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Abstract

We establish a general framework using a diffusion approximation to simulate forward-

in-time state counts or frequencies for cladogenetic state-dependent speciation-

extinction (ClaSSE) models. We apply the framework to various two- and three-region

geographic-state speciation-extinction (GeoSSE) models. We show that the species

range state dynamics simulated under tree-based and diffusion-based processes are

comparable. We derive a method to infer rate parameters that are compatible with

given observed stationary state frequencies and obtain an analytical result to compute

stationary state frequencies for a given set of rate parameters. We also describe a pro-

cedure to find the time to reach the stationary frequencies of a ClaSSE model using

our diffusion-based approach, which we demonstrate using a worked example for a

two-region GeoSSE model. Finally, we discuss how the diffusion framework can be

applied to formalize relationships between evolutionary patterns and processes under

state-dependent diversification scenarios.

Keywords Evolution · Speciation · Extinction · Diffusion processes · Branching

processes · Stationary frequencies

1 Introduction

The branching events of a phylogenetic tree exhibit a pattern that stores information

about the underlying speciation and extinction processes (Nee et al. 1994). In Nee

et al. (1994), they first considered a model where both speciation and extinction are
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treated as a constant-rate birth-death process by which lineages give birth to new

lineages (speciation) at a rate λ and lineages die (extinction) at a rate μ. Speciation and

extinction rates, however, are expected to vary idiosyncratically among phylogenetic

lineages and over geological timescales. For example, Nee et al. (1994) also considered

another model in which speciation and extinction rates vary over time. Workers have

designed birth-death models to study a variety of intrinsic and extrinsic factors that

might shape diversification rates. Species age (Hagen et al. 2015; Alexander et al.

2016; Soewongsono et al. 2022) and inherited traits (Kontoleon 2006; Maddison et al.

2007; FitzJohn 2010, 2012; Soewongsono et al. 2023) are two types of intrinsic factors

thought to drive diversification rates, whereas environment (Condamine et al. 2013;

Quintero et al. 2023) and geography (Goldberg et al. 2011; Landis et al. 2022; Swiston

and Landis 2023) are common extrinsic factors of interest. In the end, a common goal

of these models is to infer the underlying event rates given an observed phylogenetic

pattern either through likelihood-based (Morlon et al. 2010; Stadler 2013; Louca and

Pennell 2020b) or likelihood-free approaches (Nee et al. 1994; Voznica et al. 2022;

He et al. 2023; Lambert et al. 2023; Thompson et al. 2023).

Fundamentally, birth-death processes model the random arrival times of discrete

events that generate or “build” a phylogenetic tree over time (Nee et al. 1994;

Maddison et al. 2007). As an alternative to this tree-based representation of the

process, recent work (Chevin 2016) introduced an equivalent diffusion-based rep-

resentation for a class of birth-death models with state-dependent rates, known as

state-dependent speciation-extinction (SSE) models (Maddison et al. 2007). As noted

by Chevin (2016), population genetics theory has benefited immensely from diffusion-

based approximations to population-based models of allele frequency change, yet

diffusion-based approximations of birth-death models remain underexplored in the

phylogenetics literature. Despite the widespread popularity of birth-death models

among evolutionary biologists, these models recently entered a phase of intense but

overdue scrutiny to better understand what the models can and cannot estimate reliably

when fitted to real biological datasets (Louca and Pennell 2020a; Morlon et al. 2022;

Vasconcelos et al. 2022; Dragomir et al. 2023; Kopperud et al. 2023; Legried and Ter-

horst 2023; Truman et al. 2024; Celentano et al. 2024; Tarasov and Uyeda 2024). This

has created demand for new frameworks to understand the mathematical properties of

these complex stochastic processes to guide biological research programs.

