /Ny, respectively. Accordingly, we can
define a sequence of grid points x; =kAx,k=1,...,N,
and t; = tAt,t =1,...,N;, respectively. With these grid

points, we split the road into a sequence of adjacent
cells, denoted as [x;_1,x¢] = [(k—1)Ax, kAx], k=1,...,
N, then, [0,L] = [(0, Ax), (2Ax,3Ax),...,(Ny — 1)Ax, 1)].
Similarly, we discretize the planning time horizon into a
sequence of time intervals [t,_1,t:] = [(T — 1)At, TAt],
t=1,...,N;, then, [0,T] =[(0,At),...,(N; —1)At,1)]. To
ensure stability of the numerical scheme, N; is chosen in
such a way that At respects the Courant-Friedrichs—-
Lewy (CFL) condition (LeVeque 2002), that is, vAt < Ax
should be posed where v = maxi_q, . n=1,. n Ul
When the MFG has speed constraints 0 < u < sy, it
suffices to ensure Uy At < Ax.

On the two-dimensional meshgrid points, we can
now define discretized flow variables for CE. Denote
pi, Ur, and @y the average density, velocity, and prop-
erty, respectively, in cell k (i.e., [(k — 1)Ax, kAx]) at time
7,wheret=1,..., N;k=1,...,Ngl=1,...,Ny.

To solve CE, we use a finite volume Lax-Friedrichs
scheme (LeVeque 2002):

1 At
1_
P = E(szl + Pry1) — Ax (Pf1 k1 — Pr_1Mk-1)s
(5.1a)
1 At
7t = E(lefl + Zgyy) — A% (Zkar Ui — Zk_1Ug_1)-
(5.1b)

For the initial condition of CE, we consider p,(x) = p(x,0)
and wo(x) = w(x,0) (z can be recovered as pw) discretized
as

1 [ 1 [
0o_ 0_ _—
Pr = Az /x . po()dx, wy Ax /x Ha)o(x) dx, (5.2a)

Xk
A== [ poendy, k=1,

k

(5.2b)

The key difference between GSOM-MFG and LWR-
MEFG is the additional degree of freedom introduced in
the Lagrangian marker w. Accordingly, we need to
augment the grid to a three-dimensional meshgrid of
(t, x, w). Denote W € R as the domain of the Lagrangian
marker, the discretized step size as Aw, and the num-
bers of points as Ny

On the three-dimensional meshgrid points, we will
define discretized value and velocity variables for HJB
equations. To solve HJB, we discretize V}; = V(7, xi, w;)
using the upwind scheme in time and the central differ-
ence scheme in space and property, respectively:

V’T+1 —_Ve

Vilte, Xp,wy) = %, (5.3a)
Ve _yr

Vilte, xp, W) = % (5.3b)
Ve, -V,

Velte, X, ) = ""“2 i REL (5.30)
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Then HJB Equation (3.6) becomes

V];[l+1 B V]Zl +f>(- Vl§+1,l - ngl,l
At 2Ax

T T
Vk,l+1 -V

kiI-1,
2Aw P ,f,w,f)
VT _Vr
+5s '[, w'[ k,l+1 k,l*l —
(ko )~
The value function is then computed as
1
Vi — Vi
At
v _Vr Ve _yr
_ —f< SRR S NN S B AL

+a

e AT T
2Ax 20w PR wk’)

Vi — Vi
—_ 54
2Aw ©4)

and the optimal w-specific and mean velocities (3.7)~3.10)
are solved as

Vi, — Vi
~ o[ Vit k=11
iy (te, i, wi) = fyy <+7

- S(Plf/ wlz)

2Ax
Ve _yr
k,1+1 ki-1, ¢ 1
AT A ’P’d’“”d>’
(5.5a)
tiy(te, xp, w
ug(te, x¢) = M (5.5b)

Ny
The terminal condition of HJB is discretized as
V' = Vr(x,w), VYk=1,...,Ngl=1,...,Ny. (56)

In summary, the total variables include {p,f}?i,iﬁi,

1 0<T<N; T 1<T<N; ~7v1<T<N;
{wihzren,  {ughzren,  {Bahi<ieni<i<n,, and
{VT 1<t<N;

