
This article was downloaded by: [160.39.35.158] On: 16 December 2024, At: 18:56
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Game-Theoretic Framework for Generic Second-
Order Traffic Flow Models Using Mean Field Games
and Adversarial Inverse Reinforcement Learning
Zhaobin Mo, Xu Chen, Xuan Di, Elisa Iacomini, Chiara Segala, Michael Herty,
Mathieu Lauriere

To cite this article:
Zhaobin Mo, Xu Chen, Xuan Di, Elisa Iacomini, Chiara Segala, Michael Herty, Mathieu Lauriere (2024) A Game-
Theoretic Framework for Generic Second-Order Traffic Flow Models Using Mean Field Games and Adversarial
Inverse Reinforcement Learning. Transportation Science 58(6):1403-1426. https://doi.org/10.1287/trsc.2024.0532

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-
Terms-and-Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or
systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval,
unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support
of claims made of that product, publication, or service.

Copyright © 2024, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations
research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning
opportunities for individual professionals, and organizations of all types and sizes, to better understand and use
O.R. and analytics tools and methods to transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2024.0532
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


A Game-Theoretic Framework for Generic Second-Order Traffic 
Flow Models Using Mean Field Games and Adversarial Inverse 
Reinforcement Learning
Zhaobin Mo,a Xu Chen,a Xuan Di,a,b,* Elisa Iacomini,c Chiara Segala,d Michael Herty,d Mathieu Laurieree 

a Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027; b Data Science Institute, 
Columbia University, New York, New York 10027; c Mathematics and Computer Science Department, University of Ferrara, 44121 Ferrara, 
Italy; d Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, 52062 Aachen, Germany; e Institute of Mathematical 
Sciences, New York University, Shanghai 200122, China 
*Corresponding author 
Contact: zm2302@columbia.edu, https://orcid.org/0000-0002-0465-8550 (ZM); xc2412@columbia.edu, 

https://orcid.org/0000-0002-1006-0926 (XC); sharon.di@columbia.edu, https://orcid.org/0000-0003-2925-7697 (XD); 
elisa.iacomini@unife.it, https://orcid.org/0000-0002-0981-2086 (EI); segala@igpm.rwth-aachen.de, 

https://orcid.org/0000-0002-6480-3772 (CS); herty@igpm.rwth-aachen.de (MH); mathieu.lauriere@gmail.com (ML) 

Received: January 20, 2024 
Revised: June 16, 2024 
Accepted: June 30, 2024 
Published Online in Articles in Advance: 
August 20, 2024 

https://doi.org/10.1287/trsc.2024.0532 

Copyright: © 2024 INFORMS

Abstract. A traffic system can be interpreted as a multiagent system, wherein vehicles 
choose the most efficient driving approaches guided by interconnected goals or strategies. 
This paper aims to develop a family of mean field games (MFG) for generic second-order 
traffic flow models (GSOM), in which cars control individual velocity to optimize their 
objective functions. GSOMs do not generally assume that cars optimize self-interested 
objectives, so such a game-theoretic reinterpretation offers insights into the agents’ under
lying behaviors. In general, an MFG allows one to model individuals on a microscopic 
level as rational utility-optimizing agents while translating rich microscopic behaviors to 
macroscopic models. Building on the MFG framework, we devise a new class of second- 
order traffic flow MFGs (i.e., GSOM-MFG), which control cars’ acceleration to ensure 
smooth velocity change. A fixed-point algorithm with fictitious play technique is devel
oped to solve GSOM-MFG numerically. In numerical examples, different traffic patterns 
are presented under different cost functions. For real-world validation, we further use an 
inverse reinforcement learning approach (IRL) to uncover the underlying cost function on 
the next-generation simulation (NGSIM) data set. We formulate the problem of inferring 
cost functions as a min-max game and use an apprenticeship learning algorithm to solve 
for cost function coefficients. The results show that our proposed GSOM-MFG is a generic 
framework that can accommodate various cost functions. The Aw Rascle and Zhang 
(ARZ) and Light-Whitham-Richards (LWR) fundamental diagrams in traffic flow models 
belong to our GSOM-MFG when costs are specified.
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1. Introduction
Traffic flow models are an indispensable tool for urban 
and suburban traffic management. However, the exist
ing traffic flow models are developed for human dri
vers. With the advent of autonomous vehicles (AV), the 

characteristics of traffic flow could be transformed if 
AVs are designed to drive differently from humans. For 
example, human driving could be unstable resulting in 
stop-and-go waves, whereas AVs could be designed ex 
ante to stabilize traffic. Such a microscopic behavioral 
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change calls for new macroscopic models to predict traf
fic flow in the era of autonomy. In this paper, we aim to 
develop a game-theoretic counterpart of traffic flow 
models, which allows us to devise the payoff or cost 
functions for cars on a microscopic scale and transform 
such a behavior to macroscopic traffic characteristics.

1.1. Motivation
Mean field game (MFG) is a game-theoretic framework 
that has recently gained growing popularity to design 
decision making processes in many-agent dynamical 
systems (Huang, Malhamé, Caines 2006, Lasry and Lions 
2007). It has been shown that the first-order traffic flow 
models can be reinterpreted as an MFG (Huang et al. 
2020a). In other words, classical traffic flow models that 
depict how traffic states (represented by flux, density, 
and velocity) propagate in time and space are a special 
class of differential games, in which each car solves an 
optimal control problem with an objective function, 
whereas others do so simultaneously. All the cars inter
act with one another on a microscopic scale through 
coupled objective functions. When the number of cars 
becomes large, the macroscopic traffic state evolution is 
depicted by an equilibrium of the corresponding MFG. 
However, the existing literature has primarily focused 
on the first-order traffic flow MFGs, which assume that 
each car controls its velocity instead of acceleration. 
Directly controlling velocity could result in sudden 
changes in speed such as an infinite changing rate of 
speed, which is unrealistic. Thus, the key research ques
tion is, whether the generic second-order traffic flow models 
(GSOM) (Lebacque, Mammar, and Salem 2007) can be 
reformulated as MFGs. It is desirable to establish a second- 
order mean field game-theoretic framework that enables 
optimal control of acceleration at a micro level, while 
scaling up to the tempo-spatial evolution of macroscopic 
traffic flow quantities. Reformulating GSOM with MFGs 
would help design new driving acceleration decision 
making processes for individual cars that could poten
tially result in smooth traffic flow. More importantly, 
building on the counterpart of GSOM in MFGs, we could 
further develop new second-order traffic flow models 
that encompass desirable mathematical properties.

This paper aims to develop a family of second-order 
traffic flow MFGs that control vehicle acceleration. 
First, an equivalence between the classical GSOM, Aw 
Rascle and Zhang (ARZ) (Aw and Rascle 2000, Zhang 
2002) in particular, and MFGs will be established, 
denoted as GSOM-MFG. Aligned with the conclusion 
that the GSOM is a family of parametrized first-order 
models, we discover that the second-order traffic flow 
MFG is also a family of parametrized first-order traffic 
flow MFGs. Thus, building on a cost function leading 
to the ARZ model solution, a family of new second- 
order traffic flow MFGs, that is, GSOM-MFG, will be 
developed. We will explore on how the design of 

various objective functions demonstrate different traf
fic flow evolution. Numerical examples will be pro
vided to demonstrate the properties of the new games. 
Moreover, we will establish an adversarial inverse 
reinforcement learning scheme to uncover the objec
tive function latent in real-world data and validate the 
value of our proposed GSOM-MFG.

1.2. Literature Review
We will first review literature on GSOMs and MFGs, 
respectively, and then investigate a series of studies 
that bridge these two topics. The research gap will be 
identified on controlling acceleration in MFGs.

In classical traffic flow models, a classification can be 
made between first-order models and second-order 
models. The former type of models simplify reality by 
assuming instantaneous accelerations and describing 
traffic only in terms of equilibrium conditions. This 
leads to failing in generating capacity drop, hysteresis, 
relaxation, platoon diffusion, or spontaneous conges
tion like stop-and-go waves that are typical features of 
traffic dynamics (Cristiani and Iacomini 2019, Göttlich, 
Iacomini, and Jung 2020, Balzotti and Iacomini 2021). 
To overcome these issues, second-order models have 
been proposed (Aw and Rascle 2000, Zhang 2002, 
Lebacque, Mammar, and Salem 2007). They take into 
account the nonequilibria states, assuming that accel
erations are not instantaneous. To do this, the equation 
that describes the variation of the velocity in time has 
to be added to the system, replacing the typical given 
law of the first order models. In this work, we will 
focus on the generalized second-order models GSOMs 
that encompass a family of existing models, including 
LWR and ARZ. The typical GSOM is formulated as

[GSOM]
ρt + (ρu)x � 0,
(ρω)t + (ρωu)x � ρ r(ρ, u,ω),
u � U(ρ,ω):

8
><

>:
(1.1) 

Here, ρ :� ρ(t, x) stands for traffic density, u :� u(t, x)
the speed, and ω :� ω(t, x) the invariant or Langrangian 
marker; r(·) is the general relaxation function, and U(·)
the velocity function linked to fundamental diagrams.

The GSOM system (1.1) has been studied on varia
tional formulation (Lebacque and Khoshyaran 2013, Li 
and Zhang 2013, Costeseque and Lebacque 2014), fun
damental diagram construction (Seibold et al. 2013), 
empirical validation (Fan, Herty, and Seibold 2014, Yu, 
Bayen, and Krstic 2019), vehicle control (Delle Mon
ache, Piccoli, and Rossi 2017, Chiarello, Piccoli, and 
Tosen 2021, Gong, Piccoli, and Visconti 2021), traffic 
signal control (Khelifi et al. 2016), and junction model
ing (Costeseque, Lebacque, and Khelifi 2015).

MFG is a game-theoretic framework to model com
plex multiagent dynamics arising from the interactions 
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of a large population of rational utility-optimizing agents, 
whose dynamical behaviors are characterized by optimal 
control problems (Huang, Malhamé, Caines 2006, Lasry 
and Lions 2007, Cannarsa, Capuani, and Cardaliaguet 
2021). By exploiting the “smoothing” effect of a large 
number of interacting individuals, MFG assumes that 
each agent only responds to and contributes to the den
sity distribution of the whole population. At mean field 
equilibria (MFE), an agent’s optimal strategy coincides 
with the population density, characterized by two cou
pled partial differential equations (PDEs): 

1. A backward Hamilton-Jacobi-Bellman (HJB) equa
tion (for representative agent dynamic): Given the den
sity evolution of the population, each agent solves an 
optimal control problem on a predefined time horizon 
to reach a minimal cost. For a generic agent, the opti
mal control problem can be solved by dynamic pro
gramming that derives an HJB equation. The equation 
is solved backward in time.

2. A forward Fokker-Planck equation (for population 
dynamic): Given individual controls, the population’s 
density evolution resulting from all agents’ dynamics is 
described by a Fokker-Planck equation. The equation is 
solved forward in time.

MFE is generally challenging to solve due to its 
forward-backward structure. The numerical methods 
of solving MFE include fixed-point, Newton’s method, 
and the variational method (Achdou, Camilli, and 
Capuzzo-Dolcetta 2012, Benamou and Carlier 2015, 
Chow et al. 2018, Albi et al. 2022, Capuani and Mari
gonda 2022). The numerical methods require a good 
initial guess and could fail to converge when the cost 
structure of the game is complex. Thus, learning based 
methods, especially neural network based approxima
tion, have emerged in recent years (Guo et al. 2019, 
Lauriere et al. 2022, Shou et al. 2022, Chen, Liu, and Di 
2023a, Fiedler et al. 2023, Zhou et al. 2024). Learning 
based methods can learn MFEs with complex cost 
functions and high-dimensional states and policies but 
could take a long time to train. Thus, in this paper, we 
will primarily focus on numerical methods, and these 
methods will be revisited later.

