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Abstract

We establish a general framework using a diffusion approximation to simulate forward-
in-time state counts or frequencies for cladogenetic state-dependent speciation-
extinction (ClaSSE) models. We apply the framework to various two- and three-region
geographic-state speciation-extinction (GeoSSE) models. We show that the species
range state dynamics simulated under tree-based and diffusion-based processes are
comparable. We derive a method to infer rate parameters that are compatible with
given observed stationary state frequencies and obtain an analytical result to compute
stationary state frequencies for a given set of rate parameters. We also describe a pro-
cedure to find the time to reach the stationary frequencies of a ClaSSE model using
our diffusion-based approach, which we demonstrate using a worked example for a
two-region GeoSSE model. Finally, we discuss how the diffusion framework can be
applied to formalize relationships between evolutionary patterns and processes under
state-dependent diversification scenarios.

Keywords Evolution - Speciation - Extinction - Diffusion processes - Branching
processes - Stationary frequencies

1 Introduction

The branching events of a phylogenetic tree exhibit a pattern that stores information

about the underlying speciation and extinction processes (Nee et al. 1994). In Nee
et al. (1994), they first considered a model where both speciation and extinction are
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treated as a constant-rate birth-death process by which lineages give birth to new
lineages (speciation) at a rate A and lineages die (extinction) at a rate w. Speciation and
extinction rates, however, are expected to vary idiosyncratically among phylogenetic
lineages and over geological timescales. For example, Nee et al. (1994) also considered
another model in which speciation and extinction rates vary over time. Workers have
designed birth-death models to study a variety of intrinsic and extrinsic factors that
might shape diversification rates. Species age (Hagen et al. 2015; Alexander et al.
2016; Soewongsono et al. 2022) and inherited traits (Kontoleon 2006; Maddison et al.
2007; FitzJohn 2010, 2012; Soewongsono et al. 2023) are two types of intrinsic factors
thought to drive diversification rates, whereas environment (Condamine et al. 2013;
Quintero et al. 2023) and geography (Goldberg et al. 2011; Landis et al. 2022; Swiston
and Landis 2023) are common extrinsic factors of interest. In the end, a common goal
of these models is to infer the underlying event rates given an observed phylogenetic
pattern either through likelihood-based (Morlon et al. 2010; Stadler 2013; Louca and
Pennell 2020b) or likelihood-free approaches (Nee et al. 1994; Voznica et al. 2022;
He et al. 2023; Lambert et al. 2023; Thompson et al. 2023).

Fundamentally, birth-death processes model the random arrival times of discrete
events that generate or “build” a phylogenetic tree over time (Nee et al. 1994;
Maddison et al. 2007). As an alternative to this tree-based representation of the
process, recent work (Chevin 2016) introduced an equivalent diffusion-based rep-
resentation for a class of birth-death models with state-dependent rates, known as
state-dependent speciation-extinction (SSE) models (Maddison et al. 2007). As noted
by Chevin (2016), population genetics theory has benefited immensely from diffusion-
based approximations to population-based models of allele frequency change, yet
diffusion-based approximations of birth-death models remain underexplored in the
phylogenetics literature. Despite the widespread popularity of birth-death models
among evolutionary biologists, these models recently entered a phase of intense but
overdue scrutiny to better understand what the models can and cannot estimate reliably
when fitted to real biological datasets (Louca and Pennell 2020a; Morlon et al. 2022;
Vasconcelos et al. 2022; Dragomir et al. 2023; Kopperud et al. 2023; Legried and Ter-
horst 2023; Truman et al. 2024; Celentano et al. 2024; Tarasov and Uyeda 2024). This
has created demand for new frameworks to understand the mathematical properties of
these complex stochastic processes to guide biological research programs.

As mentioned above, applying diffusion processes in the macroevolutionary con-
text is not new, and was recently applied by Chevin (2016) to study the properties of
the BiSSE (Maddison et al. 2007) and QuaSSE (FitzJohn 2010) models. Our work
begins by extending the diffusion-based BiSSE representation of Chevin (2016) to a
general multi-state SSE model that allows for both cladogenetic and anagenetic state
changes, known as the ClaSSE model (Goldberg and Igi¢ 2012). We then show how
our formulation may be used to determine the relationship between a set of SSE rates
and their implied stationary state frequencies. Inverting this perspective, we show
that our framework correctly delimits classes of SSE rate values that yield a given
set of stationary frequencies. This establishes a many-to-one mapping of SSE rates
on to stationary frequencies. After introducing our general framework for ClaSSE
models, we apply it to a special geographical case of the ClaSSE model, known as
the GeoSSE model (Goldberg et al. 2011). We choose the GeoSSE model because
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it possesses a complex but structured relationship among its parameters and its con-
stituent events—i.e. dispersal, within-region speciation, between-region speciation,
and local extinction—that impact lineages over evolutionary time. We then validate
our theoretical results by simulating state frequency trajectories using both tree-based
and diffusion-based simulators.

The rest of the paper is organized as follows. Firstly, in Sect.2.1, we give a brief
overview of SSE models in general. In Sect.2.2 we visit relevant results in the the-
ory of stochastic process, then in Sect.2.3 we apply our framework to analyze the
ClaSSE model, and later for the GeoSSE model with arbitrary number of regions in
Sect.2.4. Following these, in Sects.2.5 and 2.6 we present a method for simulating
state dynamics under our framework and deriving rate parameters given stationary
state frequencies. In Sect.2.7, we derive a result to compute theoretical stationary
state frequencies given rate parameters. Moreover, in Sect. 2.8, we describe a proce-
dure to compute time to reach stationary frequencies in a 2-region GeoSSE system
using results derived in Sect.2.7. Furthermore, in Sect. 3.1, we show, through simu-
lation examples, that our diffusion-based framework offers a good approximation for
simulating range state dynamics when comparing to tree-based approach. In Sect. 3.2,
using an example, we show the existence of alternative rate scenarios that lead to the
same stationary state frequencies. Additionally, we apply results derived in Sect.2.7
and Sect. 2.8 to that example in Sect. 3.2. Lastly, in Sect.4, we summarize our results
and discuss promising ways to study pattern-process relationships for data generated
by SSE models, and ideas for future work using our framework.

2 Methods

This section describes the framework for how construct our diffusion approxima-
tion for a ClaSSE model to analyze the dynamics of states through time. Key results
include derivations of the transition probabilities and the infinitesimal mean and vari-
ance parameters of the diffusion equation. We describe and implement the methods
for simulating the evolution of state frequencies, and derive relevant results for the
stationary conditions, focusing on two- and three-region GeoSSE models, which are
special cases of the ClaSSE model.

2.1 Overview of State-Dependent Speciation and Extinction Models

In this section, we give a brief overview of SSE models by highlighting the key
assumptions and different events occurring along lineages. Then, we briefly re-visit
a particular SSE model type, the GeoSSE model (Goldberg et al. 2011). Then, we
guide towards how to shift from tree-based perspective to non-tree-based perspective
to derive our object of interest.

In general, SSE models are stochastic branching processes with state-dependent
birth (speciation) and death (extinction) rates. The states can either be discrete or
continuous (Maddison et al. 2007; FitzJohn 2010, 2012) and can represent various
things, ranging from phenotypic traits to geographical ranges (Goldberg et al. 2011).
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Fig. 1 From left to right: a speciation event without cladogenetic state changes, a speciation event with
cladogenetic state changes, an anagenetic state change

Some SSE models have processes that are only defined by anagenetic process and state-
dependent diversification process (Maddison et al. 2007), while others have processes
that are defined by both anagenetic and cladogenetic processes (Goldberg et al. 2011;
Goldberg and Igi¢ 2012) shown in Fig. 1. An anagenetic process is defined as a
process of trait evolution within lineages, between branching events. In the BiSSE
model (Maddison et al. 2007), this corresponds to trait transition events of going
from a discrete trait A to another discrete trait B or vice versa. These trait-dependent
transition rates are encoded in the infinitesimal rate matrix @, for which the off-
diagonal entry g;; defines the rate of transitioning from state i to j. A cladogenetic
process is defined as a process in which state transition occurs in conjunction with
a branching event (with speciation) of a lineage. SSE models with anagenetic and
cladogenetic events are referred to as ClaSSE models.

Part of this paper will consider a special case of the ClaSSE model, the GeoSSE
model (Goldberg et al. 2011). A GeoSSE model describes how species move and
evolve among a sets of discrete geographical regions, called species ranges. Species
that occur in just one region are said to be endemic to that region. Species occurring
in two or more regions are said to be widespread.

GeoSSE events can be classified as anagenetic or cladogenetic events. Anagenetic
events in GeoSSE include dispersal events and local extinction (sometimes called
extirpation) events. Dispersal events add one region to a species range. Local extinction
remove one region from a species range. A species experiences complete extinction
(i.e.itis removed from the species pool) when it goes locally extinct in the last region in
its range. Note that widespread species cannot experience complete extinction through
a single event under a GeoSSE model; their widespread ranges must first be reduced
to a single region before complete extinction is a possibility.

Cladogenetic events under GeoSSE include within-region speciation and between-
region speciation events. Each within-region speciation event creates a new species
within any single region of the parental species range. Each between-region speciation
event causes a widespread parental species and its range to split, such that all regions
in the parental range are distributed among the two new daughter lineages. Section 2.4
defines how GeoSSE assigns rates to different events.

Given a phylogeny with range state information as seen in Fig. 2, one can observe
the dynamics of range states accumulated by species though time. In Sect.2.2, we
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Fig.2 An illustration of — A
GeoSSE events on a phylogeny A AB
with range state information
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present the necessary theory that will later be used to allow us transitioning from a
tree-based process to an alternative, diffusion-based process to simulate the dynamics.

