
Task-Oriented Active Learning of Model Preconditions

for Inaccurate Dynamics Models

Alex LaGrassa1, Moonyoung Lee1, Oliver Kroemer1

Abstract— When planning with an inaccurate dynamics
model, a practical strategy is to restrict planning to regions
of state-action space where the model is accurate: also known
as a model precondition. Empirical real-world trajectory data is
valuable for defining data-driven model preconditions regard-
less of the model form (analytical, simulator, learned, etc...).
However, real-world data is often expensive and dangerous to
collect. In order to achieve data efficiency, this paper presents
an algorithm for actively selecting trajectories to learn a model
precondition for an inaccurate pre-specified dynamics model.
Our proposed techniques address challenges arising from the
sequential nature of trajectories, and potential benefit of priori-
tizing task-relevant data. The experimental analysis shows how
algorithmic properties affect performance in three planning
scenarios: icy gridworld, simulated plant watering, and real-
world plant watering. Results demonstrate an improvement of
approximately 80% after only four real-world trajectories when
using our proposed techniques. More material can be found on
our project website: https://sites.google.com/view/active-mde.

I. INTRODUCTION

Many planning and control frameworks used in robotics

rely on dynamics models, whether analytical or learned,

to reason about how the robot’s actions affect the state

of the environment [1], [2]. However, robots deployed in

the real world frequently encounter unfamiliar environments

and complex interactions, e.g., with deformable objects,

where assumptions of simplified dynamics break, making

the models deviate from reality. In such situations, previous

works [3]–[6] show how predicting model deviation with a

Model Deviation Estimator (MDE) can be a powerful tool to

restrict model-based planners to planning in regions of state-

action space where the model is reliable, which we call model

preconditions. Although using model preconditions defined

by MDEs can improve the reliability of plans computed with

inaccurate models, MDEs require real-world data, which can

be expensive or dangerous, e.g., robot welding or pouring

water, and drastically increase the cost of exploration.

We illustrate the intuition of our problem setting and

approach in Fig. 1. Given a dynamics model that is accurate

in only some combinations of states and actions, the objective

is to estimate model deviation in state-action space to define

the model precondition. During each iteration, the robot

collects data and updates its model precondition based on

that data, which is a form of active learning. Although we

can draw from existing active learning techniques in other

A, LaGrassa, M. Lee, O. Kroemer are with Carnegie Mellon Univer-
sity Robotics Institute, Pittsburgh PA, USA {alagrass, moonyoul,

okroemer,}@andrew.cmu.edu
This work was supported by NSF Grants No. CMMI-1925130 and IIS-

1956163, ARL Grant No. W911NF-18-2-0218 as part of the A2I2 Program,
and NSF/USDA NIFA AIIRA AI Research Institute 2021-67021-35329.

Fig. 1: Illustrative example of using a planner and acquisition function
to iteratively select informative trajectories to define where the model is
accurate to compute plans to the goal. In this example, the known dynamics

model on the upper left (f̂(s, a, s′)) reasons only about the containers
but not about the plant. The problem is to define where the model is
accurate enough to compute plans to the goal. The resulting learned model
precondition is then used at test time to only perform actions in the model
precondition.

robotics applications [7], collecting a useful MDE dataset

is challenging because it needs to contain a diverse set of

trajectories to both identify the limits of the model and

reliably solve planning problems. Furthermore, model error

in earlier states of a selected trajectory can lead the robot

to be unable to gather data from the later states due to the

sequential nature of the problem.

To address these problems, we describe active learning

techniques for efficiently selecting trajectories to learn the

MDE. We propose a task-oriented approach for generating

trajectory candidates, as well as multi-step acquisition func-

tions that compute a single utility value from the sequence

of transitions in a trajectory. Our approach enables sample-

efficient learning of an MDE for solving tasks from a given

distribution. We analyze how variations on the active learning

algorithm affect the dataset, and subsequently the quality of

the model preconditions at test time.