MFG has demonstrated its benefits in modeling 
dynamic decision making processes of many agents and 
has become increasingly popular in finance (Lachapelle, 
Salomon, and Turinici 2010, Guéant, Lasry, and Lions 
2011), control (Djehiche, Tcheukam, and Tembine 2016), 
crowd motion (Lachapelle and Wolfram 2011), autono
mous driving (Huang et al. 2020a, 2021; Di and Shi 2021), 
and mixed traffic stability (Huang et al. 2019, 2020b).

Regarding the linkage between MFGs and classical 
traffic flow models, the Lighthill-Whitham-Richards 
(LWR) model (Lighthill and Whitham 1955, Richards 
1956) was shown to be a special MFG (Kachroo, Agar
wal, and Sastry 2016, Huang et al. 2020a). Chevalier, Le 
Ny, and Malhamé (2015) generalized the cost function 

in Kachroo, Agarwal, and Sastry (2016) to one global-in- 
time and global-in-space to model AVs. MFG was fur
ther extended to model lane-change (Festa and Göttlich 
2017) and routing on networks (Cristiani and Priuli 
2014, Huang et al. 2021, Chen, Liu, and Di 2023b).

To the best of our knowledge, a majority of traffic 
flow MFG models primarily focus on velocity control. 
MFGs on acceleration were only proposed recently in 
Achdou et al. (2020, 2021). The state contains a pair of 
position and velocity. A separable cost function is used 
consisting of two terms, a kinetic energy (i.e., the 
square of velocity) and the square of acceleration. The 
dynamics of the generic agent is a double integrator. 
The challenge lies in the state constraint and bounded
ness to velocity (i.e., part of the state), which leads 
to neither strictly convex nor coercive Hamilton and 
potentially unbounded value functions. Achdou et al. 
(2021) demonstrated that by imposing additional 
assumptions to the support of the initial state distribu
tion or cost function, the optimal trajectories could 
form a compact set and guarantee the existence of an 
equilibrium. In particular, mathematical properties of 
equilibria can be ensured in a one-dimensional prob
lem with a quadratic running cost function in accelera
tion. Nevertheless, it still remains unclear as to how 
these games can be applied to the traffic setting, given 
that traffic flow has to satisfy certain physics con
straints, thus allowing for a narrower set of cost func
tions. Overall, MFGs on acceleration is still a nascent 
field that entails a lot of open questions and challenges.

1.3. Contributions of this Paper
This paper aims to develop a game-theoretic frame
work for GSOM using mean-field approximation. We 
will start from identifying a counterpart of ARZ-like 
MFGs, with a physically meaningful cost functions. 
Building on the MFG formulation of ARZ models, we 
will modify the cost function and develop new second- 
order traffic flow MFGs.

In a nutshell, the contributions of this paper include 
the following: 
• Establish a linkage between GSOM and MFG and 

offer a game-theoretical interpretation of GSOMs.
• Propose a broader class of second-order traffic 

flow models by manipulating the objective function 
of GSOM-MFG. Various cost functions are applied 
on a ring road to demonstrate various traffic pattern 
evolution.
• Develop a fixed-point algorithm to solve the MFE 

of GSOM-MFG. Fictitious play technique is applied to 
stabilize the solution algorithm.

The remainder of the paper is organized as follows. 
Section 2 states the problem to be solved in this paper. 
In Section 3, we derive the GSOM-MFG, including con
tinuity equation and HJB equation. In Section 4, we 
develop a family of second-order traffic flow models of 
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which objectives are modifications of those for GSOM- 
MFG to mitigate traffic flow. In Section 5, we develop a 
numerical solution algorithm to solve the proposed 
GSOM-MFGs. In Section 6, we aim to validate the pro
posed framework with inverse reinforcement learning 
on both synthetic and real-world data. Conclusions 
and future research directions follow in Section 7.

2. Problem Statement
In this section, we will first revisit the existing first-order 
traffic flow MFG developed in Huang et al. (2020a) and 
then establish the problem statement for the second- 
order traffic flow MFG, the focus of this paper.

We first make the following assumptions for model
ing MFGs: 
• Each car observes traffic state information on the 

road from all others.
• Each car plans its velocity control in a time horizon 

by anticipating others’ behaviors.
• Cars act to use their predefined driving costs on 

the time horizon in a noncooperative way.
The assumptions for taking mean field approxima

tion include the following: 
• All cars are indistinguishable.
• All cars have the same form of cost function.

2.1. First-Order Traffic Flow MFG
2.1.1. First-Order N-Car Differential Game [DG1]. We 
consider a time horizon [0, T] (where 0 < T < ∞ is a 
finite time horizon), and a platoon of cars indexed by 
i ∈ {1, 2, : : : , N}, where N is the total number of cars. The 
cars are driving in one direction on a closed highway of 
length L without any entrance nor exit, with initial posi
tions x1, 0, : : : , xN, 0, and evolving according to a given 
velocity function.

Each car aims to select its optimal velocity control by 
minimizing its driving cost functional defined over 
[0, T] as

JN
i (x, vi) �

Z T

0
f N
i (x(t), vi(t))
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

running cost

dt+ VT(x(T))
|fflfflfflfflffl{zfflfflfflfflffl}
terminal cost

,

i � 1, : : : , N, 

where for any i � 1, 2, : : : , N, we suppose car i knows 
other cars’ positions:

x(t) � [x1(t), : : : , xi�1(t), xi(t), xi+1(t), : : : , xN(t)]T:

When one car selects its own driving velocity over the 
planning horizon while everybody else does so simul
taneously, we have a so called noncooperative differen
tial game. A Nash equilibrium of the N-car differential 
game is a tuple of controls v∗1(t), v∗2(t), : : : , v∗N(t) satisfy
ing

JN
i (x
∗, v∗i ) ≤ JN

i (x
∗, vi), i � 1, : : : , N:

At equilibrium, no car can improve its driving cost by 
unilaterally switching its velocity control.

2.1.2. First-Order Traffic Flow Mean Field Game [LWR- 
MFG]. If the number of cars goes to infinity N→∞ in 
[DG1], we recover the MFG game for the first-order 
LWR model. In the MFG setting, a representative agent, 
starting from an initial position x, selects driving speed 
v(t), t ∈ (0, T] at time t for the entire time horizon (0, T]
to minimize a cumulative cost f (·) with a terminal cost 
VT(·). The cost function depends on not only the control 
of the representative agent v(t), but also traffic density 
ρ(t, x) at time t and location x. Thus, to solve this opti
mal control problem, ρ(t, x) is assumed to be known. 
Accordingly, this problem can be formulated as an 
optimal control with the constraints that are an ODE 
for a representative agent and a PDE that is the conser
vation law or continuity equation (CE) governing the 
traffic density ρ(t, x):

[Optimal Control of the Representative Agent]

u(t, x) � arg min
v(t)

Z T

0
f (v(t);ρ(t, x))dt+VT(x(T)), 

s:t:
ẋ(t) � v(t), ∀t ∈ [0, T]
x(0) � x,

�

(2.1a) 

[LWR-CE]
ρ(t, x)t + (ρ(t, x)u(t, x))x � 0,
ρ(0, x) � ρ0(x):

�

(2.1b) 

By referring to Huang et al. (2020a) as a source, we 
derive the HJB equation to determine the velocity:

[LWR-HJB]
Vt(t, x) + f ∗(Vx(t, x), ρ(t, x)) � 0,
u(t, x) � f ∗V(Vx(t, x), ρ(t, x)),

�

where the function f ∗(·) is the the Legendre transform 
of f (·) and f ∗V is the derivative with respect to the first 
argument of f ∗. Denote V � Vx. The HJB is meant to be 
integrated backward in time from the terminal cost 
V(x, T) � VT(x). The equilibrium solution of this mean- 
field game is an optimal velocity field u∗(x, t) and the 
corresponding optimal density ρ∗(x, t).

We can substitute [LWR-HJB] into [Representative 
agent’s optimal control] and have the LWR-MFG sys
tem written in PDEs:

[LWR-MFG]

�
(CE) ρt + (ρu)x � 0,
(HJB) Vt + f ∗(Vx,ρ) � 0,

u(t, x) � f ∗V(Vx,ρ):
(2.2) 

Here, V � Vx.
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2.2. From First- to Second-Order Traffic 
Flow MFGs

Following a similar procedure as above, we start from a 
microscopic description to recover later the continuity 
equations and the HJB equation for the second order 
case.

2.2.1. Acceleration-Based N-Car Differential Game 
[DG2a]. Also in this case, we consider a total of N cars 
indexed by i ∈ {1, 2, : : : , N} that are running in one 
direction along a highway of length L. Denote the ith 
car’s position by xi(t), speed by vi(t), and acceleration 
by ai(t).

Each car aims to control its velocity via selection of 
optimal acceleration by minimizing its driving cost 
functional J(x, v, ai) over a predefined planning horizon 
[0, T].

A Nash equilibrium of the acceleration-based N-car 
differential game [DG2a] is a tuple of controls a∗1(t), 
a∗2(t), : : : , a∗N(t) satisfying

JN
i (x
∗, v∗, a∗i ) ≤ JN

i (x
∗, v∗, ai), i � 1, : : : , N:

2.2.2. Parametrized N-Car Differential Game [DG2p]. 
Taking inspiration from the ideas presented in the 
cited works, namely, Aw and Rascle (2000), Aw et al. 
(2002), and Lebacque, Mammar, and Salem (2007), we 
adopt a different approach to handle the acceleration 
term in the model. Instead of directly dealing with it, 
we focus on a specific characteristic of drivers, which 
could be for example their free flow velocity. By con
sidering this attribute, we are able to parameterize 
both the model and the corresponding mean 
field game.

This choice of parameterization has several advan
tages. First, it allows our model to be in line with the 
existing body of research and knowledge within the traf
fic community. It ensures that our formulation aligns 
with established theories and findings in the field. Sec
ond, this approach provides a natural extension of the 
previously mentioned reference (referred to as [DG1]). 
By incorporating the Lagrangian marker as a parameter, 
we enhance the flexibility and applicability of the model, 
enabling it to capture a wider range of traffic scenarios 
and dynamics.

In the subsequent analysis, we classify vehicles based 
on their specific attributes, with each category repre
sented by the corresponding class denoted as w. This 
classification scheme helps us better understand and 
describe the behavior of vehicles within the context of 
the model, allowing for more detailed and nuanced 
analysis of the system.

Assume car i belongs to class w ∈W ⊆ R. The motion 
of car i in class w over [0, T] is dictated by the following 
dynamical system for i � 1, 2, : : : , N (where we assume 
that there is a functional relation between vi, wi and xi 

that is specified later):
ẋi(t) � vi(t), xi(0) � xi, 0,
ẇi(t) � r(x, vi, wi), wi(0) � wi, 0:

�

Note here that ẇi(t) somehow describes the acceleration 
of car i. Relations between wi and vi have been discussed 
and are known as generic second-order models (GSOMs) 
(Seibold et al. 2013). In the following, we assume the 
relation

vi �U 1
xi+1� xi

, wi

� �

: (2.3) 

We will work with the variables (xi, vi, wi) instead of 
(xi, vi, ai).

To select a velocity profile, the ith car solves a param
etrized optimal control problem over [0, T]. Define the 
new ith car’s driving cost functional as

JN
i (x, vi, wi) �

Z T

0
f N
i (x(t), vi(t), wi(t))dt

+VT(xi(T), wi(T)):

The output of the above optimal control problem is 
denoted as a best velocity control v∗i (t), t ∈ [0, T] for car i 
of class w. The control of car i depends on cars’ velocity 
of all other classes.

