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ABSTRACT

In this work, we explore how a real time reading tracker can
be built efficiently for children’s voices. While previously
proposed reading trackers focused on ASR-based cascaded
approaches, we propose a fully end-to-end model making it
less prone to lags in voice tracking. We employ a pointer
network that directly learns to predict positions in the ground
truth text conditioned on the streaming speech. To train this
pointer network, we generate ground truth training signals
by using forced alignment between the read speech and the
text being read on the training set. Exploring different forced
alignment models, we find a neural attention based model is
at least as close in alignment accuracy to the Montreal Forced
Aligner, but surprisingly is a better training signal for the
pointer network. Our results are reported on one adult speech
data (TIMIT) and two children’s speech datasets (CMU Kids
and Reading Races). Our best model can accurately track adult
speech with 87.8% accuracy and the much harder and disfluent
children’s speech with 77.1% accuracy on CMU Kids data and
a 65.3% accuracy on the Reading Races dataset.

Index Terms— Speech tracking, End-to-End models,
Reading assessment

1. INTRODUCTION

Tracking read speech finds useful applications in education,
when teaching children how to read properly. Building read-
ing tutors has been a popular application of automatic speech
recognition (ASR) [1, 2, 3] and tracking is an important part of
that. In contrast to offline assessment to score pronunciations
and give offline feedback [4, 5, 6], a tracker needs to function
in real time. An automated tracker can follow along a student
as they are reading and when they are stuck at a difficult to pro-
nounce word, it can prompt the word thus aiding the student.
However, automated tracking is not without challenges. Chil-
dren’s reading, when they are learning, is especially difficult
to track owing to the disfluencies present. There can be a lot
of false starts, word repetitions and word skipping involved.
Traditional modeling of a reading tracker has used a cas-
cade of an ASR model and a rule based tracking algorithm
[7]. Li et al. [8] further improve this method by taking into
account the real time nature of tracking, but their method is

also dependant on an ASR model. For a scenario where data
is scarce, training an ASR model can be challenging [9]. An
example of this is the Reading Races dataset that we exper-
iment with. In such cases, using an off-the-shelf pretrained
ASR model can lead to hallucinations. Another problem is the
time delay between the occurrence of acoustic evidence and
the prediction [10].

In this work, we build a fully end-to-end (E2E) speech
tracker using a pointer network [11]. This formulation is com-
pletely ASR free and our tracker learns an attention map over
the text being read conditioned on the streaming speech. This
attention map is learnt explicitly using ground truth alignments
that we obtain from a forced aligner. Using this formulation,
the time lag between acoustic evidence and the prediction is
reduced to a significant extent as we directly predict a pointer
position at each time step without having to predict the actual
word. Another advantage of this approach is that we can di-
rectly get the alignment by reading the attention maps without
needing to run a separate alignment algorithm. This way, we
avoid the cascading effects of ASR errors.

We experiment with three forced alignment models to
generate the ground truth to train the tracker, attention-based
encoder-decoder ASR model (AED) [12], a CTC-based ASR
model [13] and the classical GMM-HMM based ASR model
[14]. We note that the advantage of using the AED model is
that we naturally get soft alignments as training targets for the
tracker which can be useful for knowledge distillation.

We provide results on one adult and two children speech
datasets. For the adult voice dataset, we use TIMIT data [15].
For the children voice dataset, we use the CMU Kids [16]
data and the Reading Races dataset [17]. We observe better
tracking accuracy on TIMIT with the best tracking accuracy of
87.8%. On CMU Kids and Reading Races, we report the best
tracking accuracy of 77.1% and 65.3% respectively. We also
provide qualitative results on the children’s dataset showing
how some disfluencies are is handled by the pointer network.

2. MODEL OVERVIEW

The overall pipeline for building a real time tracker comprises
of two steps. In the first step, we generate forced alignments for
the training data using an ASR-based model. These alignments
are then used as the ground truth supervision for the second
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Fig. 1. The ASR is used to generate the alignment between the
speech and text, Apog € R™*™ where m and n are the number
of text and speech tokens respectively. The tracker learns an
attention over the text encoder output using the streaming
speech to predict the alignment Agar € R™ ™ which is learnt
using A7og € R™*"™ as the supervision.

step which is to train a pointer network based tracker.

