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SUMMARY

Sequential neural dynamics encoded by “time cells” play a crucial role in hippocampal
function. However, the role of hippocampal sequential neural dynamics in associative
learning is an open question. We used two-photon Ca?* imaging of dorsal CA1 (dCA1)
neurons in the stratum pyramidale (SP) in head-fixed mice performing a go-no-go
associative learning task to investigate how odor valence is temporally encoded in this
area of the brain. We found that SP cells responded differentially to the rewarded or
unrewarded odor. The stimuli were decoded accurately from the activity of the neuronal
ensemble, and accuracy increased substantially as the animal learned to differentiate
the stimuli. Decoding the stimulus from individual SP cells responding differentially
revealed that decision-making took place at discrete times after stimulus presentation.
Lick prediction decoded from the ensemble activity of cells in dCA1 correlated linearly
with lick behavior indicating that sequential activity of SP cells in dCA1 constitutes a

temporal memory map used for decision-making in associative learning.
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INTRODUCTION

In the natural world, understanding and integrating sensory stimuli is essential for
survival. An animal must be able to locate food and water, detect disease, avoid
predators, and seek out mates to reproduce. Of note, the success of these behaviors
relies heavily on the integration of olfaction’ and experience? and is context-dependent.
Thus, it is simply not enough for an animal to detect an odor; it must be able to also
apply meaning to it (association) and then act accordingly. To accomplish this, the
hippocampus provides real-time encoding and retrieval of detailed context memories
enabling reactions to a constantly changing environment3+#. Diverse and distributed
neuronal activity encodes external features such as contextually referenced space and
time and sensory stimuli, as well as features influenced by the animal’s behavior such
as speed and direction of motion®8. Here we address the neural representation of
associative learning in stratum pyramidale (SP) neurons of dorsal CA1 (dCA1), a

hippocampal area involved in spatial learning and working memory tasks® 0.

The involvement of dCA1 in associative learning of stimulus discrimination in head-fixed
animals is still unclear''-'®, Li and co-workers showed that for mice engaged in an odor
discrimination go-no go associative learning task dCA1 pyramidal cells receiving
connections conveying olfactory information from the lateral entorhinal cortex (LEC)
develop more selective spiking responses to odor cues as they learn to discriminate
odorants. Importantly, they showed that optogenetic inactivation of the LEC to dCA1

connections slows learning'®. In addition, Biane and colleagues found a learning-related
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increase in the proportion of cells responsive to the rewarded (S+) odorant, but not to
the unrewarded (S-) odorant, suggesting that stimulus representations in dCA1 are
sensitive to perceived value. However, learning did not alter stimulus decoding accuracy
which was already high before training in dCA1'5. Notably, temporal patterning of dCA1
neural activity plays a crucial role in odorant working memory tasks'"'” and has been
postulated to play a role in organizing memories'® raising the question whether it
contributes to the neural mechanism for go-no go associative learning in this brain
region. Hippocampal “time cells” store memory of the temporal order of events and
signal changes in the temporal context'®'".18, It has been hypothesized that the
temporally structured activity of neurons make perceptually related responses coherent
in time'®, but it is unknown whether there is a time-tiled divergence of distinct patterns of
neural activity elicited by each stimulus (stimulus divergence) in dCA1 that could
contribute through sequential neural dynamics to behavioral responses reflecting

decision-making in associative learning.

Using two-photon Ca?* imaging, we evaluated ensemble decoding of stimuli from
temporally patterned neural activity in dCA1 in mice engaged in an olfactory go-no go
task where the animals receive a water reward after licking on a spout when presented
with the S+ odorant and do not receive a water reward for the S- odorant?® (Figure 1A).
We characterized stimulus divergence of Ca?* responses of individual cells (Regions of
Interest (ROIs)); we decoded the identity of the stimulus from Ca?* recording; and we
determined whether the onset of divergence of stimulus responses takes place at

different times after stimulus presentation, in a time-tiled manner.



94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

RESULTS

Two-Photon Calcium Imaging in Dorsal CA1 in Head-Fixed Mice Undergoing a Go-

No Go Olfactory Associative Learning Task

Calcium imaging was performed through a GRIN lens in adult Thy1-GCaMP6f mice
(n=4) expressing the Ca?* indicator GCaMP6f in neurons in the SP in dCA1 (Figure 1A,
Figure S1A). The majority of these GCaMP6f-expressing cells were expected to be
pyramidal cells and did not co-localize with parvalbumin interneurons (Figure S1B). We
refer to GCaMPG6f-expressing cells as SP cells. In the go-no go experiments, head-fixed
water-restricted mice initiated each trial by licking on the water spout. One of two
odorants was delivered 1-1.5 seconds after the start of the trial and the odorant was
presented for 4 seconds. Mice were trained to respond to S+ by licking at least once
during two 2 second response windows (RWs) to obtain a water reward for
reinforcement (Figure 1A). The water reward was not delivered when S- was presented
and if mice licked during the two RWs for S- they experienced a delay penalty before
the next trial start. Two-photon calcium imaging recordings were denoised?!, motion-
corrected?? and time-binned traces of nonnegative changes in fluorescence intensity
(AF/F) were obtained for multiple ROls using EXTRACT?. Figures 1B,C,E and Video 1
show calcium imaging data in CA1 from a 20 minute session for a mouse proficient in
the go-no go task (153 ROls, proficient stage is percent correct >= 80%). The

fluorescence traces displayed calcium transients whose timing was heterogeneous
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when evaluated by the cross-correlation between the traces of all ROls (Figure 1D). In
this session a subset of the ROls responded differentially during S+ vs. S- odorant trials
(Figures 1C,E). These results suggest the existence of a complex time structure
underlying the calcium responses from a population of dCA1 neurons in the go-no go

task.

Mice Learn to Respond Differentially to the Rewarded and Unrewarded Odorants

in the Go-No Go Task

In the first training session, the percent correct response to the odorants (S+: 1%
heptanal, HEP, S-: mineral oil, MO) was between 45% and 65% correct for three of four
mice (Figure S1 C-E, for the fourth mouse percent correct was 75% in the first session,
Figure S1F). We classify the session as “learning stage” when percent correct behavior
is between 45% and 65% correct. We then trained the mice in 3-6 training sessions per
day. As shown in Figure S1 C-F the mice gradually reached the proficient stage. We
recorded from a total of 19 learning stage sessions in three mice and 66 proficient
sessions in four mice (Table 1). Once the mice had stable proficient performance the
odorants were reversed (S+: mineral oil, MO, S-: 1% HEP) to investigate whether dCA1
calcium responses encode for the odorant’s identity or valence. Percent correct
behavior dropped immediately below 50% and gradually recovered to proficient (Figure
S1C-F). We recorded from a total of 25 forward proficient stage sessions and 41
reversed proficient stage sessions in four mice. Finally, as discussed in the methods

(Figure S2) odor delivery pinch valves emit a click sound at the start of the trial that



140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

could be used to decode the stimulus. However, when the odorant is removed behavior

drops to 50% (Figure S1 G-I) indicating that mice cue on odorants in this go-no go task.

Stimulus-divergent zAF/F Responses are Heterogeneous and Divergence

Increases with Learning

The results shown in Figure 1C indicate that a subset of ROls respond differentially to
the two odorants. We proceeded to assess whether per ROl z-normalized AF/F (zAF/F)
time courses diverged between S+ vs. S- odorant trials. We compared the divergent
zAF/F time courses between S+ (Hit + Miss) and S- (CR + FA) trials, or we compared

the zAF/F time courses for incorrect trials (Miss and FA) with correct trials (Hit and CR).

In order to characterize the differential responses we classified z-normalized AF/F time
course in S+ or S- trials within a session as divergent when the p-value for a
generalized linear model (GLM) analysis of the difference between S+ and S- in the
time span from -1 to 5.5 sec was below the p-value for significance corrected for
multiple comparisons using false discovery rate?*. Figure 2A shows examples of single
ROI divergent responses and Figure 2B shows a pseudocolor representation of the time
courses for all ROIs diverging in zAF/F between S+ and S- trials for the proficient stage.
The time courses fall into two types as evidenced by hierarchical clustering (the cluster
tree is shown on the left in Figure 2B) and by the cross correlogram of the per session
zAF/F time courses (Figure 2C). The first cluster, ROIs numbered 934 to1657 (red

hierarchical branch), displays a decrease in zAF/F for S+ and an increase for S- (Figure
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2Fi). In contrast, the time course for cluster 2 (cyan hierarchical branch) shows an

increase in zAF/F for S+ trials and a smaller increase for S- trials (Figure 2Fii).