As mentioned above, applying diffusion processes in the macroevolutionary con-

text is not new, and was recently applied by Chevin (2016) to study the properties of

the BiSSE (Maddison et al. 2007) and QuaSSE (FitzJohn 2010) models. Our work

begins by extending the diffusion-based BiSSE representation of Chevin (2016) to a

general multi-state SSE model that allows for both cladogenetic and anagenetic state

changes, known as the ClaSSE model (Goldberg and Igić 2012). We then show how

our formulation may be used to determine the relationship between a set of SSE rates

and their implied stationary state frequencies. Inverting this perspective, we show

that our framework correctly delimits classes of SSE rate values that yield a given

set of stationary frequencies. This establishes a many-to-one mapping of SSE rates

on to stationary frequencies. After introducing our general framework for ClaSSE

models, we apply it to a special geographical case of the ClaSSE model, known as

the GeoSSE model (Goldberg et al. 2011). We choose the GeoSSE model because
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it possesses a complex but structured relationship among its parameters and its con-

stituent events—i.e. dispersal, within-region speciation, between-region speciation,

and local extinction—that impact lineages over evolutionary time. We then validate

our theoretical results by simulating state frequency trajectories using both tree-based

and diffusion-based simulators.

The rest of the paper is organized as follows. Firstly, in Sect. 2.1, we give a brief

overview of SSE models in general. In Sect. 2.2 we visit relevant results in the the-

ory of stochastic process, then in Sect. 2.3 we apply our framework to analyze the

ClaSSE model, and later for the GeoSSE model with arbitrary number of regions in

Sect. 2.4. Following these, in Sects. 2.5 and 2.6 we present a method for simulating

state dynamics under our framework and deriving rate parameters given stationary

state frequencies. In Sect. 2.7, we derive a result to compute theoretical stationary

state frequencies given rate parameters. Moreover, in Sect. 2.8, we describe a proce-

dure to compute time to reach stationary frequencies in a 2-region GeoSSE system

using results derived in Sect. 2.7. Furthermore, in Sect. 3.1, we show, through simu-

lation examples, that our diffusion-based framework offers a good approximation for

simulating range state dynamics when comparing to tree-based approach. In Sect. 3.2,

using an example, we show the existence of alternative rate scenarios that lead to the

same stationary state frequencies. Additionally, we apply results derived in Sect. 2.7

and Sect. 2.8 to that example in Sect. 3.2. Lastly, in Sect. 4, we summarize our results

and discuss promising ways to study pattern-process relationships for data generated

by SSE models, and ideas for future work using our framework.

2 Methods

This section describes the framework for how construct our diffusion approxima-

tion for a ClaSSE model to analyze the dynamics of states through time. Key results

include derivations of the transition probabilities and the infinitesimal mean and vari-

ance parameters of the diffusion equation. We describe and implement the methods

for simulating the evolution of state frequencies, and derive relevant results for the

stationary conditions, focusing on two- and three-region GeoSSE models, which are

special cases of the ClaSSE model.

2.1 Overview of State-Dependent Speciation and ExtinctionModels

In this section, we give a brief overview of SSE models by highlighting the key

assumptions and different events occurring along lineages. Then, we briefly re-visit

a particular SSE model type, the GeoSSE model (Goldberg et al. 2011). Then, we

guide towards how to shift from tree-based perspective to non-tree-based perspective

to derive our object of interest.

In general, SSE models are stochastic branching processes with state-dependent

birth (speciation) and death (extinction) rates. The states can either be discrete or

continuous (Maddison et al. 2007; FitzJohn 2010, 2012) and can represent various

things, ranging from phenotypic traits to geographical ranges (Goldberg et al. 2011).
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Fig. 1 From left to right: a speciation event without cladogenetic state changes, a speciation event with

cladogenetic state changes, an anagenetic state change

Some SSE models have processes that are only defined by anagenetic process and state-

dependent diversification process (Maddison et al. 2007), while others have processes

that are defined by both anagenetic and cladogenetic processes (Goldberg et al. 2011;

Goldberg and Igić 2012) shown in Fig. 1. An anagenetic process is defined as a

process of trait evolution within lineages, between branching events. In the BiSSE

model (Maddison et al. 2007), this corresponds to trait transition events of going

from a discrete trait A to another discrete trait B or vice versa. These trait-dependent

transition rates are encoded in the infinitesimal rate matrix Q, for which the off-

diagonal entry qi j defines the rate of transitioning from state i to j . A cladogenetic

process is defined as a process in which state transition occurs in conjunction with

a branching event (with speciation) of a lineage. SSE models with anagenetic and

cladogenetic events are referred to as ClaSSE models.

Part of this paper will consider a special case of the ClaSSE model, the GeoSSE

model (Goldberg et al. 2011). A GeoSSE model describes how species move and

evolve among a sets of discrete geographical regions, called species ranges. Species

that occur in just one region are said to be endemic to that region. Species occurring

in two or more regions are said to be widespread.