Example 2.1. In the ARZ microscopic model, the 
acceleration is given by

ai(t) � v̇i(t) �
vi+1(t)� vi(t)
(xi+1(t)� xi(t))γ+1 + r(x, vi, wi), 

for γ ≥ 1 and where

r(x, vi, wi) � λ U 1
xi+1� xi

, wi

� �

� vi

� �

, 

with λ a positive constant. We recall that U(·) is the 
velocity function linked to a fundamental diagram. 
The relation between vi and wi in Equation (2.3) can be 
expressed, in this particular case, as

wi � vi +
1

xi+1� xi

� �γ

:

3. GSOM MFGs
In this section, we establish the link from the micro
scopic second-order traffic model [DG2p] to the macro
scopic perspective. This allows us to bridge the gap and 
transition from the microscopic to the macroscopic 
level of analysis. By doing so, we can recover the corre
sponding continuity equation (CE) and HJB.

In preparation for our discussion, it is important to 
revisit and explore the relationship between the LWR 
model and the GSOM model. In this way, we can gain a 
deeper understanding of the connections and similari
ties between the two traffic flow models.
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The LWR model represents traffic flow as a conserva
tion law, where the density and velocity are the primary 
variables. It assumes a single homogeneous vehicle type 
and considers the fundamental diagram, which relates 
traffic density to the velocity and flow rate. To extend the 
LWR model, we introduced an additional parameter 
w ∈ R+ that accounts for driver behavior and traffic het
erogeneity. It allows for variations in parameters such as 
the free-flow velocity, maximum density, and fundamen
tal diagram shape. These parameters can be adjusted to 
capture different traffic conditions and driver characteris
tics. This leads to a continuity equation with parameter
ized flux that can be seen as the GSOM model where an 
additional Eulerian variable ω � ω(t, x) appears. Indeed, 
the GSOM model incorporates the concept of traffic het
erogeneity and driver behavior by including an extra var
iable ω, which depends on time and space. By 
considering this variable, the GSOM model can better 
capture the evolution of traffic flow. The relationship 
between the models can be seen as a progression from 
the basic LWR model to the parametrized LWR model 
and further to the GSOM model, with increasing levels of 
complexity and sophistication in modeling driver behav
ior and traffic heterogeneity.

Remark 3.1. From now on, we will use the following 
terminologies to refer to w interchangeably, namely, 
property, class, attribute, or Lagrangian marker.

Building on the LWR-MFG model (2.1), for the second- 
order case, we will define the optimal control problem 
for a representative agent and identify the continuity 
equation.

3.1. Derivation of HJB Equation
As we did for the LWR in Equation (2.1a), we consider 
the new constrained minimization problem for a repre
sentative agent, coupled with the CE of GSOM:

[Optimal Control of the Representative Agent]

ũ(t, x, w) � arg min
v(t)

Z T

0
f (v(t);ρ(t, x),ω(t, x)) dτ

+ VT(x(T), w(T)), 

s:t:

ẋ(t) � v(t),

ẇ(t) � r(ρ(t, x), v(t),ω(t, x)),

x(0) � x, w(0) � w,

8
>><

>>:

(3.1a) 

[GSOM-CE]

ρ(t, x)t + (ρ(t, x) u(t, x, w))x � 0,
(ρ(t, x)ω(t, x))t
+ (ρ(t, x)ω(t, x) u(t, x))x
� ρ(t, x) r(ρ(t, x), u(t, x),ω(t, x)),

ρ(0, x) � ρ0(x), ω(0, x) � ω0(x):

8
>>>>>><

>>>>>>:

(3.1b) 

We are now ready to state the theorem that derives the 
HJB to express the correspondent GSOM model as a 
MFG.

Theorem 3.1. Consider the constrained minimization 
problem (3.1). If we assume the function f (ρ, v,ω) to be 
strictly convex with respect to the second argument v, and 
the relaxation function r(ρ, u,ω) to be affine linear in u 
(i.e., r(ρ, u,ω) � αu+ s(ρ,ω), α ∈ R), then the correspond
ing HJB equation can be derived and it reads as

[GSOM-HJB]

Vt(t, x, w) + f ∗(V;ρ(t, x),ω(t, x))
+ s(ρ(t, x),ω(t, x))Vw(t, x) � 0

ũ(t, x, w) � f ∗V(V;ρ(t, x),ω(t, x)),
V(T, x, w) � VT(x, w),

8
>>><

>>>:

(3.2) 

where V � Vx +αVw.

Proof. We define the problem by taking V(t, x, w) to 
be the optimal cost for a generic car starting from loca
tion x and class w at time t:

V(t, x, w) �min
v

Z T

t
f (v(τ);ρ(τ, x),ω(τ, x))dτ

� �

+VT(x(T), w(T)),

s:t: ẋ(τ) � v(τ), x(t) � x,

ẇ(τ) � r(ρ(τ, x), v(τ),ω(τ, x)), w(t) � w, τ ∈ [t, T]:
(3.3) 

Suppose a generic car of class w starts from position x 
at time t. Consider a small time step ∆t, we can divide 
the driving cost in Equation (3.3) into two parts on 
[t, t+∆t] and [t+∆t, T]:

Z T

t
f (v(τ);ρ(τ, x(τ)),ω(τ, x(τ)))dτ

�

Z t+∆t

t
f (v(τ);ρ(τ, x(τ)),ω(τ, x(τ)))dτ

+

Z T

t+∆t
f (v(τ);ρ(τ, x(τ)),ω(τ, x(τ)))dτ:

Correspondingly, the generic car’s decision process is 
also divided into two stages. First it selects velocity 
v(t) � ν on the horizon [t, t+∆t]. Then it moves to x+
ν∆t at time t+∆t and selects its velocity profile on the 
rest of the planning horizon [t+∆t, T].

The running cost on [t, t+∆t] is approximated by
Z t+∆t

t
f (v(τ);ρ(τ, x(τ)),ω(τ, x(τ)))dτ

� f (ν;ρ(t, x),ω(t, x))∆t+O(∆t2):

From the new position x+ ν∆t, the optimal cost on [t+∆t, 
T] the car can obtain is V(t+∆t, x+ ν∆t, w+ r(ρ,ν,ω)∆t). 
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By the dynamic programming principle, we have

V(t, x, w) �min
ν
{f (ν;ρ(t, x),ω(t, x))∆t+O(∆t2)

+V(t+∆t, x+ ν∆t, w+ r∆t)}, (3.4) 

where r :� r(ν;ρ,ω).
Take the first-order Taylor’s expansion of V(t+∆t, 

x+ ν∆t, w+ r∆t) near (t, x, w) and denote Vt, Vx, and Vw 
as the partial derivatives ∂V=∂t, ∂V=∂x, and ∂V=∂w. 
Equation (3.4) yields

V(t, x, w) �min
ν
{f (ρ,ν,ω)∆t+V +∆tVt

+ ν∆tVx + r∆tVw +O(∆t2)}, 

where we removed the arguments dependencies to sim
plify the notation to the reader. Eliminating V(t, x, w)
from both sides, dividing both sides by ∆t and letting 
∆t→ 0, we get

Vt +min
ν
{f (ν;ρ,ω) + νVx + rVw} � 0:

Because r is an affine linear function with respect to ν, 
we can write it as

r(ρ, ν,ω) � α ν + s(ρ,ω), α ∈ R, 
Vt +min

ν
{f (ρ, ν,ω) + ν(Vx + αVw)} + s(ρ,ω)Vw � 0:

(3.5) 

Because, by hypothesis, f (ν;ρ,ω) is strictly convex 
with respect to ν, Equation (3.5) can be written as

Vt + f ∗(V;ρ,ω) + s(ρ,ω)Vw � 0, (3.6) 

where V � Vx + αVw and f ∗(·) is the Legendre transform 
of f (·), defined as

f ∗(V;ρ,ω) �min
ν
{f (ν;ρ,ω) + νV}:

As a result, the w-specific optimal velocity field ũ :�

ũ(t, x, w) is given by

ũ(t, x, w) � arg min
ν
{f (ν;ρ,ω) + νV}

� f ∗V(V;ρ,ω): (3.7) 

Recall that V � Vx + αVw, and f ∗V is the derivative with 
respect to the first argument V of f ∗. We drop the term 
s(ρ,ω)Vw because it does not depend on the control ν.

This ends the proof. w

We provide Corollary 3.2 to discuss the solution exis
tence of the HJB equation (Equation (3.2)).

Corollary 3.2. Given ρ(t, x) and ω(t, x), ∀(t, x) ∈ [0, T] ×
X obtained from the continuity equation, the HJB Equation 
(3.2) admits a solution if the following conditions hold: 

1. The running cost f (v(t),ρ(t, x),ω(t, x)) is continuous 
with regard to v;

2. The terminal cost VT(x, w) is continuous;
3. The term | f (v(t),ρ(t, x),ω(t, x)) | + |VT(x, w) | is bounded;

4. The relaxation function r(ρ, v,ω) to be affine linear in 
v (i.e., r(ρ, v,ω) � αu+ s(ρ,ω), α ∈ R).

Proof. We denote X̃ � (x, w) and ∇Ṽ(t, X̃) � (Vx(t, x, w), 
Vw(t, x, w)). Given ρ(t, x) and ω(t, x), ∀(t, x) ∈ [0, T] × X 

obtained from the continuity equation, we introduce the 
following Hamiltonian:

H(t, X,∇Ṽ(t, X)) � f ∗(Vx(t, X̃);ρ(t, x),ω(t, x))

+ s(ρ(t, x),ω(t, x))Vw(t, x, w) : (3.8) 

We then reformulate Equation (3.2) as

∂tṼ(t, X̃) +H(t, X,∇Ṽ(t, X̃)) � 0
Ṽ(T, X̃) � VT(x, w):

(

(3.9) 

The reformulated HJB equation (Equation (3.9)) admits 
a solution by theorem 3.2 in Nisio (2015). Corollary 3.2
holds. In Section 4, we will demonstrate that conditions 
(1), (2), and (3) in Corollary 3.2 hold for the running and 
terminal costs used in this work. w

Before delving into the derivation of continuity equa
tion, we need to define a mean velocity field, which 
averages over class w, ∀w ∈ R+, mathematically,

u(t, x) �
Z

w
ũ(t, x, w)dw �

Z

w
f ∗V(V;ρ,ω)dw: (3.10) 

The mean velocity field will be fed into CE to propagate 
the population dynamics.

3.2. Derivation of the CE
Regarding the GSOM CE, it is well known (Aw et al. 
2002) that by passing the macroscopic limit of the system 
(2.2), we achieve the conservation laws for a macro
scopic density quantity ρ � ρ(t, x), a macroscopic veloc
ity quantity u � u(t, x), and ω � ω(t, x), which are

[GSOM-CE]
ρ(t, x)t + (ρ(t, x)u(t, x))x � 0,
(ρ(t, x)ω(t, x))t + (ρ(t, x)ω(t, x)u(t, x))x
� ρ(t, x) r(ρ(t, x), u(t, x),ω(t, x)):

8
><

>:

(3.11) 

The relations between the macroscopic and microscopic 
quantities are

ρ(t, xi) �
1

xi+1(t)� xi(t)
, u(t, xi) � vi, ω(t, xi) � wi:

Remark 3.2. We would like to pinpoint the difference 
between the notations ω(t, x) and w(t); ω is an Eulerian 
quantity and w the correspondent Lagrangian one. 
Eulerian coordinates capture the motion of fluid flow 
through moving points for visualization, whereas 
Lagrangian coordinates directly track individual fluid 
particles.
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Below we will detail the micro-macro limit. Consider
ing the time-dependent Lagrangian variables xi :� xi(t), 
vi :� vi(t), wi :� wi(t), the microscopic model related to 
the generic second order traffic model GSOM is

ẋi � vi, xi(0) � xi, 0,
ẇi � r(x, vi, wi), wi(0) � wi, 0:

�

(3.12) 

Because in a typical traffic model we have that r(x, vi, 
wi) � r

�
∆X=(xi�1� xi), vi, wi

�
, we can consider the local 

density and the specific volume

ρi(x) �
∆X

xi+1� xi
, ςi(x) �

1
ρi(x)

, 

and rewrite the microscopic system (3.12) as

ς̇i �
1

∆X
(vi+1� vi), xi(0) � xi, 0,

ẇi � r(ρi, vi, wi), wi(0) � wi, 0:

8
<

:

Introducing the Lagrangian “mass” coordinates (X, T), 
we can then write

∂Tς � ∂Xv,
∂Tw � r(ρ, u,ω),

�

(3.13) 

because u(t, xi) � vi, ω(t, xi) � wi.
Note that X describes the total space occupied by 

cars up to point x. Now, we can consider the following 
relations

∂Xx � ρ�1 � ς, ∂Xt � 0, ∂Tx � u, ∂Tt � 0, 

and we rewrite them as

∂xX � ρ, ∂tX � �ρu, T � t:

Zooming in Equation (3.13), that is, multiplying space 
and time variables by a small parameter ε, we get the 
limit

ρt + (ρu)x � 0,
(ρω)t + (ρωu)x � ρ r(ρ, u,ω),

�

(3.14) 

which is the macroscopic system written in the Euler
ian coordinate, because the variables like density, 
velocity, and specific volume do not change in this 
scaling. Moreover, the microscopic model (3.13) can 
be seen as a semidiscretization of the macroscopic 
one (3.14).