This paper makes the following contributions: (1) a novel

problem formulation and approach for active learning of

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 16445

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
79

-8
-3

50
3-

84
57

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

57
14

7.
20

24
.1

06
11

48
8

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 03,2024 at 19:41:28 UTC from IEEE Xplore. Restrictions apply.

model preconditions defined by MDEs to improve the ac-

curacy and robustness of plans for manipulation tasks with

variable-accuracy models; (2) analysis of the effect of acqui-

sition function choices on trajectory selection during training

and the resulting test-time reliability of executed plans.

II. RELATED WORK

This work focuses on planning with variable-accuracy

models, where assuming globally high accuracy would lead

to failures. Existing techniques to mitigate the impact of

model deviation on task performance such as adaptive con-

trol [8], [9], and reasoning about uncertainty with probabilis-

tic models [10]–[12] are still susceptible to inaccuracy [13].

Furthermore, some models, including simulators and many

analytical models, lack the capacity to represent uncertainty.

Similarly, dynamics models learned from data [14]–[17] can

be inaccurate for a variety of reasons such as scenarios

outside the training data distribution and limited model

capacity for complex interactions. Despite these limitations,

such models demonstrate practical utility in various planning

tasks.

Our approach does not intend to replace learned or un-

certain dynamics models, but rather to complement them to

address persistent model inaccuracies. Other work has shown

that estimating model deviation can be more data-efficient

than learning a dynamics model with an equivalent amount

of data, and lead to higher reliability [3], [5], [18]. Despite

some data-efficiency improvements, current approaches to

estimating model deviation lack active learning capabilities,

limiting their use to scenarios where the inherent randomness

of the planning process and environment can sufficiently

cover the data space [4], [19].

Though we address a different problem, we use similar

tools as broader active learning techniques used in other areas

of robotics, such as using probabilistic models to select in-

formative samples for dynamics models, skill preconditions,

and policies [7], [20], [21]. Active dynamics learning [22],

[23] approaches sometimes address the additional challenge

of sequential dependence of selecting informative points,

but these works put strong assumptions on the form of the

dynamics model, whereas we extend our scope to allow

model preconditions over various types of models such

as analytical models and simulators. Model preconditions

are different but potentially more generalizable than skill

preconditions since multiple model-based behaviors can use

the same model preconditions.

Real-world fluid manipulation particularly benefits from

efficient exploration. Existing works tend to be conservative

in action space by limiting pours to a small region, such

as directly over a target container, which greatly limits the

set of observable dynamics [24]–[26]. Furthermore, other

approaches are largely constrained to scenarios with simple

dynamics [26]–[29] where failure tends to be over-pouring or

under-pouring. To our knowledge, this is the first experimen-

tal setting that uses a commonly-used 7 DOF manipulator to

perform actions that can often spill water into the workspace.

III. PROBLEM STATEMENT

In this work, we actively learn model preconditions for

planning with inaccurate dynamics models of the form ŝ←
f̂(s, a). We do not make additional assumptions on the

implementation or source of the model (e.g. analytical model,

simulator, learned model). A model precondition, denoted as

pre(f̂), is a region where a planner may use a given f̂(s, a).
The planning problems in our setting are defined by

sampling a start state and goal function g(s) that outputs

whether or not s is a goal state. Goals are achieved by

planning and executing a trajectory defined by actions a1:T−1

and predicted states ŝ1:T such that g(sT) holds. We assume

that f̂(s, a) is sufficient for solving the planning problems.

At test time, the planner uses the learned model precondition

to reject transitions where (s, a) /∈ pre(f̂).
The concrete form of model preconditions we use de-

scribes (s, a, s′) transitions where the deviation between

predicted states and next states d(ŝ, s′) stay within a thresh-

old tolerance, dmax, that the system can tolerate or cor-

rect. d(si, sj) is a distance function, such as Euclidean

distance, that outputs a scalar. The constraint can then be

defined as pre(s, a) = {s, a | d(s′, f̂(s, a)) < dmax}. Since

d(s′, f̂(s, a)) is impossible to compute without knowing s′,
we instead estimate d(s′, f̂(s, a)) given (s, a), denoted as

d̂(s, a) to indicate that it is estimated for a state and action.