2.2 Transforming a Stochastic Process

In this section, we briefly describe the relevant results in the theory of stochastic
processes that enable us to transform one stochastic process into another stochastic
process. In the context of the ClaSSE model described in Sect.2.1, we want to define
a process that simulates the (discrete) count of species with state i through time. This
process can then be used to define a second process that simulates the (continuous)
frequency of species with state i over time.

Theorem 1 [16’s transformation formula Consider a stochastic process {Z(t)} with
infinitesimal parameters |1(z) and 02 (2). Define a new stochastic process {Y (t)} with
Y(t) = g(Z(t)) where g is a strictly monotone continuous and twice-differentiable
function. Then, the new process {Y (t)} has infinitesimal parameters given by,

o 1y(y) = pu@g' @ + 50%(2)g" (),
e i2(y) =2 [¢ @] -

Proof This theorem is also known as It6’s formula or It6’s lemma. The proof is given
in Ito (1951), Karlin and Taylor (1981). ]

Lemma 1 Given a stochastic process {N;j(t) := n;(t)} with infinitesimal mean and
variance parameters (; = E(dn; /dt) and 01.2 = var(dn; /dt), respectively. Define a
stochastic process {X (t)} derived using the following transformation.

X(1) =gN)=¢ (Zm) = hn), 0]
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where {N (1) := ), nj(t)}is a stochastic process with infinitesimal parameters defined
as follows,

W(N) = u (Zm(r))

1

=Y uni@)
= i

o%(N) = o> (Z n,-(t))
=Y o*mit) + Y oy
i i,

i
= X (mi(1)

_ 2
=D ot
i

Note here we have used the fact that o;j = 0 for i # j to account for independent
birth-death processes. The infinitesimal mean and variance parameters for {X (t)} are
given by,

X %X ,
_ N2 2
nx Zan~“’+22i: an,?o’ 2
2 Z aX\* ,
UX: a_nl Ui' (3)
i

Proof Proof of Lemma 1 is given in “Appendix 5.1”. O

2.3 Diffusion-Based Framework for State-Dependent Diversification Model

In this section, we establish the framework for simulating state dynamics for state-
dependent speciation and extinction models using diffusion processes. We show how
to implement the framework in the ClaSSE model introduced in Goldberg and Igié
(2012). Then, we relate our framework to earlier research (Chevin 2016) using a
diffusion process for the BiSSE model (Maddison et al. 2007) and, later on, for the
GeoSSE model (Goldberg et al. 2011).

Our first goal is to define the stochastic process { N; (¢)}, which describes the number
of species with state i € S attime 7, where S is the state space of the model. Then, using
the method presented in Sect. 2.2, we can obtain the stochastic process {I1; (¢)}, which
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describes the frequency of species with state i at time ¢. Using these two processes, we
then derive results that directly link model parameters with stationary state frequency
patterns that the model generates.

To proceed, we define the following probabilities:

Prob({N; — N; + 1in At}) = Prob(N;(t + At) =n; + 1| N;(t) = n;)

= IP’?'At,
Prob({N; — N; — lin At}) := P At,
Prob({N; — Nj in At}) := P; At. 4)

These probabilities correspond to gaining a new species in state i (IP’:F), losing a species
in state i (IP’;), and neither losing nor gaining a new species in state i (IP;) within an
infinitesimal time step At.

For the ClaSSE model, we can write those probabilities as follows,

+ + + +
PrAr =S+ Ef 4+ 0/,
PrAt =S +E +0;,
PiAr=1—(Pf +P7) At ®)

where

Si+ = Probability of events that lead to an increase in the number of species in state i through
state-dependent speciation and speciation in conjunction with cladogenetic state change.

E l+ = Probability of events that lead to an increase in the number of species in state i through
extinction.

Ql.+ = Probability of events that lead to an increase in the number of species in state i through
anageneticstatechange.

S: = Probability of events that lead to a decrease in the number of species in state i through

state-dependent speciation and speciation in conjunction with cladogenetic state change.

E;” = Probability of events that lead to a decrease in the number of species in state i through
extinction.

Q; = Probability of events that lead to a decrease in the number of species in state i through
anagenetic state change. (6)

Next, we define the infinitesimal mean pu; = E (dN;/dt) and variance al.z =

var (dNj/dt) for the stochastic process {N;(t) : t > 0}.

Lemma 2 The infinitesimal mean w; and variance Uiz for the stochastic process
{N;(t) : t > 0} is given by

wi =B —P;, (7)
o} =PF +P;. ®)
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Proof Proof of Lemma is given in “Appendix 5.2”. O
Next, we define a stochastic process {I1;(¢) : t > 0} where

N; N;

=—=———=—.
ZjeSNj N

IT; () denotes the frequency of species being in state i at time t. We define the
infinitesimal mean and variance for the process in Lemma 3.

Lemma 3 The infinitesimal mean un, and variance 0121,- for the stochastic process
{IT; (t) : t > 0} is given by

1 o? I1; of
wr; N(Mi_ﬁl>+ﬁlz<_ﬂj+ﬁj>, ©)

jes
2
2 _ (0 2 ‘ IT1; 2
ok, = (ﬁ) (1 —2I0;) + <W> Zaj. (10)
jes
Proof Proof of Lemma 3 is given in “Appendix 5.3”. O

From Egs. (9)-(10), it is clear that the diffusion parameters (i.e. I, Ul%,-) are

undefined under a total extinction scenario of a tree (i.e. where N = 0 appears in
multiple denominators).

To demonstrate the generality of the framework, we show the BiSSE model (Mad-
dison et al. 2007) (and similarly for the MuSSE model (FitzJohn 2012)) can be
represented as a diffusion process as follows. Under the BiSSE model, species possess
binary traits with values in the state space S = {1, 2}. BiSSE is a special case of the
ClaSSE model that, while it allows anagenetic trait transition and extinction events, its
speciation events do not cause cladogenetic trait changes. That is, daughter lineages
identically inherit the parent lineage state following speciation. Readers can refer to
the supplementary material from Goldberg and Igi¢ (2012) for its derivation. For the
BiSSE model, we have

ST =MNAL Ef =0, O = quNaAL,
Sy =0, E; = uiNi1Ar, Oy =quaNiAt,

where A1 and 1 (b1 and d; in Chevin (2016)) are speciation and extinction rates for
trait 1, respectively. g12 and g2 (712 and 121 in Chevin (2016)) are anagenetic trait
transition from 1 to 2 and from 2 to 1, respectively. Similarly, following the definitions
in Eq. (6), we also have

Sy = NAt, EX =0, QF = qiaNiAt,
Sy, =0, E; = uaNa2At, O, = g1 N2At,
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Using Eq. (7) and Eq. (8) we have the infinitesimal mean and variance of Nj,

1 = (A1 — u1 — q12) N1 + q21 N2, (11)
of = (M 4 i1 4 q12) N1 + q21 N, (12)

and similarly for N, with indices changed accordingly. These are the same 11 and 012
as described in Eq. (2) in Chevin (2016). m]

2.4 Diffusion-Based Framework for the GeoSSE Model

In this section, we use the framework established in Sect.2.3 for general ClaSSE
models to the GeoSSE model. The procedure we apply here is also compatible with
any model from the ClaSSE family. For the GeoSSE model, unlike the BiSSE model
described in Sect. 2.3, some speciation events also cause cladogenetic state changes.
Thus, following the notation used in the previous section we have,

St =w"+B"
Ef =Ef
of =D +Ef
ST =W +B;
E- =E;
Q;, =D; +E;,

where

Wl.+ = Probability of events that lead to an increase in the number of species in range state i
through within-region speciation for either widespread or endemic species.

Bl.Jr = Probability of events that lead to an increase in the number of species in range state i
through between-region speciation for widespread species.

Et = Probability of events that lead to an increase in the number of species in range state i
through extinction for either widespread species (local extinction) or endemic species
(species extinction).

D = Probability of events that lead to an increase in the number of species in range state i
through range dispersal event for endemic species.

W. = Probability of events that lead to a decrease in the number of species in range state i
through within-region speciation for either widespread or endemic species.

B~ = Probability of events that lead to a decrease in the number of pecies in range state i
through between-region speciation for widespread species.

E;” = Probability of events that lead to a decrease in the number of species in range state i

through extinction for either widespread species (local extinction) or endemic species

(species extinction).
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D;” = Probability of events that lead to a decrease in the number of species in range state i

through range dispersal event for endemic species.

Next, consider an n-region GeoSSE model where n € 7, we define the following
state space and variable,

R = state space for regions e.g., R = {A, B}.
S = state space for species ranges e.g., S = {{A}, {B}, {A, B}}
N; = number of species with range statei wherei € S.

Then, we define the following rate parameters,

dre¢ = per lineage dispersal rate of any species in regionkto colonize region?.
we = per lineage within-region speciation rate of any species in region £.

b’j = per lineage between-region speciation rate of a widespread species into.

. . . . . i ]
two daughter species with rangesiandj, respectively. Note that b V= b;.

ey = local extinction rate of any species in region £.

Thus, both wy and b; determine state-dependent speciation rate, e, determines state-
dependent extinction rate, and dy, and (among widespread species) e; determine the
anagenetic state transition rate.

We define a stochastic process {N;(¢)} with infinitesimal mean w; = E(dN;/dt)

and variance o> = var(dN; /dt). Here, N; (1) represents the number of species with

L
range state i at time ¢. The infinitesimal mean p; and variance ol.z follow directly from
Lemma 2. We derive the transition probabilities described in Eq. (4) in the context of
the GeoSSE model, as shown in Egs. (13)—(15).

Each of these probabilities describe possible events in a GeoSSE model occurring
within an infinitesimal time step that result in gaining a new species with range state i
(IP’;"), losing a species with range state i (IP;"), and neither losing nor gaining a species
with range state i (IP;).