KS1<k<N,,1<I<Ny*

5.3. Algorithm

With the discretization scheme defined, we propose a
fixed-point method by solving two PDEs iteratively. In
other words, CE is solved forward first, and then traffic
density and Langrangian marker profiles are passed to
HJB, and HJB is solved backward to obtain traffic speed.
Traffic speed profile is further fed into CE to propagate
traffic density and Langrangian marker. This process
repeats until it converges. If convergence is guaranteed,
the resultant fixed point would be the MFE of the MFG.
As aforementioned, we find that fixed-point method
does not normally converge and exhibit instability, due
to the nonseparable term between traffic speed and den-
sity. Thus, we adopt FP and find that this technique
applies here and helps stabilize the equilibrium solution.
The algorithm is detailed below.

Algorithm 1 (GSOM-MFG Algorithm)
1: Input
2: Initial traffic density: p,(x), x € [0, L]; Initial Lagrang-
ian marker: wy(x), x € [0, L]; Terminal value: V1 (x,w),
x€[0,L],w € [0,W]; Boundary condition: p(t,0),
p(t,L), w(t,0),w(t,L),t €[0,T]; Convergence gap:
Gap=10; Convergence threshold: € = 1072

3: Initialization

4: pi,k=1,...,Ny,t=1,...,N;

5 wi,k=1,...,Ny,t=1,...,N;

6: ug,k=1,...,Ny,t=1,...,N;

70uy=0k=1,...,Ny,I=1,...,Ny,t=1,...,N;

8: V,=0k=1,...,N,[=1,...,Ny,t=1,...,N;

9: while Gap > € do //Check convergence
10:  iter=1
11:  Store the variables from the previous iteration:

i = pp o = T =

12:  Givenp),w?, Vk=1,...,Ny //Forward

13: fort < 0toN;—1do

14: fork—1toN,do

15: Given uf_y, pi_y,Uf,1, Pf.q, Propagate pi*!

by solving Equation (5.1a)
16: Given uf ,,z{ ,,uf,,, w},,, propagate z{*!
by solving Equation (5.1b)

17 end for

18:  end for

19:  Given V), Vk=1,...,NyI=1,...,Nw
//Backward

20: fort<— N;—1to0do

21: fork—1toN,do

22: forl — 1toN,do

23 Given pf,wf, Vil VEL, VETL, Vifty,

obtain iif; by solving Equation (5.5a)
24: Given pf, wf, Vil , Vi, Vi VELL Vi
obtain V}; by solving Equation (5.4)

25: end for

26: end for

27:  end for

28:  Fictitious Play (FP): Compute average using all
historical values: i}, = (&}, + uf,)/(iter + 1), V,; =
(Vg + V) /(iter +1).

29:  Updateiiy =uy, Vi =Vy, k=1,...,Ny,I=1,...,
Ny;t=0,...,N; -1

30:  Average optimal mean speed from w-specific
speed using Equation (3.10): uf = iy, /Ny

31:  Convergence Gap: Gap = ||pf — p,f(_)H +|lwf —
g+l — 1l

32:  iter =iter +1

33: end while

34: Output pf, wy,uf, ity Vi, Vt=1,...,Nyk=1,...,

Ngl=1,...,Ny,1=1,...,Ny



Downloaded from informs.org by [160.39.35.158] on 16 December 2024, at 18:56 . For personal use only, all rights reserved.

1416

Mo et al.: GSOM-MFG
Transportation Science, 2024, vol. 58, no. 6, pp. 1403-1426, © 2024 INFORMS

5.4. Numerical Examples

5.4.1. Settings. We investigate traffic flow MFGs with
four cost functions summarized below: two first-order
traffic flow models and two second-order models.

5.4.1.1. First-Order Traffic Flow MFGs.
1. LWR-MFG:

finw(oe, ) = 5 (Up) — w),
where U(p) = um(1 - p/p,)-
py + (pu), =0,
Vi+U(p)Vy — %uanxz =0, (5.7)
u=U(p) —u V.

with p,(x), Vr(x) and p(t,0), p(t,L).
2. LWR-MFG-NonSep:

1 2
fNonSep(ur P) = i <u) - + “P

[LWR-MFG]

Un)  Um  Ump,
[LWR-MFG-NonSep]
p; + (pu), =0,
1
Vi— 57 [U(p) = um V" = 0, (58)

u=U(p) — u,Vs.

with p,(x), Vr(x) and p(t,0), p(t,L).

