2024 1EEE International Conference on Robotics and Automation (ICRA) | 979-8-3503-8457-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICRA57147.2024.10611488

2024 IEEE International Conference on Robotics and Automation (ICRA)

May 13-17, 2024. Yokohama, Japan

Task-Oriented Active Learning of Model Preconditions
for Inaccurate Dynamics Models

Alex LaGrassa', Moonyoung Lee!, Oliver Kroemer

Abstract— When planning with an inaccurate dynamics
model, a practical strategy is to restrict planning to regions
of state-action space where the model is accurate: also known
as a model precondition. Empirical real-world trajectory data is
valuable for defining data-driven model preconditions regard-
less of the model form (analytical, simulator, learned, etc...).
However, real-world data is often expensive and dangerous to
collect. In order to achieve data efficiency, this paper presents
an algorithm for actively selecting trajectories to learn a model
precondition for an inaccurate pre-specified dynamics model.
Our proposed techniques address challenges arising from the
sequential nature of trajectories, and potential benefit of priori-
tizing task-relevant data. The experimental analysis shows how
algorithmic properties affect performance in three planning
scenarios: icy gridworld, simulated plant watering, and real-
world plant watering. Results demonstrate an improvement of
approximately 80% after only four real-world trajectories when
using our proposed techniques. More material can be found on
our project website: https://sites.google.com/view/active-mde.

I. INTRODUCTION

Many planning and control frameworks used in robotics
rely on dynamics models, whether analytical or learned,
to reason about how the robot’s actions affect the state
of the environment [1], [2]. However, robots deployed in
the real world frequently encounter unfamiliar environments
and complex interactions, e.g., with deformable objects,
where assumptions of simplified dynamics break, making
the models deviate from reality. In such situations, previous
works [3]-[6] show how predicting model deviation with a
Model Deviation Estimator (MDE) can be a powerful tool to
restrict model-based planners to planning in regions of state-
action space where the model is reliable, which we call model
preconditions. Although using model preconditions defined
by MDEs can improve the reliability of plans computed with
inaccurate models, MDEs require real-world data, which can
be expensive or dangerous, e.g., robot welding or pouring
water, and drastically increase the cost of exploration.

We illustrate the intuition of our problem setting and
approach in Fig. 1. Given a dynamics model that is accurate
in only some combinations of states and actions, the objective
is to estimate model deviation in state-action space to define
the model precondition. During each iteration, the robot
collects data and updates its model precondition based on
that data, which is a form of active learning. Although we
can draw from existing active learning techniques in other
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Fig. 1: Illustrative example of using a planner and acquisition function
to iteratively select informative trajectories to define where the model is
accurate to compute plans to the goal. In this example, the known dynamics
model on the upper left (f(s,a,s’)) reasons only about the containers
but not about the plant. The problem is to define where the model is
accurate enough to compute plans to the goal. The resulting learned model
precondition is then used at test time to only perform actions in the model
precondition.

robotics applications [7], collecting a useful MDE dataset
is challenging because it needs to contain a diverse set of
trajectories to both identify the limits of the model and
reliably solve planning problems. Furthermore, model error
in earlier states of a selected trajectory can lead the robot
to be unable to gather data from the later states due to the
sequential nature of the problem.

To address these problems, we describe active learning
techniques for efficiently selecting trajectories to learn the
MDE. We propose a task-oriented approach for generating
trajectory candidates, as well as multi-step acquisition func-
tions that compute a single utility value from the sequence
of transitions in a trajectory. Our approach enables sample-
efficient learning of an MDE for solving tasks from a given
distribution. We analyze how variations on the active learning
algorithm affect the dataset, and subsequently the quality of
the model preconditions at test time.

This paper makes the following contributions: (1) a novel
problem formulation and approach for active learning of
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model preconditions defined by MDEs to improve the ac-
curacy and robustness of plans for manipulation tasks with
variable-accuracy models; (2) analysis of the effect of acqui-
sition function choices on trajectory selection during training
and the resulting test-time reliability of executed plans.

II. RELATED WORK

This work focuses on planning with variable-accuracy
models, where assuming globally high accuracy would lead
to failures. Existing techniques to mitigate the impact of
model deviation on task performance such as adaptive con-
trol [8], [9], and reasoning about uncertainty with probabilis-
tic models [10]-[12] are still susceptible to inaccuracy [13].
Furthermore, some models, including simulators and many
analytical models, lack the capacity to represent uncertainty.
Similarly, dynamics models learned from data [14]-[17] can
be inaccurate for a variety of reasons such as scenarios
outside the training data distribution and limited model
capacity for complex interactions. Despite these limitations,
such models demonstrate practical utility in various planning
tasks.

