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SUMMARY 32 

 33 

Sequential neural dynamics encoded by “time cells” play a crucial role in hippocampal 34 

function. However, the role of hippocampal sequential neural dynamics in associative 35 

learning is an open question. We used two-photon Ca2+ imaging of dorsal CA1 (dCA1) 36 

neurons in the stratum pyramidale (SP) in head-fixed mice performing a go-no-go 37 

associative learning task to investigate how odor valence is temporally encoded in this 38 

area of the brain. We found that SP cells responded differentially to the rewarded or 39 

unrewarded odor. The stimuli were decoded accurately from the activity of the neuronal 40 

ensemble, and accuracy increased substantially as the animal learned to differentiate 41 

the stimuli. Decoding the stimulus from individual SP cells responding differentially 42 

revealed that decision-making took place at discrete times after stimulus presentation. 43 

Lick prediction decoded from the ensemble activity of cells in dCA1 correlated linearly 44 

with lick behavior indicating that sequential activity of SP cells in dCA1 constitutes a 45 

temporal memory map used for decision-making in associative learning.  46 

  47 
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INTRODUCTION 48 

 49 

In the natural world, understanding and integrating sensory stimuli is essential for 50 

survival. An animal must be able to locate food and water, detect disease, avoid 51 

predators, and seek out mates to reproduce. Of note, the success of these behaviors 52 

relies heavily on the integration of olfaction1 and experience2 and is context-dependent. 53 

Thus, it is simply not enough for an animal to detect an odor; it must be able to also 54 

apply meaning to it (association) and then act accordingly. To accomplish this, the 55 

hippocampus provides real-time encoding and retrieval of detailed context memories 56 

enabling reactions to a constantly changing environment3,4. Diverse and distributed 57 

neuronal activity encodes external features such as contextually referenced space and 58 

time and sensory stimuli, as well as features influenced by the animal’s behavior such 59 

as speed and direction of motion5-8. Here we address the neural representation of 60 

associative learning in stratum pyramidale (SP) neurons of dorsal CA1 (dCA1), a 61 

hippocampal area involved in spatial learning and working memory tasks9,10.  62 

 63 

The involvement of dCA1 in associative learning of stimulus discrimination in head-fixed 64 

animals is still unclear11-16.  Li and co-workers showed that for mice engaged in an odor 65 

discrimination go-no go associative learning task dCA1 pyramidal cells receiving 66 

connections conveying olfactory information from the lateral entorhinal cortex (LEC) 67 

develop more selective spiking responses to odor cues as they learn to discriminate 68 

odorants. Importantly, they showed that optogenetic inactivation of the LEC to dCA1 69 

connections slows learning16. In addition, Biane and colleagues found a learning-related 70 
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increase in the proportion of cells responsive to the rewarded (S+) odorant, but not to 71 

the unrewarded (S-) odorant, suggesting that stimulus representations in dCA1 are 72 

sensitive to perceived value. However, learning did not alter stimulus decoding accuracy 73 

which was already high before training in dCA115. Notably, temporal patterning of dCA1 74 

neural activity plays a crucial role in odorant working memory tasks11,17 and has been 75 

postulated to play a role in organizing memories10 raising the question whether it 76 

contributes to the neural mechanism for go-no go associative learning in this brain 77 

region. Hippocampal “time cells” store memory of the temporal order of events and 78 

signal changes in the temporal context10,11,18. It has been hypothesized that the 79 

temporally structured activity of neurons make perceptually related responses coherent 80 

in time19, but it is unknown whether there is a time-tiled divergence of distinct patterns of 81 

neural activity elicited by each stimulus (stimulus divergence) in dCA1 that could 82 

contribute through sequential neural dynamics to behavioral responses reflecting 83 

decision-making in associative learning. 84 

 85 

Using two-photon Ca2+ imaging, we evaluated ensemble decoding of stimuli from 86 

temporally patterned neural activity in dCA1 in mice engaged in an olfactory go-no go 87 

task where the animals receive a water reward after licking on a spout when presented 88 

with the S+ odorant and do not receive a water reward for the S- odorant20 (Figure 1A). 89 

We characterized stimulus divergence of Ca2+ responses of individual cells (Regions of 90 

Interest (ROIs)); we decoded the identity of the stimulus from Ca2+ recording; and we 91 

determined whether the onset of divergence of stimulus responses takes place at 92 

different times after stimulus presentation, in a time-tiled manner.  93 
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 94 

RESULTS 95 

  96 

Two-Photon Calcium Imaging in Dorsal CA1 in Head-Fixed Mice Undergoing a Go-97 

No Go Olfactory Associative Learning Task 98 

 99 

Calcium imaging was performed through a GRIN lens in adult Thy1-GCaMP6f mice 100 

(n=4) expressing the Ca2+ indicator GCaMP6f in neurons in the SP in dCA1 (Figure 1A, 101 

Figure S1A). The majority of these GCaMP6f-expressing cells were expected to be 102 

pyramidal cells and did not co-localize with parvalbumin interneurons (Figure S1B). We 103 

refer to GCaMP6f-expressing cells as SP cells. In the go-no go experiments, head-fixed 104 

water-restricted mice initiated each trial by licking on the water spout. One of two 105 

odorants was delivered 1-1.5 seconds after the start of the trial and the odorant was 106 

presented for 4 seconds. Mice were trained to respond to S+ by licking at least once 107 

during two 2 second response windows (RWs) to obtain a water reward for 108 

reinforcement (Figure 1A). The water reward was not delivered when S- was presented 109 

and if mice licked during the two RWs for S- they experienced a delay penalty before 110 

the next trial start. Two-photon calcium imaging recordings were denoised21, motion-111 

corrected22 and time-binned traces of nonnegative changes in fluorescence intensity 112 

(F/F) were obtained for multiple ROIs using EXTRACT23. Figures 1B,C,E and Video 1 113 

show calcium imaging data in CA1 from a 20 minute session for a mouse proficient in 114 

the go-no go task (153 ROIs, proficient stage is percent correct >= 80%). The 115 

fluorescence traces displayed calcium transients whose timing was heterogeneous 116 
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when evaluated by the cross-correlation between the traces of all ROIs (Figure 1D). In 117 

this session a subset of the ROIs responded differentially during S+ vs. S- odorant trials 118 

(Figures 1C,E). These results suggest the existence of a complex time structure 119 

underlying the calcium responses from a population of dCA1 neurons in the go-no go 120 

task. 121 

 122 

Mice Learn to Respond Differentially to the Rewarded and Unrewarded Odorants 123 

in the Go-No Go Task  124 

 125 

In the first training session, the percent correct response to the odorants (S+: 1% 126 

heptanal, HEP, S-: mineral oil, MO) was between 45% and 65% correct for three of four 127 

mice (Figure S1 C-E, for the fourth mouse percent correct was 75% in the first session, 128 

Figure  S1F). We classify the session as “learning stage” when percent correct behavior 129 

is between 45% and 65% correct.  We then trained the mice in 3-6 training sessions per 130 

day. As shown in Figure S1 C-F the mice gradually reached the proficient stage. We 131 

recorded from a total of 19 learning stage sessions in three mice and 66 proficient 132 

sessions in four mice (Table 1). Once the mice had stable proficient performance the 133 

odorants were reversed (S+: mineral oil, MO, S-: 1% HEP) to investigate whether dCA1 134 

calcium responses encode for the odorant’s identity or valence. Percent correct 135 

behavior dropped immediately below 50% and gradually recovered to proficient (Figure 136 

S1C-F). We recorded from a total of 25 forward proficient stage sessions and 41 137 

reversed proficient stage sessions in four mice. Finally, as discussed in the methods 138 

(Figure S2) odor delivery pinch valves emit a click sound at the start of the trial that 139 
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could be used to decode the stimulus. However, when the odorant is removed behavior 140 

drops to 50% (Figure S1 G-I) indicating that mice cue on odorants in this go-no go task.  141 

  142 

Stimulus-divergent zF/F Responses are Heterogeneous and Divergence 143 

Increases with Learning  144 

 145 

The results shown in Figure 1C indicate that a subset of ROIs respond differentially to 146 

the two odorants. We proceeded to assess whether per ROI z-normalized F/F (zF/F) 147 

time courses diverged between S+ vs. S- odorant trials. We compared the divergent 148 

zF/F time courses between S+ (Hit + Miss) and S- (CR + FA) trials, or we compared 149 

the zF/F time courses for incorrect trials (Miss and FA) with correct trials (Hit and CR). 150 

 151 

In order to characterize the differential responses we classified z-normalized F/F time 152 

course in S+ or S- trials within a session as divergent when the p-value for a 153 

generalized linear model (GLM) analysis of the difference between S+ and S- in the 154 

time span from -1 to 5.5 sec was below the p-value for significance corrected for 155 

multiple comparisons using false discovery rate24. Figure 2A shows examples of single 156 

ROI divergent responses and Figure 2B shows a pseudocolor representation of the time 157 

courses for all ROIs diverging in zF/F between S+ and S- trials for the proficient stage. 158 

The time courses fall into two types as evidenced by hierarchical clustering (the cluster 159 

tree is shown on the left in Figure 2B) and by the cross correlogram of the per session 160 

zF/F time courses (Figure 2C). The first cluster, ROIs numbered 934 to1657 (red 161 

hierarchical branch), displays a decrease in zF/F for S+ and an increase for S- (Figure 162 
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2Fi). In contrast, the time course for cluster 2 (cyan hierarchical branch) shows an 163 

increase in zF/F for S+ trials and a smaller increase for S- trials (Figure 2Fii).  164 