Step-by-step derivation for [LWR-MFG] and [LWR-
MFG-NonSep] can be found in Appendices A and B,
respectively.

5.4.1.2. Second-Order Traffic Flow MFGs.

1. ARZ-MFG: System (4.4) with p(x), wo(x), V1(x, w)
and p(t,0), p(t,L), w(t,0), w(t,L).

2. GSOM-MFG-NonSep: System (4.9) with p,(x), wo(x),
po(x), wo(x), Vr(x,w) and p(t,0), p(t,L), w(t,0),w(t,L).

We need to specify the initial condition (IC), the bound-
ary condition (BC), and the terminal condition (TC) as
follows.

e IC: We choose the following initial density:

2
o) = p, + (py — p,Jexp [— %} 69

where 0 < p, < p, <1 and y >0 are constant para-
meters. Here we choose p, = 0.05,p, = 0.95,y = 0.35.

For the second-order traffic flow model, we also need
to specify the initial profile for the Lagrangian marker:

. 1
Uy, if x < E,
up(x) =

wo(x) = up(x) + py(x)’, (5.10)
whereu, =0.1,u;, =0.8,y = 1.

up, if = < x < 1.
b At 5

e TC: Vr(x) =0, for the first-order traffic flow model,
"\ Vr(x,w) = w, for the second-order traffic flow model.

BC : p(t,0) = p(t,L), for the first-order traffic flow model,
" p(t,0) = p(t,L), w(t,0) = w(t,L), for the second
-order traffic flow model.

Set the road length L=1 and the planning horizon
length T=1. Set the maximum value of Lagrangian
marker as W=1. The meshgrid is discretized with a
size of N, = N, = N; =50 to fulfill the CFL condition.
Set the free flow speed uy, =1 and the jam density
P =1 LetA=0.

Applying Algorithm 1, we compute MFE solutions,
including traffic density p*(t,x), Lagrangian marker
w*(t,x), mean traffic speed u*(t,x), w-specific speed
ii*(t,x,w), and optimal value V*(t,x, w).

5.4.2. Results. Below we will present the relevant
results for the GSOM-MFG-NonSep model, including
algorithmic convergence, MFEs and fundamental dia-
grams at different values of w, and traffic density and
velocity evolution.

Figure 1 illustrates the algorithm’s convergence gap
against the numerical iterations, indicating that the
numerical solver achieves convergence after approxi-
mately 10 iterations.

Now we pick two values of Lagrangian marker
w=0, 1 and demonstrate how velocity u and value
functions V, as well as fundamental diagrams, vary at
each w in Figures 2 and 3, respectively. We plot the
w-specific velocity and optimal value in time and
space in Figure 2. The left column displays the values
of u and V for w=0, whereas the right column dis-
plays values for w=1. Starting from the same initial
velocity profile, we can see how varying w values lead
to distinct dynamics in u and V, reflecting diverse
microscopic driver behaviors.

To enhance our understanding of how w influences
the relationship between traffic density and flux, we

Figure 1. (Color online) GSOM-MFG-NonSep Algorithm
Convergence Plot
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Figure 2. (Color online) GSOM-MFG-NonSep Value and Velocity Profiles at Sample Values of w =0, 1

(a) u(t, x, w=0)

velocity

0 o0 Qe

(c) V(I x, w=0)

x10°®

0 o e

have also depicted the w-specific fundamental diagram
in Figure 3. The scatter plots result from multiple
numerical experiments with varying initial conditions.
The purpose of combining multiple results is to better
illustrate the scatter patterns. Black dots represent the
traffic density-flux pairs averaged across all w, whereas
blue circles and red triangles represent those at w =0
and w = 1, respectively. We can observe that dots of dif-
ferent colors display distinct converged fundamental
diagrams. In the converged lines, the blue dots (w = 0)
indicate a higher free-flow speed and maximum flow
compared with the red ones (w =1). This is because
w = 0 represent more aggressive drivers thus leading
to higher free-flow speed. This visualization clearly
demonstrates that different values of w lead to varying
relationships between traffic density and flux.