2.1. Forced alignment

A forced aligner is an ASR model which predicts the best
possible alignment between a text input and the corresponding
speech. We denote the alignment generated by the forced
aligner as a matrix Aras € R™*™ where m and n are the
number of text and speech tokens respectively. Each row
of Arog is the alignment of a text token with all the speech
frames. Depending on the type of ASR model used, this
alignment can be soft (a probability distribution) or hard (a
one/multi-hot vector). We explore three ASR architectures for
performing forced alignment.

Attention-based encoder decoder (AED): This model is
based on the LAS framework [12]. Here, speech is encoded
using a bidirectional speech encoder and the decoder is a
unidirectional LSTM which decodes the text one character at
a time while implicitly learning an alignment between speech
and text through the attention layer. The alignment matrix
Arpsg is obtained from the attention layer and is a soft align-
ment, i.e. for each character in the text, we obtain a probability
distribution over the sequence of speech frames, denoting the
alignment. We can also convert this soft alignment into a hard
alignment easily by converting Aryg into a multi-hot vector
based on an alignment-weight threshold.

CTC-based ASR: For this, we train an ASR model with the
CTC criterion [13]. Once the model is trained, we follow
Kurzinger et al. [18] to obtain the trellis matrix which is the
probability of the characters aligned at each time step. Using
this trellis, we can estimate the most likely CTC path for the
given speech-text pair by backtracking. This gives us the
desired alignment, Apog which is a hard alignment.
GMM-HMM based ASR: We use the Montreal Forced
Aligner (MFA) [14] for this. We train acoustic models using
the pronunciation dictionary provided for the domain specific
datasets for forced alignment. MFA gives hard alignments by
default at the word and phone level. We could also get soft
alignments at the phonetic or grapheme level by extracting the

~ probabilities in the HMM model. For this work, we limit
ourselves to the default hard alignments from MFA.

2.2. Pointer network based tracker

Pointer networks were introduced in Vinyals et al. [11] for
tackling various combinatorial problems with deep learning
models using an additive attention mechanism. The original
formulation of pointer networks is autoregressive, where the
decoder points to a certain position in the encoder sequence
and this position is then added to the decoder output. Our
tracker application does not need the autoregressive formula-
tion as our model is not generative.

Our pointer network consists of a character-level text en-
coder, a unidirectional LSTM-based speech encoder and an
additive attention layer. Let the output of the text encoder
be a sequence of character embeddings (g1, g2, .., gm) and
that of the speech encoder be a sequence of speech frames
(h1, ha, ..., hy,). Given these two sequences, we want to get
an alignment estimate, ASZT € R™ ™ where each row corre-
sponds to a speech frame alignment with all characters in the
text. We estimate A gor using the attention layer as follows,

:c; = VTtanh(ngi + Wsh;)
a; = softmax(x;)

Agor = concat([a, ag, ..., a,])

Here, v, W; and W, are learnable parameters. The align-
ment of the j™ speech frame with all the characters in the text
is denoted by the probability distribution a;.

At inference, we can compute alignments as we get speech
frames, h; in real time using the unidirectional LSTM.

Training: To train the tracker, we obtain supervision from
the alignments, A7og generated from the forced aligner. We
compute the ground truth, A go7 as follows,

Agsor = Ll-normalize(AT )

We transpose Arss and normalize it row-wise so that we
obtain a probability distribution for every speech frame. If
Agor is a hard alignment, we compute,

Ny
1 1 . . }
Lpgrga = — Z — Z CrossEntropy (A sor[i], Asar[i])
B e
where the cross entropy is computed for the alignment of every
speech frame, i.e. every row of the alignment matrices across
the batch B. When Aoy is a soft alignment, we compute,

1

Lsoft = @

Ny
Z Nib Z KLDivergence(A gar|i], Asar]i])
beB =1

Lot can also be computed as a cross entropy loss, but we
follow previous work by Hinton et al. [19] and use KL-
Divergence by treating the soft target as a knowledge dis-
tillation target. The model overview is shown in figure 1.
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Fig. 2. The red boxes are the ground truth alignments of words
against time. The pixels represent the tracker prediction. The
height of each pixel is a 40ms frame. For a correct word
prediction by a frame, the total weight inside the red box
should be greater than that outside. For all frames, we can
count the number of correctly/incorrectly predicted words.