3.3. GSOM-MFG Model Summary
Summarizing the HJB equation derived in Equation 
(3.2) and the CE in Equation (3.11), we present the 
GSOM-MFG model here. In a nutshell, [GSOM-MFG] is 
a forward-backward PDE system with initial, boundary, 

and terminal conditions, summarized below:

[GSOM-MFG]
(CE) ρt + (ρ u)x � 0,

(ρω)t + (ρωu)x
� ρ(t, x) r(ρ(t, x), u(t, x),ω(t, x)),

(HJB) Vt + f ∗(V;ρ,ω) + s(ρ,ω)Vw � 0,
ũ � f ∗V(V;ρ,ω),

u �
Z

w
f ∗V(V; ρ,ω)dw:

8
>>>>>>>>>><

>>>>>>>>>>:

(3.15) 

(IC) ρ(0, x) � ρ0(x), ω(x, 0) � ω0(x),

(BC) ρ(t, 0),ρ(t, L), ω(t, 0),ω(t, L),

(TC) V(T, x, w) � VT(x, w):

The MFE solution is denoted as
SOL([GSOM-MFG])

� {ρ(x, t),ω(x, t), u(t, x),

ũ(t, x, w), V(t, x, w)}∀x∈R+, t∈[0, T], w∈R+ :

3.4. First-Order and GSOM Traffic Flow 
MFGs Comparison

To emphasize the coherence of the computation, we 
revisit the mean-field game systems of LWR and GSOM. 
Notably, the models exhibit a comparable structure, with 
the GSOM model incorporating an extra variable along
side the other ones. To remind, we summarize [LWR- 
MFG] (2.2) and [GSOM-MFG] (3.15) here:

[LWR-MFG]

ρt + (ρu)x � 0

Vt + f ∗(Vx,ρ) � 0

u(t, x) � f ∗V(Vx, ρ)

,

8
>><

>>:

where V � Vx: (3.16) 
[GSOM-MFG]
ρt + (ρu)x � 0
(ρω)t + (ρωu)x � ρ r(ρ, u,ω)
Vt + f ∗(V;ρ,ω) + s(ρ,ω)Vw � 0
ũ � f ∗V(V;ρ,ω),

u �
Z

w
f ∗V(V;ρ,ω)dw:

,

8
>>>>>>>><

>>>>>>>>:

where V � Vx + αVw: (3.17) 

When we set α � s(ρ,ω) � 0 (and as a consequence 
r(ρ, u,ω) � αu+ s(ρ,ω) � 0) in the GSOM-MFG model, 
we recover the LWR-MFG model together with the 
second PDE of the system (3.17). Note that they 
are decoupled because the LWR-MFG is independent 
from w.
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In the first-order traffic flow MFG, all the equations are 
defined in terms of the time t and spatial coordinate x 
variables. However, in the new GSOM system, we 
encounter a mixed situation. Specifically, two equations 
are defined in terms of (t, x), whereas the other two equa
tions appear to be defined in (t, x, w), where w represents 
an additional parameter. However, it is important to note 
that only the value fit V and the Eulerian velocity u in the 
GSOM system depend additionally on the parameter w. 
This setup is reasonable because the GSOM system can 
be seen as a parameterized model. The parameter w 
serves as an additional factor influencing the model and 
allowing for more versatility adaptability. Alternatively, 
one could consider solving the LWR model for various 
fluxes, where each flux is determined by a specific value 
of w. This perspective highlights the possibility of investi
gating and analyzing the LWR model under different sce
narios represented by different flux values.

4. GSOM-MFG Cost Specification
The interpretation of GSOM as an MFG allows us to 
modify the cost functional and derive a new class of 
second-order traffic flow models. There are infinite 
choices of respective cost functions. Below we start 
from those inspired by traffic flow models.

4.1. ARZ Cost Function
We first specify U(ρ,ω) as the Greenshields form for 
the equilibrium velocity that corresponds to the first- 
order model. Then we get

U(ρ,ω) �ULWR(ρ) + (ω�ULWR(0))

� um 1� ρ
ρm

� �

+ω� um � um
ω

um
�
ρ

ρm

� �

:

(4.1) 

Note that if w � um, we recover the LWR Greenshields 
relation.

Following the similar idea in Huang et al. (2020a), 
here we choose the following cost function:

fGSOM �
1
2 (U(ρ,ω)� u)2, 

and the ARZ relaxation function

r � λ(U(ρ,ω)� u), 

then [GSOM-MFG] (3.15) becomes

[ARZ-MFG]

ρt + (ρu)x � 0
(ρω)t + (ρωu)x � ρλ(U(ρ,ω)� u)

Vt +U(ρ,ω)Vx �
1
2 (Vx � λVw)

2
� 0

ũ � U(ρ,ω)� (Vx � λVw)

u �
Z

w
ũdw:

8
>>>>>>>>><

>>>>>>>>>:

Corollary 4.1. Given cost function

fARZ(u;ρ,ω) � 1
2u2

m
(U(ρ,ω)� u)2, (4.2) 

where um is maximum speed and U(ρ,ω) is defined in (4.1).
Define

r(ρ, u,ω) � λ(U(ρ,ω)� u): (4.3) 

In other words, let α ��λu, s(ρ,ω) � λU(ρ,ω).
[ARZ-MFG] can be reformulated as

[ARZ-MFG]

(CE) ρt + (ρu)x � 0,

(ρω)t + (ρωu)x � ρλ(U(ρ,ω)� u),

(HJB) Vt +U(ρ,ω)Vx �
1
2 (Vx � λVw)

2
� 0,

ũ � U(ρ,ω)� u2
m(Vx � λVw):

8
>>>>>>><

>>>>>>>:

(4.4) 

This includes the initial condition (IC), the boundary condi
tion (BC), and the terminal condition (TC) specified here:

(IC) ρ(0, x) � ρ0(x), ω(0, x) � ω0(x),
(BC) ρ(t, 0), ρ(t, L), ω(t, 0),ω(t, L),
(TC) V(T, x, w) � VT(x, w):

Proof. We first expand the cost function defined in 
(4.2) using (4.1) as follows:

fARZ(u; ρ,ω) � 1
2u2

m
(U(ρ,ω)� u)2 (4.5a) 

�
1

2u2
m

um 1� ρ
ρm

� �

+ ω� um

� �

� u
� �2

(4.5b) 

�
1

2u2
m

um
ω

um
�
ρ

ρm

� �

� u
� �2

(4.5c) 

�
1
2

u
um

� �2
�

ω

u2
m
�
ρ

umρm

� �� �

u + 1
2
ω

um
�
ρ

ρm

� �2
:

(4.5d) 

Plugging (4.2) into (3.7), we can compute the optimal 
velocity field as

ũ(t, x, w) � arg min
ν
{fARZ(ν;ρ,ω) + ν(Vx + αVw)}

(4.6a) 

� arg min
ν

(
1
2
ν

um

� �2
�

"
ω

u2
m
�
ρ

umρm

� �

� (Vx + αVw)

#

ν

)

(4.6b) 

� um
ω

um
�
ρ

ρm

� �

� u2
m(Vx + αVw)

¢U(ρ,ω)� u2
m(Vx + αVw): (4.6c) 
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In the second line above, we substitute the optimal veloc
ity field into the cost function and drop all the terms that 
are independent of ν without loss of generality.

Then substituting the above optimal velocity field 
into (3.6), we have

Vt +min
ν
{fARZ(ν; ρ,ω) + ν(Vx + αVw)} + s(ρ,ω)Vw � 0

(4.7a) 

⇒ Vt +
1

2u2
m

um
ω

um
�
ρ

ρm

� �

(Vx + αVw)

� �2
(

� um
ω

um
�
ρ

ρm

� �

� (Vx +αVw)

� �2
+

1
2
ω

um
�
ρ

ρm

� �2 

+ ν(Vx +αVw)

�

+λU(ρ,ω)Vw � 0 

⇒Vt�
1

2u2
m

um
ω

um
�
ρ

ρm

� �

� (Vx +αVw)

� �2 

+
1
2
ω

um
�
ρ

ρm

� �2
+λU(ρ,ω)Vw � 0: (4.7b) 

Below we show the HJB equation in [ARZ-MFG] admits 
a solution.

Corollary 4.2 Given ρ(t, x) and ω(t, x), ∀(t, x) ∈ [0, T] × X 

from the continuity equation, the HJB equation with the run
ning cost fARZ admits a solution if the terminal cost VT(x, w) is 
continuous and bounded.

Proof. Conditions (1) and (2) in Corollary 3.2 hold 
for the running and terminal costs, respectively. We 
only need to show the running cost is bounded. We 
have fARZ(u;ρ,ω) � (U(ρ,ω)� u)2=2u2

m ⩽ u2
m=2u2

m � 1=2. 
Corollary 4.2 holds. w

Summarizing the above game-theoretic interpreta
tion, we can rewrite ARZ models using an MFG repre
sentation shown in Equation (3.15), which concludes 
the proof. w

Theorem 4.3. The solution of [GSOM] (1.1) is a solution 
of [ARZ-MFG] (4.4) under the conditions that (i) [ARZ- 
MFG] and [GSOM] have the same initial conditions and 
boundary conditions, and (ii) VT(x, w) � C where C is an 
arbitrary constant for [ARZ-MFG].