The active learning problem in this work is to select a

set of (variable-length) trajectories to form a dataset D of

(s, a, s′) tuples on which an MDE is trained. Each trajectory

is denoted by τ , and we describe the set of candidate

trajectories that different searches generate for the same

problem as T . The agent may use the planner during training

time and sample from the same distribution of planning

problems that will be seen at test time, but not the same

problems. We assume access to sufficiently accurate state

estimation to compute meaningful deviations between all

observed points on the trajectory.

IV. LEARNING A MODEL-DEVIATION ESTIMATOR

As defined in Section III, an MDE predicts the deviation

d(ŝ, s′) for a particular model f̂(s, a) between a predicted

state ŝ and the true next state s′. We denote the output

of an MDE as d̂(s, a). By directly predicting d(ŝ, s′), the

MDE is agnostic to the source of model deviation. The

MDE in this paper is a Gaussian Process (GP) model with a

Matérn kernel and heteroscedastic noise model, specifying a

Gaussian distribution for the deviation with mean µ(d̂(s, a))
and standard deviation σ(d̂(s, a)). A heteroscedastic noise

model enables input-dependent noise, which is important to

capture when sources of model deviation differ.

Data collected for the MDE is in the form of (s, a, s′)
tuples from executing action a in the target environment (i.e.,

the real world) from state s, and then observing s′. The input

to the MDE is (s, a) and the label is d(f̂(s, a), s′).
A learned MDE then defines a model’s precondition as:

pre(f̂) = {(s, a)|P (d̂(s, a) > dmax) < δ} for some small

probability δ. The constraint can be written as µ(s, a) +
βσ(s, a) < dmax, where higher β lowers the risk tolerance.

16446

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 03,2024 at 19:41:28 UTC from IEEE Xplore. Restrictions apply.

Sample
planning
problem

Trajectory generation
Generate N trajectories
Ⲧ: [ŝ1:T-1, a1:T]
s.t. Ⲧ satisfies goal and domain
constraints

Execute 𝜏*
in test
environment

Update model precondition

observed
[s1:T-1, a1:T]

inputs: (s,a)
labels: d(s’, f(̂s,a))

Acquisition function
for each online iter j

𝜏*

for each 𝜏 with length T𝜏

compute step-wise α ∀ t < T𝜏 αstep(ŝt,at) = µ(ŝt,at) - cσ(ŝt,at)

select optimal 𝜏:
𝜏* = minⲦ α(𝜏) = minⲦ h([αstep(ŝ1:T, a1:T)])

αstep(ŝ1,a1) αstep(ŝ2,a2) αstep(ŝT,aT) …

α(𝜏1) α(𝜏2) α(𝜏N)

aggregate step-wise α
h([αstep(ŝ1:T, a1:T)]) ∀ t < T𝜏

α(𝜏)
…

iter j-1 iter j

Ⲧ

candidate
trajectories

start

goal

Fig. 2: Overview of our method: Each iteration j starts with sampling a planning problem and generating candidate trajectories that satisfy domain
constraints and reach the goal. We outline the acquisition function computation for each trajectory in the pink box, including the step-wise acquisition
function values, αstep(st, at) for each state-action pair in the trajectory. These values are then aggregated by a function h to yield the trajectory’s utility:
α(τ) . The final step is selecting and executing τ∗, in the test environment to collect the ground truth [s[1:Tτ], a[1:Tτ−1]]. The MDE is updated every
M trajectories.

V. ACTIVE LEARNING

The algorithm for actively learning MDEs is illustrated in

Fig. 2. First, the agent samples a planning problem and then

uses a motion planner to generate candidate trajectories, T .