Our approach does not intend to replace learned or un-
certain dynamics models, but rather to complement them to
address persistent model inaccuracies. Other work has shown
that estimating model deviation can be more data-efficient
than learning a dynamics model with an equivalent amount
of data, and lead to higher reliability [3], [5], [18]. Despite
some data-efficiency improvements, current approaches to
estimating model deviation lack active learning capabilities,
limiting their use to scenarios where the inherent randomness
of the planning process and environment can sufficiently
cover the data space [4], [19].

Though we address a different problem, we use similar
tools as broader active learning techniques used in other areas
of robotics, such as using probabilistic models to select in-
formative samples for dynamics models, skill preconditions,
and policies [7], [20], [21]. Active dynamics learning [22],
[23] approaches sometimes address the additional challenge
of sequential dependence of selecting informative points,
but these works put strong assumptions on the form of the
dynamics model, whereas we extend our scope to allow
model preconditions over various types of models such
as analytical models and simulators. Model preconditions
are different but potentially more generalizable than skill
preconditions since multiple model-based behaviors can use
the same model preconditions.

Real-world fluid manipulation particularly benefits from
efficient exploration. Existing works tend to be conservative
in action space by limiting pours to a small region, such
as directly over a target container, which greatly limits the
set of observable dynamics [24]-[26]. Furthermore, other
approaches are largely constrained to scenarios with simple
dynamics [26]-[29] where failure tends to be over-pouring or
under-pouring. To our knowledge, this is the first experimen-
tal setting that uses a commonly-used 7 DOF manipulator to
perform actions that can often spill water into the workspace.

III. PROBLEM STATEMENT

In this work, we actively learn model preconditions for
planning with inaccurate dynamics models of the form §
f(s,a). We do not make additional assumptions on the
implementation or source of the model (e.g. analytical model,
simulator, learned model). A model precondition, denoted as
pre(f), is a region where a planner may use a given f(s, a).

The planning problems in our setting are defined by
sampling a start state and goal function g¢(s) that outputs
whether or not s is a goal state. Goals are achieved by
planning and executing a trajectory defined by actions a1.7—1
and predicted states $1.7 such that g(sr) holds. We assume
that f (s,a) is sufficient for solving the planning problems.
At test time, the planner uses the learned model precondition
to reject transitions where (s, a) & pre(f).

The concrete form of model preconditions we use de-
scribes (s, a,s’) transitions where the deviation between
predicted states and next states d(8, s’) stay within a thresh-
old tolerance, dp,.x, that the system can tolerate or cor-
rect. d(s;,s;) is a distance function, such as Euclidean
distance, that outputs a scalar. The constraint can then be
defined as pre(s,a) = {s,a|d(s, f(s,a)) < dmax}. Since

d(s', f(s,a)) is impossible to compute without knowing s’,
we instead estimate d(s', f(s,a)) given (s,a), denoted as
d(s,a) to indicate that it is estimated for a state and action.

The active learning problem in this work is to select a
set of (variable-length) trajectories to form a dataset D of
(s,a,s’) tuples on which an MDE is trained. Each trajectory
is denoted by 7, and we describe the set of candidate
trajectories that different searches generate for the same
problem as 7. The agent may use the planner during training
time and sample from the same distribution of planning
problems that will be seen at test time, but not the same
problems. We assume access to sufficiently accurate state
estimation to compute meaningful deviations between all
observed points on the trajectory.

IV. LEARNING A MODEL-DEVIATION ESTIMATOR

As defined in Section III, an MDE predicts the deviation
d(3,s") for a particular model f(s,a) between a predicted
state § and the true next state s’. We denote the output
of an MDE as d(s,a). By directly predicting d(3,s'), the
MDE is agnostic to the source of model deviation. The
MBDE in this paper is a Gaussian Process (GP) model with a
Matérn kernel and heteroscedastic noise model, specifying a

Gaussian distribution for the deviation with mean u(d(s, a))
and standard deviation o (d(s,a)). A heteroscedastic noise
model enables input-dependent noise, which is important to
capture when sources of model deviation differ.