3. EXPERIMENTS

We train two deep learning based E2E ASR systems to build
the AED and CTC forced aligners. For AED, we follow the
design choices of Chan et al. [12]. We use one BiLSTM layer
to encode sequences of 80 dimensional log mel-filterbank fea-
tures, followed by two pyramid BiLSTM layers which down-
sample the sequence length by a factor of 4. Finally, we add
the last BILSTM layer to produce the final acoustic represen-
tations. The decoder is a two layer LSTM and the attention
mechanism is content-based and additive.

The CTC model has the same speech encoder architecture
as AED. We train the CTC and AED models on Librispeech
[20] followed by an adaptation on the downstream datasets.

For the tracker, the text encoder is a two layer BILSTM
and the speech encoder follows the same architecture as the
encoder of AED except that it is unidirectional. The tracker is
pre-trained on Librispeech and adapted on downstream data.

3.1. Evaluation

Forced alignment: To evaluate the performance of forced
aligners, we use precision, recall and jaccard similarity. For a
given word, let 1 and ¢ be the ground truth start and end times
and #, and £ be the predicted start and end times respectively.
Then, we define the evaluation metrics as follows,

intersection = max(min(to, t2) — max(ty,%1),0)

union = ty — 1 + f9 — £1 — intersection

. intersection

jaccard (Ja) = ————
union

. intersection

precision (Pr) = ——
to — 11

intersection

recall (Re) = ——
to — 11

TIMIT CMUK READR
Ground truth Manual Sphinx II [21] Manual (10 samples)
Pr Re Ja Pr Re Ja Pr Re Ja
AED-aligner (ours) 84.57 89.65 76.16 78.87 8298 68.10 8091 7494 7315
CTC-aligner 6193 69.58 50.29 50.80 5826 37.49 39.33 6134 3145
MFA (flat start) 91.19 90.96 83.56 84.72 7530 68.48 21.57 37.00 17.48
MFA (adapted) 48.66 49.48 3491 71.03 6751 56.78 1698 24.17 1272

Table 1. Forced alignment results on TIMIT, CMUK and
READR. The ground truth for TIMIT is manually annotated,
for CMUK, we use the provided Sphinx II annotation as
ground truth. For READR, we manually annotate 10 ran-
dom examples from the test set for evaluation.

Tracking: To evaluate the tracking performance of the pointer
network, we use the predicted alignment, A so7. Each row of
this matrix represents the alignment of a 40ms speech frame
with all characters in the text. For each frame, we compute
the score for every word in the text by adding the character
weights for that word in the corresponding row. The word with
the highest score is then predicted. A detailed illustration of
this is shown in figure 2. To make the prediction for a speech
frame 7 more deterministic, we make the output distribution
sharper using the following operation with 7 = 0.1,

(Asarli)) ™

shar A 2 ( T AN E L
harp(Asar(i]) I(As2r[i]) 7]

3.2. Datasets

We use three datasets for evaluation.

TIMIT [15]: This is a 5-hour dataset of adult voice recordings.
We use the standard train-test split. This data provides time
aligned transcriptions which act the ground truth.

CMU Kids (CMUK) [16]: This is a 9-hour corpus of children
read speech. The children’s age vary between 6 to 11 years.
This data provides time aligned transcriptions from Sphinx II
[21]. For disfluencies, we are provided with a phoneme level
transcription. We convert these into word-level transcription
by using dynamic time warping to align orthographic and
phonemic transcriptions of words.

Reading Races (READR) [17]: This is a 15-hour corpus of
children read speech with each data instance being a minute
long. This is a more challenging dataset with participants
being in the age group of 5 to 8§ years with reading difficulties.