The search adds transitions to the tree if they satisfy planning

constraints such as joint limits, a collision check, and the

model precondition as defined in Section IV. To encourage

exploration, a zero-mean prior is used for the MDE during

the learning phase. We use a rapidly exploring random tree

(RRT) planner [30] to encourage a diverse set of solutions in

T . Then, the robot executes the trajectory that minimizes an

acquisition function α(τ), which is a heuristic for the utility

of τ to the MDE. After a batch of M executed trajectories for

M problems, the robot adds the observed (s, a, s′) tuples to

D and updates the MDE using the training method described

in Section IV. Ideally, the model precondition region between

the start and goal states expands with more data (Fig. 1).

At test time, the robot generates a trajectory to the goal

using the same planner, MDE, and constraints as during

training, but with a more conservative model precondition.

The β parameter as described in Section III sets the tolerance

for deviations outside the model precondition; for example,

β = 2 specifies a 98% confidence interval.

A. Acquisition Function

Now, we explain how we define the acquisition function

α(τ), which guides our selection of the trajectory to execute

in each iteration: τ∗ ← argminτ∈T ;α(τ). The procedure is

illustrated in the rightmost box of Fig. 2.

Step-wise utilities: First, we compute utilities for each

step in the trajectory, shown in the dotted box. Trajectories

can vary in length, denoted as Tτ , and are comprised of

states and actions: s1:Tτ
, a1:Tτ−1. We denote the utility for

each step t as αstep(st, at) and define it using a form inspired

by Lower Confidence Bound: µ(x)−cσ(x) where c controls

exploration.

Aggregating individual step-wise utilities for a tra-

jectory: As shown in the blue dotted box (Fig. 2), we

next define a function h that aggregates single-step utilities

in trajectories of different lengths, αstep(s1:Tτ
, a1:Tτ

), to a

single trajectory utility, α(τ).
The general form of a trajectory-based acquisition function

using the lower confidence bound-based αstep is thus:

α(τ)← h([µ(d̂(st, at))− cσ(d̂(st, at))] ∀t < Tτ) (1)

Since later transitions may not be reached when the

trajectory is planned using an inaccurate dynamics model, we

introduce hmax and hsum. hmax = maxt<Tτ
γtαstep(st, at)

and hsum =
∑

t<Tτ
γtαstep(st, at). Multiplying each

αstep(st, at) by γt approximates the idea that nearer steps

are more useful in the trajectory.

B. Candidate trajectory generation

To set the risk tolerance during training, we propose a

schedule for the MDE that gradually reduces risk tolerance

as the robot accumulates more data. Since δ is determined

by µ(s, a)+βσ(s, a), δ can be set by modifying β using the

inverse CDF of a Gaussian distribution: β = Φ−1(1− δ). At

iteration j of J total iterations, βj ←
2k1

1+exp
(

−k2(j−
J

2
)
) −k1

results in a transition from −k1 to k1 where a lower k2
causes a smoother transition.

VI. EXPERIMENTAL SETUP

The first scenario, Icy GridWorld (Fig. 3a), is a grid-

world also used in [31] where the robot can move in four

cardinal directions, but if it moves left or right over an icy

state, it slips by moving two cells backwards. The robot

cannot move through the obstacle. The dynamics model

assumes the robot moves to the intended location. The start

16447

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 03,2024 at 19:41:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Scenarios and their corresponding dynamics models. (a) Slippery grid
world where movement may result in slipping backwards over ice (blue)
or not moving (grey). The analytical dynamics model assumes unimpeded
movement within grid bounds. (b) Simulated plant watering using a learned
dynamics model trained on a scenario without a plant. (c) Real-world plant
watering with a rule-based analytical dynamics model.

and goal state are selected randomly for each planning

problem.

(a) below leaves success (b) below leaves and spills (c) above leaves and spills

Fig. 4: Ratio of trajectory types executed during training (examples shown
above) for our method and the Random ablation over training iterations.

The second scenario, Water Plant(sim) (Fig. 3b), is a

plant-watering domain where the goal is to pour a specified

amount of water from a source container into a target

container without spilling more than 2%. The state space

is the poses of both containers and their liquid volumes.