We further illustrate a whole picture of three vari-
ables, namely, traffic density, velocity, and Lagrangian
marker (or traffic property), in the entire time and space
domain in Figure 4. In particular, Figure 4(c) illustrates
the overall dynamics of the Lagrangian marker, identi-
fied as a traffic property.

value

(b) u(t, x, w=1)

(d) V(tx w=1)

0.95

0.9

0.85 -

0 0 ame

To further illustrate how three key variables, namely,
traffic density, velocity, and Lagrangian marker, evolve
in space and time, we pick three time snapshots at sam-
pled time instances t = 0,0.5, 1. Figures 5 and 6 illustrate
the evolution of these variables for GSOM-MFG-Nonsep
and ARZ-MFG, respectively. Starting from exactly the
same initials, both games converge to uniform flows
where all the variables tend to become constant. GSOM-
MFG-Nonsep, however, converges relatively faster than
ARZ-MFG because of the cost design in GSOM-MFG-
Nonsep.

To further demonstrate the dynamic behavior of four
MFG models, we plot their respective fundamental dia-
grams in Figure 7, where the black dots are generated
from data, and the blue and red curves represent the
best fitted density-flux relation, following the practice
in Fan, Herty, and Seibold (2014) as defined in Equation
(6.6). We can see that for both LWR-based MFGs, there
exists only one class of cars, so we only need to fit one
curve for the fundamental diagram. In contrast, in
GSOM-based MFGs, the scatters converge to a set
of curves corresponding to different values of w. This
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Figure 3. (Color online) w-Specific Fundamental Diagrams

05
® mean
o w=0
A w=l
0.4

flow

density

Notes. The black dots represent the mean density and flow. The blue
circles represent the density and flow associated with w = 0, and the
red triangles denote the density and flow for w = 1.

shows that GSOM-based MFGs are able to capture dif-
ferent classes of drivers, and thus can capture hetero-
geneity in the right-hand side of the regime that
represents stop-and-go traffic, which is common in
real-world observations. Thus, GSOM-based MFGs,
like GSOM, are more flexible and robust for real-world
validation.

6. Inverse Reinforcement Learning for
MFG Model Validation

In this section, we validate the game-theoretic frame-
work of GSOMs when observational data become avail-
able. This is essentially an inverse problem; namely,
given real-world data, the underlying cost function
required in the HJB equation can be estimated to help
infer the MFE. We will first introduce the methodology
of solving such an inverse problem, which is inverse

Figure 4. (Color online) GSOM-MFG-NonSep Variable Evolution

(a) Traffic density

(b) Traffic speed

reinforcement learning (IRL). Then we will validate that
our IRL approach can correctly identify the underlying
cost function that generates the data, when we know
the ground-truth MFG. Last but not the least, we will
estimate the latent cost function from a real-world data
set and compare the estimation errors against various
traffic flow models and the proposed GSOM-MEFGs. Via
the synthetic experiment and the real-world one, we
aim to motivate the need of reinterpreting a traffic flow
model with game theory.

IRL is proposed to recover the unknown cost func-
tions from the observation of an expert demonstration
(Abbeel and Ng 2004). Here the proposed IRL approach
executes the following two steps recursively until our
prediction error converges: (1) recovering the cost func-
tion coefficients and (2) solving the MFE corresponding
to these coefficients.

To approximate the cost function f, Abbeel and Ng
(2004) assume that the cost function is a linear combi-
nation of known cost features. We denote the cost fea-
tures as f = [fi,....fu]" and M is the number of cost
features. The weight (i.e., cost coefficient) of each cost
feature f,,,m =1,...,M in the cost function is denoted
as c¢=|cy,.. .,CM]T,C eRM. Mathematically, f= e’ f
To estimate the true cost function is to find the cost
coefficient ¢ that can recover the expert’s policy.

6.1. Game-Theoretic Approach to Adversarial IRL
In this paper, we adopt a game-theoretic approach
(Syed and Schapire 2007) to estimate cost functions.
The game consists of a min player whose goal is to find
the strategy c that can minimize the gap between the
value of the recovered and expert’s policies and a max
player aiming to find a policy # that can minimize the
gap between the value of the recovered and expert’s
policies. The IRL framework using this max-min game
structure is further categorized as adversarial IRL
(AIRL) (Syed and Schapire 2007, Ruan and Di 2022,
Ruan et al. 2023). To simplify the jargon, we will still
refer this particular framework as IRL subsequently.