Analysis of zAF/F divergent ROls for the learning stage also displayed a similar
heterogeneity in time courses (Figures S3B and S3C). The percent of divergent ROls
was not significantly different between learning and proficient stages (Figure 2Ei, t-test,
p>0.05, 3 mice for learning, 4 mice for proficient). However, when the per cluster zAF/F
(Figure 2G) was tested with GLM analysis there were statistically significant differences
for S+ vs. S- and for learning vs. proficient for both clusters (p<0.05, number of
observations, d.f. and F statistics are in Data S1A). These differences indicate that there
are changes in zAF/F time course elicited by learning. Finally, the time course for error
trials tended to be similar to the time course for correct trials (compare Hit vs. Miss and

CR vs. FA in Figures 2H and |, p>0.05, Data S1A).

Stimulus-Divergent zAF/F Responses Take Place at Discrete Times

Responses of a subset of CA1 pyramidal cells named odor-specific time cells take place
at discrete time points in the delay period in a delayed non-match to sample task where
the animals are presented sequentially with two odors''. We asked whether we had
similar time tiling for the onset of odorant divergence for zAF/F time courses. The time
courses for zAF/F shown in pseudocolor in Figure 2B show visible differences in the

times of the divergent responses (also see examples for individual ROls in Figure 2A).
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As shown in Figure 2D divergence times spanned the time period from trial onset to

times after the reward was delivered.

Switching Rewarded to Unrewarded Stimulus Elicits Changes in zAF/F Stimulus

Responses Consistent with Response to the Valence of the Stimulus

In order to determine whether stimulus-divergent zAF/F responses are divergent
responses to the stimulus identity (e.g. odorant identity) vs. stimulus valence (are the
stimuli rewarded?) we switched the rewarded S+ stimulus (1% heptanal, HEP) with the
unrewarded S- stimulus (mineral oil, MO) after the animal became proficient. We define
the original training condition (HEP as S+) as a “forward” go no go task, and then
flipping the rewarded and unrewarded odors (MO as S+) as a “reversed” go no go task.
This reversed go-no go task allows us to probe whether the divergent responses are
responses to odor identity vs. odor valence. As shown in Figures S1C-F, percent correct
behavior decreased below 50% after stimulus reversal. Subsequently, it recovered,
reaching >80% indicating that the animal learned the new reversed valence of the
stimulus. Figure 3A shows the zAF/F time course for ROIs that responded with
divergence to the stimuli when the animal was proficient in the forward task. We
performed a cross-correlation analysis (Figure S4B) and we sorted the time courses into
two clusters using a hierarchical binary cluster tree and computed average time courses
for the two clusters (Figure 3Ci, Figure S4Ai). As in Figure 2, the responses to S+ (HEP)
tended to be larger than responses to S- (MO) in the most abundant cluster of

responses (cluster 2) in this forward task (Figure 3A).
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Interestingly, in both the forward and reversed tasks the S+ elicited a larger zAF/F
response for cluster 2 ROIs when the animal was proficient (Figure 3C). We quantified
this shift in zAF/F time courses with reversal by determining the value for stimulus-
induced changes in zAF/F in the window from 1 to 2 seconds. Figure 3D shows a bar
graph of the changes in zAF/F for forward and reversed runs for cluster 2 (results for
cluster 1 are depicted in Figure S4Aiii). When the zAF/F peak values were tested with
GLM analysis there were statistically significant differences for both odorant and forward
vs. reversed (p<0.001, Data S1B). These data suggest that most of the zAF/F stimulus

responses are responses to the odorant valence.

For the mouse whose percent correct behavior is shown in Figure S1F we ran the last
forward session and the two proficient reversed sessions on the same day allowing us
to perform an analysis where the ROls in the reversed sessions were matched to the
ROIs in the forward session. Figure S4C shows divergent zAF/F time courses for
matched ROls in forward and reversed proficient sessions sorted into two clusters using
a hierarchical binary cluster tree. Figure S4D shows the cross correlogram for these
zAF/F time courses. In order to compare the forward and reversed divergence in zAF/F
time courses we calculated d'2% per time point for zAF/F time courses for HEP vs. MO. A
change in d’ polarity indicates that the response is a response to the valence. The d’
time courses for forward and reversed sessions for all divergent ROIs are shown in
Figure S4E and Figure 3E plots the peak value of d’ in the odorant period for the

forward and reversed runs. Most of the d’ values reverse polarity with the forward to

10
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reversed switch indicating that these ROls represent the odorant value. In conclusion,
for proficient sessions (>80% correct behavior), most of the zAF/F divergent ROls

represent stimulus valence.

The Accuracy for Decoding Stimulus Increases with Learning and is Dependent

on the Timing of the Training Window

We asked whether the information embedded within zAF/F activity of all ROIs can be
used to decode the stimulus (S+ vs. S-) using a GLM decoding algorithm. When we
trained the GLM using a broad training time window spanning the odorant presentation
period and the beginning of the reward period (0.5 to 5.5 sec) decoding accuracy
started increasing above 0.5 slightly after trial start (~-1 sec) and reached ~0.8 through
a window spanning the odorant period for the proficient animal (Figure 4Aii). In contrast,
the decoding accuracy for the learning stage only reached ~0.65 (Figure 4Ai). The bar
graph in Figure 4iii shows the accuracy for pre-odor (-1 to 0), odor (3.1 to 4.1) and
reinforcement (4.5 to 5.5) trial periods. A GLM analysis yielded a statistically significant
difference for odor and reinforcement time periods vs. pre-odor period and for the
interaction between these trial period comparisons and proficient vs. learning stages
(p<0.05-0.001), 279 observations, 270 d.f., 4 mice, GLM F-statistic=37.7, p<0.001 (Data

S1C).

We then asked how the decoding accuracy time course varies depending on the

training time window. As expected when the training window spanned a period before
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stimulus presentation (-5 to -3 sec) accuracy did not increase above shuffled (Figure
4C, the p-value for GLM was >0.5 for all comparisons, see Data S1C). In contrast, when
the training window spanned the reinforcement period (4.5 to 6.5 sec) decoding
accuracy increased above 0.5 for the learning stage after the mouse was given the
reinforcement (Figure 4Bi) and the increase in decoding accuracy above 0.5 shifted to
the time when the odorant was presented when the mouse became proficient (Figure
4Bii). GLM analysis of the bar graph in Figure 4Biii indicated that these changes in
decoding accuracy were statistically significant (p<0.001 for the interaction between
odor period vs. pre-odor period and proficient vs. learning stages, 273 observations,
264 d.f., 4 mice, GLM F-statistic=45, p<0.001, Data S1C). Other decoding algorithms
yielded similar results (Figure S5A, Data S1G). As expected the accuracy for stimulus

prediction differs when different windows are used to train the GLM decoding algorithm.

Decoding of Decision Making in the Go-No Go Task from CA1 Neural Activity is

Time-tiled

Divergence of zAF/F responses between S+ and S- stimuli occurs at different times
after trial start (Figures 2A and D, Figure S3A) suggesting that the onset of the increase
in accuracy for stimulus decoding is time-tiled. In order to assess time tiling of the timing
for decision making, we performed an analysis of the time course for accuracy of
stimulus decoding from zAF/F responses of subsets of ROls per session for proficient

mice. The number of ROIs used to calculate GLM decoding per session was varied

12
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from 1, 2, 5 and 15 ROls to all ROls per session. For this decoding analysis we trained
the GLM algorithm with zAF/F data in the broad training time window (0.5 to 5.5 sec,

Figure 4A).

Figure 5A shows histograms of decoding accuracy calculated in the odor period (3.1 to
4.1 sec) for stimulus decoding performed with zAF/F from these subsets of limited
numbers of ROIs (blue bars) (also see examples in Figure S6A-C). For comparison we
also show a histogram for accuracy values calculated after shuffling the odorant
contextual identity (brown bars). As the number of ROls per decoding run decreases,
stimulus decoding accuracy declines (compare Figure 5Av with 5Ai). In addition, the
pre-odor accuracies also decrease as the number of ROIs per decoding run is
decreased (compare Figure 5Bv with 5Bi). A GLM analysis yields significant differences
in decoding accuracy for comparisons between the number of ROls per decoding run
and the time periods, p<0.001, 4 mice, 27344 observations, 27344 d.f., F-statistic 798,

p-value <0.001 (Data S1D).