The actions are specified as a target pose for the source

container. The actions must satisfy constraints unrelated to

the dynamics model including being collision-free according

to an approximate collision checker, and either translating or

rotating in one motion, but not both. The model is a neural

network dynamics model trained in a simpler environment

(shown in the bottom half of Fig. 3) with no plant and a wider

source container. This scenario tests the algorithm’s ability

to learn model preconditions caused by multiple sources

of model error such as geometry mismatch, obstruction by

leaves, and unexpected collisions. The start state is a random

pose left of the target container.

Lastly, the third scenario, Water Plant(real) (Fig. 3c),

is a real-world variation of the previous plant-watering

domain. A measured pourer dispenses 15 mL of water when

tilted above 130 degrees. The action space and state space

representations are consistent with the simulated scenario,

but we restrict the MDE input to only the action to reduce

dimensionality. The branches can move, but the base stays

fixed relative to the container. Since the plant state is

only measured by the container pose, variations that affect

the dynamics cause noise. This scenario demonstrates that

reliable performance can be reached in a small number of

trajectories (less than a dozen) in the real world where there

is considerably more noise and variation. The analytical

model we use assumes that 15 mL is dispensed for rotational

actions above 130 degrees and that the water enters the target

container if poured above the area of the container. The start

state is fixed and the goal is for 15 mL to be in the target

container without spilling more than 5 mL.

Evaluation methodology: On simulated domains, we

evaluate each variation using 10 seeds for 20 learning iter-

ations. The simulated domains use five training trajectories

per iteration, and the real domain uses two. Setup, planning

and execution for each training trajectory takes 15 s in

Icy GridWorld, 1.5 min in Water Plant(sim), and 3

m in Water Plant(real). At test time, we evaluate the

model preconditions for each iteration by using the model

preconditions where d̂(s, a) < dmax for each transition with

98% confidence. In the simulated scenarios, we sample 20

planning problems per iteration, and in the real-world sce-

nario, we sample 5 per iteration. In Water Plant(real),

we only evaluate the effect of using active learning and

goal-conditioned candidate trajectories. dmax = 0.1 for all

scenarios and represents the sum of all position distances

over all objects. We use a risk-tolerance schedule (Section

V-B) with k1 = 2 and k2 = 1
2 In both watering scenarios,

the average volume deviation of both containers is added to

the position error. For consistency, we scale the volume units

between simulation and the real-world such that one unit is

poured out.

The metrics that we evaluate are as follows. First, we

evaluate model precondition accuracy on a cross-validation

dataset of trajectories from the other seeds. We measure

both the true negative rate (TNR) and the true positive rate

(TPR) of whether an individual (s, a, s′) data point is in

the model precondition. A higher rate is better for both

metrics, but the TNR is more important than the TPR because

the model precondition only needs to cover enough state-

action space to compute a plan. Second, we test whether the

model precondition is sufficient to reliably compute plans

by measuring the success rate of the planner within a fixed

timeout of 5000 extensions. Finally, we evaluate the end-to-

end success rate in achieving the goal, which measures the

effect of using the estimated model preconditions over the

entire trajectory.

VII. RESULTS

We first show a qualitative analysis of data collected

during the active learning. We then quantitatively evaluate the

effects of different algorithmic variations using the metrics

we previously described in Section VI. Two baselines using

an MDE but different methods to generate T measure

the impact of algorithmic choices. Random selects random

16448

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 03,2024 at 19:41:28 UTC from IEEE Xplore. Restrictions apply.

Ite
ra

tio
n

1

tra
je

ct
or

ie
s :

 2

Starting
location

Target container

Plant

(a) Translation only

Starting
location

Plant

Target container

(b) Rotation only

Key
Ite

ra
tio

n
5

tra

je
ct

or
ie

s :
 1

0

Starting
location

Target container

Plant

(c) Translation only

Starting
location

Target container

Plant

(d) Rotation only

Fig. 5: MDE with plant overlay over training iterations for translation-
only actions and rotation-only actions. Color scales indicate ground-
truth deviation (right, top) and upper bound of the predicted deviation

µ(d̂(s, a)) + βd̂(σ(s, a)) for β = 2. dmax = 0.1, so the blue region
indicates the model precondition.

actions, effectively removing the goal-conditioning. Goal-

Conditioned eliminates the acquisition function by selecting

a random trajectory to the goal.