Proof. Denote ρ∗(t, x),ω∗(t, x), u∗(t, x) the solution of 
[GSOM]. Note that the CE defined in Equation (1.1) is 
the same as that in Equation (4.4). Now it suffices to 
show that u∗ satisfy the HJB Equations (3.2) for some V∗. 
Take V∗ ≡ C, then the terminal condition V∗(T, x, w) �
VT(x, w) � C is satisfied, and Equation (3.2) becomes a 
single equation ũ∗(t, x, w) �U(ρ∗,ω∗), defined in Equa
tion (1.1). Because ũ∗(·) does not depend on w anymore, 

we can drop its argument w and define u∗(t, x) :� ũ∗(t, 
x, w) without loss of generality. In conclusion, ρ∗, ω∗, u∗, 
and V∗ ≡ C is also a solution of [ARZ-MFG]. w

4.2. GSOM Nonseparable Cost Function
Building on the ARZ cost function, we propose a modi
fied version and call it GSOM nonseparable cost func
tion with three terms, representing kinetic energy, 
driving efficiency with dependence on the Lagrangian 
marker, and traffic safety; mathematically,

fARZ�NonSep(u;ρ,ω)

�
1

2u2
m
(U(ρ,ω)�u)2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
equilibrium speed

+
1
2 1� ω

um

� �2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
flow heterogeneity

�
1
2 1� ρ

ρm

� �2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
safety

(4.8a) 

¢
1
2

u
um

� �2
�U(ρ,ω) u

u2
m
+

1
2

U(ρ, w)
um

� �2 

+
1
2 1� ωum

� �2
�

1
2 1� ρ

ρm

� �2
: (4.8b) 

To elaborate, the reason we come up with three terms in 
line 1 is as follows. First, minimizing (U(ρ,ω)� u)2=2u2

m 
is equivalent to imposing the velocity field to move 
toward the equilibrium speed defined by U(ρ,ω). Sec
ond, minimizing (1�ω=um)

2
=2 equals to forcing ω(t, x)

toward the maximum speed um. Third, minimizing 
�(1� ρ=ρm)

2
=2 equals to pushing ρ(t, x) away from the 

jam density ρm. In the second line, we further expand 
the first term (U(ρ,ω)� u)2 into three subterms with 
physical meanings. First, minimizing u2=2u2

m equals to 
minimizing kinetic energy defined by the square of veloc
ity. Second, minimizing �ωu=u2

m amounts to increasing 
ω and u as close to the maximum speed um as possible. 
Third, minimizing ρu=ρmum equals to when u is high, ρ 
needs to be low, and vice versa. In other words, speed 
choice should account for the congestion effect, that is, 
congestion-aware.

Following the same procedure as done for ARZ-MFG 
derivation, we can plug this cost function into (3.7) and 
compute the w-specific optimal velocity field as

ũ(t, x, w) � arg min
ν
{fARZ�NonSep(ν; ρ,ω) + ν(Vx + αVw)}

� arg min
ν

1
2
ν

um

� �2
�U(ρ,ω) ν

u2
m
+ ν(Vx + αVw)

( )

� arg min
ν

1
2u2

m
ν2 �

ω

u2
m
�
ρ

umρm
� (Vx + αVw)

� �

ν

� �

� um
ω

um
�
ρ

ρm

� �

� u2
m(Vx + αVw)

¢U(ρ,ω)� u2
m(Vx + αVw):
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In the second line above, we substitute the optimal veloc
ity field into the cost function and drop all the terms that 
are independent of ν without loss of generality.

Assume r(·) follows (4.3). We substitute the above 
optimal velocity field into (3.6), the optimal value func
tion is computed as

Vt +min
ν
{fARZ�NonSep(ν;ρ,ω) + ν(Vx +αVw)}

+ s(ρ,ω)Vw � 0,

⇒ Vt +min
ν

1
2u2

m
ν2�

ω

u2
m
�
ρ

umρm
� (Vx + αVw)

� �

ν

� �

+λU(ρ,ω)Vw +
1
2 1� ωum

� �2
�

1
2 1� ρ

ρm

� �2
� 0:

The second row holds because we substitute the opti
mal w-specific velocity field into the cost function.

Below we show the HJB equation admits a solution.

Corollary 4.4. Given ρ(t, x) and ω(t, x), ∀(t, x) ∈ [0, T] × X 

from the continuity equation, the HJB equation with the non
separable cost admits a solution if the terminal cost VT(x, w)
is continuous and bounded.

Proof. We only need to show the running cost is 
bounded. We have fARZ�NonSep(u;ρ,ω) � (U(ρ,ω)� u)2=
2u2

m + (1�ω=um)
2
=2� (1� ρ=ρm)

2
=2 ⩽ 1. Corollary 4.4

holds. w

In summary, we have

[GSOM-MFG-NonSep]
(CE) ρt+(ρu)x�0,

(ρω)t+(ρωu)x�λ(U(ρ,ω)�u),

(HJB) Vt�
1

2u2
m
[U(ρ,ω)�u2

m(Vx+αVw)]
2

+λU(ρ,ω)Vw+
1
2 1� ωum

� �2
�

1
2 1� ρ

ρm

� �2
�0,

ũ�U(ρ,ω)�u2
m(Vx�λVw),

u�
Z

w
ũdw: (4.9)

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

4.3. GSOM Separable Cost Function
We propose another modified version and call it GSOM 
separable cost function with three terms, representing 
kinetic energy, driving efficiency with dependence on the 
Lagrangian marker, and traffic safety. Mathematically,

fARZ�Sep(u; ρ,ω)¢ 1
2 1� u

um

� �2
+

1
2 1� ω

um

� �2 

�
1
2 1� ρ

ρm

� �2
: (4.10a) 

In a comparison with the nonseparable cost, the GSOM 
separable cost does not have crossing terms among 
speed choice, Lagrangian marker, and road density. 
We can plug this cost function into (3.7) and compute 
the optimal velocity field as

ũ(t, x, w) � arg min
ν
{fARZ�Sep(ν;ρ,ω) + ν(Vx + αVw)}

� arg min
ν

1
2 1� ν

um

� �2
+ ν(Vx + αVw)

( )

� um � u2
m(Vx + αVw):

We substitute the above optimal velocity field into 
(3.6); the optimal value function is computed as

Vt +min
ν
{fARZ�Sep(ν;ρ,ω) + ν(Vx + αVw)}

+ s(ρ,ω)Vw � 0,

⇒ Vt +min
ν

1
2 1� ν

um

� �2
+ (Vx + αVw)ν

( )

+ λU(ρ,ω)Vw +
1
2 1� ωum

� �2

�
1
2 1� ρ

ρm

� �2
� 0:

Below we show the HJB equation admits a solution.

Corollary 4.5. Given ρ(t, x) and ω(t, x), ∀(t, x) ∈ [0, T] × X 

from the continuity equation, the HJB equation with the sepa
rable cost admits a solution if the terminal cost VT(x, w) is 
continuous and bounded.

Proof. We only need to show the running cost is 
bounded. We have fARZ�Sep(u;ρ,ω) � (1� u=um)

2
=

2+ (1�ω=um)
2
=2� (1� ρ=ρm)

2
=2 ⩽ 1. Corollary 4.5

holds. w

In summary, we have

[GSOM-MFG-Sep] (4.11) 

(CE) ρt + (ρ u)x � 0,
(ρω)t + (ρωu)x � λ(U(ρ,ω)� u),

(HJB) Vt +minν
1
2 (1�

ν

um
)
2
+ (Vx + αVw)ν

� �

+ λU(ρ,ω)Vw +
1
2 1� ω

um

� �2

�
1
2 1� ρ

ρm

� �2
� 0,

ũ � um � u2
m(Vx + αVw),

u �
Z

w
ũdw:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

(4.12) 
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5. MFE Solution Approach and 
Numerical Results

In this section, we will first develop a fixed-point algo
rithm to solve [GSOM-MFG] and then demonstrate 
how different cost functions affect traffic flow patterns 
on a ring road.

5.1. Related Work
The existing literature primarily uses three types of 
numerical methods, namely, fixed-point iteration, varia
tional method, and Newton’s method. The majority of 
work on MFGs (Couillet et al. 2012, Chevalier, Le Ny, 
and Malhamé 2015) are solved using fixed-point method, 
but it only works well for MFGs with special cost func
tional structures, for example, when there are no cross 
terms between representative agent’s control (i.e., veloc
ity) and population mass (i.e., traffic density) in cost 
functions. Traffic flow inspired MFGs, however, exhibit 
unique characteristics that the cost functional is nonsepar
able arising from the traffic congestion effect. In other 
words, vehicles have to slow down when encountering 
traffic congestion (i.e., lower speed at higher density) and 
speed up in less congestion areas (i.e., higher speed at 
low density). Because of the coupling between traffic den
sity and velocity, traffic flow MFGs are generally not 
potential games and accordingly cannot be solved with 
variational method either. To solve LWR-MFG, in Huang 
et al. (2019, 2020a, b) instead, the forward and backward 
equations are reformulated as a large nonlinear system 
and finite-difference Newton’s method is used. Multi
grid preconditioning techniques are further applied to 
improve and accelerate the convergence. This method, 
however, involves solving a large system of equations 
of which the dimensions are determined by the product 
of discretized time and space dimensions, and are thus 
not scalable. Recent work on MFG has developed tech
niques such as fictitious play (FP) (Perrin et al. 2020), 
which uses historical control information of the repre
sentative agent to update the control profile before 
feeding it into the FPK equation, which is shown to 
help stabilize policy learning. In this paper, we will use 
fixed-point method coupled with FP for the solution 
algorithm.

5.2. Numerical Schemes
Denote L ∈ [0,∞) as the length of the road and T ∈ [0,∞)
as the planning horizon. To numerically solve GSOM- 
MFG, a space-time meshgrid needs to be first defined. 
Denote the spatial and temporal step sizes as ∆x, ∆t, 
respectively, and the numbers of spatial and temporal 
points as Nx, Nt, respectively. The relations between the 
step size and the number of points follow that ∆x �
L=Nx and ∆t � T=Nt, respectively. Accordingly, we can 
define a sequence of grid points xk � k∆x, k � 1, : : : , Nx 
and tτ � τ∆t,τ � 1, : : : , Nt, respectively. With these grid 

points, we split the road into a sequence of adjacent 
cells, denoted as [xk�1, xk] � [(k� 1)∆x, k∆x], k � 1, : : : , 
Nx, then, [0, L] � [(0, ∆x), (2∆x, 3∆x), : : : , ((Nx� 1)∆x, 1)]. 
Similarly, we discretize the planning time horizon into a 
sequence of time intervals [tτ�1, tτ] � [(τ� 1)∆t,τ∆t], 
τ � 1, : : : , Nt, then, [0, T] � [(0, ∆t), : : : , ((Nt� 1)∆t, 1)]. To 
ensure stability of the numerical scheme, Nt is chosen in 
such a way that ∆t respects the Courant–Friedrichs– 
Lewy (CFL) condition (LeVeque 2002), that is, v∆t ≤ ∆x 
should be posed where v � maxk�1, : : : , Nx ;τ�1, : : : , Nt |uτk | . 
When the MFG has speed constraints 0 ≤ u ≤ umax, it 
suffices to ensure umax∆t ≤ ∆x.

On the two-dimensional meshgrid points, we can 
now define discretized flow variables for CE. Denote 
ρτk , uτk , and ωτk the average density, velocity, and prop
erty, respectively, in cell k (i.e., [(k� 1)∆x, k∆x]) at time 
τ, where τ � 1, : : : , Nt; k � 1, : : : , Nx; l � 1, : : : , Nw.

To solve CE, we use a finite volume Lax-Friedrichs 
scheme (LeVeque 2002):

ρτ+1
k �

1
2 (ρ

τ
k�1 + ρ

τ
k+1)�

∆t
2∆x (ρ

τ
k+1uτk+1 � ρ

τ
k�1uτk�1),

(5.1a) 

zτ+1
k �

1
2 (z

τ
k�1 + zτk+1)�

∆t
2∆x
(zτk+1uτk+1 � zτk�1uτk�1):

(5.1b) 

For the initial condition of CE, we consider ρ0(x) � ρ(x, 0)
and ω0(x) � ω(x, 0) (z can be recovered as ρω) discretized 
as

ρ0
k �

1
∆x

Z xk

xk�1

ρ0(x)dx, ω0
k �

1
∆x

Z xk

xk�1

ω0(x)dx, (5.2a) 

z0
k � ρ

0
kω

0
k �

1
∆x

Z xk

xk�1

ρ0(x)ω0(x)dx, k � 1, : : : , Nx:

(5.2b) 

The key difference between GSOM-MFG and LWR- 
MFG is the additional degree of freedom introduced in 
the Lagrangian marker w. Accordingly, we need to 
augment the grid to a three-dimensional meshgrid of 
(t, x, w). Denote W ∈ R as the domain of the Lagrangian 
marker, the discretized step size as ∆w, and the num
bers of points as Nw.