(c) Traffic property

o
<)

Lagrangian marker
o o
2 o
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Figure 5. (Color online) GSOM-MFG-NonSep Variable Profiles at Time Instances (0, 0.5, 1.0)
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Mathematically, we consider the following optimiza-
tion

maxmin[c-F; — ¢ Fy], (6.1)
u c

where F; =[F;,...,F},] and F; = [ﬁl,...,ﬁM] are the
value of cost features (i.e., cumulative cost) when exe-
cuting the recovered # and expert’s policies u°, respec-
tively. We have

T
F¢ (xo,t0) = Z fm(u(x, 1), p°(x, 1), (%, £)At + V1,

t=ty

(6.2a)

T
Fru(xo,to) = > fu((x, 1), p°(x, 1), @ (x, H)) At + V.

t=ty

(6.2b)

We use the multiplicative weights for apprenticeship
learning (MWAL) algorithm (Syed and Schapire 2007,
Ruan et al. 2023) to solve the max-min optimization
problem. The algorithm is summarized in Algorithm 2.
The input of the algorithm include expert policy u¢,
population density p°, and w°. The cost coefficients are
first scaled to make sure [|c[[; = 1 (line 4). The recovered

policy # is obtained by solving the HJB equation
defined in MFG with ¢ (line 5). We calculate the cumu-
lative cost of each feature by sampling trajectories using
the recovered and experts’ policies. We start from a ini-
tial state, denoted by sy = (xo, p) from X x 7. We collect
trajectories until the terminal time T as follows:

si = (Xa,ta) = (va + 1 (xa, ta) - At tye + At), (6.3a)

S;e = (x;e, t;e) = (Xue + ue(xue,tue) <At b + At) (63b)
We then obtain the cumulative cost for each cost fea-
tures according to sampled trajectories. The cost coeffi-
cient of each feature in the cost function is updated
according to the error between F¢, and F,, (line 9); 1 is
the step size, which can be regarded as the update rate.
We use 11=0.1 in this work. We use the gap between
the recovered and expert’s policy to check the algo-
rithm convergence performance.

Algorithm 2 (MWAL-MFG Algorithm)
1: Input: expert policy u¢, population density p* and
o’;
2: Initialize ¢l =1, Vm=1,...,M;
3: forh=1,...,Hdo

Figure 6. (Color online) ARZ-MFG Variable Profiles at Time Instances
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Figure 7. (Color online) Fundamental Diagrams

(a) LWR-MFG (b) LWR-MFG-NonSep
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Notes. The red curve represents the fundamental diagram corresponding to the mean density and flow. The blue curves represent the fundamen-
tal diagrams associated with the density and flow at various sample values of w.

6.2. Model Validation Experiments

6.2.1. Ring Road. In this section, we evaluate the IRL
method by showing that it can recover MFE solution of
GSOM-MEFG in the ring road scenario. We aim to find
the cost coefficient in two cost functions: ARZ and ARZ-
NonSep by using the MFE results p*,u*, ®* obtained
from ARZ-MFG and GSOM-MFG-NonSep. The cost
function forms are

4:  Set cﬁﬁ’) = C;IJ)/ZAM/I:l cffq’), Vm=1,...,M;

5:  Obtain the recovered policy # by solving the
HJB equation in MFG with cost coefficient )
=1, Vm=1,...,. M

6:  Sample initial state (x,, fo) from X' X 7 and col-
lect trajectories according to the recovered policy
(Equation (6.3a)) and expert’s policy (Equation
(6.3b)).

7:  Obtain the value of each cost term f,, Vm =
1,...,M corresponding to the expert policy
(Equation (6.2a));

8:  Obtain the value of each cost term f,, Vm =
1,...,M corresponding to the policy 1" (Equa-
tion (6.2b));

9:  Update cost coefficient: Vi =1,...,M, (i) = .

exp(In(B) - n(Fe, — E,) +2/4), p= 1+ /2InM/H) .

fARZ—Nor\Sep (u; [ a))
10: end for

1 2 2
=0 — (U(pw) - U +cs (1 —£> -3 (1 —ﬂ) .