Online learning analysis: Here, we analyze the qualities

of the MDE dataset when using our active learning approach

described in Section V (Active Goal-Conditioned) compared

to selecting trajectories that do not reach the goal, but use

the same samplers from the planner, which we call Random.

The first row of Fig. 4 shows labels of trajectories selected

during training to analyze the makeup of the MDE dataset.

below success is the label for pours below the leaves

where all the water reaches the target, which is what would

ideally be well represented in the dataset. Since data where

the model is inaccurate is also necessary to quantify the

limitations of the model, we also track the portion of the

dataset that is below spill. The final trajectory type we

track is above spill, which is the least useful because the

water-container-leaf dynamics are typically high-deviation

and unnecessary to complete tasks.

Fig. 4 shows a faster increase in desirable below success

pours from Active Goal-Conditioned in iterations 0 to 9. We

note that there is an increase in successful pours around

iterations 10-12, which then decreases. As we show in the

included video, this effect can be attributed to responses in

both aleatoric and epistemic uncertainty, which affects the

exploration bonus: cσ(d̂(s, a)).

Model preconditions in Water Plant(real): Here,

we visually analyze how regions of model preconditions

change in the real-world pouring task. These regions are

low dimensional so it can be visualized in 2D by splitting

θd into two-cases: one for rotation-only actions, and one for

translation-only actions. We show the model precondition by

plotting d̂(s, a) over a region of A (Fig. 5). Aligned with our

intuition of how model preconditions should evolve, the area

of the model precondition expands as more data is collected.

The boundary becomes more precise with more data points

(Fig. 5). By iteration 5, the model precondition for rotational

actions is in a region above the target container but below the

leaves. Note that despite a low-deviation point at iteration 5

at (-0.12, 0.39), that area is not in the model precondition

because there is a nearby point that is high-deviation.

A. Candidate Trajectory Set Generation

Here, we evaluate how the method to generate T affects

performance metrics. Fig. 6, shows higher data efficiency

when using Active Goal-Conditioned or Goal-Conditioned

in all scenarios. In Water Plant(sim), we also see sig-

nificantly higher data efficiency when using active learning

in addition to conditioning on trajectories that reach the

goal, indicated by higher performance after fewer itera-

tions when using Active Goal-Conditioned over using Goal-

Conditioned, which does not use an acquisition function. In

Water Plant(real), we see a clear improvement when

using goal-conditioning, and a modest improvement in suc-

cess when using the acquisition function in later iterations.

The improvement of Active Goal-Conditioned over Goal-

Conditioned in finding plans to the goals is matched by a

significant increase in the TPR, which is more significant in

the simulated environments than in Water Plant(real).

Active Goal-Conditioned shows an improvement in success

rate reflected by a higher TNR. Earlier iterations in Icy

GridWorld using Random have overly broad model pre-

conditions, as seen by a high TPR, high success in finding

goals, but low success in reaching them. Overall, we see a

positive affect when using both goal-conditioning and our

active learning method.

Model precondition accuracy is not necessarily indicative

of high performance. As shown in the first row of Fig. 6,

although Random has both a high TNR and high TPR,

it never finds plans to the goal because of insufficient

task-relevant data. Additional results on the risk-tolerance

schedule and candidate trajectory diversity can be found on

our website.

B. Effect of acquisition function on performance

We analyze the impact of the aggregation function and

discount factor on performance. We test γ = 0.9 and

compare to no discounting with γ = 1. We observe an slight

improvement in performance in both Icy GridWorld and

Water Plant(sim) when using γ = 0.9 and hmax, which

is consistent with our intuition that discounting can account

for the dependence of later states on reaching earlier states.