GeoSSE events can be classified as anagenetic or cladogenetic events. Anagenetic

events in GeoSSE include dispersal events and local extinction (sometimes called

extirpation) events. Dispersal events add one region to a species range. Local extinction

remove one region from a species range. A species experiences complete extinction

(i.e. it is removed from the species pool) when it goes locally extinct in the last region in

its range. Note that widespread species cannot experience complete extinction through

a single event under a GeoSSE model; their widespread ranges must first be reduced

to a single region before complete extinction is a possibility.

Cladogenetic events under GeoSSE include within-region speciation and between-

region speciation events. Each within-region speciation event creates a new species

within any single region of the parental species range. Each between-region speciation

event causes a widespread parental species and its range to split, such that all regions

in the parental range are distributed among the two new daughter lineages. Section 2.4

defines how GeoSSE assigns rates to different events.

Given a phylogeny with range state information as seen in Fig. 2, one can observe

the dynamics of range states accumulated by species though time. In Sect. 2.2, we
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Fig. 2 An illustration of

GeoSSE events on a phylogeny

with range state information

present the necessary theory that will later be used to allow us transitioning from a

tree-based process to an alternative, diffusion-based process to simulate the dynamics.

2.2 Transforming a Stochastic Process

In this section, we briefly describe the relevant results in the theory of stochastic

processes that enable us to transform one stochastic process into another stochastic

process. In the context of the ClaSSE model described in Sect. 2.1, we want to define

a process that simulates the (discrete) count of species with state i through time. This

process can then be used to define a second process that simulates the (continuous)

frequency of species with state i over time.

Theorem 1 Itô’s transformation formula Consider a stochastic process {Z(t)} with

infinitesimal parameters μ(z) and σ 2(z). Define a new stochastic process {Y (t)} with

Y (t) = g(Z(t)) where g is a strictly monotone continuous and twice-differentiable

function. Then, the new process {Y (t)} has infinitesimal parameters given by,

• μY (y) = μ(z)g′(z) + 1
2
σ 2(z)g′′(z),

• σ 2
Y (y) = σ 2(z)

[

g′(z)
]2

.

Proof This theorem is also known as Itô’s formula or Itô’s lemma. The proof is given

in Ito (1951), Karlin and Taylor (1981). ��

Lemma 1 Given a stochastic process {Ni (t) := ni (t)} with infinitesimal mean and

variance parameters μi = E(dni/dt) and σ 2
i = var(dni/dt), respectively. Define a

stochastic process {X(t)} derived using the following transformation.

X(t) = g(N ) = g

(

∑

i

ni

)

=
∑

i

h(ni ), (1)
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where {N (t) :=
∑

i ni (t)} is a stochastic process with infinitesimal parameters defined

as follows,

μ(N ) = μ

(

∑

i

ni (t)

)

=
∑

i

μ (ni (t))

=
∑

i

μi .

σ 2(N ) = σ 2

(

∑

i

ni (t)

)

=
∑

i

σ 2(ni (t)) +
∑

i, j
i �= j

σi j

=
∑

i

σ 2(ni (t))

=
∑

i

σ 2
i .

Note here we have used the fact that σi j = 0 for i �= j to account for independent

birth-death processes. The infinitesimal mean and variance parameters for {X(t)} are

given by,

μX =
∑

i

∂ X

∂ni

μi + 1

2

∑

i

∂2 X

∂n2
i

σ 2
i (2)

σ 2
X =

∑

i

(
∂ X

∂ni

)2

σ 2
i . (3)

Proof Proof of Lemma 1 is given in “Appendix 5.1”. ��

2.3 Diffusion-Based Framework for State-Dependent DiversificationModel

In this section, we establish the framework for simulating state dynamics for state-

dependent speciation and extinction models using diffusion processes. We show how

to implement the framework in the ClaSSE model introduced in Goldberg and Igić

(2012). Then, we relate our framework to earlier research (Chevin 2016) using a

diffusion process for the BiSSE model (Maddison et al. 2007) and, later on, for the

GeoSSE model (Goldberg et al. 2011).