We quantified the divergence time, calculated when accuracy increased above 0.55
after trial start for at least 0.2 sec, for decoding accuracy time courses with odor period
decoding accuracy >0.65 (Figure S6E). Histograms of divergence times calculated for
the different multiple ROI decoding runs are shown in Figure 5C. The divergence times
decrease as the number of ROls used for decoding calculation increases (compare
Figure 5Ci with Figure 5Cv). A GLM analysis of divergence times yields significant

differences for comparisons between accuracies calculated with different numbers of

13
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ROls, p<0.001, 4 mice, 27354 observations, 27349 d.f., F-statistic 1400, p-value <0.001
(Data S1D). This analysis indicated that the onset of the increase in stimulus decoding

accuracy is time tiled.

Finally, we generated a pseudocolor plot of the time course of decoding accuracy to
better illustrate the time tiling of accuracy onsets (Figure 5D). When decoding from
individual ROls there is a large variance in the start of the increase in accuracy ranging
from trial start to reward delivery (Figure 5Di). Computing average accuracy time
courses for different divergence time periods shows that the onset of the increase in
decoding accuracy is time-tiled and that decoding accuracy calculated for the earliest
divergence time period is biphasic with a small increase at trial start followed by a larger
increase after odor onset (Figure 5Dii). In contrast, when decoding accuracy is
computed with all ROlIs per session there is less variance in the time for onset of the
increase in decoding (Figure 5Diii and 5Div). These data show that the onset of
increases in decoding accuracy, predicting time of decision making, is time-tiled in

hippocampal CA1 suggesting that these are decision-predicting time cells.

Lick Decoding and Stimulus Decoding Differ in their Relationship to Lick

Behavior

Next we asked how stimulus decoding prediction is related to lick behavior (quantified

as lick fraction defined as the fraction of trials when the animal was making contact with

the lick tube). In addition, we asked whether it was possible to decode lick behavior

14
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from neural activity and whether the relationship between lick prediction and lick fraction
differed from the relationship between stimulus prediction and lick fraction. We
performed this analysis separately for correct responses (Hits and CRs) and incorrect

responses (Miss and FAs)(Figure 1A).

There was a transient increase in lick fraction for all trial types when the animal started
the trial by licking on the water spout (arrow in Figure 6A). For Hits (red) this transient
increase was followed by a steady increase in lick fraction during the odor period (0-4
sec), while for CR trials (blue) there was a decrease toward zero shortly after odorant
presentation. In contrast, for Miss trials, the lick fraction did not increase during the first
second of the odorant period (cyan), and for FA trials, the lick fraction was high for the
first half of the odorant period (magenta). Figure 6B is a bar graph showing the mean
lick fraction during the first and second 2 sec response windows (RWs) during the
odorant period (RWs are defined in Figure 1A). A GLM analysis yields significant
differences in mean lick fraction for comparisons between CR or Miss vs. FA or Hit and
for the interaction of Miss or Hit and FA and the RWs, p<0.001, 4 mice, 452

observations, 441 d.f., F-statistic 36.7, p-value <0.001 (Data S1E).

The accuracy for neural network decoding of lick fraction from zAF/F for all ROls per
session when the mice were proficient (four mice, 66 sessions) is shown in Figure S5B.
In contrast with accuracy for stimulus decoding that starts diverging from shuffled at the
trial start (Figure 4Aii) lick decoding accuracy starts diverging from shuffled after the

odorant presentation (Figure S5B). The bar graph in Figure S5C shows the mean lick
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decoding accuracy data for pre-odor (-1 to 0), odor (3.1 to 4.1) and reinforcement (4.5 to
5.5) time periods. A GLM analysis yielded a statistically significant difference for odor
and reinforcement time periods vs. pre-odor period and for the interaction between
these time period comparisons and shuffling (p<0.001), 378 observations, 369 d.f., 4
mice, GLM F-statistic=62.1, p<0.001 (Data S1G). Figures 6C and D show the lick
prediction time course and mean lick prediction calculated in the RA windows for the
different trial types. A GLM analysis yields significant differences in mean lick prediction
for comparisons between Hit or Miss and FA and for the interaction of Hit and FA and
the RWs, p<0.001, 4 mice, 488 observations, 477 d.f., F-statistic 24.3, p-value <0.001

(Data S1E).

Figure 6E shows the time course for stimulus prediction. For Hits (red) there was a
steady increase in stimulus prediction that started at trial onset and leveled to a value of
~0.8 during the odor period for Hits (red) while for CR trials (blue) there was an initial
increase after trial start that decreased to ~0.2 during the odor period. For Miss trials
stimulus prediction appeared to increase to a value below Hit prediction (cyan). For FA
trials stimulus prediction started increasing at the trial start, but did not decrease to ~0.3
during the odor period (magenta). Figure 6F is a bar graph showing the mean stimulus
prediction during the first and second 2 sec response windows (RWs) during the
odorant period. A GLM analysis yields significant differences in mean stimulus
prediction for comparisons between CR, Miss or Hit, and FA, p<0.05, 4 mice, 452

observations, 441 d.f., F-statistic 57.3, p-value <0.001 (Data S1E).
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The time course for lick fraction (Figure 6A) appears to be similar to the time course for
lick prediction (Figure 6C) and appears to differ from stimulus prediction (Figure 6E).
Indeed, the relationship between lick fraction and lick prediction was linear (Figure 6G).
In contrast, the relationship between lick fraction and stimulus prediction differed
between S+ (Hit/Miss) and S- (CR/FA) (Figure 6H). For Hits and Miss the stimulus/lick
fraction relationship was linear (Figure 6H, cyan and red circles), while for CR/FA points
(Figure 6H, magenta and blue circles), the relationship appeared to be quadratic and
the points did not fall along the Hit/Miss line. Therefore, the relationship between lick
fraction and stimulus prediction in CA1 does not follow the simple linear relationship that
is expected from neural activity closely related to motor action. Instead, the relationship
differs strikingly for S+ vs. S- stimuli. However, decoding lick behavior from the same

neural activity did yield a prediction that showed a linear relationship with lick fraction.

Stimulus Decoding Between Trials is Biased to Predict the Unrewarded Stimulus

and there are Sudden Brief Shifts to Rewarded Stimulus Prediction

We proceeded to explore whether decoding of stimulus contextual identity from
neuronal activity in CA1 between trials predicted one of the two stimuli for proficient
mice engaged in the go-no go task. Figure 7A shows a time course for predicting the
stimuli by GLM decoding calculated during an imaging session. As in Figure 4A, GLM
was fit to neural activity for all ROls during the 0.5 to 5.5 sec spanning most of the
odorant window. A prediction value of 1 corresponds to S+ prediction and a value of 0

represents S-. The blue shade shows the 5™ to 95" percentile band for prediction
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calculated after shuffling the stimulus labels. Trials are bounded from start to end of
odor epoch by vertical lines (cyan: S+, magenta: S-). As expected, within trials
prediction increases to 1 for some time longer than the odorant window during S+ trials
while it increases briefly at the start of S- trials but returns to zero before the end of the
odorant period. Figure 7B shows the within trial mean prediction time course for all trials
in proficient sessions for the 4 mice (a total of 1848 trials in 66 sessions). For this within-
trial decoding the prediction starts increasing before trial start for both the S+ and S-
trials and it diverges between S+ and S- at the start of the trial. The bar graph in Figure
7C shows the S+ and S- prediction for a baseline period (-2.5 to -1.5) and an odor
period (2 to 4.1 sec). A GLM analysis yields significant differences for baseline vs. odor
time periods and for the interaction between S+ vs. S- and time periods, p<0.001, 4
mice, 220 observations, 213 d.f., F-statistic 194, p <0.001 (Data S1F). Thus, within the
trial stimulus prediction starts increasing at trial onset and diverges between rewarded

and unrewarded odorant trials shortly after trial onset.