11: Check convergence Ui u

12: Output recovered policy i (6.4b)

farz(u; p, w)

2
o) -ellz-5)
Uy Uy, UmpP,

2
ol
m m

(6.4a)
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Table 1. Performance Comparison
Metrics ARZ ARZ-NonSep

Velocity MSE
Ground-truth cost coefficients
Recovered cost coefficients

0.0017 0.0178
[0.25,0.5,0.25]
[0.2497,0.5002,0.2501]

[0.33,0.33,0.33]
[0.3472,0.3250,0.3278]

We measure the reconstruction error by the mean
squared error (MSE) between the real and reconstructed
velocities:

Ny Nt Ny

- T 2
MSE = Nth ; 2 2 W o —up )’ (65)
where 1 is the recovered velocity and u is the velocity
at MFE.

The performance comparison is summarized in
Table 1. The ground truth cost coefficients used to
obtain MFE corresponding to ARZ and ARZ-NonSep
costs are [0.25,0.5,0.25] and [0.33,0.33,0.33], respec-
tively. It is shown that the IRL method performs well
when estimating the cost coefficients. There is barely
any difference between the ground truth and recov-
ered cost coefficients in the ARZ cost function.

6.2.2. Real-World Data. We use the next-generation
simulation (NGSIM) data set (Coifman and Li 2017),
where vehicle trajectories are recorded using bird’s-eye

Table 2. Model Validation with NGSIM Data

view cameras with a sampling frequency of 0.1 seconds.
We primarily use data collected from the US-101 high-
way segment, which provides 45 minutes of data over
approximately 630 meters.

On this data set, we evaluate our method by showing
that it can reproduce data by assembling real-world
observations. In particular, we will show that ARZ-
MFG reproduce densities and velocities with a better
agreement with real traffic data, as opposed to traffic
flow model like LWR or MFGs using ARZ-Nonsep as
the cost function.

6.2.2.1. Data Processing. The spatial and temporal
domains are partitioned into intervals of 30 meters and
1.5seconds, respectively. These intervals were chosen
to ensure a sufficient number of samples while adher-
ing to the CFL condition and to minimize the effects
of data noise by avoiding excessively small grid sizes.
Consequently, the processed data includes space-mean

. 0<t<N, . 1<t<N,
density {pf}; ;2 N. and space-mean velocity {ughiZes Nos

Cost
Scenario Approach Case function Error (MSE) Message
Game-theoretic setup IRL for GSOMMFGs ARZ ARZ 3.34x1072 1. The ARZ-NonSep cost structure can
ARZ-NonSep 9.47 x 10 % better represent NGSIM data
ARZ-Sep 9.90 x 10! compared with other approaches.
LWR LWR 6.49 x 10° 2. Compared with PIDL and Kalman
LWR-NonSep 8.49 x 10° filter approaches, the IRL approach
LWR-Sep 2.84 % 10 does not require knowledge of the
Deep learning setup PIDL ARZ — 2.25x 10° physics regarding fundamental
LWR 2.80 x 10° diagrams and can easily accommodate
Classic setup Kalman filter ARZ 1.65 x 10! various cost structures.
LWR 2.11 x 10! 3. PIDL training is limited to the time

frames when data can be observed,
whereas the IRL approach is not. Once
the cost coefficient is estimated from
observations, it can be applied to solve
MFGs over any finite time horizon.

In summary, the IRL approach has
stronger generalizability than other
methods. Our proposed GSOM-MFG
is a generic framework that can
accommodate various cost functions.
The ARZ and LWR fundamental
diagrams belong to the GSOM-MFG
when the cost structures are specified.
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Figure 8. (Color online) Comparison Among the Real Velocity (a) and Reconstructed Ones with Different Cost Functions Using

IRL (b-g)
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where N, =630 meters/30 meters =21 and N; = (45 X
60) seconds/1.5 seconds — 10 = 1770. We exclude the
initial and final five time steps from our analysis. This is
due to incomplete data collection at the beginning and
end of the recording period. Given the processed densi-
ties and velocities, we then calculate Lagrangian mar-
kers following the same practice as in Fan, Herty, and
Seibold (2014):

& =1 +h(p) =i+

6.6)

6.2.2.2. Velocity Error. We measure the reconstruc-
tion error between the real and reconstructed velocities
by MSE, mathematically,

1 N, N;
MSE = a7 —ub)?, 6.7
NM;;( ¢~ ug) (67)

where il is the reconstructed velocity.