Data collected for the MDE is in the form of (s,a,s’)
tuples from executing action a in the target environment (i.e.,
the real world) from state s, and then observing s’. The input
to the MDE is (s, a) and the label is d(f(s,a), s').

A learned MDE then defines a model’s precondition as:
pre(f) = {(s,a)|P(d(s,a) > dmax) < 0} for some small
probability §. The constraint can be written as u(s,a) +

Bo(s,a) < dmax, Where higher 3 lowers the risk tolerance.
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a(7) . The final step is selecting and executing 7+, in the test environment to collect the ground truth [S[I:TT] , a[l:TT,l]]. The MDE is updated every

M trajectories.

V. ACTIVE LEARNING

The algorithm for actively learning MDEs is illustrated in
Fig. 2. First, the agent samples a planning problem and then
uses a motion planner to generate candidate trajectories, 7 .
The search adds transitions to the tree if they satisfy planning
constraints such as joint limits, a collision check, and the
model precondition as defined in Section IV. To encourage
exploration, a zero-mean prior is used for the MDE during
the learning phase. We use a rapidly exploring random tree
(RRT) planner [30] to encourage a diverse set of solutions in
T . Then, the robot executes the trajectory that minimizes an
acquisition function «(7), which is a heuristic for the utility
of 7 to the MDE. After a batch of M executed trajectories for
M problems, the robot adds the observed (s, a, s) tuples to
D and updates the MDE using the training method described
in Section IV. Ideally, the model precondition region between
the start and goal states expands with more data (Fig. 1).

At test time, the robot generates a trajectory to the goal
using the same planner, MDE, and constraints as during
training, but with a more conservative model precondition.
The /3 parameter as described in Section III sets the tolerance
for deviations outside the model precondition; for example,
B = 2 specifies a 98% confidence interval.

A. Acquisition Function

Now, we explain how we define the acquisition function
a(T), which guides our selection of the trajectory to execute
in each iteration: 7* < argmin_c4; «(7). The procedure is
illustrated in the rightmost box of Fig. 2.

Step-wise utilities: First, we compute utilities for each
step in the trajectory, shown in the dotted box. Trajectories
can vary in length, denoted as 7%, and are comprised of
states and actions: Si.7,,a1.7.—1. We denote the utility for
each step t as aigpep (S¢, a¢) and define it using a form inspired

by Lower Confidence Bound: p(z) — co(x) where ¢ controls
exploration.

Aggregating individual step-wise utilities for a tra-
jectory: As shown in the blue dotted box (Fig. 2), we
next define a function h that aggregates single-step utilities
in trajectories of different lengths, asiep(s1.T,,a1.7,), to a
single trajectory utility, (7).

The general form of a trajectory-based acquisition function
using the lower confidence bound-based aiep, is thus:

a(1) + h([pw(d(st,ar)) — co(d(se,a))] VE<Tr) (1)
Since later transitions may not be reached when the
trajectory is planned using an inaccurate dynamics model, we
introduce Npax and hsym. Amax = maxi<r. Y Qstep(St, at)
and hsum = Y,o7 V'Qstep(st, ;). Multiplying each
Qstep (St, at) by ~' approximates the idea that nearer steps
are more useful in the trajectory.

B. Candidate trajectory generation

To set the risk tolerance during training, we propose a
schedule for the MDE that gradually reduces risk tolerance
as the robot accumulates more data. Since ¢ is determined
by u(s,a)+ Bo(s,a),  can be set by modifying 3 using the
inverse CDF of a Gaussian distribution: 3 = ®~1(1—4). At

iteration j of J total iterations, 8; ], —
1+exp(—k2(j—%))
results in a transition from —k; to k; where a lower ko

causes a smoother transition.

VI. EXPERIMENTAL SETUP

The first scenario, Icy GridwWorld (Fig. 3a), is a grid-
world also used in [31] where the robot can move in four
cardinal directions, but if it moves left or right over an icy
state, it slips by moving two cells backwards. The robot
cannot move through the obstacle. The dynamics model
assumes the robot moves to the intended location. The start
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The second scenario, Water Plant (sim) (Fig. 3b), is a
plant-watering domain where the goal is to pour a specified
amount of water from a source container into a target
container without spilling more than 2%. The state space
is the poses of both containers and their liquid volumes.
The actions are specified as a target pose for the source
container. The actions must satisfy constraints unrelated to
the dynamics model including being collision-free according
to an approximate collision checker, and either translating or
rotating in one motion, but not both. The model is a neural
network dynamics model trained in a simpler environment
(shown in the bottom half of Fig. 3) with no plant and a wider
source container. This scenario tests the algorithm’s ability
to learn model preconditions caused by multiple sources
of model error such as geometry mismatch, obstruction by
leaves, and unexpected collisions. The start state is a random
pose left of the target container.