 165 

Analysis of zF/F divergent ROIs for the learning stage also displayed a similar 166 

heterogeneity in time courses (Figures S3B and S3C). The percent of divergent ROIs 167 

was not significantly different between learning and proficient stages (Figure 2Ei, t-test, 168 

p>0.05, 3 mice for learning, 4 mice for proficient). However, when the per cluster zF/F 169 

(Figure 2G) was tested with GLM analysis there were statistically significant differences 170 

for S+ vs. S- and for learning vs. proficient for both clusters (p<0.05, number of 171 

observations, d.f. and F statistics are in Data S1A). These differences indicate that there 172 

are changes in zF/F time course elicited by learning. Finally, the time course for error 173 

trials tended to be similar to the time course for correct trials (compare Hit vs. Miss and 174 

CR vs. FA in Figures 2H and I, p>0.05, Data S1A). 175 

 176 

Stimulus-Divergent zF/F Responses Take Place at Discrete Times 177 

 178 

Responses of a subset of CA1 pyramidal cells named odor-specific time cells take place 179 

at discrete time points in the delay period in a delayed non-match to sample task where 180 

the animals are presented sequentially with two odors11. We asked whether we had 181 

similar time tiling for the onset of odorant divergence for zF/F time courses. The time 182 

courses for zF/F shown in pseudocolor in Figure 2B show visible differences in the 183 

times of the divergent responses (also see examples for individual ROIs in Figure 2A). 184 
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As shown in Figure 2D divergence times spanned the time period from trial onset to 185 

times after the reward was delivered. 186 

 187 

Switching Rewarded to Unrewarded Stimulus Elicits Changes in zF/F Stimulus 188 

Responses Consistent with Response to the Valence of the Stimulus 189 

 190 

In order to determine whether stimulus-divergent zF/F responses are divergent 191 

responses to the stimulus identity (e.g. odorant identity) vs. stimulus valence (are the 192 

stimuli rewarded?) we switched the rewarded S+ stimulus (1% heptanal, HEP) with the 193 

unrewarded S- stimulus (mineral oil, MO) after the animal became proficient. We define 194 

the original training condition (HEP as S+) as a “forward” go no go task, and then 195 

flipping the rewarded and unrewarded odors (MO as S+) as a “reversed” go no go task. 196 

This reversed go-no go task allows us to probe whether the divergent responses are 197 

responses to odor identity vs. odor valence. As shown in Figures S1C-F, percent correct 198 

behavior decreased below 50% after stimulus reversal. Subsequently, it recovered, 199 

reaching >80% indicating that the animal learned the new reversed valence of the 200 

stimulus. Figure 3A shows the zF/F time course for ROIs that responded with 201 

divergence to the stimuli when the animal was proficient in the forward task. We 202 

performed a cross-correlation analysis (Figure S4B) and we sorted the time courses into 203 

two clusters using a hierarchical binary cluster tree and computed average time courses 204 

for the two clusters (Figure 3Ci, Figure S4Ai). As in Figure 2, the responses to S+ (HEP) 205 

tended to be larger than responses to S- (MO) in the most abundant cluster of 206 

responses (cluster 2) in this forward task (Figure 3A). 207 
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 208 

Interestingly, in both the forward and reversed tasks the S+ elicited a larger zF/F 209 

response for cluster 2 ROIs when the animal was proficient (Figure 3C). We quantified 210 

this shift in zF/F time courses with reversal by determining the value for stimulus-211 

induced changes in zF/F in the window from 1 to 2 seconds. Figure 3D shows a bar 212 

graph of the changes in zF/F for forward and reversed runs for cluster 2 (results for 213 

cluster 1 are depicted in Figure S4Aiii). When the zF/F peak values were tested with 214 

GLM analysis there were statistically significant differences for both odorant and forward 215 

vs. reversed (p<0.001, Data S1B). These data suggest that most of the zF/F stimulus 216 

responses are responses to the odorant valence. 217 

 218 

For the mouse whose percent correct behavior is shown in Figure S1F we ran the last 219 

forward session and the two proficient reversed sessions on the same day allowing us 220 

to perform an analysis where the ROIs in the reversed sessions were matched to the 221 

ROIs in the forward session. Figure S4C shows divergent zF/F time courses for 222 

matched ROIs in forward and reversed proficient sessions sorted into two clusters using 223 

a hierarchical binary cluster tree. Figure S4D shows the cross correlogram for these 224 

zF/F time courses. In order to compare the forward and reversed divergence in zF/F 225 

time courses we calculated d’25 per time point for zF/F time courses for HEP vs. MO. A 226 

change in d’ polarity indicates that the response is a response to the valence. The d’ 227 

time courses for forward and reversed sessions for all divergent ROIs are shown in 228 

Figure S4E and Figure 3E plots the peak value of d’ in the odorant period for the 229 

forward and reversed runs. Most of the d’ values reverse polarity with the forward to 230 
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reversed switch indicating that these ROIs represent the odorant value. In conclusion, 231 

for proficient sessions (>80% correct behavior), most of the zF/F divergent ROIs 232 

represent stimulus valence.  233 

 234 

The Accuracy for Decoding Stimulus Increases with Learning and is Dependent 235 

on the Timing of the Training Window 236 

 237 

We asked whether the information embedded within zF/F activity of all ROIs can be 238 

used to decode the stimulus (S+ vs. S-) using a GLM decoding algorithm. When we 239 

trained the GLM using a broad training time window spanning the odorant presentation 240 

period and the beginning of the reward period (0.5 to 5.5 sec) decoding accuracy 241 

started increasing above 0.5 slightly after trial start (~-1 sec) and reached ~0.8 through 242 

a window spanning the odorant period for the proficient animal (Figure 4Aii). In contrast, 243 

the decoding accuracy for the learning stage only reached ~0.65 (Figure 4Ai). The bar 244 

graph in Figure 4iii shows the accuracy for pre-odor (-1 to 0), odor (3.1 to 4.1) and 245 

reinforcement (4.5 to 5.5) trial periods. A GLM analysis yielded a statistically significant 246 

difference for odor and reinforcement time periods vs. pre-odor period and for the 247 

interaction between these trial period comparisons and proficient vs. learning stages 248 

(p<0.05-0.001), 279 observations, 270 d.f., 4 mice, GLM F-statistic=37.7, p<0.001 (Data 249 

S1C). 250 

 251 

We then asked how the decoding accuracy time course varies depending on the 252 

training time window. As expected when the training window spanned a period before 253 
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stimulus presentation (-5 to -3 sec) accuracy did not increase above shuffled (Figure 254 

4C, the p-value for GLM was >0.5 for all comparisons, see Data S1C). In contrast, when 255 

the training window spanned the reinforcement period (4.5 to 6.5 sec) decoding 256 

accuracy increased above 0.5 for the learning stage after the mouse was given the 257 

reinforcement (Figure 4Bi) and the increase in decoding accuracy above 0.5 shifted to 258 

the time when the odorant was presented when the mouse became proficient (Figure 259 

4Bii). GLM analysis of the bar graph in Figure 4Biii indicated that these changes in 260 

decoding accuracy were statistically significant (p<0.001 for the interaction between 261 

odor period vs. pre-odor period and proficient vs. learning stages, 273 observations, 262 

264 d.f., 4 mice, GLM F-statistic=45, p<0.001, Data S1C). Other decoding algorithms 263 

yielded similar results (Figure S5A, Data S1G). As expected the accuracy for stimulus 264 

prediction differs when different windows are used to train the GLM decoding algorithm.  265 

 266 

 267 

Decoding of Decision Making in the Go-No Go Task from CA1 Neural Activity is 268 

Time-tiled 269 

 270 

Divergence of zF/F responses between S+ and S- stimuli occurs at different times 271 

after trial start (Figures 2A and D, Figure S3A) suggesting that the onset of the increase 272 

in accuracy for stimulus decoding is time-tiled. In order to assess time tiling of the timing 273 

for decision making, we performed an analysis of the time course for accuracy of 274 

stimulus decoding from zF/F responses of subsets of ROIs per session for proficient 275 

mice. The number of ROIs used to calculate GLM decoding per session was varied 276 
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from 1, 2, 5 and 15 ROIs to all ROIs per session. For this decoding analysis we trained 277 

the GLM algorithm with zF/F data in the broad training time window (0.5 to 5.5 sec, 278 

Figure 4A). 279 

 280 

Figure 5A shows histograms of decoding accuracy calculated in the odor period (3.1 to 281 

4.1 sec) for stimulus decoding performed with zF/F from these subsets of limited 282 

numbers of ROIs (blue bars) (also see examples in Figure S6A-C). For comparison we 283 

also show a histogram for accuracy values calculated after shuffling the odorant 284 

contextual identity (brown bars).  As the number of ROIs per decoding run decreases, 285 

stimulus decoding accuracy declines (compare Figure 5Av with 5Ai). In addition, the 286 

pre-odor accuracies also decrease as the number of ROIs per decoding run is 287 

decreased (compare Figure 5Bv with 5Bi). A GLM analysis yields significant differences 288 

in decoding accuracy for comparisons between the number of ROIs per decoding run 289 

and the time periods, p<0.001, 4 mice, 27344 observations, 27344 d.f., F-statistic 798, 290 

p-value <0.001 (Data S1D).  291 

 292 

We quantified the divergence time, calculated when accuracy increased above 0.55 293 

after trial start for at least 0.2 sec, for decoding accuracy time courses with odor period 294 

decoding accuracy >0.65 (Figure S6E). Histograms of divergence times calculated for 295 

the different multiple ROI decoding runs are shown in Figure 5C. The divergence times 296 

decrease as the number of ROIs used for decoding calculation increases (compare 297 