On the three-dimensional meshgrid points, we will 
define discretized value and velocity variables for HJB 
equations. To solve HJB, we discretize Vτkl � V(τ, xk, wl)
using the upwind scheme in time and the central differ
ence scheme in space and property, respectively:

Vt(tτ, xk, wl) �
Vτ+1

kl �Vτkl
∆t , (5.3a) 

Vx(tτ, xk, wl) �
Vτk+1, l�Vτk�1, l

2∆x
, (5.3b) 

Vw(tτ, xk, wl) �
Vτk, l+1�Vτk, l�1

2∆w
: (5.3c) 
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Then HJB Equation (3.6) becomes

Vτ+1
kl � Vτkl

∆t + f ∗
 

Vτk+1, l � Vτk�1, l
2∆x

+ α
Vτk, l+1 � Vτk, l�1

2∆w
;ρτk ,ωτk

!

+ s(ρτk ,ωτk )
Vτk, l+1 � Vτk, l�1

2∆w
� 0:

The value function is then computed as

Vτ+1
kl � Vτkl

∆t

� �f ∗
Vτk+1, l � Vτk�1, l

2∆x + α
Vτk, l+1 � Vτk, l�1

2∆w ;ρτk ,ωτkl

� �

� s(ρτk ,ωτk)
Vτk, l+1 � Vτk, l�1

2∆w
, (5.4) 

and the optimal w-specific and mean velocities (3.7)–(3.10) 
are solved as

ũτkl(tτ, xk, wl) � f ∗V

 
Vτk+1, l � Vτk�1, l

2∆x

+ α
Vτk, l+1 � Vτk, l�1

2∆w
;ρτkl,ω

τ
kl

!

,

(5.5a) 

uτk (tτ, xk) �

P
wl

ũτkl(tτ, xk, wl)

Nw
: (5.5b) 

The terminal condition of HJB is discretized as

VNt
kl � VT(xk, wl), ∀k � 1, : : : , Nx; l � 1, : : : , Nw: (5.6) 

In summary, the total variables include {ρτk}
0≤τ≤Nt
1≤k≤Nx

, 
{ωτk}

0≤τ≤Nt
1≤ k≤Nx

, {uτk}
1≤τ≤Nt
1≤ k≤Nx

, {ũτkl}
1≤τ≤Nt
1≤ k≤Nx, 1≤ l≤Nw

, and 
{Vτkl}

1≤τ≤Nt
1≤ k≤Nx, 1≤ l≤Nw

.

5.3. Algorithm
With the discretization scheme defined, we propose a 
fixed-point method by solving two PDEs iteratively. In 
other words, CE is solved forward first, and then traffic 
density and Langrangian marker profiles are passed to 
HJB, and HJB is solved backward to obtain traffic speed. 
Traffic speed profile is further fed into CE to propagate 
traffic density and Langrangian marker. This process 
repeats until it converges. If convergence is guaranteed, 
the resultant fixed point would be the MFE of the MFG. 
As aforementioned, we find that fixed-point method 
does not normally converge and exhibit instability, due 
to the nonseparable term between traffic speed and den
sity. Thus, we adopt FP and find that this technique 
applies here and helps stabilize the equilibrium solution. 
The algorithm is detailed below.

Algorithm 1 (GSOM-MFG Algorithm)
1: Input
2: Initial traffic density: ρ0(x), x ∈ [0, L]; Initial Lagrang

ian marker: ω0(x), x ∈ [0, L]; Terminal value: VT(x, w), 
x ∈ [0, L], w ∈ [0, W]; Boundary condition: ρ(t, 0), 
ρ(t, L), ω(t, 0),ω(t, L), t ∈ [0, T]; Convergence gap: 
Gap�10; Convergence threshold: ɛ � 10�2

3: Initialization
4: ρτk , k � 1, : : : , Nx,τ � 1, : : : , Nt

5: ωτk , k � 1, : : : , Nx,τ � 1, : : : , Nt

6: uτk , k � 1, : : : , Nx,τ � 1, : : : , Nt

7: uτkl � 0, k � 1, : : : , Nx, l � 1, : : : , Nw,τ � 1, : : : , Nt

8: Vτkl � 0, k � 1, : : : , Nx, l � 1, : : : , Nw,τ � 1, : : : , Nt

9: while Gap > ɛ do //Check convergence
10: iter� 1
11: Store the variables from the previous iteration: 

ρτ(�)k � ρτk , ωτ(�)k � ωτk , uτ(�)k � uτk .
12: Given ρ0

k ,ω0
k , ∀k � 1, : : : , Nx //Forward

13: for τ← 0 to Nt� 1 do
14: for k← 1 to Nx do
15: Given uτk�1,ρτk�1, uτk+1,ρτk+1, propagate ρτ+1

k 
by solving Equation (5.1a)

16: Given uτk�1, zτk�1, uτk+1,ωτk+1, propagate zτ+1
k 

by solving Equation (5.1b)
17: end for
18: end for
19: Given VNt

kl , ∀k � 1, : : : , Nx, l � 1, : : : , Nw 
//Backward

20: for τ←Nt� 1 to 0 do
21: for k← 1 to Nx do
22: for l← 1 to Nw do
23: Given ρτk ,ωτk , Vτ+1

k+1, l, Vτ+1
k�1, l, Vτ+1

k, l+1, Vτ+1
k, l�1, 

obtain ũτkl by solving Equation (5.5a)
24: Given ρτk ,ωτk , Vτ+1

k+1, l, Vτ+1
k�1, l, Vτ+1

k, l+1, Vτ+1
k, l�1, Vτ+1

kl , 
obtain Vτkl by solving Equation (5.4)

25: end for
26: end for
27: end for
28: Fictitious Play (FP): Compute average using all 

historical values: uτkl � (u
τ
kl + uτkl)=(iter+ 1), Vτkl �

(Vτkl +Vτkl)=(iter+ 1).

29: Update ũτkl � uτkl, Vτkl � Vτkl, k � 1, : : : , Nx, l � 1, : : : , 
Nw;τ � 0, : : : , Nt� 1

30: Average optimal mean speed from w-specific 
speed using Equation (3.10): uτk �

P
lũ
τ
kl=Nw:

31: Convergence Gap: Gap � ‖ρτk � ρ
τ(�)
k ‖ + ‖ωτk �

ωτ(�)k ‖ + ‖uτk � uτ(�)k ‖

32: iter� iter +1
33: end while
34: Output ρτk ,ωτk , uτk , ũτkl, Vτkl, ∀τ � 1, : : : , Nt; k � 1, : : : , 

Nx; l � 1, : : : , Nw, l � 1, : : : , Nw
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5.4. Numerical Examples
5.4.1. Settings. We investigate traffic flow MFGs with 
four cost functions summarized below: two first-order 
traffic flow models and two second-order models.

5.4.1.1. First-Order Traffic Flow MFGs. 
1. LWR-MFG:

fLWR(u,ρ) � 1
2 (U(ρ)� u)2, 

where U(ρ) � um(1� ρ=ρm).

[LWR-MFG]

ρt + (ρu)x � 0,

Vt +U(ρ)Vx�
1
2 u2

mVx
2 � 0,

u �U(ρ)� u2
mVx:

8
>><

>>:

(5.7) 

with ρ0(x), VT(x) and ρ(t, 0),ρ(t, L).
2. LWR-MFG-NonSep:

fNonSep(u,ρ) � 1
2

u
um

� �2
�

u
um
+

uρ
umρm

:

[LWR-MFG-NonSep]
ρt + (ρu)x � 0,

Vt �
1

2u2
m
[U(ρ)� umVx]

2
� 0,

u � U(ρ)� u2
mVx:

8
>>><

>>>:

(5.8) 

with ρ0(x), VT(x) and ρ(t, 0),ρ(t, L).
Step-by-step derivation for [LWR-MFG] and [LWR- 

MFG-NonSep] can be found in Appendices A and B, 
respectively.

5.4.1.2. Second-Order Traffic Flow MFGs. 
1. ARZ-MFG: System (4.4) with ρ0(x),ω0(x), VT(x, w)

and ρ(t, 0),ρ(t, L), ω(t, 0),ω(t, L).
2. GSOM-MFG-NonSep: System (4.9) with ρ0(x),ω0(x), 
ρ0(x),ω0(x), VT(x, w) and ρ(t, 0),ρ(t, L), ω(t, 0),ω(t, L).

We need to specify the initial condition (IC), the bound
ary condition (BC), and the terminal condition (TC) as 
follows. 
• IC: We choose the following initial density:

ρ0(x) � ρa + (ρb � ρa)exp � (x� L=2)2

2γ2

" #

, (5.9) 

where 0 ≤ ρa ≤ ρb ≤ 1 and γ > 0 are constant para
meters. Here we choose ρa � 0:05,ρb � 0:95,γ � 0:35.

For the second-order traffic flow model, we also need 
to specify the initial profile for the Lagrangian marker:

u0(x) �
ua, if x ≤ 1

2 ,

ub, if 1
2 < x ≤ 1:

8
><

>:

ω0(x) � u0(x) + ρ0(x)
γ, (5.10) 

where ua � 0:1, ub � 0:8,γ � 1. 

• TC :
VT(x) � 0, for the first-order traffic flow model,
VT(x, w) � w, for the second-order traffic flow model:

�

• BC :
ρ(t, 0) � ρ(t, L), for the first-order traffic flow model,
ρ(t, 0) � ρ(t, L),ω(t, 0) � ω(t, L), for the second

�

-order traffic flow model:

Set the road length L� 1 and the planning horizon 
length T� 1. Set the maximum value of Lagrangian 
marker as W� 1. The meshgrid is discretized with a 
size of Nx �Nw �Nt � 50 to fulfill the CFL condition. 
Set the free flow speed um � 1 and the jam density 
ρm � 1. Let λ�0.

Applying Algorithm 1, we compute MFE solutions, 
including traffic density ρ∗(t, x), Lagrangian marker 
ω∗(t, x), mean traffic speed u∗(t, x), w-specific speed 
ũ∗(t, x, w), and optimal value V∗(t, x, w).

5.4.2. Results. Below we will present the relevant 
results for the GSOM-MFG-NonSep model, including 
algorithmic convergence, MFEs and fundamental dia
grams at different values of w, and traffic density and 
velocity evolution.

Figure 1 illustrates the algorithm’s convergence gap 
against the numerical iterations, indicating that the 
numerical solver achieves convergence after approxi
mately 10 iterations.

Now we pick two values of Lagrangian marker 
w� 0, 1 and demonstrate how velocity u and value 
functions V, as well as fundamental diagrams, vary at 
each w in Figures 2 and 3, respectively. We plot the 
w-specific velocity and optimal value in time and 
space in Figure 2. The left column displays the values 
of u and V for w� 0, whereas the right column dis
plays values for w� 1. Starting from the same initial 
velocity profile, we can see how varying w values lead 
to distinct dynamics in u and V, reflecting diverse 
microscopic driver behaviors.

To enhance our understanding of how w influences 
the relationship between traffic density and flux, we 

Figure 1. (Color online) GSOM-MFG-NonSep Algorithm 
Convergence Plot 
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have also depicted the w-specific fundamental diagram 
in Figure 3. The scatter plots result from multiple 
numerical experiments with varying initial conditions. 
The purpose of combining multiple results is to better 
illustrate the scatter patterns. Black dots represent the 
traffic density-flux pairs averaged across all w, whereas 
blue circles and red triangles represent those at w � 0 
and w � 1, respectively. We can observe that dots of dif
ferent colors display distinct converged fundamental 
diagrams. In the converged lines, the blue dots (w � 0) 
indicate a higher free-flow speed and maximum flow 
compared with the red ones (w � 1). This is because 
w � 0 represent more aggressive drivers thus leading 
to higher free-flow speed. This visualization clearly 
demonstrates that different values of w lead to varying 
relationships between traffic density and flux.