Lastly, the third scenario, Water Plant (real) (Fig. 3c),
is a real-world variation of the previous plant-watering
domain. A measured pourer dispenses 15 mL of water when
tilted above 130 degrees. The action space and state space
representations are consistent with the simulated scenario,
but we restrict the MDE input to only the action to reduce

dimensionality. The branches can move, but the base stays
fixed relative to the container. Since the plant state is
only measured by the container pose, variations that affect
the dynamics cause noise. This scenario demonstrates that
reliable performance can be reached in a small number of
trajectories (less than a dozen) in the real world where there
is considerably more noise and variation. The analytical
model we use assumes that 15 mL is dispensed for rotational
actions above 130 degrees and that the water enters the target
container if poured above the area of the container. The start
state is fixed and the goal is for 15 mL to be in the target
container without spilling more than 5 mL.

Evaluation methodology: On simulated domains, we
evaluate each variation using 10 seeds for 20 learning iter-
ations. The simulated domains use five training trajectories
per iteration, and the real domain uses two. Setup, planning
and execution for each training trajectory takes 15 s in
Icy GridWorld, 1.5 min in Water Plant (sim), and 3
m in Water Plant (real). At test time, we evaluate the
model preconditions for each iteration by using the model
preconditions where d(s, a) < dmax for each transition with
98% confidence. In the simulated scenarios, we sample 20
planning problems per iteration, and in the real-world sce-
nario, we sample 5 per iteration. In Water Plant (real),
we only evaluate the effect of using active learning and
goal-conditioned candidate trajectories. dmax = 0.1 for all
scenarios and represents the sum of all position distances
over all objects. We use a risk-tolerance schedule (Section
V-B) with k1 = 2 and ko = % In both watering scenarios,
the average volume deviation of both containers is added to
the position error. For consistency, we scale the volume units
between simulation and the real-world such that one unit is
poured out.

The metrics that we evaluate are as follows. First, we
evaluate model precondition accuracy on a cross-validation
dataset of trajectories from the other seeds. We measure
both the true negative rate (TNR) and the true positive rate
(TPR) of whether an individual (s,a,s’) data point is in
the model precondition. A higher rate is better for both
metrics, but the TNR is more important than the TPR because
the model precondition only needs to cover enough state-
action space to compute a plan. Second, we test whether the
model precondition is sufficient to reliably compute plans
by measuring the success rate of the planner within a fixed
timeout of 5000 extensions. Finally, we evaluate the end-to-
end success rate in achieving the goal, which measures the
effect of using the estimated model preconditions over the
entire trajectory.

VII. RESULTS

We first show a qualitative analysis of data collected
during the active learning. We then quantitatively evaluate the
effects of different algorithmic variations using the metrics
we previously described in Section VI. Two baselines using
an MDE but different methods to generate 7~ measure
the impact of algorithmic choices. Random selects random
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actions, effectively removing the goal-conditioning. Goal-
Conditioned eliminates the acquisition function by selecting
a random trajectory to the goal.

Online learning analysis: Here, we analyze the qualities
of the MDE dataset when using our active learning approach
described in Section V (Active Goal-Conditioned) compared
to selecting trajectories that do not reach the goal, but use
the same samplers from the planner, which we call Random.
The first row of Fig. 4 shows labels of trajectories selected
during training to analyze the makeup of the MDE dataset.
below_success is the label for pours below the leaves
where all the water reaches the target, which is what would
ideally be well represented in the dataset. Since data where
the model is inaccurate is also necessary to quantify the
limitations of the model, we also track the portion of the
dataset that is below_spill. The final trajectory type we
track is above_spill, which is the least useful because the
water-container-leaf dynamics are typically high-deviation
and unnecessary to complete tasks.

Fig. 4 shows a faster increase in desirable below_success
pours from Active Goal-Conditioned in iterations 0 to 9. We
note that there is an increase in successful pours around
iterations 10-12, which then decreases. As we show in the
included video, this effect can be attributed to responses in
both aleatoric and epistemic uncertainty, which affects the
exploration bonus: co(d(s, a)).