Figure 5Ci with Figure 5Cv). A GLM analysis of divergence times yields significant 298 

differences for comparisons between accuracies calculated with different numbers of 299 
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ROIs, p<0.001, 4 mice, 27354 observations, 27349 d.f., F-statistic 1400, p-value <0.001 300 

(Data S1D). This analysis indicated that the onset of the increase in stimulus decoding 301 

accuracy is time tiled. 302 

 303 

Finally, we generated a pseudocolor plot of the time course of decoding accuracy to 304 

better illustrate the time tiling of accuracy onsets (Figure 5D). When decoding from 305 

individual ROIs there is a large variance in the start of the increase in accuracy ranging 306 

from trial start to reward delivery (Figure 5Di). Computing average accuracy time 307 

courses for different divergence time periods shows that the onset of the increase in 308 

decoding accuracy is time-tiled and that decoding accuracy calculated for the earliest 309 

divergence time period is biphasic with a small increase at trial start followed by a larger 310 

increase after odor onset (Figure 5Dii).  In contrast, when decoding accuracy is 311 

computed with all ROIs per session there is less variance in the time for onset of the 312 

increase in decoding (Figure 5Diii and 5Div). These data show that the onset of 313 

increases in decoding accuracy, predicting time of decision making, is time-tiled in 314 

hippocampal CA1 suggesting that these are decision-predicting time cells.  315 

 316 

Lick Decoding and Stimulus Decoding Differ in their Relationship to Lick 317 

Behavior 318 

 319 

Next we asked how stimulus decoding prediction is related to lick behavior (quantified 320 

as lick fraction defined as the fraction of trials when the animal was making contact with 321 

the lick tube). In addition, we asked whether it was possible to decode lick behavior 322 
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from neural activity and whether the relationship between lick prediction and lick fraction 323 

differed from the relationship between stimulus prediction and lick fraction. We 324 

performed this analysis separately for correct responses (Hits and CRs) and incorrect 325 

responses (Miss and FAs)(Figure 1A).  326 

 327 

There was a transient increase in lick fraction for all trial types when the animal started 328 

the trial by licking on the water spout (arrow in Figure 6A). For Hits (red) this transient 329 

increase was followed by a steady increase in lick fraction during the odor period (0-4 330 

sec), while for CR trials (blue) there was a decrease toward zero shortly after odorant 331 

presentation. In contrast, for Miss trials, the lick fraction did not increase during the first 332 

second of the odorant period (cyan), and for FA trials, the lick fraction was high for the 333 

first half of the odorant period (magenta). Figure 6B is a bar graph showing the mean 334 

lick fraction during the first and second 2 sec response windows (RWs) during the 335 

odorant period (RWs are defined in Figure 1A). A GLM analysis yields significant 336 

differences in mean lick fraction for comparisons between CR or Miss vs. FA or Hit and 337 

for the interaction of Miss or Hit and FA and the RWs, p<0.001, 4 mice, 452 338 

observations, 441 d.f., F-statistic 36.7, p-value <0.001 (Data S1E).  339 

 340 

The accuracy for neural network decoding of lick fraction from zF/F for all ROIs per 341 

session when the mice were proficient (four mice, 66 sessions) is shown in Figure S5B. 342 

In contrast with accuracy for stimulus decoding that starts diverging from shuffled at the 343 

trial start (Figure 4Aii) lick decoding accuracy starts diverging from shuffled after the 344 

odorant presentation (Figure S5B). The bar graph in Figure S5C shows the mean lick 345 
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decoding accuracy data for pre-odor (-1 to 0), odor (3.1 to 4.1) and reinforcement (4.5 to 346 

5.5) time periods. A GLM analysis yielded a statistically significant difference for odor 347 

and reinforcement time periods vs. pre-odor period and for the interaction between 348 

these time period comparisons and shuffling (p<0.001), 378 observations, 369 d.f., 4 349 

mice, GLM F-statistic=62.1, p<0.001 (Data S1G). Figures 6C and D show the lick 350 

prediction time course and mean lick prediction calculated in the RA windows for the 351 

different trial types. A GLM analysis yields significant differences in mean lick prediction 352 

for comparisons between Hit or Miss and FA and for the interaction of Hit and FA and 353 

the RWs, p<0.001, 4 mice, 488 observations, 477 d.f., F-statistic 24.3, p-value <0.001 354 

(Data S1E). 355 

 356 

Figure 6E shows the time course for stimulus prediction. For Hits (red) there was a 357 

steady increase in stimulus prediction that started at trial onset and leveled to a value of 358 

~0.8 during the odor period for Hits (red) while for CR trials (blue) there was an initial 359 

increase after trial start that decreased to ~0.2 during the odor period. For Miss trials 360 

stimulus prediction appeared to increase to a value below Hit prediction (cyan). For FA 361 

trials stimulus prediction started increasing at the trial start, but did not decrease to ~0.3 362 

during the odor period (magenta). Figure 6F is a bar graph showing the mean stimulus 363 

prediction during the first and second 2 sec response windows (RWs) during the 364 

odorant period. A GLM analysis yields significant differences in mean stimulus 365 

prediction for comparisons between CR, Miss or Hit, and FA, p<0.05, 4 mice, 452 366 

observations, 441 d.f., F-statistic 57.3, p-value <0.001 (Data S1E).  367 

 368 



 17 

The time course for lick fraction (Figure 6A) appears to be similar to the time course for 369 

lick prediction (Figure 6C) and appears to differ from stimulus prediction (Figure 6E). 370 

Indeed, the relationship between lick fraction and lick prediction was linear (Figure 6G). 371 

In contrast, the relationship between lick fraction and stimulus prediction differed 372 

between S+ (Hit/Miss) and S- (CR/FA) (Figure 6H). For Hits and Miss the stimulus/lick 373 

fraction relationship was linear (Figure 6H, cyan and red circles), while for CR/FA points 374 

(Figure 6H, magenta and blue circles), the relationship appeared to be quadratic and 375 

the points did not fall along the Hit/Miss line. Therefore, the relationship between lick 376 

fraction and stimulus prediction in CA1 does not follow the simple linear relationship that 377 

is expected from neural activity closely related to motor action. Instead, the relationship 378 

differs strikingly for S+ vs. S- stimuli. However, decoding lick behavior from the same 379 

neural activity did yield a prediction that showed a linear relationship with lick fraction.  380 

 381 

Stimulus Decoding Between Trials is Biased to Predict the Unrewarded Stimulus 382 

and there are Sudden Brief Shifts to Rewarded Stimulus Prediction 383 

 384 

We proceeded to explore whether decoding of stimulus contextual identity from 385 

neuronal activity in CA1 between trials predicted one of the two stimuli for proficient 386 

mice engaged in the go-no go task. Figure 7A shows a time course for predicting the 387 

stimuli by GLM decoding calculated during an imaging session. As in Figure 4A, GLM 388 

was fit to neural activity for all ROIs during the 0.5 to 5.5 sec spanning most of the 389 

odorant window. A prediction value of 1 corresponds to S+ prediction and a value of 0 390 

represents S-. The blue shade shows the 5th to 95th percentile band for prediction 391 
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calculated after shuffling the stimulus labels. Trials are bounded from start to end of 392 

odor epoch by vertical lines (cyan: S+, magenta: S-). As expected, within trials 393 

prediction increases to 1 for some time longer than the odorant window during S+ trials 394 

while it increases briefly at the start of S- trials but returns to zero before the end of the 395 

odorant period. Figure 7B shows the within trial mean prediction time course for all trials 396 

in proficient sessions for the 4 mice (a total of 1848 trials in 66 sessions). For this within-397 

trial decoding the prediction starts increasing before trial start for both the S+ and S- 398 

trials and it diverges between S+ and S- at the start of the trial. The bar graph in Figure 399 

7C shows the S+ and S- prediction for a baseline period (-2.5 to -1.5) and an odor 400 

period (2 to 4.1 sec). A GLM analysis yields significant differences for baseline vs. odor 401 

time periods and for the interaction between S+ vs. S- and time periods, p<0.001, 4 402 

mice, 220 observations, 213 d.f., F-statistic 194, p <0.001 (Data S1F). Thus, within the 403 

trial stimulus prediction starts increasing at trial onset and diverges between rewarded 404 

and unrewarded odorant trials shortly after trial onset.  405 

 406 

Intriguingly, the average prediction calculated between trials is lower than shuffled 407 

(Figures 7A and 7D) indicating that the default decoding is S- for most of the time 408 

between trials (GLM p-value for between vs. shuffled <0.001, 110 observations, 105 409 

d.f., F-statistic 70.7, p<0.001, Data S1F). However, there are precise brief shifts of 410 

prediction to 1 (arrow in Figure 7A). We identified these spontaneous shifts of prediction 411 

to 1 between trials by finding increases beyond the 95 percentile of the shuffled 412 

prediction values (blue shade in Figure 7A). We found a total number of 1635 413 

spontaneous shifts to S+ prediction between trials in 66 sessions. The duration of these 414 
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spontaneous shifts varied between a fraction of a second to two seconds. The cyan 415 

bounded line in Figure 7F shows the mean time course for between trial spontaneous 416 

shifts compared to an adjacent between trials time period with no spontaneous changes 417 

in prediction (“no change”, magenta). The bar graph in Figure 7G shows a significant 418 

difference between the prediction before the onset of the spontaneous increase in 419 

prediction and the peak of prediction for the spontaneous shift. A GLM analysis yields 420 

significant differences for spontaneous shift in prediction vs. no shift and for the 421 

interaction between spontaneous vs. no shift and baseline vs. peak time windows, 422 

p<0.001, 4 mice, 192 observations, 185 d.f., F-statistic 703, p <0.001 (Data S1F).  423 