We further illustrate a whole picture of three vari
ables, namely, traffic density, velocity, and Lagrangian 
marker (or traffic property), in the entire time and space 
domain in Figure 4. In particular, Figure 4(c) illustrates 
the overall dynamics of the Lagrangian marker, identi
fied as a traffic property.

To further illustrate how three key variables, namely, 
traffic density, velocity, and Lagrangian marker, evolve 
in space and time, we pick three time snapshots at sam
pled time instances t � 0, 0:5, 1. Figures 5 and 6 illustrate 
the evolution of these variables for GSOM-MFG-Nonsep 
and ARZ-MFG, respectively. Starting from exactly the 
same initials, both games converge to uniform flows 
where all the variables tend to become constant. GSOM- 
MFG-Nonsep, however, converges relatively faster than 
ARZ-MFG because of the cost design in GSOM-MFG- 
Nonsep.

To further demonstrate the dynamic behavior of four 
MFG models, we plot their respective fundamental dia
grams in Figure 7, where the black dots are generated 
from data, and the blue and red curves represent the 
best fitted density-flux relation, following the practice 
in Fan, Herty, and Seibold (2014) as defined in Equation 
(6.6). We can see that for both LWR-based MFGs, there 
exists only one class of cars, so we only need to fit one 
curve for the fundamental diagram. In contrast, in 
GSOM-based MFGs, the scatters converge to a set 
of curves corresponding to different values of w. This 

Figure 2. (Color online) GSOM-MFG-NonSep Value and Velocity Profiles at Sample Values of w � 0, 1 
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shows that GSOM-based MFGs are able to capture dif
ferent classes of drivers, and thus can capture hetero
geneity in the right-hand side of the regime that 
represents stop-and-go traffic, which is common in 
real-world observations. Thus, GSOM-based MFGs, 
like GSOM, are more flexible and robust for real-world 
validation.

6. Inverse Reinforcement Learning for 
MFG Model Validation

In this section, we validate the game-theoretic frame
work of GSOMs when observational data become avail
able. This is essentially an inverse problem; namely, 
given real-world data, the underlying cost function 
required in the HJB equation can be estimated to help 
infer the MFE. We will first introduce the methodology 
of solving such an inverse problem, which is inverse 

reinforcement learning (IRL). Then we will validate that 
our IRL approach can correctly identify the underlying 
cost function that generates the data, when we know 
the ground-truth MFG. Last but not the least, we will 
estimate the latent cost function from a real-world data 
set and compare the estimation errors against various 
traffic flow models and the proposed GSOM-MFGs. Via 
the synthetic experiment and the real-world one, we 
aim to motivate the need of reinterpreting a traffic flow 
model with game theory.

IRL is proposed to recover the unknown cost func
tions from the observation of an expert demonstration 
(Abbeel and Ng 2004). Here the proposed IRL approach 
executes the following two steps recursively until our 
prediction error converges: (1) recovering the cost func
tion coefficients and (2) solving the MFE corresponding 
to these coefficients.

To approximate the cost function f, Abbeel and Ng 
(2004) assume that the cost function is a linear combi
nation of known cost features. We denote the cost fea
tures as f̃ � [f1, ::::, fM]T and M is the number of cost 
features. The weight (i.e., cost coefficient) of each cost 
feature fm, m � 1, : : : , M in the cost function is denoted 
as c � [c1, : : : , cM]

T, c ∈ RM. Mathematically, f � cT · f̃ . 
To estimate the true cost function is to find the cost 
coefficient c that can recover the expert’s policy.

6.1. Game-Theoretic Approach to Adversarial IRL
In this paper, we adopt a game-theoretic approach 
(Syed and Schapire 2007) to estimate cost functions. 
The game consists of a min player whose goal is to find 
the strategy c that can minimize the gap between the 
value of the recovered and expert’s policies and a max 
player aiming to find a policy û that can minimize the 
gap between the value of the recovered and expert’s 
policies. The IRL framework using this max-min game 
structure is further categorized as adversarial IRL 
(AIRL) (Syed and Schapire 2007, Ruan and Di 2022, 
Ruan et al. 2023). To simplify the jargon, we will still 
refer this particular framework as IRL subsequently. 

Figure 3. (Color online) w-Specific Fundamental Diagrams 

Notes. The black dots represent the mean density and flow. The blue 
circles represent the density and flow associated with w � 0, and the 
red triangles denote the density and flow for w � 1.

Figure 4. (Color online) GSOM-MFG-NonSep Variable Evolution 
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Mathematically, we consider the following optimiza
tion

max
û

min
c
[c · Fû � c · Fue], (6.1) 

where Fû � [Fe
1, : : : , Fe

M] and Fû � [F̂1, : : : , F̂M] are the 
value of cost features (i.e., cumulative cost) when exe
cuting the recovered û and expert’s policies ue, respec
tively. We have

Fe
m(x0, t0) �

XT

t�t0

fm(ue(x, t),ρe(x, t),ωe(x, t)∆t+VT,

(6.2a) 

F̂m(x0, t0) �
XT

t�t0

fm(û(x, t),ρe(x, t),ωe(x, t))∆t+VT:

(6.2b) 

We use the multiplicative weights for apprenticeship 
learning (MWAL) algorithm (Syed and Schapire 2007, 
Ruan et al. 2023) to solve the max-min optimization 
problem. The algorithm is summarized in Algorithm 2. 
The input of the algorithm include expert policy ue, 
population density re, and ve. The cost coefficients are 
first scaled to make sure ‖c ||1 � 1 (line 4). The recovered 

policy û is obtained by solving the HJB equation 
defined in MFG with c (line 5). We calculate the cumu
lative cost of each feature by sampling trajectories using 
the recovered and experts’ policies. We start from a ini
tial state, denoted by s0 � (x0, t0) from X × T . We collect 
trajectories until the terminal time T as follows:

s′û � (x′û , t′û) � (xû + û(xû , tû) ·∆t, tue +∆t), (6.3a) 

s′ue � (x′ue , t′ue) � (xue + ue(xue , tue) ·∆t, tue +∆t): (6.3b) 

We then obtain the cumulative cost for each cost fea
tures according to sampled trajectories. The cost coeffi
cient of each feature in the cost function is updated 
according to the error between Fe

m and F̂m (line 9); η is 
the step size, which can be regarded as the update rate. 
We use η � 0:1 in this work. We use the gap between 
the recovered and expert’s policy to check the algo
rithm convergence performance.

Algorithm 2 (MWAL-MFG Algorithm)
1: Input: expert policy ue, population density re and 

ve;
2: Initialize c(1)m � 1, ∀m � 1, : : : , M;
3: for h � 1, : : : , H do

Figure 5. (Color online) GSOM-MFG-NonSep Variable Profiles at Time Instances (0, 0.5, 1.0) 

Figure 6. (Color online) ARZ-MFG Variable Profiles at Time Instances 
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4: Set c(h)m � c(h)m =
PM

m�1 c(h)m , ∀m � 1, : : : , M;
5: Obtain the recovered policy û(h) by solving the 

HJB equation in MFG with cost coefficient c(h)m 
� 1, ∀m � 1, : : : , M

6: Sample initial state (x0, t0) from X × T and col
lect trajectories according to the recovered policy 
(Equation (6.3a)) and expert’s policy (Equation 
(6.3b)).

7: Obtain the value of each cost term fm, ∀m �
1, : : : , M corresponding to the expert policy 
(Equation (6.2a));

8: Obtain the value of each cost term fm, ∀m �
1, : : : , M corresponding to the policy u(h) (Equa
tion (6.2b));

9: Update cost coefficient: ∀m � 1, : : : , M, c(h+1)
m � c(h)m ·

exp(ln(β) · η(Fe
m� F̂m) + 2=4), β � (1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnM=H

p
)
�1.

10: end for
11: Check convergence
12: Output recovered policy û

6.2. Model Validation Experiments
6.2.1. Ring Road. In this section, we evaluate the IRL 
method by showing that it can recover MFE solution of 
GSOM-MFG in the ring road scenario. We aim to find 
the cost coefficient in two cost functions: ARZ and ARZ- 
NonSep by using the MFE results r∗, u∗, v∗ obtained 
from ARZ-MFG and GSOM-MFG-NonSep. The cost 
function forms are

fARZ(u;ρ,ω)

� c1
u

um

� �2
� c2

ω

u2
m
�
ρ

umρm

� �� �

u+ c3
ω

um
�
ρ

ρm

� �2
,

(6.4a) 

fARZ�NonSep(u;ρ,ω)

� c1
1

u2
m
(U(ρ,ω)� u)2 + c2 1� ω

um

� �2
� c3 1� ρ

ρm

� �2
:

(6.4b) 

Figure 7. (Color online) Fundamental Diagrams 

Notes. The red curve represents the fundamental diagram corresponding to the mean density and flow. The blue curves represent the fundamen
tal diagrams associated with the density and flow at various sample values of w.
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We measure the reconstruction error by the mean 
squared error (MSE) between the real and reconstructed 
velocities:

MSE � 1
NxNtNw

XNx

k�1

XNt

τ�1

XNw

w�1
(ûτk, w � uτk, w)

2, (6.5) 

where û is the recovered velocity and u is the velocity 
at MFE.

The performance comparison is summarized in 
Table 1. The ground truth cost coefficients used to 
obtain MFE corresponding to ARZ and ARZ-NonSep 
costs are [0:25, 0:5, 0:25] and [0:33, 0:33, 0:33], respec
tively. It is shown that the IRL method performs well 
when estimating the cost coefficients. There is barely 
any difference between the ground truth and recov
ered cost coefficients in the ARZ cost function.

6.2.2. Real-World Data. We use the next-generation 
simulation (NGSIM) data set (Coifman and Li 2017), 
where vehicle trajectories are recorded using bird’s-eye 

view cameras with a sampling frequency of 0.1 seconds. 
We primarily use data collected from the US-101 high
way segment, which provides 45 minutes of data over 
approximately 630 meters.

On this data set, we evaluate our method by showing 
that it can reproduce data by assembling real-world 
observations. In particular, we will show that ARZ- 
MFG reproduce densities and velocities with a better 
agreement with real traffic data, as opposed to traffic 
flow model like LWR or MFGs using ARZ-Nonsep as 
the cost function.

6.2.2.1. Data Processing. The spatial and temporal 
domains are partitioned into intervals of 30 meters and 
1.5 seconds, respectively. These intervals were chosen 
to ensure a sufficient number of samples while adher
ing to the CFL condition and to minimize the effects 
of data noise by avoiding excessively small grid sizes. 
Consequently, the processed data includes space-mean 
density {ρτk}

0≤τ≤Nt
1≤ k≤Nx 

and space-mean velocity {uτk}
1≤τ≤Nt
1≤ k≤Nx

, 

Table 1. Performance Comparison

Metrics ARZ ARZ-NonSep

Velocity MSE 0.0017 0.0178
Ground-truth cost coefficients [0:25, 0:5, 0:25] [0:33, 0:33, 0:33]
Recovered cost coefficients [0:2497, 0:5002, 0:2501] [0:3472, 0:3250, 0:3278]

Table 2. Model Validation with NGSIM Data

Scenario Approach Case
Cost 

function Error (MSE) Message

Game-theoretic setup IRL for GSOMMFGs ARZ ARZ 3:34 × 10�23 1. The ARZ-NonSep cost structure can 
better represent NGSIM data 
compared with other approaches. 

2. Compared with PIDL and Kalman 
filter approaches, the IRL approach 
does not require knowledge of the 
physics regarding fundamental 
diagrams and can easily accommodate 
various cost structures. 