PrAar= w4+ Df + Bf + EF

ZZNngAl‘-f-ZZNi\{g}dkgAt-f-Zij;\iAl+ Z Z Nje,At

jeStej kei Lei JES JES Lej\i
(0)=i Lk iCj [J\il=1
W Df B Et
(13)
PrAt=W;, +D; +B; +E;
1 .
— . _N-b .
=0 + > NtdeAf'FZ2N,bi\jAt+ZN,EgAt (14)
w-  kei LeR\{k} J€S feR
! li|<R jcCi Lei
N ———’
D B~ E]

1 1
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(a) (b)

- ,
B(A,B]/’ ’
¢ Egpys vV ONEgm N
’ ’ i R \

Fig.3 Graphical illustrations of probabilities of events following Eq. (13) shown in (a), and Eq. (14) shown
in (b) for a 2-region GeoSSE system with state space S = {{A}, {B}, {A, B}}. N; represents the number
of species with range state i € S. An incoming arrow into N; compartment means there is an increase in
species count with range state i and an outgoing arrow from N; means there is a decrease in species count
with range state i. All the events and arrows are color-coded accordingly (Color figure online)

PiAr = 1— (Pj + ]P;) At. (15)

For clarity, we provide the biogeographic interpretation on how each term in
Egs. 13-15 is derived and a graphical illustration of the events in Fig. 3.

1. Wi"'. To gain a new species with range state i through a within-region speciation
event, the new species range i must contain only region £ (¢ € i and |i| = 1).
This endemic species can undergo a speciation event with probability wy N;. Any
species with range state j that also occupies region £ can undergo a within-region
speciation event with probability wg > jes LicjNj. The total probability of this
event occurring within At is,

ZZNngAt.

jeSs tej
{e}=i

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

W{: = (N{A B} + N{A}) wa At
= (N{a,B} + Nsy) wp At
W{AB =0.

2. le". To gain a new species with range state i through a dispersal event, the species
adds the new region £ to its ancestral range. Species are always widespread imme-
diately following dispersal. The total probability of this event occurring within At
is,
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Z Z Ni\eydre At.

kei Lei
{#k

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

+
D{A} =0
+
D{B} =0
D{TA,B} = N(pydpa At + NiaydapAt.

3. Bi'". To gain a new species with range state i through a between-region speciation
event, the new species can be either endemic or widespread |i| > 0O that originated
from a widespread ancestral species with larger range state j (i C j). In general,
we have no information of whether the new species occurs in left or right lineage
following a speciation event, so we do not consider the orientation. The total
probability of this event occurring within At is,

ZN./bi‘\iAt'

Jes

icj
As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

A
B{t‘} = Na,B)bg At
B{J% —N{Ayg}bgAl‘

| =
+
Bfy g =0.

4. E t+ . To gain a new species with range state i through a local extinction event, the
ancestral species must have a larger range state j with size that differs by 1 from
the new species’ range state i such that |j\i| = 1. The total probability of this
event occurring within At is,

Z Z Nj@gAt.
jes tej\i
[\il=1
As an example, in a 2-region GeoSSE system with state space § =
{{A}, {B}, {A, B}} we have,
E{t‘} = N{A’B}EBAI
E{JE;} = Nia,BjeaAt
+
E{A’B} =0.
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5. W[ . The probability of losing a either endemic or widespread species with range
state i through a within-region speciation event is 0. This is because the event will
only increase the local abundance in a region and causes the widespread abundance
to remain unchanged.

6. D; . To lose a species with range state i through a dispersal event, the species
must disperse to a new region. The species count remains unchanged if the
species already occupies all regions (|i| = |R|). The total probability of this event
occurring within At is,

Z Z NidyeAt.

kei LeR\{k}
lil<R

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

D{_A} = Niaydap At
D{_B} = N(pydpa At
D{iA’B} =0.

7. B} .Tolose aspecies with range state i through a between-region speciation event,
the species must be widespread and undergo a speciation event that gives rise to
a new species in state j with smaller range state size (|j| < |i]). The factor of
1/2 corrects for double-counting the new species with range j being either the left
daughter or right daughter lineage. The total probability of this event occurring
within At is,

Ly
> S Nibyy ;AL
jes
1j1<lil

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

By =0
B =0

_ 1 A
[A.B) = EN{A’B} (bB + bf) At.

8. E[ . To lose a species with range state i through a local extinction event, a species
must undergo an extinction event in one of its regions. If the species is endemic,
this event leads to total extinction of the species. The total probability of this event

@ Springer



101 Page 14 of 46 A. C. Soewongsono, M. J. Landis

occurring within At is,

ZN,-egAt.

leR
Lei

As an example, in a 2-region GeoSSE system with state space § =
{{A}, {B}, {A, B}} we have,

E{_A} = Niajea At
E{};} = N(pjep At
E{_A,B} = Nia,B) (ea +ep) At.

The next section uses Eqs. 13—15 to define the stochastic process {I1;(¢) : t > 0}
that models the frequency of species in range state i at time t. The infinitesimal mean
i, and variance olgli follow directly from Lemma 3.

2.5 Comparison on Diffusion-Based and Tree-Based Models Using Simulation

In this section we show that our diffusion-based approach correctly models the tempo-
ral behaviour of range state frequencies in a GeoSSE model. To validate, we compare
our results with a tree-based approach that explicitly simulates phylogenetic trees
under the same GeoSSE parameter values using the MASTER package (Vaughan and
Drummond 2013) implemented in BEAST2 (Bouckaert et al. 2014). When simulat-
ing given a large number of species initially, N(0) >> 0, both diffusion-based and
MASTER-based simulations are conditioned only for the process to run until a specific
elapsed time 7. Later in “Appendix 5.6”, when we simulate using both approaches
starting with a single species in random state, N(0) = 1, we condition the process
under both elapsed time and survival until the present. Details for setting up reaction
equations for the MASTER simulation can be found in “Appendix 5.5”.

For simulations under a diffusion, we generate sample paths on [0, T'], where T is
the simulation running time. Each simulation yields a time-series of state frequencies
for the provided SSE rate values. Simulations were generated as follows:

1. Given the following Itd stochastic differential equation (SDE) and the initial
number of species in each range state, N;(0), Vi € S,

dN; = u;(t)dt + o;(t)dW;, (16)

where dW; is a Wiener process, we draw a sample path by using the following
approximation,

N;(t + A1) = Ni(t) + i (1) At + 6; (1) AtU;, (17)
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where ~/ AtU; ~ ~/AtN(0, 1) is a (discretized) standard Wiener process, and
wui(t) and o;(t) are computed using Eqgs (7)—(8), respectively.

Given N;(t + At) for each i € S from step 1, we compute the total number of
species at t + At € [0, T']

N(t + At) = ZNl-(t + Ab).
ieS

. Next, using N;(¢) and N (¢) from steps 1-2, we compute the infinitesimal mean,

i, (1), and infinitesimal variance, oy, (¢) using Egs. (9)—(10), respectively. Given

w, (t), om, (¢), and the following Itd6 SDE with the initial frequency of species of

range state i, I1; (0) = _11\3((8; ,

dni = W11, (Z)d[ +0Hi (Z)th, (18)

where dW; is a Wiener process, we draw a sample path by using the following
approximation,

I (t + A1) = T1;(1) + un, (1) At + oy, 1)V At U;, (19)

where v/ AtU; ~ ~/AtN(0, 1) is a (discretized) standard Wiener process.

In Sect.3.1, we show that the dynamic of the range state frequencies can be well-
approximated using the diffusion-based framework. We provide different examples
through numerical simulations under a variety of GeoSSE scenarios to visualize this
result. Specifically, we apply the following procedure,

1.

We consider a 3-region GeoSSE model, then we simulate range state dynam-
ics using tree-based approach (via the MASTER package in BEAST2) and the
diffusion-based approach over 1000 replicates on [0, 10] time interval with 1000
time steps. Note that if one simulates over a longer time interval, then one needs to
choose larger time steps to reduce the chance that multiple events occur within Az
for the diffusion-based approach. For diffusion-based approach, at each time step,
we assign a zero value to any state with a count less than zero since the number
of species in any range states cannot be negative. This is reasonable because if
N;(t) = 0, then some events are not permitted such as a local extinction. Note that
although some N;’s might be equal to 0, it is very unlikely for the whole clade to
become extinct, i.e., N(¢) = 0, given a relatively large clade size at the beginning
of each process (Fig. 4) and value of each parameter we pick for the simulations
(Figs. 5, 6, 7, 8). We consider the following scenarios for the GeoSSE model,

Example 1 GeoSSE model with only within-region speciation and between-region
speciation events (Fig. 5).

Example 2 GeoSSE model with only within-region speciation and range dispersal
events (Fig. 6).
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time

R e e RIS S PR o +H-t-F-Ftr=--NO)»0,t=0

Fig. 4 For each diffusion-based and MASTER-based simulation, we assume that we start each N; ()
simulation, given a relatively large clade size at the beginning, N(0) >> 0

Example 3 GeoSSE model with only within-region speciation and local extinction
events (Fig. 7).

Example 4 GeoSSE model with all the events included (Fig. 8).