The improvement is smaller for Icy GridWorld and more

apparent in the success rate in finding plans. Overall, we

find that the choice of γ and h does not have a major impact

on performance, but there may be some benefit in using a

discount factor or other forms of aggregation of step-wise

acquisition function values.

16449

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 03,2024 at 19:41:28 UTC from IEEE Xplore. Restrictions apply.

(a) Water Plant(real)

(b) Water Plant(sim)

(c) Icy GridWorld

Fig. 6: Success rate in computing a plan, success rate in reaching the goal, and model precondition accuracy over training iterations for three scenarios.
These plots measure the effect of whether trajectories are selected actively, goal conditioned, or not goal conditioned on performance.

(a) Water Plant(sim)

(b) Icy GridWorld

Fig. 7: Success rate in computing a plan, success rate in reaching the goal, and model precondition accuracy over training iterations for three scenarios.
These plots measure the effect of the aggregation function on performance.

VIII. LIMITATIONS

Our proposed active learning approach is limited to

scenarios where dynamic variables that significantly

affect deviation are represented in the state. Unobserved

dynamic variables are implicitly modelled as noise, which

may lead to overly restrictive model preconditions. This

issue can be mitigated by prioritizing recent data or by

incorporating these variables into the state, if feasible. Our

MDE implementation with a GP does not directly scale

to high-dimensional state spaces. Future work will explore

using pre-trained general-purpose models to address this,

potentially using cross-task information for added efficiency.

IX. CONCLUSIONS

This paper formulates the problem of active learning

of model preconditions then presents a novel class of

techniques designed to generate and select candidate

trajectories. We evaluate the performance of variations on

our active learning approach on two simulated scenarios

and one real-world task with learned models and analytical

models. Our experimental results demonstrate the effect of

algorithmic choices in candidate trajectory selection and

acquisition function on data efficiency. This work enables

empirical estimation of model preconditions with minimal

data, a capability we plan to extend to high-dimensional

deformable object scenarios where the use of model

preconditions can be particularly beneficial.

16450

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 03,2024 at 19:41:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. J. Bates, I. Yildirim, J. B. Tenenbaum, and P. Battaglia, “Modeling
human intuitions about liquid flow with particle-based simulation,”
PLoS computational biology, vol. 15, no. 7, p. e1007210, 2019.

[2] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia, “Learn-
ing mesh-based simulation with graph networks,” in International

Conference on Learning Representations, 2020.

[3] P. Mitrano, D. McConachie, and D. Berenson, “Learning Where to
Trust Unreliable Models in an Unstructured World for Deformable
Object Manipulation,” Science Robotics, 2021.

[4] D. McConachie, T. Power, P. Mitrano, and D. Berenson, “Learning
When to Trust a Dynamics Model for Planning in Reduced State
Spaces,” IEEE Robotics and Automation Letters, 2020.

[5] T. Power and D. Berenson, “Keep it simple: Data-efficient learning
for controlling complex systems with simple models,” IEEE Robotics

and Automation Letters, vol. 6, no. 2, pp. 1184–1191, 2021.

[6] A. L. LaGrassa and O. Kroemer, “Learning model preconditions for
planning with multiple models,” in Conference on Robot Learning,
pp. 491–500, PMLR, 2021.

[7] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez,
“Learning compositional models of robot skills for task and motion
planning,” The International Journal of Robotics Research, vol. 40,
no. 6-7, pp. 866–894, 2021.

[8] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple
models,” IEEE transactions on automatic control, vol. 42, no. 2,
pp. 171–187, 1997.

[9] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 4019–4026, IEEE, 2016.

[10] E. Páll, A. Sieverling, and O. Brock, “Contingent contact-based motion
planning,” in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 6615–6621, IEEE, 2018.

[11] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” The International Journal of Robotics

Research, vol. 32, no. 9-10, pp. 1194–1227, 2013.

[12] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” Advances in neural

information processing systems, vol. 27, 2014.