 424 

The fact that there is a spontaneous shift in stimulus prediction from S- to S+ between 425 

trials raises the question whether the neural activity at the time of spontaneous 426 

prediction shifts is more correlated to the activity during rewarded odorant trials as 427 

opposed to unrewarded odorant trials. We calculated per session the correlation 428 

between zF/F values for all ROIs at the onset of the spontaneous shift to S+ between 429 

trials and zF/F values for all ROIs at each time point during the the time course of 430 

either S+ or S- trials. Figure 7E shows the time courses for these correlations averaged 431 

over all ROIs. The correlation of spontaneous zF/F with S+ diverges from the 432 

correlation with S- shortly after the start of the trial and remains high for a few seconds 433 

after the reward. A GLM analysis yielded significant differences in average correlations 434 

for comparison of the time windows (baseline vs. odor) and for the interaction between 435 

S+ vs. S- and time window, p<0.001, 4 mice, 216 observations, 209 d.f., F-statistic 15.7, 436 
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p-value <0.001 (Data S1F). This indicates that neural activity at the onset of the 437 

spontaneous shift resembles neural activity during rewarded trials. 438 

 439 

Finally, we asked whether lick behavior differed between spontaneous prediction shifts 440 

compared to no change. The blue bounded line in Figure 7H shows the lick fraction 441 

during spontaneous shifts and the magenta bounded line shows the lick fraction during 442 

an adjacent between trial time period with no spontaneous changes in prediction (“no 443 

change”). We found that the lick fraction is slightly higher during the prediction shifts 444 

compared to no change (Figure 7H). The bar graph in Figure 7I shows the lick fraction 445 

calculated 2 seconds before and 2 seconds after the shift. A GLM analysis yields 446 

significant differences in lick fraction for comparison between spontaneous prediction 447 

shift and no change, p<0.001, 4 mice, 192 observations, 185 d.f., F-statistic 28.3, p-448 

value <0.001 (Data S1F). This indicates there is a tendency for slightly elevated licking 449 

in between trial epochs where a spontaneous shift occurs. 450 

 451 

 452 

DISCUSSION 453 

 454 

In this study we performed two photon imaging of calcium responses in head-fixed mice 455 

engaged in an associative learning go-no go task where they decide whether they lick to 456 

obtain a reward when presented with rewarded (S+) or unrewarded (S-) odorants. 457 

Unlike other sensory systems, the efferent axons from the olfactory bulb bypass the 458 

thalamus and synapse (directly or through relay in the piriform cortex) onto the LEC 459 
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constituting a primary sensory input to dCA126,27. Olfactory responses mediated by LEC 460 

input are particularly prominent in the mouse dCA128-30, and odorant responses in dCA1 461 

are known to be involved in tasks such as delayed match/non-match to sample (working 462 

memory)11,17, odor place associative learning28, odorant gradient navigation31 and 463 

odorant sequence evaluation32. 464 

 465 

Dorsal CA1 is arguably one of the most studied areas of the brain involved in learning 466 

and memory33-36 and it is well documented to play a role in spatial and episodic learning 467 

and memory10,12. Yet, its role in go-no go associative learning has been called into 468 

question. Li et al. found that calbindin positive pyramidal neurons in CA1 became more 469 

selective for odorants as animals became proficient in the go-no go task and 470 

optogenetic inhibition of these cells slowed learning16. In contrast, a study by Biane and 471 

co-workers found that the accuracy of odor decoding in dCA1 was not altered by 472 

learning in the go-no go task15. Here we find that learning results in increased stimulus 473 

divergence of zF/F responses for single SP cells (Figure 2); and that there is a 474 

substantial increase in stimulus decoding accuracy calculated from the SP cell 475 

ensemble when the animal becomes proficient in the go-no go task (Figure 4). Our 476 

results are consistent with a role for dCA1 pyramidal cells in go-no go associative 477 

learning proposed by Li et al. and with local field potential (LFP) power in dCA137,38 478 

upon learning in dCA1 in the go-no go associative learning task.  479 

 480 

For proficient mice, prediction for stimulus decoding tends to represent the correct 481 

stimulus even when the animal makes a mistake (Figures 2H, 6E and 6H). In contrast, 482 
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for lick decoding the predictions for errors align closer with the mistakes the animal 483 

makes in the lick response (Figure 6G). One explanation for this may be that although 484 

the animal does perceive the odorant, it is satiated and therefore chooses to make a 485 

mistake (not licking) on purpose. These results suggest that CA1 encodes for different 486 

information manifolds that can be used differentially depending on the context and 487 

behavioral purpose. Whether this is the case needs to be evaluated in future studies. 488 

 489 

We asked whether dCA1 SP cells represent the odorant identity or its valence. We 490 

found that predicting the stimulus decoded from zF/F ensemble neural activity in dCA1 491 

was biased towards S- between trials (Figures 7A and D). This is unlike stimulus identity 492 

decoding in areas such as the auditory cortex, where there is no bias in stimulus 493 

prediction39 suggesting that dCA1 ensemble activity represents stimulus value as 494 

opposed to odorant identity. Indeed, when the stimuli were reversed the responses 495 

were consistent with representation of valence for a large portion of the ROIs (Figure 496 

3E). This result is consistent with valence representation found in olfactory bulb single 497 

units after reversal in the go-no go learning task40,41, functional plasticity of sensory 498 

inputs elicited by learning in the olfactory bulb42,43, and with decoding of stimulus 499 

contextual identity after stimulus reversal for measurements LFP power in dCA138. In 500 

addition, the shift we find in dCA1 neural odorant representation upon reversal of 501 

reward is reminiscent of remapping of hippocampal space cells in different contexts that 502 

can be explained by associative learning4.  503 

 504 
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Time-tiled odorant responses by “time-cells” in dCA1 are thought to be involved in 505 

delayed match/non-match to sample where they presumably provide short term working 506 

memory of the identity of the first odorant that is presented in the task11,17. Interestingly, 507 

we find that for the go-no go task the divergence between S+ and S- stimuli in zF/F 508 

odorant responses of individual SP cells takes place at different times between trial start 509 

and reinforcement (Figure 2D) and, consistent with these results, stimulus decoding 510 

accuracy decoded from single neuron activity starts diverging from accuracy computed 511 

from shuffled stimulus labels (50%) at discrete times ranging from trial start to several 512 

seconds after reinforcement (Figures 5Di and S6). Therefore, decision making for the 513 

difference between stimuli based on single cell dCA1 neural activity takes place at 514 

different discrete times in dCA1. This finding of “decision-making prediction time-cells” is 515 

novel and complementary to stimulus time-cells engaged in delayed match/non-match 516 

to sample tasks11,17. We hypothesize that this discrete time tiling of information for 517 

decision making in dCA1 by sequential neural dynamics plays a role in go-no go 518 

associative learning by representing a memory of whether the rewarded odorant is 519 

presented that the mouse uses to decide whether it should sustain licking to get a 520 

reward. As recently proposed for spatial navigation36, neuromodulatory inputs may 521 

sculpt hippocampal representations to either provide stimulus valence information or 522 

shift the distribution of states, ‘weighting’ rewarded stimuli more heavily than 523 

unrewarded stimuli. Whether this is the case will be determined in future studies. 524 

 525 

Finally, our data raise the question of the specific role of sequential activity in 526 

associative learning in dCA1. On one hand, sequential activity in dCA1 is often 527 
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associated with transition in the state space where each state encodes for a predictive 528 

representation of future states given the current state44,45. Under this interpretation, 529 

time-tiling represents state transition in a cognitive map representing the temporal task 530 

structure. On the other hand, sequential activity potentially encodes a single working 531 

memory that makes the animal more likely to choose a specific outcome as time 532 

passes. Previous modeling work revealed that depending on the model configuration, a 533 

recurrent neural network learns to represent working memory either by sequential or 534 

persistent activity46. It indicates that time-tiling might encode a binary decision (go or no-535 

go) with spatial-temporal patterns. Sequential working memory representation is also 536 

beneficial for binding multiple information, such as stimulus identity, valence, and 537 

context, into a single working memory47,48. Future work will clarify whether time-tiling in 538 

the decision period represents a transition in the cognitive map or a go/no-go decision 539 

variable. 540 

  541 
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STAR * METHODS 564 

Key resources table 565 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Donkey anti-rabbit Alexa Fluor 594 secondary antibody Jackson 

Immunoresearch 
11-585-152 

Donkey anti-mouse secondary antibody Alexa Fluor 647 Jackson 
Immunoresearch 

715-606-150 

Mouse anti-PV primary antibody Sigma-Aldrich P-3088 
Rabbit anti GFAP antibody Abcam ab7260 

Deposited data 

Raw and analyzed data Mendeley data doi: 
10.17632/7gn6dj89t3.1 

Experimental Models: Organisms/Strains 
Thy1-GCaMP6f mouse, C57BL/6J-Tg(Thy1-
GCaMP6f)GP5.17Dkim/J 