Intriguingly, the average prediction calculated between trials is lower than shuffled
(Figures 7A and 7D) indicating that the default decoding is S- for most of the time
between trials (GLM p-value for between vs. shuffled <0.001, 110 observations, 105
d.f., F-statistic 70.7, p<0.001, Data S1F). However, there are precise brief shifts of
prediction to 1 (arrow in Figure 7A). We identified these spontaneous shifts of prediction
to 1 between trials by finding increases beyond the 95 percentile of the shuffled
prediction values (blue shade in Figure 7A). We found a total number of 1635

spontaneous shifts to S+ prediction between trials in 66 sessions. The duration of these
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spontaneous shifts varied between a fraction of a second to two seconds. The cyan
bounded line in Figure 7F shows the mean time course for between trial spontaneous
shifts compared to an adjacent between trials time period with no spontaneous changes
in prediction (“no change”, magenta). The bar graph in Figure 7G shows a significant
difference between the prediction before the onset of the spontaneous increase in
prediction and the peak of prediction for the spontaneous shift. A GLM analysis yields
significant differences for spontaneous shift in prediction vs. no shift and for the
interaction between spontaneous vs. no shift and baseline vs. peak time windows,

p<0.001, 4 mice, 192 observations, 185 d.f., F-statistic 703, p <0.001 (Data S1F).

The fact that there is a spontaneous shift in stimulus prediction from S- to S+ between
trials raises the question whether the neural activity at the time of spontaneous
prediction shifts is more correlated to the activity during rewarded odorant trials as
opposed to unrewarded odorant trials. We calculated per session the correlation
between zAF/F values for all ROls at the onset of the spontaneous shift to S+ between
trials and zAF/F values for all ROls at each time point during the the time course of
either S+ or S- trials. Figure 7E shows the time courses for these correlations averaged
over all ROIs. The correlation of spontaneous zAF/F with S+ diverges from the
correlation with S- shortly after the start of the trial and remains high for a few seconds
after the reward. A GLM analysis yielded significant differences in average correlations
for comparison of the time windows (baseline vs. odor) and for the interaction between

S+ vs. S- and time window, p<0.001, 4 mice, 216 observations, 209 d.f., F-statistic 15.7,
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p-value <0.001 (Data S1F). This indicates that neural activity at the onset of the

spontaneous shift resembles neural activity during rewarded trials.

Finally, we asked whether lick behavior differed between spontaneous prediction shifts
compared to no change. The blue bounded line in Figure 7H shows the lick fraction
during spontaneous shifts and the magenta bounded line shows the lick fraction during
an adjacent between trial time period with no spontaneous changes in prediction (“no
change”). We found that the lick fraction is slightly higher during the prediction shifts
compared to no change (Figure 7H). The bar graph in Figure 71 shows the lick fraction
calculated 2 seconds before and 2 seconds after the shift. A GLM analysis yields
significant differences in lick fraction for comparison between spontaneous prediction
shift and no change, p<0.001, 4 mice, 192 observations, 185 d.f., F-statistic 28.3, p-
value <0.001 (Data S1F). This indicates there is a tendency for slightly elevated licking

in between trial epochs where a spontaneous shift occurs.

DISCUSSION

In this study we performed two photon imaging of calcium responses in head-fixed mice
engaged in an associative learning go-no go task where they decide whether they lick to
obtain a reward when presented with rewarded (S+) or unrewarded (S-) odorants.
Unlike other sensory systems, the efferent axons from the olfactory bulb bypass the

thalamus and synapse (directly or through relay in the piriform cortex) onto the LEC
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constituting a primary sensory input to dCA126:27. Olfactory responses mediated by LEC
input are particularly prominent in the mouse dCA128-3°_ and odorant responses in dCA1
are known to be involved in tasks such as delayed match/non-match to sample (working
memory)'"'7 odor place associative learning?®, odorant gradient navigation3' and

odorant sequence evaluation3?,

Dorsal CA1 is arguably one of the most studied areas of the brain involved in learning
and memory33-36 and it is well documented to play a role in spatial and episodic learning
and memory'®'2_Yet, its role in go-no go associative learning has been called into
question. Li et al. found that calbindin positive pyramidal neurons in CA1 became more
selective for odorants as animals became proficient in the go-no go task and
optogenetic inhibition of these cells slowed learning . In contrast, a study by Biane and
co-workers found that the accuracy of odor decoding in dCA1 was not altered by
learning in the go-no go task'®. Here we find that learning results in increased stimulus
divergence of zAF/F responses for single SP cells (Figure 2); and that there is a
substantial increase in stimulus decoding accuracy calculated from the SP cell
ensemble when the animal becomes proficient in the go-no go task (Figure 4). Our
results are consistent with a role for dCA1 pyramidal cells in go-no go associative
learning proposed by Li et al. and with local field potential (LFP) power in dCA137:38

upon learning in dCA1 in the go-no go associative learning task.

For proficient mice, prediction for stimulus decoding tends to represent the correct

stimulus even when the animal makes a mistake (Figures 2H, 6E and 6H). In contrast,
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483  for lick decoding the predictions for errors align closer with the mistakes the animal

484 makes in the lick response (Figure 6G). One explanation for this may be that although
485 the animal does perceive the odorant, it is satiated and therefore chooses to make a
486  mistake (not licking) on purpose. These results suggest that CA1 encodes for different
487 information manifolds that can be used differentially depending on the context and

488 behavioral purpose. Whether this is the case needs to be evaluated in future studies.
489

490 We asked whether dCA1 SP cells represent the odorant identity or its valence. We

491 found that predicting the stimulus decoded from zAF/F ensemble neural activity in dCA1
492  was biased towards S- between trials (Figures 7A and D). This is unlike stimulus identity
493 decoding in areas such as the auditory cortex, where there is no bias in stimulus

494  prediction3® suggesting that dCA1 ensemble activity represents stimulus value as

495 opposed to odorant identity. Indeed, when the stimuli were reversed the responses

496  were consistent with representation of valence for a large portion of the ROlIs (Figure
497  3E). This result is consistent with valence representation found in olfactory bulb single
498 units after reversal in the go-no go learning task*®#!, functional plasticity of sensory

499 inputs elicited by learning in the olfactory bulb*?>43, and with decoding of stimulus

500 contextual identity after stimulus reversal for measurements LFP power in dCA138. In
501 addition, the shift we find in dCA1 neural odorant representation upon reversal of

502 reward is reminiscent of remapping of hippocampal space cells in different contexts that
503 can be explained by associative learning*.

504
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Time-tiled odorant responses by “time-cells” in dCA1 are thought to be involved in
delayed match/non-match to sample where they presumably provide short term working
memory of the identity of the first odorant that is presented in the task’"'". Interestingly,
we find that for the go-no go task the divergence between S+ and S- stimuli in zAF/F
odorant responses of individual SP cells takes place at different times between ftrial start
and reinforcement (Figure 2D) and, consistent with these results, stimulus decoding
accuracy decoded from single neuron activity starts diverging from accuracy computed
from shuffled stimulus labels (50%) at discrete times ranging from trial start to several
seconds after reinforcement (Figures 5Di and S6). Therefore, decision making for the
difference between stimuli based on single cell dCA1 neural activity takes place at
different discrete times in dCA1. This finding of “decision-making prediction time-cells” is
novel and complementary to stimulus time-cells engaged in delayed match/non-match
to sample tasks' 7. We hypothesize that this discrete time tiling of information for
decision making in dCA1 by sequential neural dynamics plays a role in go-no go
associative learning by representing a memory of whether the rewarded odorant is
presented that the mouse uses to decide whether it should sustain licking to get a
reward. As recently proposed for spatial navigation®, neuromodulatory inputs may
sculpt hippocampal representations to either provide stimulus valence information or
shift the distribution of states, ‘weighting’ rewarded stimuli more heavily than

unrewarded stimuli. Whether this is the case will be determined in future studies.