6.2.2.3. Performance Comparison. We compare the
reconstruction performance of four different loss func-
tions, namely, ARZ, ARZ-NonSep, LWR, LWR-NonSep,
and LWR-Sep. We also include a deep learning—based
method, that is, physics-informed deep learning (PIDL)
(Shi, Mo, and Di 2021a, Shi et al. 2021b, Mo, Fu, and Di
2022a, Mo et al. 2022b, Di et al. 2023), and a classic

\\

0 500 1000 1500 2000 2500
tis

method, that is, Kalman filter (Wang and Papageorgiou
2005, Di, Liu, and Davis 2010), for comparison. Table 2
presents the MSE of using each cost function of the MFG
when reconstructing the velocity. Figure 8 illustrates the
heatmaps of the reconstructed velocities along with the
real ones. Figure 9 presents the reconstructed velocity of
PIDL using ARZ and LWR as the physics, respectively.
We can see that using ARZ and ARZ-NonSep lead to
significantly better reconstruction accuracy compared
with the use of LWR cost functions.

6.2.2.4. IRL Policy Evaluation. Because the ARZ-MFG
achieves the minimum estimation error among all the
comparative models, we will further demonstrate its
performance from the perspective of IRL. To illustrate
the policy learned by ARZ-MFG, we calculate the tran-
sition probability of moving to the next state s’ after
time step At given the current state s = (xx, t;); namely,
Pr(s’|s = (xx, tr)), using the following equations:

1At
Pr(s" = (xgs1, tes1) s = (2, t0)) = 2 , (6.8a)
x
Pr(s” = (xx, trs1)|s = (xx, t2))
=1—Pr(s" = (xs1,ter1) s = (xx, 1), (6.8b)

where Ax =L/Nyand At = T/N;; xy =kAx,k=1,...,Ny;
and t; =tAt,t=1,...,N;, respectively. Because of the
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Figure 9. (Color online) Reconstructed Velocity Using PIDL
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600

500

400

x/m

300

200
100

0 500 1000 1500 2000 250
t/s

CFL condition, no other s’ is allowed. The real-world
transition probability can also be calculated by substitut-
ing i1 with the actual value u. Figure 10 presents a com-
parison between the transition probability matrix derived
from the learned policy and the actual data.

Figure 11 depicts the frequency of visits to each
state for both the real and constructed data, calculated
through Monte Carlo simulations starting from a uni-
formly distributed initial state. We can see both the tran-
sition probability matrix and state visitation frequency
of the IRL policy closely resemble the real ones.

7. Conclusions and Future Research

This paper establishes a game-theoretic interpretation
of generalized second-order traffic flow models. Such
an interpretation not only manifests an equivalence
between GSOM and MFG but also allows us to modify
the cost functional of the optimal control problem for
the representative agent and devise other forms of
MEFGs and traffic flow models. We start from the
first-order LWR-MFGs consisting of a representative
agent’s optimal control problem (depicting the generic
agent’s driving velocity choice, aka HJB equation), and

(b) PIDL-LWR

1000 1500 2000 2500
t/s

a continuity equation (propagating density distribu-
tion of the population, aka FPK equation). We then
generalize LWR-MFGs to generalized second-order
traffic flow MFGs, by introducing an additional vari-
able, denoted as w, that describes how a car’s class
evolves. This variable is equivalent to acceleration if
it is a function of speed v, like in the ARZ traffic flow
model. In our proposed generalized second-order traf-
fic flow MFGs, GSOM-MFG, w could be a free variable
that augments the dimension of the HJB equation,
including the value function and the optimal velocity
profile. Essentially, the HJB equation for GSOM-MFG
is a parametrized version of that for LWR-MFG. The
proposed GSOM-MFG encompasses first- and second-
order traffic flow models, when cost function of the
representative agent’s optimal control problem is care-
fully chosen. Moreover, we propose new cost func-
tions that lead to new parametrized velocity profiles.
We develop a forward-backward fixed-point numeri-
cal method along with fictitious play to stabilize the
solution algorithm. The results are demonstrated with
four types of cost functions on a ring road. Further-
more, to demonstrate the validity of the proposed
GSOM-MEGs, we propose to solve an inverse problem

Figure 10. (Color online) Comparison of the Transition Probability Matrices for Real (a) and Reconstructed (b) Data
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Note. The color in each cell indicates the probability of transitioning to the subsequent cell in space x and time ¢.
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Figure 11. (Color online) Comparison of State Visitation Frequencies for Real (a) and Reconstructed (b) Data
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where observed individual driving trajectories are
collected but the underlying cost function remains
unknown. Adversarial inverse reinforcement learning
is employed to estimate the coefficients involved in the
cost function for all four types of games. Using the
NGSIM data, we have found that ARZ-MFG generates
more accurate traffic density and velocity profiles,
compared with other MFG and traffic flow models.