The Jackson Laboratory 025393 

Software AND Algorithms 
Matlab 2022b and 2023a https://www.mathworks.c

om/products/matlab.html 
N/A 

Code to generate the main figures https://github.com/restrep
d/CA1_Figures 

N/A 

Data to generate the main figures Mendeley data doi: 
10.17632/7gn6dj89t3.1 

Please note that this is 
a temporary doi that 
will be replaced by a 
permanent doi once 
repository is published 

Other 
GRIN lenses GRINTECH GmbH NEM-050-25-10-860-

DS 
Metabond  Thermo Fisher NC0877382, 

NC2048900, 
NC2048904 

Paraformaldehyde Electron Microscopy 
Sciences 

15714-S 

DAPI Thermo Fisher 62248 
Buprenorphine SR/ER Zoopharm/Wedgewood  
Vetbond MWI 006245 
Light mineral oil Fisher O121-1 
Heptanal Sigma-Aldrich H-6129 
OCT Sakura Finetech 4583 

  566 
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Data S1. Statistical analysis. Related to STAR Methods and Figures 1 to 7 567 

A) GLM statistics for the zF/F bar graphs in Figures 2G and I 568 

B) GLM statistics for the zF/F bar graphs in Figures 3D and Figure S4Aiii 569 

C) GLM statistics for the  accuracy bar graphs in Figure 4 570 

D) GLM statistics for Figure 5 571 

E) GLM statistics for Figure 6 572 

F) GLM statistics for Figure 7 573 

G) GLM statistics for Figure S5 574 

 575 

RESOURCE AVAILABILITY 576 

 577 

Lead contact 578 

Further information and requests for data should be directed to and will be fulfilled by 579 

the lead contact, Diego Restrepo (diego.restrepo@cuanschutz.edu). 580 

 581 

Materials availability 582 

This study did not generate new unique materials. 583 

 584 

Data and code availability 585 

• The source data to reproduce the figures are available at Mendeley Data (doi: 586 

10.17632/7gn6dj89t3.1). Please note that this is a temporary doi that will be 587 

replaced by a permanent link and doi once the repository is published 588 

mailto:diego.restrepo@cuanschutz.edu
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• Analysis code has been deposited at GitHub 589 

(https://github.com/restrepd/CA1_Figures). 590 

• Any additional information required to reanalyze the data reported in this paper is 591 

available from the lead contact upon request.  592 
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METHOD DETAILS 593 

Animals 594 

All experimental protocols were approved by the Institutional Animal Care and Use 595 

Committee of the University of Colorado Anschutz Medical Campus, in accordance to 596 

NIH guidelines. Mice were bred in the animal facility, and we used both males and 597 

females, a total of four adult Thy1-GCaMP6f mouse (Jax 025393 C57BL/6J-Tg(Thy1-598 

GCaMP6f)GP5.17Dkim/J) for head-fixed awake behaving two-photon imaging of CA1 599 

pyramidal cells through a GRIN lens. We used the 5.17 strain of Thy1-GCaMP6f mice 600 

because of their strong expression of GCaMP6f in CA149. The animals were housed in a 601 

vivarium with a 14/10 h light/dark cycle. Food was available ad libitum. Access to water 602 

was restricted in behavioral training session according to protocols. All mice were 603 

weighed daily and received sufficient water during behavioral sessions to maintain 604 

>80% of their original body weight.  605 

 606 

Surgical Procedures 607 

Mice were injected with carprofen (5 mg/kg, IP) one hour before surgery and were 608 

anesthetized with ketamine/xylazine (IP, 100 mg/kg and 10 mg/kg, respectively). 609 

Anesthetic redosing was assessed by pinching the hind feet every 5 min. A craniotomy 610 

of diameter ~1.2 mm was made over the right hippocampus and a GRIN lens of 4 mm 611 

length and 1 mm diameter (GRINTECH, NEM-050-25-10-860-DS) was implanted at 1.8 612 

mm lateral and 2.4 mm caudal of Bregma and 1.25 mm below dura 31. The GRIN lens 613 

edges were sealed with Vetbond glue (3M, USA) and a custom-made steel head 614 

bracket was glued to the skull with Metabond (Parker, USA) for head-fixing and 615 
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imaging. The mice were treated with buprenorphine SR/ER for two days after surgery 616 

(0.05 mg/kg, SQ). dCA1 imaging was initiated two weeks after surgery. 617 

 618 

Immunohistochemistry and CT-Scan 619 

Immunohistochemistry was performed for Figure S1A after animals finished all the 620 

training to visualize GCaMP6f expression in the hippocampus CA1 region and the track 621 

of the GRIN lens implant. Immunohistochemistry for Figure S1B was performed on an 622 

adult mouse that had not been trained. Mice were sacrificed and transcardially perfused 623 

with ice cold 4% paraformaldehyde (PFA), followed by equilibration in 30% sucrose. 624 

After the brain sank, the tissue was embedded in optimal cutting temperature (OCT) 625 

compound and was frozen at -80oC. Slices of 60 m thickness were cut with a Leica 626 

cryostat. For Figure S1A the slices were stained with rabbit anti-GFAP primary antibody 627 

(Ab7260, Abcam, USA) and Alexa Fluor 594 donkey anti-rabbit secondary antibody (11-628 

585-152, Jackson Immunoresearch, USA).  629 

 630 

For Figure S1B the slices were stained with mouse anti-parvalbumin (anti-PV) primary 631 

antibody (Sigma-Aldrich P-3088) and Alexa Fluor 647 donkey anti-mouse secondary 632 

antibody (715-606-150, Jackson Immunoresearch, USA). The slices were 633 

counterstained with DAPI (Thermo Fisher Scientific, USA) and imaged using a confocal 634 

laser scanning microscope (Nikon A1R, Japan). We find that GCaMP6f expression does 635 

not overlap with PV expression in dCA1 in Thy1-GCaMP6f mice (Figure S1B) indicating 636 

that the SP cells we imaged are not PV interneurons. However, it is possible that a 637 

subset of the SP divergent cells are interneurons. Future studies will be necessary to 638 
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study the involvement of dCA1 interneurons in responses during in mice engaged in the 639 

go-no go task. 640 

 641 

To further verify the 3D position of the GRIN lens in the skull and brain, we performed 642 

microCT-Scan recording. We perfused the mice with PBS and the ex-vivo PFA fixed 643 

head was used for acquiring the microCT imaging on a Siemens Inveon microCT 644 

system (Siemens, Germany). 645 

 646 

Go-No Go training 647 

Mice were water deprived by restricting daily water consumption to 1-1.5 ml. Mice were 648 

monitored for signs of dehydration or decreased body weight below 80% of the initial 649 

weight. If either condition occurred, the animals received water ad-lib until they 650 

recovered. When the animals were water-deprived, they were trained in a head-fixed 651 

olfactory go-no go task with 1% HEP vs MO odorant application (Sigma-Aldrich, 652 

USA)20,41,50. An olfactometer controlled valves to deliver a 1:40 dilution of odorant at a 653 

rate of 2 L min-1. An Intan RHD2000 acquisition system (Intan, USA) recorded licks 654 

measured by monitoring the resistance between the lick spout and the floor of the 655 

olfactometer. The water-deprived mice started the trial by licking on the water port. The 656 

odorant was delivered after a random time interval ranging from 1 to 1.5 seconds. In S+ 657 

trials, the mice needed to lick at least once in two 2 sec lick segments to obtain a 658 

reward (0.1 g ml-1 sucrose water) (Figure 1A). In S- trials, the mice need to refrain from 659 

licking in one of the two 2 sec segments to avoid a longer inter-trial interval (+ 10 sec). 660 

The animal’s behavior performance was evaluated in a sliding window of 20 trials and 661 
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the calculated value was assigned to the last trial in the window. Therefore, it estimated 662 

the performance in the last 20 trials. The percent correct value represents the percent of 663 

trials in which the animal successfully performed appropriate actions 664 

(100*(Hits+CRs)/number of trials), and we considered the animal proficient if the 665 

percent correct performance was above 80%. In reverse go-no go training sessions the 666 

S+ and S- odorants were switched after reaching a proficient level in forward training. 667 

 668 

Acoustic recordings of auditory cues at the start of the trial in the go-no go task 669 

 670 

In addition to the odorant cue the olfactometer emits a click at the start of the trial when 671 

one of the two odorant valves opens 1-1.5 sec before odorant onset. Acoustic 672 

recordings of the olfactometer were made using a GRAS 46BH-1 omnidirectional 673 

microphone and GRAS 26AC-1 preamplifier with Type 12AA power module, M-Audio 674 

Pro interface, and Audacity software. The microphone was positioned to approximate 675 

the location of the mouse’s head during experiments. Recordings were time-aligned to 676 

experimental hardware using a trigger pulse. Recordings were windowed 7 seconds 677 

prior to 15 seconds following stimulus offset and separated according to S- or S+ 678 

conditions in MATLAB. Spectrograms of each stimulus were then generated to identify 679 

auditory events.  680 

 681 

Figures S2B-C show a sound spectrogram of the click recorded with the ultrasound 682 

microphone at the location of the mouse’s head in the two-photon microscope aligned 683 

with the opening of the odorant valve. Figure S2D shows that the identity of the odorant 684 
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valve (S+ vs S-) can be decoded from the sound click using a generalized linear model 685 