2. We visualize the trajectory of mean state counts for each range state from both
diffusion and tree-based approaches. For each simulation, we start the forward-
in-time simulation given relatively large clade size for diffusion-based approach
to accurately predict the dynamics given by tree-based approach from MASTER
simulations. We also visualize stacked bar charts of expected state frequencies for
both approaches. To compute the state frequencies under the tree-based approach
across replicates, we use the following analytical formula

Ni (1)

M) = ——’t .
R S ATy

We simulate frequency trajectories under the diffusion-based approach using
Eq. (19). Also for diffusion-based approach, we normalize IT; () at each time step
for each i € §. Thus, keeping IT; () < 1 at any time.
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Fig. 5 Top & middle panels: the trajectories of average count of range states for endemic species (b—c)
and widespread species (d—g) over [0, 10] time interval and over 1000 simulations runs for the three-
region GeoSSE model as described in Example 1 each simulated under both diffusion-based process (red
line) and tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates
simulated under diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies
over time using diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the
process with N (0) = 40 and the following initial state frequencies: TI{4}(0) = I1{5,(0) = [{¢}(0) =
[a,8)(0) = Mja,c)(0) = My ,c}0) = M4 B,c)0) = % At t = 10, the mean frequencies for
each range state from both diffusion-based and tree-based simulations are as follows: lzll{lzj;f Uston — 0.29,

=tree _ . mdiffusion _ Stree _ . qdiffusion _ Stree _ . mdiffusion _
H{A} = 0.29; H[B] d.f—f 0..29, H{B} = 0.29; H[C} —d%?Q,.H{C} = 0.28; H{A,B] =

=1 _ . Fdiffusion _ =t _ . Fdiffusion _ =t _ 3
0.04'1, H{X‘;}} = 0.04; H{A,C} = 0.04, l'[{f;%} = 0.04; H{B,C} = 0.04, l'[(;f:ec} = 0.05;
1:1?;{ ’;’fg}on = 0.01, I:Iiff’eb,y ¢} = 0.01. Simulations are conducted using the following parameter values:
wa = wg = we = 0.03,b4 = 0.08,b2 = 0.10,65 = 0.06, b4, = 0.04,b8. = 012,05, =
0.06, ep =eép =ec = 0, dAB = dBA = dAC = ch = dBC = dCB =0 (Color ﬁgure online)
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Fig. 6 Top & middle panels: the trajectories of average count of range states for endemic species (a—c)
and widespread species (d—g) over [0, 10] time interval and over 1000 simulations runs for the three-region
GeoSSE model as described in Example 2 simulated under both diffusion-based process (red line) and tree-
based process (black line). The gray trajectories show the dynamics across 1000 replicates simulated under
diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies over time using
diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the process with
N (0) = 40 and the following initial state frequencies: I1j4}(0) = {5} (0) = I{c}(0) = Ij4, 5 (0) =
Iya,cy(0) = B, c}(0) = %, Iia,B,c)(0) = 0. At = 10, the mean frequencies for each range state

from both diffusion-based and tree-based simulations are as follows: l:[?zf usion _ 0.14, lzlt{xf = 0.15;

=diffusion _ riree _ . [diffusion _ riree _ . [diffusion _ rqiree  _
Mg d.ff_'0.14, gy = 0.14; My d'}; 0..13, ey = 0.13; 4 By ;.;)f.OS', %, =

. qmdiffusion _ =t _ . [/diffusion _ =t _ . mdiffusion _
(1.09, iyl = 0.11, H{x"’c) = 0.11; M5 ¢ = 0.13, H{;{%} =013 I g ey =027,
H?;f,"};’ = 0.25. Simulations are conducted using the following parameter values: wy = wp = wc =
0.03,bg = bé = bg = bgc = bEC = bgB =0,e4 =ep =ec =0,dyp =dps =0.03,dsc =
dca =0.04,dgc = dcp = 0.05 (Color figure online)
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Fig. 7 Top & middle panels: the trajectories of average count of range states for endemic species (a—c)
and widespread species (d—g) over [0, 10] time interval and over 1000 simulations runs for the three-
region GeoSSE model as described in Example 3 simulated under both diffusion-based process (red
line) and tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates
simulated under diffusion-based process. Bottom panel: stacked bar chart showing the state frequen-
cies over time using diffusion-based approach (h) and tree-based approach (i). In both approaches, we
start the process with N(0) = 40 and the following initial state frequencies: I1{4}(0) = I1;p}(0) =
Micy(0) = T{4,8)(0) = T4, c}(0) = Iip,c}(0) = T4, ,c)0) = %, the mean frequencies for
each range state from both diffusion-based and tree-based simulations are as follows: H?X}cf usion =0.26,

t diffusion t diffusion t diffusion __
H{re}e = 0.26; H{B} = 0.23, H{g}e = 0.23; H{C} = 0.21, H{rce}e = 0.21; H{A B) =
diffusion diffusion )

0.09, MG, = 0.09; e\ = 0.08, M{f%) = 0.08 My ¢ = 0.07, O{%, = 0.07;

ﬁ?f{ {;'fg}on = 0.06, H?AMB = = 0.06. Simulations are conducted using the following parameter values:
wp = wp =we = 0.03,bj =bA =bE8 = b =08 =55, =0.e4 =001,e5 =002, ¢c =
0.025,dpp =dpa =dac =dca = dpc = dcp = 0 (Color figure online)
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Fig. 8 Top & middle panels: the trajectories of average count of range states for endemic species (a—c)
and widespread species (d—g) over [0, 10] time interval and over 1000 simulations runs for the three-region
GeoSSE model as described in Example 4 simulated under the diffusion-based process (red line) and
tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates simulated
under diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies over time
using diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the process
with N(0) = 40 and the following initial state frequencies: 14,1 (0) = Ia4,¢}(0) = M }(0) =
A, B,cy(0) = l and I1{4(0) = I{py(0) = Mcy(0) = 0. At = 10, the mean frequencies for
each range state from both diffusion-based and tree-based simulations are as follows: l'Idlf fusion =0.33,

tree _ diffusion _ tree _ diffusion _ tree _ diffusion __
H{A} 0.33; H{B} =0.21, H{B} 0.21; l'[{ ) = 0.25, H{C} 0.25; l'I{ B} =
0.06, [I7ee, = 0.06; TI5 141" = 0.06, fiee. = 0.06; 514" = 0.05, fifee., = 0.05;

{A.B} — {A.C} {a.cy — {B.C} {B.C}

I:I‘{i;‘f J;ug}on = 0.03, HZ‘“B = 0.03. Simulations are conducted using the following parameter values:

wy =0.09, wg = 0.06, we = 0.07, by = b2 =bE =bj . =bB . =5, =0.04,e4 =0.002, e5 =
0.003,ec = 0.001,dgp = dpa = 0.006, dAC =dca = 0.003,dgc = dcp = 0.001 (Color figure
online)
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3. We find the 95% confidence intervals of expected state counts at the end time
for both diffusion and tree-based simulations for each GeoSSE scenario described
above. Then, we apply the Welch’s unequal variances t-test (Welch 1947) for
testing the following hypothesis

Hy : (LN, tree = AN diffusion
H] : ITLN,-,tree 7é llN,-,diffusion»

where [ipy; tree and [Ly; diffusion are population means of state counts for range i at
the end time from tree and diffusion-based approaches, respectively.

2. We also conduct the F test for testing the following hypothesis

L =2 _ =2
Hy : ON; tree — ON;,diffusion

=2 =2
Hl . aN;,tree 7é N; ,diffusion>

- 2 - 2 . . .
where ON; tree and 6. gitrusion are pgpulatlon variances of state cqunts for range i
at the end time from tree and diffusion-based approaches, respectively.

5. We compute ratio of two sample variances for range state i as

s2
i,diffusion
Fivar = — 5>
si,tree

where si% diffusion and siz’tree are sample variances from diffusion- and tree-based
simulations for range state i, respectively. Then, we construct the 95% confidence
interval for r; var.

If the diffusion-based and tree-based simulation methods are statistically indis-
tinguishable, we should fail to reject all null hypotheses and that the confidence
intervals of the ratios of variances include the value 1 at the appropriate signifi-
cance levels.

While all the diffusion-based simulations presented in the main text assume that we
always start with a relatively large clade size, this is not how phylogenetic trees are
normally simulated. Instead, most simulations generate the entire clade, beginning
with one stem or two sister lineages to represent the origin of the process. However,
the diffusion approximation assumes the number of species is large. Therefore, to
adapt our diffusion-based model for clade-generation scenarios where the initial
number of species is small, we adapted our diffusion-based simulation method
to start the process with a single species in a random state (see “Appendix 5.6”).
We show that the difference between diffusion-based and tree-based simulations
is reduced after applying the correction.
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2.6 Deriving Rate Parameters that Lead to Stationary State Frequencies When N is

Large

In this section, we derive conditions for the rate parameters such that there is no change
in state frequency, I1;, over time for a glven arange state i € S, assuming large N.

That is, we derive the condltlons when ¢ d =0,Vi e S.

Knowing that IT; =

, we re-write Eqgs. (13)—(14) as follows,

EELDI) SIS 3) SLANFANS SLITNEED SD LI
jes tej kei Lei jes jesS Lej\i
{e}=i tFk icj [j\il=1
Wit b} B EF
= NPF (20)
BN | 04T 3 Mkt Y 3T+ X M
W‘ kei LER\{k} ]€S LeR
i li|<R jCi Lei
\q}\/—/
Dy BT Ei
= NP~ 21)
Then, Eqgs. (7)—(8) can be re-written as follows

R Dt _ P
wio=N (B -B7), 22)
of =N (Bf +B7). (23)

Given Egs. (22)—(23), as N — 00, Egs. (9)—(10) become

fin; = lim p,

- _
=P -P7, (24)

~2 : 2

=1

=0. (25)

Moreover, we no longer have the stochastic component from the SDE given in Eq. (18).
Instead, we solve the following ordinary differential equation

dll; = ﬂnidl
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dIl; . 26)
ar e
Given stationary frequency of each range state, I1;, where Y I1; = 1, the rate

parameters must satisfy
A _ D+ _ N —
phn; =0 < P =P;.