Finally, our data raise the question of the specific role of sequential activity in

associative learning in dCA1. On one hand, sequential activity in dCA1 is often
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541

associated with transition in the state space where each state encodes for a predictive
representation of future states given the current state**4°. Under this interpretation,
time-tiling represents state transition in a cognitive map representing the temporal task
structure. On the other hand, sequential activity potentially encodes a single working
memory that makes the animal more likely to choose a specific outcome as time
passes. Previous modeling work revealed that depending on the model configuration, a
recurrent neural network learns to represent working memory either by sequential or
persistent activity*®. It indicates that time-tiling might encode a binary decision (go or no-
go) with spatial-temporal patterns. Sequential working memory representation is also
beneficial for binding multiple information, such as stimulus identity, valence, and
context, into a single working memory#’48, Future work will clarify whether time-tiling in
the decision period represents a transition in the cognitive map or a go/no-go decision

variable.
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STAR * METHODS

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Donkey anti-rabbit Alexa Fluor 594 secondary antibody Jackson 11-585-152
Immunoresearch

Donkey anti-mouse secondary antibody Alexa Fluor 647 Jackson 715-606-150
Immunoresearch

Mouse anti-PV primary antibody Sigma-Aldrich P-3088

Rabbit anti GFAP antibody Abcam ab7260

Deposited data

Raw and analyzed data Mendeley data doi:

10.17632/7gn6dj89t3.1

Experimental Models: Organisms/Strains

d/CA1_Figures

Thy1-GCaMP6f mouse, C57BL/6J-Tg(Thy1- The Jackson Laboratory | 025393

GCaMP6f)GP5.17Dkim/J

Software AND Algorithms

Matlab 2022b and 2023a https://www.mathworks.c | N/A
om/products/matlab.html

Code to generate the main figures https://github.com/restrep | N/A

Data to generate the main figures

Mendeley data doi:
10.17632/7gn6dj89t3.1

Please note that this is
a temporary doi that
will be replaced by a
permanent doi once
repository is published

Other

GRIN lenses GRINTECH GmbH NEM-050-25-10-860-
DS

Metabond Thermo Fisher NC0877382,
NC2048900,
NC2048904

Paraformaldehyde Electron Microscopy 15714-S

Sciences

DAPI Thermo Fisher 62248

Buprenorphine SR/ER Zoopharm/Wedgewood

Vetbond MWI 006245

Light mineral oil Fisher 0121-1

Heptanal Sigma-Aldrich H-6129

OCT Sakura Finetech 4583
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Data S1. Statistical analysis. Related to STAR Methods and Figures 1 to 7
A) GLM statistics for the zAF/F bar graphs in Figures 2G and |

B) GLM statistics for the zAF/F bar graphs in Figures 3D and Figure S4Aiii

C) GLM statistics for the accuracy bar graphs in Figure 4

D) GLM statistics for Figure 5

E) GLM statistics for Figure 6

F) GLM statistics for Figure 7

G) GLM statistics for Figure S5

RESOURCE AVAILABILITY

Lead contact

Further information and requests for data should be directed to and will be fulfilled by

the lead contact, Diego Restrepo (diego.restrepo@cuanschutz.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

e The source data to reproduce the figures are available at Mendeley Data (doi:
10.17632/7gn6dj89t3.1). Please note that this is a temporary doi that will be

replaced by a permanent link and doi once the repository is published
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Analysis code has been deposited at GitHub

(https://github.com/restrepd/CA1_Figures).

Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.
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METHOD DETAILS

Animals

All experimental protocols were approved by the Institutional Animal Care and Use
Committee of the University of Colorado Anschutz Medical Campus, in accordance to
NIH guidelines. Mice were bred in the animal facility, and we used both males and
females, a total of four adult Thy1-GCaMP6f mouse (Jax 025393 C57BL/6J-Tg(Thy1-
GCaMP6f)GP5.17Dkim/J) for head-fixed awake behaving two-photon imaging of CA1
pyramidal cells through a GRIN lens. We used the 5.17 strain of Thy1-GCaMP6f mice
because of their strong expression of GCaMP6f in CA14%. The animals were housed in a
vivarium with a 14/10 h light/dark cycle. Food was available ad libitum. Access to water
was restricted in behavioral training session according to protocols. All mice were
weighed daily and received sufficient water during behavioral sessions to maintain

>80% of their original body weight.

Surgical Procedures

Mice were injected with carprofen (5 mg/kg, IP) one hour before surgery and were
anesthetized with ketamine/xylazine (IP, 100 mg/kg and 10 mg/kg, respectively).
Anesthetic redosing was assessed by pinching the hind feet every 5 min. A craniotomy
of diameter ~1.2 mm was made over the right hippocampus and a GRIN lens of 4 mm
length and 1 mm diameter (GRINTECH, NEM-050-25-10-860-DS) was implanted at 1.8
mm lateral and 2.4 mm caudal of Bregma and 1.25 mm below dura 3'. The GRIN lens
edges were sealed with Vetbond glue (3M, USA) and a custom-made steel head

bracket was glued to the skull with Metabond (Parker, USA) for head-fixing and
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imaging. The mice were treated with buprenorphine SR/ER for two days after surgery

(0.05 mg/kg, SQ). dCA1 imaging was initiated two weeks after surgery.

Immunohistochemistry and CT-Scan

Immunohistochemistry was performed for Figure S1A after animals finished all the
training to visualize GCaMPG6f expression in the hippocampus CA1 region and the track
of the GRIN lens implant. Immunohistochemistry for Figure S1B was performed on an
adult mouse that had not been trained. Mice were sacrificed and transcardially perfused
with ice cold 4% paraformaldehyde (PFA), followed by equilibration in 30% sucrose.
After the brain sank, the tissue was embedded in optimal cutting temperature (OCT)
compound and was frozen at -80°C. Slices of 60 um thickness were cut with a Leica
cryostat. For Figure S1A the slices were stained with rabbit anti-GFAP primary antibody
(Ab7260, Abcam, USA) and Alexa Fluor 594 donkey anti-rabbit secondary antibody (11-

585-152, Jackson Immunoresearch, USA).

For Figure S1B the slices were stained with mouse anti-parvalbumin (anti-PV) primary
antibody (Sigma-Aldrich P-3088) and Alexa Fluor 647 donkey anti-mouse secondary
antibody (715-606-150, Jackson Immunoresearch, USA). The slices were
counterstained with DAPI (Thermo Fisher Scientific, USA) and imaged using a confocal
laser scanning microscope (Nikon A1R, Japan). We find that GCaMP6f expression does
not overlap with PV expression in dCA1 in Thy1-GCaMP6f mice (Figure S1B) indicating
that the SP cells we imaged are not PV interneurons. However, it is possible that a

subset of the SP divergent cells are interneurons. Future studies will be necessary to
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study the involvement of dCA1 interneurons in responses during in mice engaged in the

go-no go task.

To further verify the 3D position of the GRIN lens in the skull and brain, we performed
microCT-Scan recording. We perfused the mice with PBS and the ex-vivo PFA fixed
head was used for acquiring the microCT imaging on a Siemens Inveon microCT

system (Siemens, Germany).

Go-No Go training

Mice were water deprived by restricting daily water consumption to 1-1.5 ml. Mice were
monitored for signs of dehydration or decreased body weight below 80% of the initial
weight. If either condition occurred, the animals received water ad-lib until they
recovered. When the animals were water-deprived, they were trained in a head-fixed
olfactory go-no go task with 1% HEP vs MO odorant application (Sigma-Aldrich,
USA)20:41.50  An olfactometer controlled valves to deliver a 1:40 dilution of odorant at a
rate of 2 L min-'. An Intan RHD2000 acquisition system (Intan, USA) recorded licks
measured by monitoring the resistance between the lick spout and the floor of the
olfactometer. The water-deprived mice started the trial by licking on the water port. The
odorant was delivered after a random time interval ranging from 1 to 1.5 seconds. In S+
trials, the mice needed to lick at least once in two 2 sec lick segments to obtain a
reward (0.1 g mI! sucrose water) (Figure 1A). In S- trials, the mice need to refrain from
licking in one of the two 2 sec segments to avoid a longer inter-trial interval (+ 10 sec).

The animal’s behavior performance was evaluated in a sliding window of 20 trials and
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the calculated value was assigned to the last trial in the window. Therefore, it estimated
the performance in the last 20 trials. The percent correct value represents the percent of
trials in which the animal successfully performed appropriate actions
(100*(Hits+CRs)/number of trials), and we considered the animal proficient if the
percent correct performance was above 80%. In reverse go-no go training sessions the

S+ and S- odorants were switched after reaching a proficient level in forward training.

Acoustic recordings of auditory cues at the start of the trial in the go-no go task

In addition to the odorant cue the olfactometer emits a click at the start of the trial when
one of the two odorant valves opens 1-1.5 sec before odorant onset. Acoustic
recordings of the olfactometer were made using a GRAS 46BH-1 omnidirectional
microphone and GRAS 26AC-1 preamplifier with Type 12AA power module, M-Audio
Pro interface, and Audacity software. The microphone was positioned to approximate
the location of the mouse’s head during experiments. Recordings were time-aligned to
experimental hardware using a trigger pulse. Recordings were windowed 7 seconds
prior to 15 seconds following stimulus offset and separated according to S- or S+
conditions in MATLAB. Spectrograms of each stimulus were then generated to identify

auditory events.