Model preconditions in Water Plant (real): Here,
we visually analyze how regions of model preconditions
change in the real-world pouring task. These regions are
low dimensional so it can be visualized in 2D by splitting
6, into two-cases: one for rotation-only actions, and one for
translation-only actions. We show the model precondition by

plotting d(s, a) over a region of A (Fig. 5). Aligned with our
intuition of how model preconditions should evolve, the area
of the model precondition expands as more data is collected.
The boundary becomes more precise with more data points
(Fig. 5). By iteration 5, the model precondition for rotational
actions is in a region above the target container but below the
leaves. Note that despite a low-deviation point at iteration 5
at (-0.12, 0.39), that area is not in the model precondition
because there is a nearby point that is high-deviation.

A. Candidate Trajectory Set Generation

Here, we evaluate how the method to generate T~ affects
performance metrics. Fig. 6, shows higher data efficiency
when using Active Goal-Conditioned or Goal-Conditioned
in all scenarios. In Water Plant (sim), we also see sig-
nificantly higher data efficiency when using active learning
in addition to conditioning on trajectories that reach the
goal, indicated by higher performance after fewer itera-
tions when using Active Goal-Conditioned over using Goal-
Conditioned, which does not use an acquisition function. In
Water Plant (real), we see a clear improvement when
using goal-conditioning, and a modest improvement in suc-
cess when using the acquisition function in later iterations.
The improvement of Active Goal-Conditioned over Goal-
Conditioned in finding plans to the goals is matched by a
significant increase in the TPR, which is more significant in
the simulated environments than in Water Plant (real).
Active Goal-Conditioned shows an improvement in success
rate reflected by a higher TNR. Earlier iterations in Icy
GridWorld using Random have overly broad model pre-
conditions, as seen by a high TPR, high success in finding
goals, but low success in reaching them. Overall, we see a
positive affect when using both goal-conditioning and our
active learning method.

Model precondition accuracy is not necessarily indicative
of high performance. As shown in the first row of Fig. 6,
although Random has both a high TNR and high TPR,
it never finds plans to the goal because of insufficient
task-relevant data. Additional results on the risk-tolerance
schedule and candidate trajectory diversity can be found on
our website.

B. Effect of acquisition function on performance

We analyze the impact of the aggregation function and
discount factor on performance. We test v = 0.9 and
compare to no discounting with v = 1. We observe an slight
improvement in performance in both Icy GridWorld and
Water Plant (sim) when using v = 0.9 and Ay ax, Which
is consistent with our intuition that discounting can account
for the dependence of later states on reaching earlier states.
The improvement is smaller for Icy Gridworld and more
apparent in the success rate in finding plans. Overall, we
find that the choice of vy and h does not have a major impact
on performance, but there may be some benefit in using a
discount factor or other forms of aggregation of step-wise
acquisition function values.
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Fig. 6: Success rate in computing a plan, success rate in reaching the goal, and model precondition accuracy over training iterations for three scenarios.

These plots measure the effect of whether trajectories are selected actively,
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Fig. 7: Success rate in computing a plan, success rate in reaching the goal, and model precondition accuracy over training iterations for three scenarios.

These plots measure the effect of the aggregation function on performance.

VIII. LIMITATIONS

Our proposed active learning approach is limited to
scenarios where dynamic variables that significantly
affect deviation are represented in the state. Unobserved
dynamic variables are implicitly modelled as noise, which
may lead to overly restrictive model preconditions. This
issue can be mitigated by prioritizing recent data or by
incorporating these variables into the state, if feasible. Our
MDE implementation with a GP does not directly scale
to high-dimensional state spaces. Future work will explore
using pre-trained general-purpose models to address this,
potentially using cross-task information for added efficiency.

IX. CONCLUSIONS

This paper formulates the problem of active learning
of model preconditions then presents a novel class of
techniques designed to generate and select candidate
trajectories. We evaluate the performance of variations on
our active learning approach on two simulated scenarios
and one real-world task with learned models and analytical
models. Our experimental results demonstrate the effect of
algorithmic choices in candidate trajectory selection and
acquisition function on data efficiency. This work enables
empirical estimation of model preconditions with minimal
data, a capability we plan to extend to high-dimensional
deformable object scenarios where the use of model
preconditions can be particularly beneficial.
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