Furthermore, we assume all rate parameters must be positive, as all modeled events
have some non-zero probability of occurring. That is,

w; >0,e; >0,d;; >0,Vi,j e R.and b} >0,Vs,t €S

Next, we define total rates of all events occurring in each range state i, ®;or47.i, as
follows

Diotal,i = (rWi+ + rD[_+ + rBiJr + rEl_+> — (rle -I-FB; +1’Etﬁ) s

where rWi+, rD,-+’ rB,-+’ rE;” rDi— , rBi— , rE,-_ consist of sums of rates across all adjacent

states that correspond to the events W[.+, D;’, BiJr , E,+ . D, B, E, respectively.
D, 0141,i can also be thought as a flux for range state i. That is, it is a difference between
total incoming rates and outgoing rates. For example, in a two-region GeoSSE model,
we can define ®;447,{a) as follows,

Drotal, Ay = (ZwA +0+b§ +e3> — (dap +0+eyn),

where we have ry+ = 2wy because within-region speciation rate w4 is acting on
A

both endemic species with state {A} and widespread species with state {A, B}.

Lemma4 Given a GeoSSE with state space S, set of stationary frequencies, (I;,Vi €
S}, and initial state frequencies I1; (0), the rate parameters satisfy the following system
of equations

Ar A
P =P,
=<Dtotal,j, ifni

Droral,i > Proral,j» if Tl
< thotal,ja if 1;

Y MmO =1

ieS

w; >0,¢; >0,d;; >0,b) >0,I1;(0) >0, Vi, j € RandVs,t € S. (27)

AVl
:|>\;> 3

~.

~.

In Sect.3.2, we demonstrate the application of Lemma 4 for a 2-region GeoSSE
model.

@ Springer



101 Page 24 of 46 A. C. Soewongsono, M. J. Landis

2.7 Deriving Stationary State Frequencies Given Rate Parameters in a GeoSSE
Model

In this section, we use our framework to find the stationary state frequencies that
result from a given set of rate parameters. This result links the configuration of a data-
generating process to its expected pattern, which complements results from Sect. 2.6
that link expected patterns to data-generating processes. We present the result in
Lemma 5 for the case of a 2-region GeoSSE model for simplicity.

Lemma5 Consider a 2-region GeoSSE model with state space S =
{{A}, {B}, {A, B}}. Given the rate parameters from the model and initial state fre-
quencies, I1{4y(0) = 1'[9\, ITipy(0) = H%, IMia,5(0) = H%B, the general solution to

Eq. (26) is given by,
ITiay(2)
H =
[H{B}(f)]
= CivieM 4+ Covre™? + K, (28)

and Tjp py(t) = 1 — T1{a)(t) — Iy (2), provided that T1j4y(¢) 4+ gy () < 1.
Furthermore, the stationary frequencies are given by

Mgy = ———, 29
) denom 4 29
1:[3 - es+dap +b‘g+63 ( num 4 ) 30)
5 wa ~|—bg +ep denomy )’
a8 = 1 =[x — Ty, (3D

where

numy = (wA + b+ eB) (ep +dpa — wp),
denomy = (eA +dap + by + eB) (eB +dpa + b+ €A>
—<w3+b§+€A) (wA +bg+63>,
R=VRi+R,
R =4 (bg‘)2 +4 (bhea+bijes + bjwa + bjws)
+4 (eaep +eaws +epwp + wawp),

Ry = —2dapdpa + (dig +d§A) ,

1
3 <—2bg —dap —dpa — 2es — 2ep — R) ,

1
Ay = 5(—2[)2 —dap —dpa — 2eqx —263+R>,

Al
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1 _
v = 2(b4+eat+ws) ( ldAB +dba R)i| )
S
vy = 2(bp+eatws) ( ldAB +dat R):| ,
K= IF{A}} ,
Mgy
Ci = (M9 — K1) (bg +ea + wp) B (% — K2) (dap — dpa — R)
' R 2R ’
(K1 —T119) (bt + ea +wp) 0 dap —dpa — R
o (g~ 1) (14 a0 = dna = ),
2 R + B 2 ( + R )
Proof Proof of Lemma 5 is given in “Appendix 5.4”. O

We note that this strategy can be generalized to accommodate arbitrary mod-
els within the ClaSSE family. Specifically, as seen in the proof of Lemma 5 in
“Appendix 5.4, for a ClaSSE model with |S] states, one only needs to find eigen-
values (either numerically or analytically) and eigenvectors that correspond to a
(JSI — 1) x (|S] — 1) matrix to obtain a general solution. The resulting solution
for the stationary frequencies would then reflect the parameterization of the particular
ClaSSE model variant being studied. Note that this approach of solving a matrix with
one dimension lower than the state space only holds providing that the sum of the
remaining frequencies is less than or equal to 1. This assumption, however, can be
ignored if one is to solve the full system by finding eigenvalues and eigenvectors that
correspond to a | S| x | S| matrix, and normalize the resulting stationary frequencies.

In Sect. 3.2, we use Lemma 5 using rates obtained from Lemma 4 to verify that the
system, indeed, converges to the true stationary frequencies that we observe through
simulations.

2.8 Deriving Time to Reach Stationary State Frequencies in a GeoSSE Model

In this section, we describe a method for deriving time to reach stationary state fre-
quencies in a 2-region GeoSSE model. Note that we have assumed a relatively large
clade size at the start of the process for simulating IT; (¢). Thus, the following is time
to stationary frequencies since some relatively large clade size (Fig. 4).

From Lemma 5 in Sect.2.7, we have derived an analytical expression to compute
state frequencies over time, given large N. In order to find the time to stationarity for
each range state, we define the following procedure, as follows

1. Given the initial state frequencies, o, H%, l'[% - and that the system runs from

[0, T'], we find the mixing time ti* forall i € S such that,
M) — T (5 - ar)| <. ()

1
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for some At > 0 and € > 0. ¢" is the stationary time for the range state i, given
the € value.

2. We visually check that ¢ derived from the theory reconciles with what we observe
from simulations.

We apply this procedure to an example in Sect.3.2.

3 Results

3.1 Diffusion-Based Approach is a Good Approximation to Tree-Based Approach
for Describing State Dynamics

In this section, we visualize the range state dynamics using tree-based and diffusion-
based approaches under several GeoSSE scenarios described in Sect.2.5 (Figs. 5, 6,
7, 8). In all these scenarios, we show that the null hypothesis that the average counts
of the ranges states at the end of the simulation time between these approaches are
equal cannot be rejected (Table 1). This shows that the diffusion-based approach is a
good approximation for means to the tree-based approach.

In most cases, we observe that data (state counts and frequencies) simulated under
diffusion-based approach relatively have higher variances compared to data simulated
under tree-based approach (Table 1). The 95% confidence interval for the ratio of two
variances, shown in Table 1, gives an interval estimate on how much variation one
would expect to get for generating state patterns under the diffusion process. Moreover,
assuming that data simulated using the MASTER package (Vaughan and Drummond
2013) represent the true distribution of range state counts, this observation implies that
diffusion process is not a good approximation for the second moment of the sampled
state state frequencies. While this is not ideal, this is to be expected since diffusion
is an approximation method to a generative model. Therefore, we should not expect
state counts from both approaches to be drawn from the same distribution.

3.2 Multiple Rate Scenarios Lead to the Same Stationary State Frequencies

We apply the theoretical results from Sects.2.6-2.8 for a 2-region GeoSSE model.
The different sets of relationships between rate parameters given stationary frequen-
cies in Example 5 are derived using Mathematica (Wolfram Research Inc 2023). In
this example, we show that there exist alternative rate scenarios leading to the same
stationary frequencies. Furthermore, using Lemma 5, we confirm that the stationary
frequencies observed from simulations converge to the theoretical frequencies given
the rate parameters, which are derived using Lemma 4. Using the procedure described
in Sect.2.8, we compute time to stationary frequencies in Example 5 for each rate
scenario and different sets of initial frequencies.

Example5 We consider a 2-region GeoSSE model with range state space S =
{{A}, {B}, {A, B}}. We find a set of rate parameters and initial state frequencies that
give the following stationary range state frequencies,
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Table 1 The sample mean count for each range state at the end of simulation time, N; .4, computed under tree-based and diffusion-based simulations across different
GeoSSE scenarios described in Sect. 2.5

Range state N,-,em] Lower bound Upper bound Pmean Pvar 95% Cl r; yar
Tree Diffusion Tree Diffusion Tree Diffusion

Example 1: GeoSSE with within-region and between-region speciation events

{A} 40.835 40.897 40.517 40.156 41.153 41.638 0.880 <« 0.001 [4.794, 6.144]
{B} 40.240 40.544 39.906 39.842 40.574 41.246 0.444 <« 0.001 [3.908, 5.008]
{C} 39.875 40.234 39.555 39.518 40.195 40.950 0.370 <« 0.001 [4.409, 5.651]
{A, B} 5.980 5.981 5.858 5.837 6.102 6.125 0.992 <« 0.001 [1.219, 1.562]
{A, C} 6.239 6.305 6.107 6.128 6.371 6.481 0.558 <« 0.001 [1.587,2.033]
{B,C} 6.506 6.625 6.391 6.494 6.621 6.756 0.182 <« 0.001 [1.139, 1.459]
{A, B, C} 1.185 1.112 1.121 1.048 1.25 1.176 0.115 0.782 [0.899, 1.152]
Example 2: GeoSSE with within-region speciation and dispersal events

{A} 14.689 14.642 14.450 14.282 14.928 15.002 0.831 « 0.001 [2.002, 2.566]
{B} 13.960 13.993 13.728 13.637 14.192 14.349 0.879 <« 0.001 [2.076,2.661]
{C} 13.339 13.387 13.109 13.035 13.568 13.739 0.823 <« 0.001 [2.082,2.669]
{A, B} 8.870 8.740 8.707 8.512 9.033 8.968 0.363 <« 0.001 [1.732,2.220]
{A, C} 11.107 10.870 10.930 10.596 11.284 11.144 0.155 <« 0.001 [2.113,2.709]
{B,C} 13.175 13.172 12.985 12.853 13.365 13.491 0.987 <« 0.001 [2.482,3.182]
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Table 1 continued