(GLM) decoding algorithm, albeit with low accuracy (~ 0.65) (ranksum test p<0.05, 58 686 

trials for decoding stimuli vs. 290 trials for shuffled stimulus decoding).  687 

 688 

While this task provides both olfactory and sound sensory inputs, the mouse cues on 689 

the olfactory stimulus as shown by the fact that percent correct behavior decreases 690 

close to 50% when the odor cues are removed while the valve opening (and 691 

consequent sound) are not altered (Figure S1G-I, consistent with previous studies with 692 

the same olfactometer51).  693 

 694 

Two-photon imaging of dorsal hippocampus CA1 activity in animals undergoing 695 

the Go-No Go task 696 

All the animals were first habituated to the setup to minimize stress during the imaging 697 

experiments. All the imaging sessions started at least 10 minutes after the mice had 698 

been head-fixed. The head fixed two-photon imaging system consisted of a movable 699 

objective microscope (MOM, Sutter Instrument Company, USA) paired with a 80 MHz, 700 

~100 femtosecond laser (Mai-Tai HP DeepSee, Spectra Physics, USA) centered at 920 701 

nm. The MOM was fitted with a single photon epifluorescence eGFP filter path (475 nm 702 

excitation/500-550 nm emission) used for initial field targeting followed by switching to 703 

the two-photon laser scanning path for imaging GCaMP6f at the depth of the CA1 cell 704 

body layer. Either the galvometric laser scanning system or a resonant scanner was 705 

driven by SlideBook 6.0 (Intelligent Imaging Innovations, USA).  The two-photon time 706 

lapses were acquired at 395 x 380 pixels using a 0.4 NA/10x air objective (Olympus, 707 
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Japan) at either 5.3 Hz (galvo) or 20 Hz (resonant). On the day of initial imaging, a FOV 708 

was selected to image a large number of active hippocampal CA1 neurons through the 709 

GRIN lens, and GCaMP6f movies for several sessions (12-40 trials each) were 710 

collected each day. After two-photon imaging a second image of the vasculature was 711 

captured with wide field epifluorescence to reconfirm the field.   712 

  713 

 714 

Statistical analysis 715 

Statistical analysis was performed in Matlab R2022b or R2023a (Mathworks, USA). 716 

Statistical significance for changes in measured parameters for multiple factors such as 717 

learning and odorant identity (S+ vs. S-) was estimated using a generalized linear model 718 

(GLM)52 with post-hoc comparisons performed either with a two-sided t test, or a 719 

ranksum test, depending on the result of an Anderson-Darling test of normality. Post-720 

hoc tests were corrected for multiple comparisons using the false discovery rate p-value 721 

(pFDR)24. Asterisks in bar graphs specify statistically significant differences (p<pFDR) 722 

on post-hoc tests. Not all statistically significant differences are shown with asterisks 723 

because showing all significant differences would make the figures too complicated. 724 

However, all pairwise post-hoc test p-values and pFDR are shown in Data S1. Finally, 725 

we provide 95% confidence intervals (CIs)53 estimated by bootstrap analysis of the 726 

mean by sampling with replacement 1000 times using the bootci function in MATLAB 727 

(shown in the figures as vertical black lines for bar graphs or shade bounding of mean 728 

value lines for time courses). 729 

 730 
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Data analysis 731 

Raw imaging data was first surveyed in ImageJ 1.52 (NIH, USA) to exclude image 732 

sequences exhibiting axial movement. We did not find evidence of axial movement 733 

while the animal was engaged in the go-no go task. The raw imaging data was 734 

processed with DeepCAD-RT to denoise time-lapse images 735 

(https://github.com/cabooster/DeepCAD-RT)21, and then motion corrected with 736 

NoRMCorre algorithm22. The nonegative fluorescence traces were generated with 737 

EXTRACT (https://github.com/schnitzer-lab/EXTRACT-public)23 with appropriate 738 

parameters. After Extract analysis, the F/F traces of the spatial components were 739 

sorted and we assigned trial traces to different behavioral events (S+: Hit and Miss, S-: 740 

CR and FA) and aligned them to trial start, odorant onset or reinforcement delivery for 741 

further analysis. We chose to use the nonegative F/F transients to perform the data 742 

analysis. These F/F transients contain information on firing rate because calcium is a 743 

leaky integral of spikes. This resulted in reliable assessment of decoding of contextual 744 

odorant identity and lick behavior. However, a limitation of this analysis is that it may 745 

miss information encoded by neuronal firing. Because calcium imaging represents a 746 

leaky integral of neuronal firing the onset of the response is well represented, the end of 747 

the neuronal response is not. The data were converted into the NWB format 748 

(https://doi.org/10.1101/2021.03.13.435173) and organized into a BIDS-like 749 

(https://doi.org/10.1038/sdata.2016.44) structure. 750 

 751 

Data analysis was performed using custom code in Matlab R2022b or R2023a. Mice 752 

were trained in 3-6 training sessions per day. Analysis was performed per session and 753 

https://github.com/cabooster/DeepCAD-RT
https://github.com/schnitzer-lab/EXTRACT-public
https://doi.org/10.1101/2021.03.13.435173
https://doi.org/10.1038/sdata.2016.44
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classified into either the learning stage with percent correct behavior within the 45-65% 754 

range (blue in Figure S1C-I) or the proficient stage with percent correct behavior in the 755 

80-100% range (red in Figure S1C-I). The number of ROIs per session and the number 756 

of learning and proficient sessions used for the analysis in the different figures is shown 757 

in Table 1. For each ROI we z-scored F/F by dividing by the standard deviation of F/F 758 

calculated over the entire session (we call this z scored F/F, zF/F). Below we 759 

describe the different data analysis methods. 760 

  761 

Divergent cell detection and analysis 762 

 763 

Whether a cell’s zF/F diverged between S+ and S- (Figures 2 and 3) was determined 764 

as follows: Only sessions with a minimum of 12 trials were included. For the rest of the 765 

ROIs the zF/F in the session was considered to be divergent if the GLM p-value for S+ 766 

vs. S- in the time span from -1 to 5.5 sec was below the pFDR. Examples of the time 767 

course zF/F for divergent ROIs are shown in Figures 2A and S3A.  768 

 769 

As shown in Figures 2B, 3A and 3B, the per trial time courses for zF/F were 770 

heterogeneous. In order to quantify the heterogeneity we calculated within-trial cross-771 

correlation coefficients between all divergent zF/F time courses (including both S+ and 772 

S- in the calculation) for all divergent ROIs (e.g. Figure 2C). The zF/F time courses for 773 

the different ROIs were then separated into different clusters by estimating an 774 

agglomerative hierarchical cluster tree using the linkage function of MATLAB. The 775 

number of clusters was specified arbitrarily.  776 
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  777 

In order to quantify the divergence in zF/F between HEP and MO trials for Figure S4 778 

we calculated d’, which is a measure of the difference in between two distributions.  779 

d′ =
mean(𝑧F/F(HEP) ) −   mean(𝑧F/F(MO) )

√(𝑆𝐷(𝑧F/F(HEP))2 + 𝑆𝐷(𝑧F/F(MO))2)/2
         (2) 780 

 781 

where SD is the standard deviation. As done for zF/F time courses we used cross-782 

correlation coefficients and an agglomerative hierarchical cluster tree to sort the time 783 

courses shown for d’ in Figure S4E,F. 784 

 785 

Stimulus decoding 786 

Stimulus decoding was performed using GLM (fitglm in MATLAB). The algorithm was 787 

trained per session for all time points and all trials within time periods and number of 788 

ROIs per session was indicated in the text. Only sessions with 16 or more trials were 789 

processed. The predicted stimulus was assessed using leave one trial out, and winner 790 

takes all procedures. We report the results of GLM decoding, but we obtained similar 791 

results with linear discriminant analysis, neural network decoding, binary decision tree 792 

decoding and support vector machine decoding (Figure S5A).  793 

 794 

Stimulus decoding with subset of ROIs 795 

For GLM stimulus decoding performed with a subset of 1, 2, 5 or 15 ROIs (Figure 5) 796 

decoding was performed in separate runs with 40 unique subsets of ROIs drawn 797 

randomly from the total number of ROIs per session.  798 

 799 
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For decoding with small numbers of ROIs accuracy fell below 0.5. The reason was that 800 

for some of these decoding runs the majority of S+ and S- zF/F values were zero with 801 

one or two trials with a non-zero zF/F value. This is illustrated in Figure S6 where we 802 

show several examples of stimulus decoding accuracy when the decoding was 803 

performed with zF/F responses of individual ROIs. We found that for a subset of single 804 

ROIs decoding accuracy started increasing at different times after the trial started and 805 

reached accuracy values above 0.65. Three examples of decoding accuracy time 806 

courses and their corresponding zF/F time courses for S+ and S- trials are shown in 807 

Figure S6A-C. In Figure S6A, accuracy increases to ~0.6 at the start of the trial 808 

(immediately following valve click and before odorant addition) and increases to a 809 

higher value (~0.8) after odorant presentation. In Figures S6B and C, there is no 810 

increase in accuracy at the start of the trial and accuracy increases either shortly after 811 

odorant addition (Figure S6B) or ~3 sec after odorant addition (Figure S6C). A 812 

histogram of average zF/F values per trial computed during the odor period (3.1 to 4.1 813 

sec) showed a clear difference between S+ and S- trial zF/F for these three examples 814 

(Figures S6A-Ciii). In addition, we found a subset of individual ROIs whose decoding 815 

yielded decreases in accuracy below 0.5. An example is shown in Figure S6D, where 816 

the accuracy decreased to ~0.1. These decreases in accuracy took place for ROIs with 817 

largely overlapping S+ and S- odorant period zF/F values except for one or two trials 818 

where the zF/F deviated from the other trials as evidenced in the histogram in Figure 819 