3. PIDL training is limited to the time 
frames when data can be observed, 
whereas the IRL approach is not. Once 
the cost coefficient is estimated from 
observations, it can be applied to solve 
MFGs over any finite time horizon. 

In summary, the IRL approach has 
stronger generalizability than other 
methods. Our proposed GSOM-MFG 
is a generic framework that can 
accommodate various cost functions. 
The ARZ and LWR fundamental 
diagrams belong to the GSOM-MFG 
when the cost structures are specified.

ARZ-NonSep 9:47 × 10�27

ARZ-Sep 9:90 × 101

LWR LWR 6:49 × 100

LWR-NonSep 8:49 × 100

LWR-Sep 2:84 × 101

Deep learning setup PIDL ARZ — 2:25 × 100

LWR — 2:80 × 100

Classic setup Kalman filter ARZ — 1:65 × 101

LWR — 2:11 × 101

Mo et al.: GSOM-MFG 
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where Nx � 630 meters=30 meters � 21 and Nt � (45 ×
60) seconds=1:5 seconds� 10 � 1770. We exclude the 
initial and final five time steps from our analysis. This is 
due to incomplete data collection at the beginning and 
end of the recording period. Given the processed densi
ties and velocities, we then calculate Lagrangian mar
kers following the same practice as in Fan, Herty, and 
Seibold (2014):

ω̂ � û + h(ρ̂) � û + ρ̂um

ρm
: (6.6) 

6.2.2.2. Velocity Error. We measure the reconstruc
tion error between the real and reconstructed velocities 
by MSE, mathematically,

MSE � 1
NxNt

XNx

k�1

XNt

τ�1
(ûτk � uτk)

2, (6.7) 

where û is the reconstructed velocity.

6.2.2.3. Performance Comparison. We compare the 
reconstruction performance of four different loss func
tions, namely, ARZ, ARZ-NonSep, LWR, LWR-NonSep, 
and LWR-Sep. We also include a deep learning–based 
method, that is, physics-informed deep learning (PIDL) 
(Shi, Mo, and Di 2021a, Shi et al. 2021b, Mo, Fu, and Di 
2022a, Mo et al. 2022b, Di et al. 2023), and a classic 

method, that is, Kalman filter (Wang and Papageorgiou 
2005, Di, Liu, and Davis 2010), for comparison. Table 2
presents the MSE of using each cost function of the MFG 
when reconstructing the velocity. Figure 8 illustrates the 
heatmaps of the reconstructed velocities along with the 
real ones. Figure 9 presents the reconstructed velocity of 
PIDL using ARZ and LWR as the physics, respectively. 
We can see that using ARZ and ARZ-NonSep lead to 
significantly better reconstruction accuracy compared 
with the use of LWR cost functions.

6.2.2.4. IRL Policy Evaluation. Because the ARZ-MFG 
achieves the minimum estimation error among all the 
comparative models, we will further demonstrate its 
performance from the perspective of IRL. To illustrate 
the policy learned by ARZ-MFG, we calculate the tran
sition probability of moving to the next state s′ after 
time step ∆t given the current state s � (xk, tτ); namely, 
Pr(s′ |s � (xk, tτ)), using the following equations:

Pr(s′ � (xk+1, tτ+1) |s � (xk, tτ)) �
ûτk∆t
∆x

, (6.8a) 

Pr(s′ � (xk, tτ+1) |s � (xk, tτ))
� 1�Pr(s′ � (xk+1, tτ+1) |s � (xk, tτ)), (6.8b) 

where ∆x � L=Nx and ∆t � T=Nt; xk � k∆x, k � 1, : : : , Nx; 
and tτ � τ∆t,τ � 1, : : : , Nt, respectively. Because of the 

Figure 8. (Color online) Comparison Among the Real Velocity (a) and Reconstructed Ones with Different Cost Functions Using 
IRL (b–g) 
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CFL condition, no other s′ is allowed. The real-world 
transition probability can also be calculated by substitut
ing û with the actual value u. Figure 10 presents a com
parison between the transition probability matrix derived 
from the learned policy and the actual data.

Figure 11 depicts the frequency of visits to each 
state for both the real and constructed data, calculated 
through Monte Carlo simulations starting from a uni
formly distributed initial state. We can see both the tran
sition probability matrix and state visitation frequency 
of the IRL policy closely resemble the real ones.

7. Conclusions and Future Research
This paper establishes a game-theoretic interpretation 
of generalized second-order traffic flow models. Such 
an interpretation not only manifests an equivalence 
between GSOM and MFG but also allows us to modify 
the cost functional of the optimal control problem for 
the representative agent and devise other forms of 
MFGs and traffic flow models. We start from the 
first-order LWR-MFGs consisting of a representative 
agent’s optimal control problem (depicting the generic 
agent’s driving velocity choice, aka HJB equation), and 

a continuity equation (propagating density distribu
tion of the population, aka FPK equation). We then 
generalize LWR-MFGs to generalized second-order 
traffic flow MFGs, by introducing an additional vari
able, denoted as w, that describes how a car’s class 
evolves. This variable is equivalent to acceleration if 
it is a function of speed v, like in the ARZ traffic flow 
model. In our proposed generalized second-order traf
fic flow MFGs, GSOM-MFG, w could be a free variable 
that augments the dimension of the HJB equation, 
including the value function and the optimal velocity 
profile. Essentially, the HJB equation for GSOM-MFG 
is a parametrized version of that for LWR-MFG. The 
proposed GSOM-MFG encompasses first- and second- 
order traffic flow models, when cost function of the 
representative agent’s optimal control problem is care
fully chosen. Moreover, we propose new cost func
tions that lead to new parametrized velocity profiles. 
We develop a forward-backward fixed-point numeri
cal method along with fictitious play to stabilize the 
solution algorithm. The results are demonstrated with 
four types of cost functions on a ring road. Further
more, to demonstrate the validity of the proposed 
GSOM-MFGs, we propose to solve an inverse problem 

Figure 9. (Color online) Reconstructed Velocity Using PIDL 

Figure 10. (Color online) Comparison of the Transition Probability Matrices for Real (a) and Reconstructed (b) Data 

Note. The color in each cell indicates the probability of transitioning to the subsequent cell in space x and time t.
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where observed individual driving trajectories are 
collected but the underlying cost function remains 
unknown. Adversarial inverse reinforcement learning 
is employed to estimate the coefficients involved in the 
cost function for all four types of games. Using the 
NGSIM data, we have found that ARZ-MFG generates 
more accurate traffic density and velocity profiles, 
compared with other MFG and traffic flow models.

This work can be extended in several directions: (1) 
investigate mathematical properties of GSOM-MFG, 
including existence and uniqueness of equilibria and 
(2) extend GSOM-MFG to networks where cars need 
to choose routing decisions (Huang et al. 2021). To the 
best of our knowledge, there is a void in the state-of- 
the-art that could prove such properties for the MFGs 
proposed in this paper, because the nonseparable cost 
functions do not demonstrate neither monotonic nor 
contraction properties. Thus, exploring the mathemati
cal properties for traffic flow MFGs is important and 
urgent. Second, dynamic traffic assignment and traffic 
flow models on networks are primarily focused on 
routing choice of cars, whereas MFGs on networks 
allow cars to select both driving control on edges and 
route choice at junction points. How to formulate this 
problem on large-scale networks and solve it efficiently 
would be a challenge and left for future work. Never
theless, in this paper, the agent’s impact is assumed to 
be localized in space. In other words, one agent’s driv
ing control at location x can only affect traffic density at 
that location. Thus, we call it “local MFG traffic flow 
models.” There is a branch of literature on nonlocal 
traffic flow models that model the impact of a single 
agent on traffic density further down- or upstream, 
which is beyond the scope of this paper. Nonlocal 
MFGs and nonlocal traffic flow models is another direc
tion worth of exploration.
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Appendix A. LWR-MFG Derivation
Recall that the LWR-MFG cost function is defined as

fLWR(u,ρ) � 1
2 (U(ρ)� u)2 � 1

2 um 1� ρ
ρm

� �

� u
� �2

, (A.1a) 

where the speed relation is characterized by the Green
shields fundamental diagram:

U(ρ) � um 1� ρ
ρm

� �

: (A.2) 

Using Equation (2.2), we can compute the optimal speed 
as

u � arg min
ν
{f (ν;ρ) + νVx}

� arg min
ν

1
2 ν

2 � um 1� ρ
ρm

� �

�Vx

� �

ν +
u2

m
2 1� ρ

ρm

� �2
( )

� um 1� ρ
ρm

� �

� u2
mVx � U(ρ)� u2

mVx:

We then compute the optimal value as

Vt +min
ν
{f (ν;ρ) + νVx} � 0

⇒ Vt +

(
1
2 um 1� ρ

ρm

� �

� Vx

� �2
� um 1� ρ

ρm

� �

� Vx

� �

× um 1� ρ
ρm

� �

� Vx

� �

+
u2

m
2 1� ρ

ρm

� �2
)

� 0

⇒ Vt �
1
2 um 1� ρ

ρm

� �

� Vx

� �2
+

u2
m
2 1� ρ

ρm

� �2
� 0

⇒ Vt �
1
2 um 1� ρ

ρm

� �

� Vx

� �2
�

u2
m
2 1� ρ

ρm

� �2
� 0

⇒ Vt � �um 1� ρ
ρm

� �

Vx +
1
2 u2

mV2
x

⇒ Vt � � U(ρ)� 1
2 Vx

� �

u2
mVx:

Substituting the above optimal velocity and value func
tions into Equation (2.2) leads to the LWR-MFG system 
(5.7).

Figure 11. (Color online) Comparison of State Visitation Frequencies for Real (a) and Reconstructed (b) Data 
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Appendix B. LWR-MFG-NonSep Derivation
The nonsepable cost function defined for [LWR-MFG-Non
Sep] can be interpreted as below:

fNonSep(u,ρ) � 1
2

u
um

� �2

|fflfflfflfflffl{zfflfflfflfflffl}
kinetic energy

�
u

um|{z}
efficiency

+
uρ

umρm|fflffl{zfflffl}
safety

�
1

2u2
m

u2 +
ρ

umρm
�

1
um

� �

u

�
1

2u2
m
(U(ρ)� u)2 � 1

2 1� ρ
ρm

� �2
, 

where U(ρ) is defined in Equation (A.2).
Using Equation (2.2), we can compute the optimal speed 

as

u � arg min
ν
{f (ν;ρ) + νVx}

� arg min
ν

1
2u2

m
ν2 +

ρ

umρm
�

1
um
+ Vx

� �

ν

� �

� um 1� ρ
ρm
� umVx

� �

� um 1� ρ
ρm

� �

� u2
mVx � U(ρ)� u2

mVx:

We then compute the optimal value as

Vt +min
ν
{f (ν;ρ) + νVx} � 0

⇒ Vt +min
ν

1
2u2

m
ν2 +

ρ

umρm
�

1
um
+Vx

� �

ν

� �

� 0

⇒ Vt +

(
1

2u2
m

um 1� ρ
ρm

� �

� u2
mVx

� �2

+
ρ

umρm
�

1
um
+Vx

� �

um 1� ρ
ρm

� �

� u2
mVx

� �)

� 0

⇒ Vt +

(
1

2u2
m

um 1� ρ
ρm

� �

� umVx

� �2

�
1

u2
m

um 1� ρ
ρm

� �

� umVx

� �

um 1� ρ
ρm

� �

� umVx

� �)

� 0

⇒ Vt �
1

2u2
m

um 1� ρ
ρm

� �

� umVx

� �2
� 0

⇒ Vt �
1

2u2
m

um 1� ρ
ρm

� �

� umVx

� �2
¢

1
2u2

m
[U(ρ)� umVx]

2
:

Substituting the above optimal velocity and value func
tions into Equation (2.2) leads to the LWR-MFG-NonSep 
system (5.8).
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