Range state Ni end Lower bound Upper bound Pmean Puar 95% Cl r; yar
Tree Diffusion Tree Diffusion Tree Diffusion

{A, B, C} 24.427 24.790 24.189 24.172 24.665 25.408 0.283 < 0.001 [5.968, 7.649]
Example 3: GeoSSE with within-region speciation and local extinction events

{A} 25.672 25.950 25.385 25.550 25.959 26.350 0.269 <« 0.001 [1.714,2.196]
{B} 22.540 22.630 22.266 22.262 22.814 22.998 0.701 <« 0.001 [1.592,2.040]
{C} 20.804 21.179 20.536 20.825 21.072 21.533 0.098 <« 0.001 [1.547,1.983]
{A, B} 8.960 9.105 8.843 8.973 9.077 9.237 0.108 < 0.001 [1.111, 1.425]
{A, C} 8.467 8.370 8.355 8.244 8.579 8.496 0.260 < 0.001 [1.109, 1.421]
{B, C} 7.007 7.024 6.902 6.911 7.112 7.137 0.829 0.027 [1.016, 1.302]
{A, B, C} 5.805 5.811 5.703 5.711 5.907 5.911 0.934 0.469 [0.844,1.081]
Example 4: GeoSSE with full events

{A} 53.067 53.494 52.420 52.235 53.714 54.753 0.555 <« 0.001 [3.347, 4.290]
{B} 33.919 34.425 33.472 33.575 34.366 35.275 0.302 < 0.001 [3.193, 4.092]
{C} 39.981 41.044 39.476 40.060 40.486 42.028 0.060 <« 0.001 [3.353,4.297]
{A, B} 10.096 10.193 9.942 9.968 10.250 10.418 0.486 <« 0.001 [1.880, 2.409]
{A, C} 9.229 9.224 9.091 9.028 9.367 9.420 0.967 < 0.001 [1.772,2.271]
{B, C} 8.309 8.138 8.181 7.969 8.437 8.307 0.115 <« 0.001 [1.526, 1.956]
{A, B,C} 3.897 3.890 3.789 3.767 4.005 4.013 0.933 < 0.001 [1.149, 1.472]

The “Lower bound" and “Upper bound" represent the 95% confidence interval of the average count for each range state using diffusion and tree based approaches. The
“95% Cl r; yqr" correspond to the 95% confidence interval of the ratio of two sample variances from diffusion and tree based approaches for range state i. pyqr and pmean
correspond to p value from the F test and the Welch’s unequal variances t-test, respectively
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o — 1 flien — 1 f 1
{A}_3’ {B}_3’ {A,B}_3'
That is, by Eq. (27), we have,
2w+ b4 1(d +ea)
—w = —ep = — e
WA+ 3bp +3ep = 3(dap A
2ws+ Sbf + er = S(dpa+en)
3wB 378 3€A—3 BA 1+ €B
1 L 4
§(dAB +dpa) = g(bB +ea+ep)
2wz +bg+63 —ep —dap =2wp +b£+eA—eB —dpa
Qwp + by +es—ep—dpa =dap +dpa — by — (ea +ep)
> " M1;(0) = 1, T{4)(0), T(5)(0), T(a,5(0) > 0
ieS
wa, wp, ea, e, dap,dpa, by > 0. (33)
We found a set of solutions to Eq. (33). That is,
1 A
wa =5 (—2173 +2dsp +dpa — 263)
1
wp =7 (—dap + 2ep)
eq = —bg +dap +dpa —ep
0<bg <dsp —ep, ep <dap < 2ep
dBA > 0, ep > 0. (34)
Another set of solutions is given by,
1 A
wy = > (—ZbB +2dap +dpa — 263)
1
wp =7 (—dap + 2ep)
eq = —bg +dap +dpa —ep
bg>0, 0 <dap <ep
dpa >2(b’§—dAB+eB>, ep > 0. (35)

Next, we simulate the range state dynamics, shown in Fig. 9, using the method
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Fig. 9 The expected range state dynamics over [0, 250] time interval and over 100 trajectories for
the two-region GeoSSE model as described in Example. 5. Each process is simulated under the fol-
lowing initial state frequencies and rate parameters according to Eq. (34): (Left panel) ITj4)(0)
Ipy(0) = 045,14 p}(0) = 0.1, wy = 0.090,e4 = 0.176,wp ~ 0,ep = 0.008,dsp =
0.015,dp4 = 0.173, bg = 0.004; (Right panel) IT{4(0) = 0.1, TI{}(0) = T4, p}(0) = 0.45, wy =
0.160, e4 = 0.315, wp = 0.002, ep = 0.009, dpp = 0.014,dg, = 0.310, b4 = 0.001. In both pan-
els, ]E(fI{A}) — %, E(ﬁ{B}) — %, E(l:[{A,B}) — % Using Lemma 5, we confirm that these expected
stationary frequencies from simulations converge to the theoretical, and true stationary frequencies given
these sets of rates. Furthermore, using the procedure described in Sect.2.8 with € = 10~2, we found that
the stationary frequencies are reached at: tj = 114.114, tz = 111.862, t;'; g = 102.603 (Left panel);
th =76.827, 1} = 75.576, t}; , = 70.320 (Right panel) (Color figure online)

described in Sect. 2.5 and rate parameters chosen according to Eq. (34).

To show that there are multiple rate scenarios that lead to the same stationary distri-
bution, we simulate the range state dynamics, shown in Fig. 10, using rate parameters
that satisfy the alternative set of solutions described in Eq. (35), but do not satisfy
Eq. (34).

3.3 Comparing Our Method of Computing Stationary State Frequencies with
Existing Literature

In this section, we compare our method for computing stationary state frequencies from
rate parameters introduced in Sect. 2.7 with another method used in diversitree pack-
age (FitzJohn 2012) for the ClaSSE (Goldberg and Igi¢ 2012) and GeoSSE (Goldberg
et al. 2011) models. Although the technique used in diversitree has not been dis-
cussed in any SSE papers, such as the papers introducing the MuSSE (FitzJohn 2012),
ClaSSE (Goldberg and Igi¢ 2012), and GeoSSE (Goldberg et al. 2011) models, the
technique applies projection matrix models that are widely used in the context of pop-
ulation biology to obtain ClaSSE and GeoSSE stationary frequencies (pers. comm. E.
E. Goldberg and R. FitzJohn). Originally developed for applications in discrete-time
models with either size-structured or age-structured population (Van Groenendael
et al. 1988), this approach has also been adapted for continuous-time models with
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Fig. 10 The expected range state dynamics over [0, 60] time interval and over 100 trajectories for the
two-region GeoSSE model as described in Example. 5. Each process is simulated under the following
initial state frequencies and rate parameters according to Eq. (35): (Left panel) I1{4)(0) = I1;5;(0) =
0.45,T{4,8)(0) = 0.1, wg = 0.107,e4 = 0.309, wp = 0.008,ep = 0.008,dpp = 0.001,dpy =
0.405,bg = 0.089; (Right panel) [T{4)(0) = 0.1, TI{p}(0) = I{4 p}(0) = 0.45,ws = 0.049,e4 =
0.470, wp = 0.005, eg = 0.008,dsp = 0.006, dp4 = 0.843, b4 = 0.371. In both panels, ]E(fI{A}) —
%, ]E(f[{ By — %, IE(f[{ A,B)) —> %.Using Lemma 5, we confirm that these expected stationary frequencies
from simulations converge to the theoretical, and true stationary frequencies given these sets of rates.
Furthermore, using the procedure described in Sect.2.8 with ¢ = 10~9, we found that the stationary
frequencies are reached at: t: = 53.153, t} = 51.952, tXB = 48.048 (Left panel); tj = 30.781, ZE =
30.330, t;'; p = 28.378 (Right panel) (Color figure online)

the latter structured population (Kapur 1979). Under this approach, one would cre-
ate a square matrix with entries that map the state of a structured population from
one time to the next. Then, the dominant eigenvalue of such matrix represents
the overall population growth rate with its eigenvector represents the stable stage
distribution (Van Groenendael et al. 1988).

Through examples below we find that our method returns similar state frequencies
to those computed under the projection matrix model in diversitree package (FitzJohn
2012). For example, under the following rate parameters in a two-region GeoSSE
model,

wa = 0.01, wp =0.02, b‘g =0.003, eq4 =0.169, ep = 0.008,
dap =0.002, dpa = 0.178,

our method gives I1ja; ~ 0.057, I1;p ~ 0.506, [1ja p; ~ 0.437 while the pro-
jection matrix approach implemented in diversitree returns f[{ Ay ~ 0.055, fl{ By N
0.490, fl{ A,B) ~ 0.455. Another example using the following rate parameters,

w4 = 0.0006, wp ~ 0.0003, bg ~ 0, eq ~ 0.0048,
ep ~ 0.0045, dap ~ 0.0370, dpa =~ 0.03703,
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Fig. 11 The trajectories of mean counts of range states for endemic species (a—c) and widespread species (d—
g) over the [0, 10] time interval. Trajectories were simulated under the diffusion-based process (red line) and
tree-based process (black line), starting with 1 species in a random state. For each starting state, we simulate
150 trajectories (1050 trajectories in total) for each approach. The gray trajectories show the dynamics across
1050 replicates simulated under diffusion-based process. Simulations are conducted using the following
parameter values: wy = 0.36, wp = 0.24, wc = 0.28, bg = bé = bg = bgc = bgc = bgB =
0.16,e4 = 0.02,ep = 0.03,ec =0.01,dyp =dpa =0.12,dgc =dcs = 0.06,dpc = dcp = 0.02
(Color figure online)

we have ﬁ{A} ~ 0.0996, ﬁ{B} ~ (0.0996, l:I{A,B} ~ (.8008 while the other method
produces IT{4) & 0.0997, () = 0.0997, {45y ~ 0.8006.