3.3. Results

Forced alignment: The output of forced alignment acts as
the training signal for our pointer-network based tracker. We
compare forced alignment performance of three ASR mod-
els: AED, CTC and GMM-HMM (MFA for montreal forced
aligner [14]). The results are shown in table 1.

We note that MFA performs best compared to the other
two on TIMIT and CMUK. However, this required training an
acoustic model using the provided pronunciation dictionary.



TIMIT CMUK READR
Ground truth (—) Manual Sphinx II [21] AED
Training signal ({) Acc Fl1 Acc Fl1 Acc Fl1
AED (Lpard) 83.30 81.26 7392 70.82 65.34 67.76
AED (Lsoyt) 87.73 83.81 77.07 7715 63.68 63.41
AED (Lpard + Lsose) 87.82  83.85 77.06 76.13 6445 67.12
MFA 77.67 7276 67.11 49.70 769 584

Table 2. Tracking results. Training signal from 4 different
forced aligners are used to train to tracker. The accuracy and
F1 scores are measured as in figure 2. For READR, we use
the AED forced aligner output as the ground truth.

AED and CTC based forced aligners are fully E2E and do not
require a pronunciation dictionary to adapt their acoustic mod-
els. The advantage of this is evidenced by the results of MFA
on READR which does not have a pronunciation dictionary
of its own and thus MFA performs poorly. For READR, we
manually time aligned 10 one-minute long random examples
from the test set. We note that AED performs much better
compared to CTC with an additional advantage that AED pro-
vides soft alignments between speech and text which can be
used for teacher forcing to train the tracker.

Tracking: Table 2 shows the tracking results. We use the eval-
uation procedure mentioned in section 3.1 reporting tracking
accuracy and F1 score. We report tracking performance with
4 training signals but do not evaluate the CTC based training
signal as it’s forced alignment performance was not very good.

When using the AED variants for the training signal, Agor,
we perform significantly better compared to the MFA based
Agsor even though MFA gave better forced alignment results
on TIMIT and CMUK. This is because MFA gives word-
level time alignments while the AED model is trained to give
character-level alignments. Correspondingly, the tracker can
also be trained at the character level. For a character-level
model, even if a character prediction for a frame is out of
bounds (outside the red box in figure 2), there is still a chance
for recovery through its alignment with other characters in the
word (more weight inside the red box in figure 2). There is no
such recovery provision for a word-level model.

For the READR data, we note that using the hard training
signal (Ljqrq) gives best performance whereas for CMUK and
TIMIT, the soft signal (L, s+) helps more. We hypothesize that
as READR has very long audio inputs (1 minute on average),
having a precise alignment as a training signal better facilitates
the model in finding the exact location. Also note that the
MFA training signal performs poorly on READR due to the
MFA forced alignments themselves being very poor in table 1.

For READR, we also evaluate the tracker against the 10
manually aligned examples. We compare this with the per-
formance we got when evaluating against the force aligned
ground truth (see table 3). Note that we see better performance
when evaluating against the manual annotations which shows
that our tracker follows closer with human alignments.

Manual annotation AED annotation

Training signal ~ Acc F1 Acc F1
AED (Lpard) 69.34 71.99 64.08 67.25

Table 3. Tracker result on 10 random examples from READR,
comparing manual alignments with AED alignments.
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Fig. 3. Pointer network’s tracking. X-axis is the sentence being
read and the text in red is the transcript. We see that word
repetition (top) and skipping (bottom) is effectively captured.

Finally, we show how the tracker behaves in the presence of
disfluencies in figure 3. The top plot shows that in the case of
repetition or false start, the tracker is able to effectively realign
itself and continue the monotonic trajectory. Also, the tracker
can detect the stopping point in a partially read sentence and
ignore the unread part (bottom of figure 3). Thus, the tracker
can give meaningful alignments for disfluent children’s speech.

4. CONCLUSION

In this work, we build a real time reading tracker using pointer
network. Our proposed method does not require manual anno-
tation and relies on forced alignment to generate the training
signal to train the tracker. We explore different forced align-
ment strategies to generate the training signal and note that
AED based forced alignment works best to train the tracker.
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