This work can be extended in several directions: (1)
investigate mathematical properties of GSOM-MFG,
including existence and uniqueness of equilibria and
(2) extend GSOM-MEFG to networks where cars need
to choose routing decisions (Huang et al. 2021). To the
best of our knowledge, there is a void in the state-of-
the-art that could prove such properties for the MFGs
proposed in this paper, because the nonseparable cost
functions do not demonstrate neither monotonic nor
contraction properties. Thus, exploring the mathemati-
cal properties for traffic flow MFGs is important and
urgent. Second, dynamic traffic assignment and traffic
flow models on networks are primarily focused on
routing choice of cars, whereas MFGs on networks
allow cars to select both driving control on edges and
route choice at junction points. How to formulate this
problem on large-scale networks and solve it efficiently
would be a challenge and left for future work. Never-
theless, in this paper, the agent’s impact is assumed to
be localized in space. In other words, one agent’s driv-
ing control at location x can only affect traffic density at
that location. Thus, we call it “local MFG traffic flow
models.” There is a branch of literature on nonlocal
traffic flow models that model the impact of a single
agent on traffic density further down- or upstream,
which is beyond the scope of this paper. Nonlocal
MEFGs and nonlocal traffic flow models is another direc-
tion worth of exploration.
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Appendix A. LWR-MFG Derivation
Recall that the LWR-MFG cost function is defined as

2
fuwetap) = (1) 0% = 3 (1= L) <[, (a2

m

where the speed relation is characterized by the Green-
shields fundamental diagram:

U(p) = i, 1—£). A2
(p) u( P (A2)

m

Using Equation (2.2), we can compute the optimal speed
as

u = arg min{f(v; p) + v Vy}

— AW YCEAY
_argvmm{zv [um(l Pm) Vx}v+ ) (1 o

= Uy (1 —pi) - uanx =U(p) — uanx.

m

We then compute the optimal value as

Vi +min{f(v;p) +vVy} =0

SRANEIR RO

1 P 2 uz P 2
o) )
_1 P P P\
i) -50-2)

1
=V, = —u, <1 fﬁ) Vo + S V2

= V= —(U(P) _%VX)uszX'

Substituting the above optimal velocity and value func-
tions into Equation (2.2) leads to the LWR-MFG system
(5.7).
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Appendix B. LWR-MFG-NonSep Derivation
The nonsepable cost function defined for [LWR-MFG-Non-
Sep] can be interpreted as below:

1/ u\’ u up
fNonSep(u/ P) =5\ - — +

2 \ Uy Um UmPp,

——— ~—

kinetic energy  efficiency safety

1 1
ke (2,
2, UmPr

_ 1 2 1 P\
—%(U(P)—M) _E( _P_> ,

m

{

where U(p) is defined in Equation (A.2).
Using Equation (2.2), we can compute the optimal speed
as

u = arg min{f(v; p) + v Vy}
_ oJ1 o p__ 1
= argvmm{zu%nv + (Mmpm o + Vx)v}

=Um (1 -L_ umVx)
Pm

= um( - pﬁ) - uanx =U(p) — uanx.

m

We then compute the optimal value as

Vi +min{f(v; p) +vVy} =0
= Vi +min L1/2+ p —i-i-Vx ve=0

v 2u2 UmpP,, Um

2

=V + L um(1— L) 2 v,

2us, Pu)

+( p —i+vx){um<1—£)—ufnvx”=o

UmPy  Um Pm

m m
1 a1
= Vt = % I:um (1 - £> - umVx:| & %[u(p) - umVX]z'

Substituting the above optimal velocity and value func-
tions into Equation (2.2) leads to the LWR-MFG-NonSep
system (5.8).
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