Our first goal is to define the stochastic process {Ni (t)}, which describes the number

of species with state i ∈ S at time t , where S is the state space of the model. Then, using

the method presented in Sect. 2.2, we can obtain the stochastic process {�i (t)}, which
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describes the frequency of species with state i at time t . Using these two processes, we

then derive results that directly link model parameters with stationary state frequency

patterns that the model generates.

To proceed, we define the following probabilities:

Prob({Ni → Ni + 1 in �t}) = Prob(Ni (t + �t) = ni + 1 | Ni (t) = ni )

:= P
+
i �t,

Prob({Ni → Ni − 1 in �t}) := P
−
i �t,

Prob({Ni → Ni in �t}) := Pi�t . (4)

These probabilities correspond to gaining a new species in state i
(

P
+
i

)

, losing a species

in state i
(

P
−
i

)

, and neither losing nor gaining a new species in state i (Pi ) within an

infinitesimal time step �t .

For the ClaSSE model, we can write those probabilities as follows,

P
+
i �t = S+

i + E+
i + Q+

i ,

P
−
i �t = S−

i + E−
i + Q−

i ,

Pi�t = 1 −
(

P
+
i + P

−
i

)

�t, (5)

where

S+
i

= Probability of events that lead to an increase in the number of species in state i through

state-dependent speciation and speciation in conjunction with cladogenetic state change.

E+
i

= Probability of events that lead to an increase in the number of species in state i through

extinction.

Q+
i

= Probability of events that lead to an increase in the number of species in state i through

anageneticstatechange.

S−
i

= Probability of events that lead to a decrease in the number of species in state i through

state-dependent speciation and speciation in conjunction with cladogenetic state change.

E−
i

= Probability of events that lead to a decrease in the number of species in state i through

extinction.

Q−
i

= Probability of events that lead to a decrease in the number of species in state i through

anagenetic state change. (6)

Next, we define the infinitesimal mean μi = E (d Ni/dt) and variance σ 2
i =

var (d Ni/dt) for the stochastic process {Ni (t) : t > 0}.

Lemma 2 The infinitesimal mean μi and variance σ 2
i for the stochastic process

{Ni (t) : t > 0} is given by

μi = P
+
i − P

−
i , (7)

σ 2
i = P

+
i + P

−
i . (8)
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Proof Proof of Lemma is given in “Appendix 5.2”. ��

Next, we define a stochastic process {�i (t) : t > 0} where

�i = Ni
∑

j∈S N j

= Ni

N
.

�i (t) denotes the frequency of species being in state i at time t . We define the

infinitesimal mean and variance for the process in Lemma 3.

Lemma 3 The infinitesimal mean μ�i
and variance σ 2

�i
for the stochastic process

{�i (t) : t > 0} is given by

μ�i
= 1

N

(

μi −
σ 2

i

N

)

+ �i

N

∑

j∈S

(

−μ j +
σ 2

j

N

)

, (9)

σ 2
�i

=
(σi

N

)2
(1 − 2�i ) +

(
�i

N

)2 ∑

j∈S

σ 2
j . (10)

Proof Proof of Lemma 3 is given in “Appendix 5.3”. ��

From Eqs. (9)–(10), it is clear that the diffusion parameters
(

i.e. μ�i
, σ 2

�i

)

are

undefined under a total extinction scenario of a tree (i.e. where N = 0 appears in

multiple denominators).

To demonstrate the generality of the framework, we show the BiSSE model (Mad-

dison et al. 2007) (and similarly for the MuSSE model (FitzJohn 2012)) can be

represented as a diffusion process as follows. Under the BiSSE model, species possess

binary traits with values in the state space S = {1, 2}. BiSSE is a special case of the

ClaSSE model that, while it allows anagenetic trait transition and extinction events, its

speciation events do not cause cladogenetic trait changes. That is, daughter lineages

identically inherit the parent lineage state following speciation. Readers can refer to

the supplementary material from Goldberg and Igić (2012) for its derivation. For the

BiSSE model, we have

S+
1 = λ1 N1�t, E+

1 = 0, Q+
1 = q21 N2�t,

S−
1 = 0, E−

1 = μ1 N1�t, Q−
1 = q12 N1�t,

where λ1 and μ1 (b1 and d1 in Chevin (2016)) are speciation and extinction rates for

trait 1, respectively. q12 and q21 (τ12 and τ21 in Chevin (2016)) are anagenetic trait

transition from 1 to 2 and from 2 to 1, respectively. Similarly, following the definitions

in Eq. (6), we also have

S+
2 = λ2 N2�t, E+

2 = 0, Q+
2 = q12 N1�t,

S−
2 = 0, E−

2 = μ2 N2�t, Q−
2 = q21 N2�t,
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Using Eq. (7) and Eq. (8) we have the infinitesimal mean and variance of N1,