[13] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International conference on machine

learning, pp. 1321–1330, PMLR, 2017.

[14] R. Takano, H. Oyama, and Y. Taya, “Robot skill learning with identi-
fication of preconditions and postconditions via level set estimation,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 10943–10950, 2022.

[15] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot

Learning, pp. 1101–1112, PMLR, 2020.

[16] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
International conference on machine learning, pp. 2555–2565, PMLR,
2019.

[17] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg, “Day-
dreamer: World models for physical robot learning,” in Conference on

Robot Learning, pp. 2226–2240, PMLR, 2023.

[18] H. Liu and G. M. Coghill, “A model-based approach to robot fault
diagnosis,” in Applications and Innovations in Intelligent Systems

XII: Proceedings of AI-2004, the Twenty-fourth SGAI International

Conference on Innovative Techniques and Applications of Artificial

Intelligence, pp. 137–150, Springer, 2005.

[19] P. Mitrano and D. Berenson, “Data augmentation for manipulation,”
Robotics: Science and Systems 2022, 2022.

[20] I. Abraham and T. D. Murphey, “Active learning of dynamics for
data-driven control using koopman operators,” IEEE Transactions on

Robotics, vol. 35, no. 5, pp. 1071–1083, 2019.

[21] B. Eysenbach and S. Levine, “Maximum entropy rl (provably) solves
some robust rl problems,” in International Conference on Learning

Representations, 2021.

[22] A. Capone, G. Noske, J. Umlauft, T. Beckers, A. Lederer, and
S. Hirche, “Localized active learning of gaussian process state space
models,” in Learning for Dynamics and Control, pp. 490–499, PMLR,
2020.

[23] M. Buisson-Fenet, F. Solowjow, and S. Trimpe, “Actively learning
gaussian process dynamics,” in Learning for dynamics and control,
pp. 5–15, PMLR, 2020.

[24] N. Correll, N. Arechiga, A. Bolger, M. Bollini, B. Charrow, A. Clay-
ton, F. Dominguez, K. Donahue, S. Dyar, L. Johnson, et al., “In-
door robot gardening: design and implementation,” Intelligent Service

Robotics, vol. 3, pp. 219–232, 2010.
[25] J. Stückler and S. Behnke, “Adaptive tool-use strategies for anthropo-

morphic service robots,” in 2014 IEEE-RAS International Conference

on Humanoid Robots, pp. 755–760, 2014.
[26] C. Schenck and D. Fox, “Visual closed-loop control for pouring

liquids,” in 2017 IEEE International Conference on Robotics and

Automation (ICRA), pp. 2629–2636, IEEE, 2017.
[27] M. Kennedy, K. Schmeckpeper, D. Thakur, C. Jiang, V. Kumar,

and K. Daniilidis, “Autonomous precision pouring from unknown
containers,” IEEE Robotics and Automation Letters, vol. 4, no. 3,
pp. 2317–2324, 2019.

[28] Y. Noda and K. Terashima, “Modeling and feedforward flow rate
control of automatic pouring system with real ladle,” Journal of

Robotics and Mechatronics, vol. 19, no. 2, pp. 205–211, 2007.
[29] J. C. Vaz and P. Oh, “Model-based suppression control for liquid

vessels carried by a humanoid robot while stair-climbing,” in 2020

IEEE 16th International Conference on Automation Science and

Engineering (CASE), pp. 1540–1545, IEEE, 2020.
[30] S. LaValle, “Rapidly-exploring random trees: A new tool for path

planning,” Research Report 9811, 1998.
[31] A. Vemula, Y. Oza, J. A. Bagnell, and M. Likhachev, “Planning

and execution using inaccurate models with provable guarantees,” in
Robotics: Science and Systems XVI, Virtual Event / Corvalis, Oregon,

USA, July 12-16, 2020 (M. Toussaint, A. Bicchi, and T. Hermans,
eds.), 2020.

16451

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 03,2024 at 19:41:28 UTC from IEEE Xplore. Restrictions apply.