S6Diii.  820 

 821 

 822 
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Lick fraction decoding 823 

Lick fraction decoding was performed using a neural network classification model 824 

(fitcnet in MATLAB). The algorithm was trained per session for one second windows 825 

covering from -5 to + 10 sec in each trial. Only sessions with 16 or more trials were 826 

processed. The predicted stimulus was assessed using leave one trial out and winner 827 

takes all procedures. 828 

 829 

Finally, while decoding accuracy for stimulus decoding did not differ substantially 830 

between decoding algorithms (Figure S5A), for lick decoding the algorithms that use 831 

nonlinear decoding (neural networks, NN and binary tree decision, BDT) performed 832 

substantially better than those that perform linear decoding (support vector machine, 833 

SVM, generalized linear model, GLM and linear discriminant analysis, LDA, Figure S5H) 834 

suggesting that decoding of lick behavior involves nonlinear neural activity interactions 835 

in dCA1 (GLM statistics for Figure S5H are shown in Data S1G). 836 

 837 

Analysis of prediction shifts of S+ prediction for stimulus decoding between trials 838 

Sudden changes in stimulus prediction from S- to S+ between trials were determined in 839 

decoding prediction moving window averages (with windows of 10 time points) such as 840 

the prediction time course shown in Figure 7A. We searched for a spontaneous shift in 841 

prediction (arrow in Figure 7A) by searching for a sudden shift in prediction from below 842 

the five percentile of the shuffled stimulus control for decoding prediction (lower edge of 843 

the blue shade in Figure 7A) to above 95 percentile for the shuffled stimulus decoding 844 

prediction (upper edge of the blue shade in Figure 7A). We compared the average time 845 
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courses for these spontaneous between-trial increases to S+ (spontaneous, cyan line in 846 

Figure 7F) to the time course of decoding prediction centered in the middle of adjacent 847 

between-trial intervals where we did not find a spontaneous increase to S+ (no change, 848 

magenta line in Figure 7F).  849 

 850 
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Table 1. Number of regions of interest per session used for analysis in the 1024 

different figures. 1025 

 1026 

Figures Mouse 1 Mouse 2 Mouse 3 Mouse 4 All mice 
Figures 2-4, 
Learning 

75+9, n=8 82+25, n=4 95+15, n=6 n=0 83+17, n=18 

Figures 2-4, 
Proficiency 

79+12, n=14 96+25, n=10 108+18, n=22 178+23, n=20 121+43, n=66 

Figures 5-7 
Learning 

75+9, n=8 82+25, n=4 96+14, n=7 n=0 84+18, n=19 

Figures 5-7 
Proficient 

73+10, n=9 96+25, n=10 104+15, n=20 177+23, n=19 122+45, n=58 

  1027 
 1028 
The number of regions of interest per session (+S.D.) and the number of sessions (n) 1029 

are shown for each figure/mouse 1030 

  1031 
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 1032 

 1033 
 1034 

Figure 1. Two-photon Ca2+ imaging of stratum pyramidale cells in CA1 in head-fixed 1035 

mice undergoing the go-no go associative learning task. 1036 

 1037 

(A) Go-no go task. Left: Two-photon imaging of a head-fixed mouse responding to 1038 

odorants by licking on a water spout in response to the rewarded odorant in the go-no go 1039 

task. Center: Scoring of decision making. Right: Time course for the trial. In Hit trials, the 1040 

animal must lick at least once in each of the two 2 second response window (RW) 1041 

segments to receive a water reward as a reinforcement. 1042 

 1043 
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(B) Two-photon microscopy time-stacked images of GCaMP6f fluorescence recorded 1044 

from SP cells in dCA1 through a GRIN lens in a proficient Thy1-GCaMP6f mouse 1045 

engaged in the go-no go task. Left: Activity at rest. Right: Activity during the rewarded 1046 

odorant trial. Video 1 shows fluorescence changes in this group of cells. 1047 

 1048 

(C) F/F traces are shown for a subset of the regions of interest (ROIs) for the figure in 1049 

B. The magenta vertical lines are the on and off times for the odorant in the unrewarded 1050 

(S-) odorant trials and the cyan vertical lines are on and off times for the rewarded (S+) 1051 

odorant. The blue lines at the bottom are lick recordings. 1052 

 1053 

(D) Cross-correlation and hierarchical clustering of the F/F traces for 153 ROIs for the 1054 

entire 20 minute session corresponding to B and C shows substantial heterogeneity in 1055 

the calcium responses.  1056 

 1057 

(E) Pseudocolor plot of the time course for F/F for the 153 hierarchically clustered ROIs. 1058 

  1059 

 1060 
 1061 

 1062 

 1063 

 1064 
1065 
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  1066 

 1067 

Figure 2. The magnitude of divergence between S+ and S- zF/F responses 1068 

increases with learning and the onset of divergence takes place at discrete times 1069 

that differ between the learning and proficient stages. 1070 
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(A) Examples of zF/F time courses for single ROIs that differ in onset time for divergence 1071 

between S+ and S- trials. Selected ROIs with onset times (i) near the start of the trial, (ii) 1072 

during odor presentation, and (iii) at reward delivery.    1073 

 1074 

(B) Pseudocolor representation of zF/F time courses for single ROIs that were divergent 1075 

between S+ and S- trials in the proficient sessions (66 sessions, 4 mice). Time courses 1076 

were sorted by estimating an agglomerative hierarchical cluster tree shown on the left. 1077 

This tree was calculated using the cross-correlation coefficients between all divergent 1078 

zF/F S+ time courses shown in C. The red vertical lines show (in order): trial start, 1079 

odorant on, odorant off, reinforcement on and reinforcement off. 1080 

 1081 

(C) Cross-correlation coefficients computed between all per trial zF/F time courses 1082 

shown in B. The coefficients were sorted by the agglomerative hierarchical cluster tree 1083 

shown in B. 1084 

 1085 

(D) Histograms for divergence times for all the ROIs for the proficient stage shown in B 1086 

(dark blue) and for all divergent ROIs for learning stage sessions (light blue). Divergence 1087 

time histograms are significantly different between learning and proficient (ranksum 1088 

p<0.001, n=99 divergence time bins). 1089 

 1090 

(E) i. Percent divergent ROIs per mouse. ii and iii. Percent responsive ROIs per mouse 1091 

for S+ (ii) and S- (iii) trials. The percent divergent (i) and percent responsive (ii and ii) 1092 
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differences between learning and proficient stages were not statistically significant (two 1093 

tailed t test p>0.05, n=3 for learning and 4 for proficient, 5 d.f.). 1094 

 1095 

(F) Mean zF/F time courses for S+ and S- for the two clusters in the hierarchical tree 1096 

shown in B. 1097 

 1098 

(G) Mean zF/F calculated per session in the time window from -0.5 to 0.5 sec for each 1099 

cluster shown in F.  1100 

 1101 

(H) Mean zF/F time courses for Hits (red), Miss (cyan), CRs (blue) and FAs (magenta) 1102 

for the two clusters in the hierarchical tree shown in B. 1103 

 1104 

(I) Mean zF/F calculated per session in the time window from -0.5 to 0.5 sec for each 1105 

cluster shown in H.  1106 

 1107 

 1108 

Data S1A shows the GLM statistical analysis for Figures 2G and I. 1109 

 1110 

For all figures in the manuscript and for supplemental figures: The bounded lines such as 1111 

those in A, F and H, represent the mean and 95% CI. The light grey horizontal bar is the 1112 

period between the earliest trial start and odorant presentation (at 0 sec), the black 1113 

horizontal bar is the time period for odorant presentation and the red horizontal bar is the 1114 
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period for water reward delivery. Vertical lines represent the earliest trial start, odorant 1115 

valve opening and closing and reward valve opening and closing.  1116 

  1117 
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 1118 

 1119 

 1120 

Figure 3. Reversal of odorant valence reveals that a substantial number of dCA1 1121 

cells respond to stimulus valence. 1122 

 1123 

(A and B) zF/F time courses for single ROIs that were divergent between S+ and S- 1124 

trials for proficient mice. (A) shows zF/F time courses for the forward proficient sessions 1125 

where the rewarded odorant (S+) was HEP and the unrewarded odorant (S-) was MO (25 1126 

sessions, 4 mice) and (B) shows time courses for the reversed proficient sessions where 1127 

the rewarded odorant (S+) was MO and the unrewarded odorant (S-) was HEP (41 1128 

sessions, 4 mice). For both A and B time courses were sorted by estimating an 1129 

agglomerative hierarchical cluster tree shown on the left that was calculated using the 1130 
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cross-correlation coefficients between all divergent zF/F time courses shown in Figure 1131 

S4B. The red vertical lines in A and B denote (in order): trial start, odorant on, odorant off, 1132 

reinforcement on and reinforcement off. 1133 

 1134 

(C) Mean zF/F time courses for cluster 2 (blue cluster in A and B). Mean zF/F time 1135 

course for cluster 1 is shown in Figure S4. 1136 

 1137 

(D) Mean zF/F calculated per session in the time window from 1 to 2 seconds for cluster 1138 

2. Data S1B shows the GLM statistical analysis for these data. 1139 

 1140 

(E) Plot of peak d’ values for zF/F time courses for a set of forward/reversed proficient 1141 

sessions where ROIs were matched from session to session in one mouse. The per ROI 1142 

zF/F and d’ time courses for these forward and reversed sessions are shown in Figure 1143 