4 Discussion and Conclusion

In our paper, we have constructed a general framework using diffusion processes
to study state dynamics over time from a general state-dependent speciation and
extinction model with both anagenetic and cladogenetic state transitions, making it
suitable for studying members of the ClaSSE model family (Goldberg and Igi¢ 2012;
Magnuson-Ford and Otto 2012; Goldberg et al. 2011; Freyman and Hohna 2018). We
have applied this framework under various diversification scenarios for the GeoSSE
model (Goldberg et al. 2011), a special case of the ClaSSE model, as described in
Sects.2.4-2.5. Our framework can easily be applied to other discrete state-dependent
diversification models, such as simpler BiSSE and MuSSE models (Maddison et al.
2007; FitzJohn 2012) and Markovian Binary Tree (MBT) models (Kontoleon 2006;
Hautphenne et al. 2009; Soewongsono et al. 2023). Through simulations and statis-
tical analyses, we have shown that state dynamics simulated under diffusion-based
approach and tree-based approach are comparable, given that we start the simula-
tions with relative large clade size (Figs. 5, 6, 7, 8, Table 1). We also obtain good
agreement between diffusion-based and tree-based simulations when beginning the
process with a single species in random state, after applying a model-based correc-
tion procedure (“Appendix 5.6”, Fig. 12). We also show, using a statistical test, that
our diffusion framework offers a good approximation for the mean of state counts.
This result allows one to understand how data generating process i.e. rate parameters
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from a diversification model can explain observed state patterns without using phy-
logenetic information. For inferring rates using empirical state data at present, this
diffusion-based approach to simulate state dynamics could be treated as a way to vali-
date whether rates estimated from biological datasets using phylogenetic methods are
sensible.

Moreover, in Sects.2.6-2.7, we have derived theoretical results to deduce the
expected state frequencies generated by a set of rates, and what possible rates will
generate a given set of expected state frequencies. These results are generalizable to
accommodate a system having more states, and provide an alternative way to validate
the correctness of SSE simulation and inference methods. Additionally, in Sect. 2.8, we
described a procedure to compute the minimum time for an SSE process to reach sta-
tionarity in its state frequencies. We have applied these results for a 2-region GeoSSE
model. As seen in Figs. 9 and 10, we showed that there exist multiple different rate sce-
narios that can lead to the same stationary behaviour of state pattern. Our framework
also creates an alternative mathematical approach to tree-based models that could help
establish conditions for which SSE model parameters are and are not identifiable.

We next plan to study the time for perturbed SSE models to reach stationarity.
This would help biologists understand how evolutionary systems re-equilibrate and
how long that re-equilibration takes following perturbation. In particular, we plan to
apply this framework to study scenarios where SSE rates shift across time (Condamine
et al. 2013; Quintero et al. 2023). Scenarios with time-heterogeneous rates are par-
ticularly interesting for GeoSSE model variants, mainly because regions experience
changes in their features (e.g., region size, distance with nearby regions, separation
types) over time. As studied in Landis et al. (2022) and Swiston and Landis (2023),
paleogeographically-changing regional features should influence rates of speciation,
extinction, and dispersal over time. Mathematical knowledge of expected state (range)
frequencies for arbitrary biogeographical systems could help biodiversity researchers
assess whether certain clades of regions are within or between states of equilibrium.

5 Appendix
5.1 Proof of Lemma 1

From Egq. (1), we compute g’'(N) and g”(N),

, og 0 (Zih(n,-))
g(N)= N N
3 (X h)
31/1,‘
g
an;
_ 0X
= o

(For each i, the other partial derivatives w.r.tj # iequals 0)

(36)
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Similarly, we have,

2

y °X
g (N) = R (37)

Now applying Theorem (1) to Eq. (1), we have,

dX 1« 3°X ,
B NP 38
px IZanl_ul 22,-:811?0’ (38)

X \?
0} = Z (£> o?. (39)

5.2 Proof of Lemma 2
By definition, following Eqs. 1.2-1.3 of Chapter 5 in Karlin and Taylor (1981), we

define the infinitesimal mean w; and infinitesimal variance aiz of the stochastic process
{N;(t) : t > 0} as follows,

. 1
Hi= Alzlgo E]E (Ni(r + A1) — N;i(t)|N;(t) = N;)

) 1
Jim E{E(Ni(t + A1) — E(WN; (0)[Ni(t) = Ni)}

1
Alzlfo E{E(Nz (t + Ar)) — N},

o? = lim iJE ((N-(t + At) — N; (1)%|N; (1) = N-)
At—0 At 1 1 1 1

1 1 2 2
= lim —E (Nl- (t + A1) — 2N;(ON; (t + At) + N2(0)|N; (t))

: 1 2 2
lim —(E (N,. t + At)) — 2N;E (N (t + A1) + N2}

By definition of the first-order and second-order moments we have,

E(N;(t + A1) = (N; + DPTAr 4+ (N; — DP; At + (N)P; At
= N; (P} +P; +P;) At + (P —P;) At
=N; + (P} —P;) At,
E(N2(t + At) = (N; + D*PF At + (N; — D*P; At + (N;)*P; At.
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Thus,
wi =P —P, (40)
o} =P +P;. (A1)
a

5.3 Proof of Lemma 3

We compute the following and substitute to Egs. (2)-(3).

dIT; _ ad N;
JdN; JIN; Zkes Ny + N;
ki

Zkes N

(ZkeS N k)
1-—

N

dI1; d N;

— ==, j#i
ON; ON; leg;is Ny + N;
1

)

I 9 [(1-T1

aN2 ~ ON; N

—Gv N — (=TI &)
N2

-(1-1) -1 -11)
N2

2(1 —1I1;)
-

9211, 9 ( N,-) %
= — —_— , J 1
ON7  ON; \ N?

N;(2N)
N4
2IT; N
N3
211;
N2
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Thus,
T, 1« 3%, ,
H ZZBN]-“”LEZ oN2
jes jes J
1a M, 1 a1
Z_“”LZ MR REPPrvas
jes J
J?él J#
— ot o+ Y 5]
JES jes
J# J#i
2
1—1II; O'iz I1; o
_< N ><M V)T (et
Jjes
J#
2
1 Ul-z IT; o
N('ul N>+NZ H«]"‘N s (42)
Jjes
A\ ,
Unt = Z (8 ) U]
jes J
aT1; \* ar1; \
-(5) 2+ 2 (Gy)
! jes J
J#
1-1\* , m\? ,
- () 2+ (F) 7
jes
J#
o; 2
= (%) a-2m+ Zo , (43)
jes
where p; and O’l»z follow Eqgs. (7)—(8), respectively. O

5.4 Proof of Lemma 5

We find I1; such that lim,_, o I1;(r) = I1; foralli € S, S = {{A}, (B}, {A, B}}.
Fori = {A} we have,

A~ AJ'_ A
A= ]PA - IP)A
= [wA (Mgay + Mya,5y) + H{A,B}bé + eBH{A,B}] - [dABH{A} + eAH{A}]

= sy (wa — ea —dap) + Ija B} (wA +ba + €B> . 44)
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For i = {B} we have,

A~ >+ H—
pn, =Pp — Py
= [we (M) + Mam) + Miambf + eallia s | = [dallis) + esTi)]

= gy (wp — ep — dpa) + I1{4, By (wB + bl + eA) . (45)
Fori = {A, B} we have,

Arp = ]P)XB —Pup
= [dABH{A} + dBAH{B}] - [bQH{A,B} + (ea + eB)H{A,B}]

= (dapTay + dpallisy) — Mia, 5 (bé +eq+ 63) : (46)

Thus, we want to find the general solution for the following system of differential
equations

dIl
diA} = Ilja) (wa — ea —dap) + Ija, B (wA + by + e’B) i (47)
drl
diB} =My (wp —ep —dpa) + Mia.5) (wB +bp+ eA) . (48
dIlia.B
;t b (dapTay + dpaTl(s)) — Mja 5) (bg +ea+ eB) ) (49)

given initial state frequencies IT{4,(0) = 1'[%, 5 (0) = H%, T4, 8)(0) = H%B.
However, since fI{A} + fI{B} + IQI{A,B} = 1, we can always derive IQI{A,B} using
[1;4) and I1{p). Therefore, we want to solve the following system instead.

dlliay A

TR IMT{a) (wa —ea —dap) +Tja By (wa +bg +ep), (50)
drIl
—diB} = Iipy (wp — ep — dpa) + {4, B) (wB + bg +€A> . (€28

Since T4y (¢) + Iy (t) + I,y (r) = 1, we have,

U (-5 —e) - o35
+(wa +b3 +ep). 42
? = Ip) (‘eB —dpa — b — eA) — My (wB b5 +€A)

+<wB +b§+eA). (53)
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We write the above system in a matrix form as follows,

M = MI+r, (54)

where

=[] n=[R]
_ —(eA-l-dAB-f-bg—i-eB) —<wA+b£+eB>
M_{ _(w3+bg+eA) —<e3+dBA+bg+eA) ’

A
r=|vatbyptes) (55)
wp +bp +ea
First, we find the complimentary solution to the following equation using eigenval-
ues and eigenvectors of matrix M,

’

M = MII. (56)

Using Mathematica, the eigenvalues (A1, A2) and eigenvectors (v, v2) of M are given
by,

_ M
A= )\2} (57)
1
_ ?( 2 dAB—dBA—ZeA—ZeB—R):| (58)
E( —dAB—dBA—ZeA—2€B+R)
—— (—d dpa — R
o1 = | T © 1 AB )] (59)
——— (—d d R
vy = 2(bA+eA+w 7 (= 1 AB T a4pA T )] (60)
where
R =R+ Ry,
2
R =4 (bg) +4 (bgeA —i—bgeB + bgwA +bgw3>
+4 (eaep +eawa +epwp +wawp),
Ry = ~2dapdpa + (35 +d3,)
The complimentary solution for Eq. (56) is given by,
¢ = Civie + Covpe™, (61)
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where C; and C; are arbitrary constants.
Next, we find the particular solution IIp for Eq. (54) using the method of
undetermined coefficients. Suppose the solution IT p is of the form