Figures S2B-C show a sound spectrogram of the click recorded with the ultrasound

microphone at the location of the mouse’s head in the two-photon microscope aligned

with the opening of the odorant valve. Figure S2D shows that the identity of the odorant
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valve (S+ vs S-) can be decoded from the sound click using a generalized linear model
(GLM) decoding algorithm, albeit with low accuracy (~ 0.65) (ranksum test p<0.05, 58

trials for decoding stimuli vs. 290 trials for shuffled stimulus decoding).

While this task provides both olfactory and sound sensory inputs, the mouse cues on
the olfactory stimulus as shown by the fact that percent correct behavior decreases
close to 50% when the odor cues are removed while the valve opening (and
consequent sound) are not altered (Figure S1G-l, consistent with previous studies with

the same olfactometer®’).

Two-photon imaging of dorsal hippocampus CA1 activity in animals undergoing
the Go-No Go task

All the animals were first habituated to the setup to minimize stress during the imaging
experiments. All the imaging sessions started at least 10 minutes after the mice had
been head-fixed. The head fixed two-photon imaging system consisted of a movable
objective microscope (MOM, Sutter Instrument Company, USA) paired with a 80 MHz,
~100 femtosecond laser (Mai-Tai HP DeepSee, Spectra Physics, USA) centered at 920
nm. The MOM was fitted with a single photon epifluorescence eGFP filter path (475 nm
excitation/500-550 nm emission) used for initial field targeting followed by switching to
the two-photon laser scanning path for imaging GCaMP6f at the depth of the CA1 cell
body layer. Either the galvometric laser scanning system or a resonant scanner was
driven by SlideBook 6.0 (Intelligent Imaging Innovations, USA). The two-photon time

lapses were acquired at 395 x 380 pixels using a 0.4 NA/10x air objective (Olympus,
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Japan) at either 5.3 Hz (galvo) or 20 Hz (resonant). On the day of initial imaging, a FOV
was selected to image a large number of active hippocampal CA1 neurons through the
GRIN lens, and GCaMP6f movies for several sessions (12-40 trials each) were
collected each day. After two-photon imaging a second image of the vasculature was

captured with wide field epifluorescence to reconfirm the field.

Statistical analysis

Statistical analysis was performed in Matlab R2022b or R2023a (Mathworks, USA).
Statistical significance for changes in measured parameters for multiple factors such as
learning and odorant identity (S+ vs. S-) was estimated using a generalized linear model
(GLM)>?? with post-hoc comparisons performed either with a two-sided t test, or a
ranksum test, depending on the result of an Anderson-Darling test of normality. Post-
hoc tests were corrected for multiple comparisons using the false discovery rate p-value
(pFDR)?*. Asterisks in bar graphs specify statistically significant differences (p<pFDR)
on post-hoc tests. Not all statistically significant differences are shown with asterisks
because showing all significant differences would make the figures too complicated.
However, all pairwise post-hoc test p-values and pFDR are shown in Data S1. Finally,
we provide 95% confidence intervals (Cls)®3 estimated by bootstrap analysis of the
mean by sampling with replacement 1000 times using the bootci function in MATLAB
(shown in the figures as vertical black lines for bar graphs or shade bounding of mean

value lines for time courses).
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731 Data analysis

732  Raw imaging data was first surveyed in Imaged 1.52 (NIH, USA) to exclude image
733  sequences exhibiting axial movement. We did not find evidence of axial movement
734  while the animal was engaged in the go-no go task. The raw imaging data was

735  processed with DeepCAD-RT to denoise time-lapse images

736  (https://github.com/cabooster/DeepCAD-RT)?!, and then motion corrected with

737  NoRMCorre algorithm?2. The nonegative fluorescence traces were generated with

738 EXTRACT (https://github.com/schnitzer-lab/EXTRACT-public)?® with appropriate

739 parameters. After Extract analysis, the AF/F traces of the spatial components were

740 sorted and we assigned trial traces to different behavioral events (S+: Hit and Miss, S-:
741 CR and FA) and aligned them to trial start, odorant onset or reinforcement delivery for
742  further analysis. We chose to use the nonegative AF/F transients to perform the data
743  analysis. These AF/F transients contain information on firing rate because calcium is a
744  leaky integral of spikes. This resulted in reliable assessment of decoding of contextual
745  odorant identity and lick behavior. However, a limitation of this analysis is that it may
746  miss information encoded by neuronal firing. Because calcium imaging represents a
747 leaky integral of neuronal firing the onset of the response is well represented, the end of
748 the neuronal response is not. The data were converted into the NWB format

749  (https://doi.org/10.1101/2021.03.13.435173) and organized into a BIDS-like

750  (https://doi.org/10.1038/sdata.2016.44) structure.

751
752  Data analysis was performed using custom code in Matlab R2022b or R2023a. Mice

753  were trained in 3-6 training sessions per day. Analysis was performed per session and
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classified into either the learning stage with percent correct behavior within the 45-65%
range (blue in Figure S1C-I) or the proficient stage with percent correct behavior in the
80-100% range (red in Figure S1C-I). The number of ROIs per session and the number
of learning and proficient sessions used for the analysis in the different figures is shown
in Table 1. For each ROI we z-scored AF/F by dividing by the standard deviation of AF/F
calculated over the entire session (we call this z scored AF/F, zAF/F). Below we

describe the different data analysis methods.

Divergent cell detection and analysis

Whether a cell’'s zAF/F diverged between S+ and S- (Figures 2 and 3) was determined
as follows: Only sessions with a minimum of 12 trials were included. For the rest of the
ROls the zAF/F in the session was considered to be divergent if the GLM p-value for S+
vs. S-in the time span from -1 to 5.5 sec was below the pFDR. Examples of the time

course zAF/F for divergent ROIs are shown in Figures 2A and S3A.

As shown in Figures 2B, 3A and 3B, the per trial time courses for zAF/F were
heterogeneous. In order to quantify the heterogeneity we calculated within-trial cross-
correlation coefficients between all divergent zAF/F time courses (including both S+ and
S- in the calculation) for all divergent ROls (e.g. Figure 2C). The zAF/F time courses for
the different ROIs were then separated into different clusters by estimating an
agglomerative hierarchical cluster tree using the linkage function of MATLAB. The

number of clusters was specified arbitrarily.
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777
778 In order to quantify the divergence in zAF/F between HEP and MO trials for Figure S4

779 we calculated d’, which is a measure of the difference in between two distributions.

780 { — mean(zAF/F(HEP) ) — mean(zAF/F(MO))
- J(SD(zAF/F(HEP))? + SD(zAF/F(M0))?)/2

(2)

781

782  where SD is the standard deviation. As done for zAF/F time courses we used cross-
783  correlation coefficients and an agglomerative hierarchical cluster tree to sort the time
784  courses shown for d’ in Figure S4E,F.

785

786  Stimulus decoding

787  Stimulus decoding was performed using GLM (fitglm in MATLAB). The algorithm was
788 trained per session for all time points and all trials within time periods and number of
789  ROlIs per session was indicated in the text. Only sessions with 16 or more trials were
790 processed. The predicted stimulus was assessed using leave one trial out, and winner
791 takes all procedures. We report the results of GLM decoding, but we obtained similar
792  results with linear discriminant analysis, neural network decoding, binary decision tree
793  decoding and support vector machine decoding (Figure S5A).

794

795  Stimulus decoding with subset of ROls

796  For GLM stimulus decoding performed with a subset of 1, 2, 5 or 15 ROls (Figure 5)
797 decoding was performed in separate runs with 40 unique subsets of ROIs drawn

798 randomly from the total number of ROIs per session.

799
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For decoding with small numbers of ROIs accuracy fell below 0.5. The reason was that
for some of these decoding runs the majority of S+ and S- zAF/F values were zero with
one or two trials with a non-zero zAF/F value. This is illustrated in Figure S6 where we
show several examples of stimulus decoding accuracy when the decoding was
performed with zAF/F responses of individual ROIs. We found that for a subset of single
ROls decoding accuracy started increasing at different times after the trial started and
reached accuracy values above 0.65. Three examples of decoding accuracy time
courses and their corresponding zAF/F time courses for S+ and S- trials are shown in
Figure S6A-C. In Figure S6A, accuracy increases to ~0.6 at the start of the trial
(immediately following valve click and before odorant addition) and increases to a
higher value (~0.8) after odorant presentation. In Figures S6B and C, there is no
increase in accuracy at the start of the trial and accuracy increases either shortly after
odorant addition (Figure S6B) or ~3 sec after odorant addition (Figure S6C). A
histogram of average zAF/F values per trial computed during the odor period (3.1 to 4.1
sec) showed a clear difference between S+ and S- trial zAF/F for these three examples
(Figures S6A-Ciii). In addition, we found a subset of individual ROIs whose decoding
yielded decreases in accuracy below 0.5. An example is shown in Figure S6D, where
the accuracy decreased to ~0.1. These decreases in accuracy took place for ROIls with
largely overlapping S+ and S- odorant period zAF/F values except for one or two trials
where the zAF/F deviated from the other trials as evidenced in the histogram in Figure

S6Diii.
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Lick fraction decoding

Lick fraction decoding was performed using a neural network classification model
(fitcnet in MATLAB). The algorithm was trained per session for one second windows
covering from -5 to + 10 sec in each trial. Only sessions with 16 or more trials were
processed. The predicted stimulus was assessed using leave one trial out and winner

takes all procedures.