S4. The line shown is d’ reversed = d’ forward, which would be followed if the ROIs 1144 

represent stimulus identity. 1145 

  1146 
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 1147 

Figure 4. Learning elicits an increase in stimulus decoding accuracy. 1148 

 1149 

(A to C). Each panel shows the accuracy of GLM decoding of the stimulus (S+ vs. S-) 1150 

from per trial zF/F responses for all trials and all ROIs per session for all learning stage 1151 

sessions (i) and proficient sessions (ii) (4 mice, 18 learning sessions, 66 proficient 1152 

sessions). The bounded black line represents the mean accuracy bounded by the 95% 1153 

CI. The grey lines are per mouse accuracy. The red line is the stimulus decoding 1154 

accuracy calculated after shuffling the stimulus labels (S+ vs S-). The bar graphs in iii 1155 

show the mean accuracy for different trial periods (Pre-Odor -1 to 0, Odor 3.1 to 4.1 and 1156 

Reinf 4.5 to 5.5). Light gray bars are the shuffled stimulus accuracies. Points are per 1157 

session accuracies and bars are 95% CIs.  1158 

 1159 

A to C differ by the time window used to train the GLM decoder.  1160 
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 1161 

(A) The training window (0.5 to 5.5 sec) covers odorant presentation and reward 1162 

delivery,  1163 

 1164 

(B) The training window included reward delivery (4.5 to 6.5 sec). 1165 

 1166 

(C) The training window takes place before trial start (-5 to -3 sec).  1167 

 1168 

 1169 

 1170 

  1171 
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 1172 

 1173 

Figure 5. Stimulus decoding accuracy calculated per ROI for proficient animals 1174 

reveals time tiling of the increase in stimulus decoding accuracy. 1175 

 1176 

(A) Histogram for stimulus decoding accuracy calculated in the odor period (3.1 to 4.1 1177 

sec) for all proficient sessions (66 sessions) for 4 mice. i to v show the histogram for an 1178 

increasing number of ROIs per decoding session. Blue is stimulus decoding accuracy, 1179 

brown is stimulus decoding accuracy calculated after shuffling the labels. Histograms 1180 

were normalized by dividing by the total number of counts. 1181 

 1182 

(B) Histograms for stimulus decoding accuracy calculated in the Pre-Odor period (-1 to 0 1183 

sec). i to v show the histogram for an increasing number of ROIs per decoding session. 1184 

 1185 
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(C) Histograms for the onset of the increase in decoding accuracy for decoding runs that 1186 

achieved at least 0.65 accuracy after trial start. i to v show the histogram for an increasing 1187 

number of ROIs per decoding session. 1188 

 1189 

(D) (i). Time courses for decoding accuracies calculated for a single ROI per session that 1190 

reach at least 0.65 after trial start. (ii) Mean accuracy time courses calculated for one ROI 1191 

accuracy time courses shown in Di with accuracy increase onsets in the following time 1192 

periods: -1.5 to -1, -1 to 0, 0 to 1, 1 to 2, 2 to 3, >3 sec. (iii) Time courses for decoding 1193 

accuracies calculated all ROIs per session. (iv) Mean accuracy time course for the time 1194 

courses shown in Diii. 1195 

 1196 

*p<0.05 for a pFDR-corrected t-test or ranksum tests, GLM statistics are in Data S1D. 1197 

GLM analysis indicates that all histograms in A and B differ from each other, and all 1198 

histograms in C differ from each other (Data S1D). 1199 

 1200 

  1201 
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 1202 

 1203 

Figure 6. The relationship between lick fraction and prediction differs between 1204 

stimulus decoding and decoding of lick fraction. 1205 

 1206 
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(A) Mean lick fraction time course calculated for hits (red), Miss (cyan), correct rejections 1207 

(CR, blue) or false alarm (FA, magenta) trials for all sessions when the mice were 1208 

proficient (66 sessions, 4 mice).  1209 

 1210 

(B) Bar graph quantifying mean lick fraction for proficient mice (66 sessions, 4 mice) in 1211 

the two 2 second response windows of the odor period where the mouse must lick at least 1212 

once to get water in a Hit trial (Figure 1A).  Dots are per session lick fraction and grey 1213 

lines are per mouse averages.  1214 

 1215 

(C) Mean prediction time course for lick fraction decoding within trials calculated for hits 1216 

(red), Miss (cyan), correct rejections (CR, blue) or false alarm (FA, magenta) trials for all 1217 

sessions when the mice were proficient (66 sessions, 4 mice). 1218 

 1219 

(D) Bar graph quantifying mean lick fraction prediction for proficient mice (66 sessions, 4 1220 

mice) in the two 2 second response windows of the odor period where the mouse must 1221 

lick at least once to get water in a Hit trial (Figure 1A).  Dots are per session prediction 1222 

and grey lines are per mouse averages.  1223 

 1224 

(E) Mean stimulus prediction time course within trials calculated for hits (red), Miss (cyan), 1225 

correct rejections (CR, blue) or false alarm (FA, magenta) trials for all sessions when the 1226 

mice were proficient (66 sessions, 4 mice). 1227 

 1228 
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(F) Bar graph quantifying mean stimulus prediction for proficient mice (66 sessions, 4 1229 

mice) in the two 2 second response windows of the odor period where the mouse must 1230 

lick at least once to get water in a Hit trial (Figure 1A).  Dots are per session prediction 1231 

and grey lines are per mouse averages. The training period for the GLM decoding 1232 

algorithm was 0.5 to 5.5 sec. 1233 

 1234 

(G) Relationship between mean lick fraction and mean lick fraction prediction (calculated 1235 

with per mouse values). The bars are 95% CIs calculated per mouse. Lick fraction and 1236 

lick fraction prediction were calculated in two second time windows spanning from odor 1237 

onset to 6 sec after odor onset. The line is a linear fit. 1238 

 1239 

(H) Relationship between mean lick fraction and mean stimulus prediction (calculated 1240 

from per mouse values). The bars are 95% CIs calculated per mouse. Lick fraction and 1241 

stimulus prediction were calculated in two second time windows spanning from odor onset 1242 

to 6 sec after odor onset. Lines are a linear fit of the data for Hit and Miss and a second 1243 

order polynomial fit for CR and FA. 1244 

 1245 

For the graphs the data are shown separately for S+ Hits (red) and Miss (cyan) and S- 1246 

CR (blue) and FA (magenta) trials. *p<0.05 for a pFDR-corrected t-test or ranksum tests, 1247 

GLM statistics are in Data S1E. 1248 

 1249 

  1250 
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 1251 

Figure 7. Brief shift of prediction to S+ for stimulus decoding between trials. 1252 
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 1253 

(A) Example of the time course for stimulus decoding prediction during a session when 1254 

the animal was proficient in the go-no go task. Prediction ranges from 0 (S-) to 1 (S+). 1255 

Cyan vertical bars are the odor on and odor off times for the S+ trials and magenta vertical 1256 

bars are the odor on and odor off times for the S- trials. The shaded blue area is the 5 to 1257 

95 percentile decoding prediction calculated for decoding with shuffled trial labels. The 1258 

arrow points to a sudden shift in prediction above the shuffled 95 percentile that took 1259 

place between trials (we call this a prediction shift). 1260 

 1261 

(B) Mean stimulus prediction time course within trials calculated for S+ and S- trials for all 1262 

sessions when the mice were proficient (66 sessions, 4 mice).  1263 

 1264 

(C) Bar graph quantifying mean label prediction for S+ and S- trials in two time windows: 1265 

Base (-2.5 to -1.5 sec) and odor (2 to 4.1 sec). Dots are per session mean label prediction 1266 

and grey lines are per mouse mean label prediction. 1267 

 1268 

(D) Bar graph quantifying the mean label prediction between trials compared to the mean 1269 

label prediction between trials for shuffled label decoding.  1270 

 1271 

(E) Correlation between label prediction calculated at each time point in the prediction 1272 

time course for all S+ or S- trials within a session and the label prediction value found at 1273 

the point of spontaneous shift for spontaneous shifts in prediction found in between trials 1274 

in the same session (66 sessions, 4 mice). 1275 
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 1276 

(F) Mean label prediction time course for between-trial spontaneous prediction shifts 1277 

(“spontaneous”) and for time courses in between trials periods where we did not find 1278 

spontaneous shifts to S+ (“no change”) (66 sessions, 4 mice).  1279 

 1280 

(G) Bar graph quantifying mean label prediction for between-trial spontaneous prediction 1281 

shifts and for no change between-trial prediction time courses calculated in two time 1282 

windows: Base (-2.5 to -1.5 sec) and odor (2 to 4.1 sec). Dots are per session mean label 1283 

prediction and grey lines are per mouse mean label prediction. 1284 

 1285 

(H) Mean lick fraction time course for between-trial spontaneous prediction shifts 1286 

(“spontaneous”) and for time courses in between trials periods where we did not find 1287 

spontaneous shifts to S+ (“no change”) (66 sessions, 4 mice).  1288 

 1289 

(I) Bar graph quantifying mean lick fraction for between-trial spontaneous prediction shifts 1290 

and for no change between-trial prediction time courses calculated in two time windows: 1291 

Base (-2 to -0 sec) and odor (0 to 2 sec). Dots are per session mean lick fraction and grey 1292 

lines are per mouse mean lick fraction. 1293 

 1294 

 1295 

 1296 

*p<0.05 for a pFDR-corrected t-test or ranksum tests, GLM statistics are in Data S1F. 1297 

 1298 