= [ﬁ] M, = [‘O)] . (62)

Substitute Eq. (62) to Eq. (54) we have,
Mp=MIOp+r. (63)
That is, we want to solve the following system of linear equations,

(eA +dAB+b‘g+eB>K1+<wA+b‘§+eB)K2:wA—i—bg—}—eB (64)

wp + by +ea. (65)

(wB +bj ~|—eA> Ky + (63 +dga + by +€A) K>

Thus,
P <wA+b§+eB) (ep+dpa —wp)
b (eA +dap +b§+63) (eB +dpa +b§ +eA> - (wB +b£ +€A) (wA +b£ +eB>
= Genamy 66)

Substitute Eq. (66) to Eq. (64) to get,

d b
Ko 1 ea+ AB‘: 3 T eB <numA ) 67
wa + by +ep denom

Therefore, the general solution is given by,

O=TIc+1p
= Cyvie™ + Covpe™ + K, (68)
where
_ | K
K = |:K2:| . (69)

By taking a limit of Eq. (68) as t — oo, the exponential terms in Eq. (68) will approach
0. Therefore, we have,

M= lim I

—>0o0
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ﬁ{B} B K>

)=l ™
fl{ Ay and ﬁ{B} from Eq. (70) are the stationary frequencies for state {A} and {B},

respectively, as shown in Lemma 5.
Next, to get the general solution to the system in Eq. (54), we find the constants,

C1 and C, by substituting the initial value condition to Eq. (68) for r = 0. We have,

D S —
Cq |:_2(17§+6A+w3) ( ldAB +dsa R):| +
1
—————— (—dap+dpa +R) K e
30itetwny (Tdas +dpa | [T
Cy |: (bg+eatwp) | + K, | ™ H% . (71)

That is, we solve the following system of linear equations,

R+dap—d dap —dpa — R

1 41; AB — dBA X Ai BA —nY -k, (72)
2(bg +ea+wp) 2 (b +ea+wp)
Ci+C=1%-K,. (73)

Thus,
IT5, — K d —d —R
( B 2) ( AB BA ) (7 )

(H% — Kl) (b‘g +ea+ wB) B
2R

C| =
! R

Then, substitute Eq. (74) to Eq. (73) we get,

K, — 1Y) (b —dpa —
o= & A)(IereAerB)+(n%—1(2)(1+—d"3 ;If" R).(75)

O

5.5 Simulating Range State Dynamics Using MASTER

We can express events in MASTER for GeoSSE using the following reaction equations

S‘[{i}] ﬁi—> Ié[i] + L[i], (extinction of endemic species in region i)
arpoy i
SHi}] —

S |:U{i}:| ﬁ) S |: U {i}:| + L[j], (local extinction in region j)

ieR;i#]

S‘[{i} U {j}1+ GlJjl, (dispersal from region i to region j)

b
S |:U{i}:| 2§ |: U {i}:| + 3[{]’}], (between-region speciation into ranges{itand{j})

ieR ieR;i#]
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~ wj N
S |:U {i}:| 2§ |:U {i}:| + S[j1+ GIljl, (within region speciation in region jfor a widespread species)
ieR ieR

S‘[{i}] (N 3[{i}] + §[{i}] + Gli], (within region speciation in regioni for an endemic species),

where 3‘[{1’ }] indicates the number of endemic species with range {i}, S [Uie Rl }]
indicates the number of widespread species with range | J;z{i}, R[] indicates the
number of species in region i, L[i] indicates a species lost in region i, and GJ[i]
indicates a species gain in region i.

5.6 Simulation Under the Diffusion Model Starting with a Single Species

We propose a procedure to correct the diffusion-based simulation for state dynamics
when starting with a single species in random states under an SSE model, as demon-
strated for a GeoSSE model. Note that without this correction procedure, the bias
between the tree-based and diffusion-based approaches is apparent as described in
Example 6.

Example6 Consider a 3-region GeoSSE system with state space S =
{{A}, {B}, {C},{A, B}, {A, C},{B, C},{A, B, C}}. Suppose we start with a single
species in state {A, B}.

That is, at t = 0 we have

Niay =0, Nigy =0,Nic; =0, Napy =1, Niacy =0, Nig,cy =0, Nia,p,cy =0.

It is very likely, given a small total species number, for diffusion-based simulation
to give a pattern at the next time step such as the one below,

Niay =0, Ny =0,Nicy =1, Nagy =1, N,y =0, Nig.cy =0, Nya ¢y =06)

The transition described in Eq. (76) cannot be explained using just one GeoSSE
event. Furthermore, since the diffusion parameters for simulating species count across
states, described in Egs. (7)—(8), dynamically depend on the number of species in each
state, the difference between diffusion-based and tree-based simulations becomes more
apparent over time (Fig. 11).

In general, the correction procedure works by preventing a diffusion-based path to
enter a disallowed regime when there are few species (Table 2). This procedure only
applies for simulating state counts. However, we can get the state frequencies from
species counts in each state using the following formula,

N; (1)

I1; = =,
S S ATy

1. For each simulated trajectory for state counts under the diffusion-based approach
where we start with a single species in a random state, we simulate the next path
according to the procedure described in Sect.2.5.
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Table 2 List of allowed differences between two consecutive paths in a 3-region GeoSSE model

Condition N;(t+ At) = N;(t)
{A} {B} {C} {A, B} {A, C} {B,C} {A,B,C}
Within region speciation
If Npay(t) #0, Nj(t) =0,Vj € S\ {A} 1 0 0 0 0 0 0
If Nygy(t) #0, N;(1) =0,Vj € S\ {B} 0 1 0 0 0 0 0
If Nicy(t) #0, N;(t) =0,Vj € S\ {C} 0 0 1 0 0 0 0
If Nja,By #0, Nya,g,cy =0 1 0 0 0 0 0 0
0 1 0 0 0 0 0
If Nja,cy #0, Nya,g,cy =0 1 0 0 0 0 0 0
0 0 1 0 0 0 0
If Nig,cy #0, Na,p,cy =0 0 1 0 0 0 0 0
0 0 1 0 0 0 0
If Nia,B,c) #0 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
Extinction in species with range size 1
-1 0 0 0 0 0 0
-1 0 0 0 0 0
0 -1 0 0
Extinction in species with range size 2
1 0 0 —1 0 0
1 0 0 0 -1 0
0 1 0 -1 0 0
0 1 0 0 0 -1 0

Lol

9% J0 7 abeq

sipueT I\ ‘ouosbuomaos ) 'y



128undg @

Table 2 continued

Condition N;(+ At) — N;(t)
{A} {B} {C} {A, B} {A, C} {B.C} {A,B,C}
0 0 1 0 -1 0 0
0 0 1 0 0 —1 0
Extinction in species with range size 3
0 0 0 1 0 0 -1
0 0 0 0 1 0 -1
0 0 0 0 1 -1
Between-region speciation
1 1 0 -1 0 0 0
1 0 1 0 -1 0 0
0 1 1 0 0 -1
1 0 0 0 0 1 -1
0 1 0 0 1 0 -1
0 0 1 1 0 0 -1
Dispersal in species with range size 1
-1 0 0 1 0 0 0
-1 0 0 0 1 0 0
0 -1 0 1 0 0 0
0 -1 0 0 0 1 0
0 -1 0 1 0 0
0 —1 0 0 1 0
Dispersal in species with range size 2
0 0 -1 0 1
0 0 -1 1
0 0 —1 1

***Bunejnwis Joy yoeouddy paseg-uoisnyiq v

9% J0 £ abeq
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(a) (b) (d) (e)
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Fig. 12 The trajectories of average count of range states for endemic species (a—c) and widespread species
(d-g) over the [0, 10] time interval simulated under the diffusion-based process (red line) after applying
the correction procedure and tree-based process (black line), starting with 1 species in a random state.
For each starting state, we simulate 150 trajectories (1050 trajectories in total) for each approach. The gray
trajectories show the dynamics across 1050 replicates simulated under diffusion-based process. Simulations
are conducted using the following parameter values: w4 = 0.36, wg = 0.24, wc = 0.28, bg = bé =

bE =bp. = b =b5, = 0.16,e4 = 0.02,ep = 0.03,ec = 0.01,dap = dpa = 0.12,dpc =
dca =0.06,dgc = dcp = 0.02 (Color figure online)

2. Next, we compute the difference in paths at r and 7 + Az. That is, we find
N+ At) — N(@) = {N;(t + At) — Ni()}vies, 7D

where S is the range state space of the GeoSSE model. Then, round each element
of the vector in Eq. (77) to the nearest integer value.

3. We check whether this difference in paths is in the list described in Table 2. If
it is not in the list, we reject this future path and re-sample until it satisfies the
table. In effect, this correction approximates model-based conditional sampling
for diffusion-based paths.

4. Repeat steps 1-2 until we reach a path where every state has at least 1 representative
species, Vi : N;(t) > 0. Then, we generate the future paths as usual, according to
the procedure described in Sect. 2.5.

AsseeninFig. 12, the difference between diffusion-based and tree-based simulation
is reduced after applying the correction procedure. Note that it is possible to apply this
correction procedure to any discrete-state SSE models by modifying the table (Table 2)
according to events described by the model. Also, this procedure only minimizes the
difference between diffusion-based and tree-based trajectories as it is still possible for
a diffusion-based simulation to construct disallowed paths at a later time, despite the
starting condition. However, these differences become negligible for as N(¢) >> 0
for our example.
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