Finally, while decoding accuracy for stimulus decoding did not differ substantially
between decoding algorithms (Figure S5A), for lick decoding the algorithms that use
nonlinear decoding (neural networks, NN and binary tree decision, BDT) performed
substantially better than those that perform linear decoding (support vector machine,
SVM, generalized linear model, GLM and linear discriminant analysis, LDA, Figure S5H)
suggesting that decoding of lick behavior involves nonlinear neural activity interactions

in dCA1 (GLM statistics for Figure SSH are shown in Data S1G).

Analysis of prediction shifts of S+ prediction for stimulus decoding between trials
Sudden changes in stimulus prediction from S- to S+ between trials were determined in
decoding prediction moving window averages (with windows of 10 time points) such as
the prediction time course shown in Figure 7A. We searched for a spontaneous shift in
prediction (arrow in Figure 7A) by searching for a sudden shift in prediction from below
the five percentile of the shuffled stimulus control for decoding prediction (lower edge of
the blue shade in Figure 7A) to above 95 percentile for the shuffled stimulus decoding

prediction (upper edge of the blue shade in Figure 7A). We compared the average time
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courses for these spontaneous between-trial increases to S+ (spontaneous, cyan line in
Figure 7F) to the time course of decoding prediction centered in the middle of adjacent
between-trial intervals where we did not find a spontaneous increase to S+ (no change,

magenta line in Figure 7F).
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Table 1. Number of regions of interest per session used for analysis in the

different figures.

Figures Mouse 1 Mouse 2 Mouse 3 Mouse 4 All mice
Figures 2-4, 7549, n=8 82+25, n=4 95+15, n=6 n=0 83+17,n=18
Learning

Figures 2-4, 79+12, n=14 96+25, n=10 108+18, n=22 | 178+23,n=20 | 121+43, n=66
Proficiency

Figures 5-7 7549, n=8 82+25, n=4 96+14, n=7 n=0 84+18, n=19
Learning

Figures 5-7 73+10, n=9 96+25, n=10 104+15,n=20 | 177+23,n=19 | 122+45, n=58
Proficient

The number of regions of interest per session (+S.D.) and the number of sessions (n)

are shown for each figure/mouse
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Figure 1. Two-photon Ca?* imaging of stratum pyramidale cells in CA1 in head-fixed

mice undergoing the go-no go associative learning task.

(A) Go-no go task. Left: Two-photon imaging of a head-fixed mouse responding to
odorants by licking on a water spout in response to the rewarded odorant in the go-no go
task. Center: Scoring of decision making. Right: Time course for the trial. In Hit trials, the
animal must lick at least once in each of the two 2 second response window (RW)

segments to receive a water reward as a reinforcement.
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(B) Two-photon microscopy time-stacked images of GCaMPG6f fluorescence recorded
from SP cells in dCA1 through a GRIN lens in a proficient Thy1-GCaMP6f mouse
engaged in the go-no go task. Left: Activity at rest. Right: Activity during the rewarded

odorant trial. Video 1 shows fluorescence changes in this group of cells.

(C) AF/F traces are shown for a subset of the regions of interest (ROIs) for the figure in

B. The magenta vertical lines are the on and off times for the odorant in the unrewarded
(S-) odorant trials and the cyan vertical lines are on and off times for the rewarded (S+)

odorant. The blue lines at the bottom are lick recordings.

(D) Cross-correlation and hierarchical clustering of the AF/F traces for 153 ROls for the

entire 20 minute session corresponding to B and C shows substantial heterogeneity in

the calcium responses.

(E) Pseudocolor plot of the time course for AF/F for the 153 hierarchically clustered ROls.
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Figure 2. The magnitude of divergence between S+ and S- zAF/F responses
increases with learning and the onset of divergence takes place at discrete times

that differ between the learning and proficient stages.
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(A) Examples of zAF/F time courses for single ROls that differ in onset time for divergence

between S+ and S- trials. Selected ROIs with onset times (i) near the start of the trial, (ii)

during odor presentation, and (iii) at reward delivery.

(B) Pseudocolor representation of zAF/F time courses for single ROIs that were divergent
between S+ and S- trials in the proficient sessions (66 sessions, 4 mice). Time courses
were sorted by estimating an agglomerative hierarchical cluster tree shown on the left.
This tree was calculated using the cross-correlation coefficients between all divergent
zAF/F S+ time courses shown in C. The red vertical lines show (in order): trial start,

odorant on, odorant off, reinforcement on and reinforcement off.

(C) Cross-correlation coefficients computed between all per trial zAF/F time courses

shown in B. The coefficients were sorted by the agglomerative hierarchical cluster tree

shown in B.

(D) Histograms for divergence times for all the ROIs for the proficient stage shown in B
(dark blue) and for all divergent ROIs for learning stage sessions (light blue). Divergence
time histograms are significantly different between learning and proficient (ranksum

p<0.001, n=99 divergence time bins).

(E) i. Percent divergent ROls per mouse. ii and iii. Percent responsive ROIs per mouse

for S+ (ii) and S- (iii) trials. The percent divergent (i) and percent responsive (ii and ii)
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differences between learning and proficient stages were not statistically significant (two

tailed t test p>0.05, n=3 for learning and 4 for proficient, 5 d.f.).

(F) Mean zAF/F time courses for S+ and S- for the two clusters in the hierarchical tree

shown in B.

(G) Mean zAF/F calculated per session in the time window from -0.5 to 0.5 sec for each

cluster shown in F.

(H) Mean zAF/F time courses for Hits (red), Miss (cyan), CRs (blue) and FAs (magenta)

for the two clusters in the hierarchical tree shown in B.

(I) Mean zAF/F calculated per session in the time window from -0.5 to 0.5 sec for each

cluster shown in H.

Data S1A shows the GLM statistical analysis for Figures 2G and I.

For all figures in the manuscript and for supplemental figures: The bounded lines such as

those in A, F and H, represent the mean and 95% CI. The light grey horizontal bar is the

period between the earliest trial start and odorant presentation (at 0 sec), the black

horizontal bar is the time period for odorant presentation and the red horizontal bar is the
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1115 period for water reward delivery. Vertical lines represent the earliest trial start, odorant
1116  valve opening and closing and reward valve opening and closing.

1117
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Figure 3. Reversal of odorant valence reveals that a substantial number of dCA1

cells respond to stimulus valence.

(A and B) zAF/F time courses for single ROls that were divergent between S+ and S-
trials for proficient mice. (A) shows zAF/F time courses for the forward proficient sessions
where the rewarded odorant (S+) was HEP and the unrewarded odorant (S-) was MO (25
sessions, 4 mice) and (B) shows time courses for the reversed proficient sessions where
the rewarded odorant (S+) was MO and the unrewarded odorant (S-) was HEP (41
sessions, 4 mice). For both A and B time courses were sorted by estimating an

agglomerative hierarchical cluster tree shown on the left that was calculated using the
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cross-correlation coefficients between all divergent zAF/F time courses shown in Figure
S4B. The red vertical lines in A and B denote (in order): trial start, odorant on, odorant off,

reinforcement on and reinforcement off.

(C) Mean zAF/F time courses for cluster 2 (blue cluster in A and B). Mean zAF/F time

course for cluster 1 is shown in Figure S4.

(D) Mean zAF/F calculated per session in the time window from 1 to 2 seconds for cluster

2. Data S1B shows the GLM statistical analysis for these data.

(E) Plot of peak d’ values for zAF/F time courses for a set of forward/reversed proficient
sessions where ROIls were matched from session to session in one mouse. The per ROI
zAF/F and d’ time courses for these forward and reversed sessions are shown in Figure
S4. The line shown is d’ reversed = d’ forward, which would be followed if the ROIs

represent stimulus identity.

53



1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Learning Proficient Leaming Proficient

N

W ——
0.4 —_—

[
5]

0.5s to 5.5s

Accuracy
=3
=
Accuracy

o
=3

s
0

B 10 15 20 -10 5 0 5 10 15 20

. Pre Odor Reinf Pre Odor Reinf
me(sec) Time(sec)

B S

ii iili I —

45510 6.5s

Accuracy
o
=

06

) = Pre Qdor Reinf Pre QOdor Reinf
C Time{sec) Time(sec)

-Ssto -3s

-10 S 0 5 10 15 20 -10 S o 5 0 15 20 Pre Odor Reinf Pre Odor Reinf
Time(sec) Time(sec)

Figure 4. Learning elicits an increase in stimulus decoding accuracy.

(A to C). Each panel shows the accuracy of GLM decoding of the stimulus (S+ vs. S-)
from per trial zZAF/F responses for all trials and all ROls per session for all learning stage
sessions (i) and proficient sessions (ii) (4 mice, 18 learning sessions, 66 proficient
sessions). The bounded black line represents the mean accuracy bounded by the 95%
Cl. The grey lines are per mouse accuracy. The red line is the stimulus decoding
accuracy calculated after shuffling the stimulus labels (S+ vs S-). The bar graphs in iii
show the mean accuracy for different trial periods (Pre-Odor -1 to 0, Odor 3.1 to 4.1 and
Reinf 4.5 to 5.5). Light gray bars are the shuffled stimulus accuracies. Points are per

session accuracies and bars are 95% Cls.

A to C differ by the time window used to train the GLM decoder.

54



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

(A) The training window (0.5 to 5.5 sec) covers odorant presentation and reward

delivery,

(B) The training window included reward delivery (4.5 to 6.5 sec).

(C) The training window takes place before trial start (-5 to -3 sec).
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Figure 5. Stimulus decoding accuracy calculated per ROI for proficient animals

reveals time tiling of the increase in stimulus decoding accuracy.

(A) Histogram for stimulus decoding accuracy calculated in the odor period (3.1 to 4.1
sec) for all proficient sessions (66 sessions) for 4 mice. i to v show the histogram for an
increasing number of ROIs per decoding session. Blue is stimulus decoding accuracy,
brown is stimulus decoding accuracy calculated after shuffling the labels. Histograms

were normalized by dividing by the total number of counts.

(B) Histograms for stimulus decoding accuracy calculated in the Pre-Odor period (-1 to O

sec). i to v show the histogram for an increasing number of ROls per decoding session.

56



1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

(C) Histograms for the onset of the increase in decoding accuracy for decoding runs that
achieved at least 0.65 accuracy after trial start. i to v show the histogram for an increasing

number of ROlIs per decoding session.

(D) (i). Time courses for decoding accuracies calculated for a single ROI per session that
reach at least 0.65 after trial start. (ii) Mean accuracy time courses calculated for one ROI
accuracy time courses shown in Di with accuracy increase onsets in the following time
periods: -1.5t0 -1,-11t0 0,010 1, 1 to 2, 2 to 3, >3 sec. (iii) Time courses for decoding
accuracies calculated all ROls per session. (iv) Mean accuracy time course for the time

courses shown in Diii.

*p<0.05 for a pFDR-corrected t-test or ranksum tests, GLM statistics are in Data S1D.

GLM analysis indicates that all histograms in A and B differ from each other, and all

histograms in C differ from each other (Data S1D).
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Figure 6. The relationship between lick fraction and prediction differs between

stimulus decoding and decoding of lick fraction.
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(A) Mean lick fraction time course calculated for hits (red), Miss (cyan), correct rejections
(CR, blue) or false alarm (FA, magenta) trials for all sessions when the mice were

proficient (66 sessions, 4 mice).

(B) Bar graph quantifying mean lick fraction for proficient mice (66 sessions, 4 mice) in
the two 2 second response windows of the odor period where the mouse must lick at least
once to get water in a Hit trial (Figure 1A). Dots are per session lick fraction and grey

lines are per mouse averages.

(C) Mean prediction time course for lick fraction decoding within trials calculated for hits
(red), Miss (cyan), correct rejections (CR, blue) or false alarm (FA, magenta) trials for all

sessions when the mice were proficient (66 sessions, 4 mice).

(D) Bar graph quantifying mean lick fraction prediction for proficient mice (66 sessions, 4
mice) in the two 2 second response windows of the odor period where the mouse must
lick at least once to get water in a Hit trial (Figure 1A). Dots are per session prediction

and grey lines are per mouse averages.

(E) Mean stimulus prediction time course within trials calculated for hits (red), Miss (cyan),

correct rejections (CR, blue) or false alarm (FA, magenta) trials for all sessions when the

mice were proficient (66 sessions, 4 mice).
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(F) Bar graph quantifying mean stimulus prediction for proficient mice (66 sessions, 4
mice) in the two 2 second response windows of the odor period where the mouse must
lick at least once to get water in a Hit trial (Figure 1A). Dots are per session prediction
and grey lines are per mouse averages. The training period for the GLM decoding

algorithm was 0.5 to 5.5 sec.

(G) Relationship between mean lick fraction and mean lick fraction prediction (calculated
with per mouse values). The bars are 95% Cls calculated per mouse. Lick fraction and
lick fraction prediction were calculated in two second time windows spanning from odor

onset to 6 sec after odor onset. The line is a linear fit.

(H) Relationship between mean lick fraction and mean stimulus prediction (calculated
from per mouse values). The bars are 95% Cls calculated per mouse. Lick fraction and
stimulus prediction were calculated in two second time windows spanning from odor onset
to 6 sec after odor onset. Lines are a linear fit of the data for Hit and Miss and a second

order polynomial fit for CR and FA.

For the graphs the data are shown separately for S+ Hits (red) and Miss (cyan) and S-

CR (blue) and FA (magenta) trials. *p<0.05 for a pFDR-corrected t-test or ranksum tests,

GLM statistics are in Data S1E.
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Figure 7. Brief shift of prediction to S+ for stimulus decoding between trials.
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(A) Example of the time course for stimulus decoding prediction during a session when
the animal was proficient in the go-no go task. Prediction ranges from 0 (S-) to 1 (S+).
Cyan vertical bars are the odor on and odor off times for the S+ trials and magenta vertical
bars are the odor on and odor off times for the S- trials. The shaded blue area is the 5 to
95 percentile decoding prediction calculated for decoding with shuffled trial labels. The
arrow points to a sudden shift in prediction above the shuffled 95 percentile that took

place between trials (we call this a prediction shift).

(B) Mean stimulus prediction time course within trials calculated for S+ and S- trials for all

sessions when the mice were proficient (66 sessions, 4 mice).

(C) Bar graph quantifying mean label prediction for S+ and S- trials in two time windows:
Base (-2.5to -1.5 sec) and odor (2 to 4.1 sec). Dots are per session mean label prediction

and grey lines are per mouse mean label prediction.

(D) Bar graph quantifying the mean label prediction between trials compared to the mean

label prediction between trials for shuffled label decoding.

(E) Correlation between label prediction calculated at each time point in the prediction
time course for all S+ or S- trials within a session and the label prediction value found at
the point of spontaneous shift for spontaneous shifts in prediction found in between trials

in the same session (66 sessions, 4 mice).
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(F) Mean label prediction time course for between-trial spontaneous prediction shifts
(“spontaneous”) and for time courses in between trials periods where we did not find

spontaneous shifts to S+ (“no change”) (66 sessions, 4 mice).

(G) Bar graph quantifying mean label prediction for between-trial spontaneous prediction
shifts and for no change between-trial prediction time courses calculated in two time
windows: Base (-2.5 to -1.5 sec) and odor (2 to 4.1 sec). Dots are per session mean label

prediction and grey lines are per mouse mean label prediction.

(H) Mean lick fraction time course for between-trial spontaneous prediction shifts
(“spontaneous”) and for time courses in between trials periods where we did not find

spontaneous shifts to S+ (“no change”) (66 sessions, 4 mice).

(I) Bar graph quantifying mean lick fraction for between-trial spontaneous prediction shifts

and for no change between-trial prediction time courses calculated in two time windows:

Base (-2 to -0 sec) and odor (0 to 2 sec). Dots are per session mean lick fraction and grey

lines are per mouse mean lick fraction.

*p<0.05 for a pFDR-corrected t-test or ranksum tests, GLM statistics are in Data S1F.
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