μ1 = (λ1 − μ1 − q12) N1 + q21 N2, (11)

σ 2
1 = (λ1 + μ1 + q12) N1 + q21 N2, (12)

and similarly for N2 with indices changed accordingly. These are the same μ1 and σ 2
1

as described in Eq. (2) in Chevin (2016). ��

2.4 Diffusion-Based Framework for the GeoSSEModel

In this section, we use the framework established in Sect. 2.3 for general ClaSSE

models to the GeoSSE model. The procedure we apply here is also compatible with

any model from the ClaSSE family. For the GeoSSE model, unlike the BiSSE model

described in Sect. 2.3, some speciation events also cause cladogenetic state changes.

Thus, following the notation used in the previous section we have,

S+
i = W +

i + B+
i

E+
i = E+

i

Q+
i = D+

i + E+
i

S−
i = W −

i + B−
i

E−
i = E−

i

Q−
i = D−

i + E−
i ,

where

W+
i

= Probability of events that lead to an increase in the number of species in range state i

through within-region speciation for either widespread or endemic species.

B+
i

= Probability of events that lead to an increase in the number of species in range state i

through between-region speciation for widespread species.

E+
i

= Probability of events that lead to an increase in the number of species in range state i

through extinction for either widespread species (local extinction) or endemic species

(species extinction).

D+
i

= Probability of events that lead to an increase in the number of species in range state i

through range dispersal event for endemic species.

W−
i

= Probability of events that lead to a decrease in the number of species in range state i

through within-region speciation for either widespread or endemic species.

B−
i

= Probability of events that lead to a decrease in the number of pecies in range state i

through between-region speciation for widespread species.

E−
i

= Probability of events that lead to a decrease in the number of species in range state i

through extinction for either widespread species (local extinction) or endemic species

(species extinction).
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D−
i

= Probability of events that lead to a decrease in the number of species in range state i

through range dispersal event for endemic species.

Next, consider an n-region GeoSSE model where n ∈ Z
+, we define the following

state space and variable,

R = state space for regions e.g., R = {A, B}.
S = state space for species ranges e.g., S = {{A}, {B}, {A, B}}

Ni = number of species with range stateiwherei ∈ S.

Then, we define the following rate parameters,

dk� = per lineage dispersal rate of any species in regionkto colonize region�.

w� = per lineage within-region speciation rate of any species in region �.

bi
j = per lineage between-region speciation rate of a widespread species into.

two daughter species with rangesiand j, respectively. Note that bi
j ≡ b

j

i .

e� = local extinction rate of any species in region �.

Thus, both w� and bi
j determine state-dependent speciation rate, e� determines state-

dependent extinction rate, and dk� and (among widespread species) e� determine the

anagenetic state transition rate.

We define a stochastic process {Ni (t)} with infinitesimal mean μi = E(d Ni/dt)

and variance σ 2
i = var(d Ni/dt). Here, Ni (t) represents the number of species with

range state i at time t . The infinitesimal mean μi and variance σ 2
i follow directly from

Lemma 2. We derive the transition probabilities described in Eq. (4) in the context of

the GeoSSE model, as shown in Eqs. (13)–(15).

Each of these probabilities describe possible events in a GeoSSE model occurring

within an infinitesimal time step that result in gaining a new species with range state i

(P+
i ), losing a species with range state i (P−

i ), and neither losing nor gaining a species

with range state i (Pi ).

P
+
i

�t = W+
i

+ D+
i

+ B+
i

+ E+
i

=
∑

j∈S

∑

�∈ j
{�}=i

N j w��t

︸ ︷︷ ︸

W+
i

+
∑

k∈i

∑

�∈i
� �=k

Ni\{�}dk��t

︸ ︷︷ ︸

D+
i

+
∑

j∈S
i⊂ j

N j bi
j\i �t

︸ ︷︷ ︸

B+
i

+
∑

j∈S
| j\i |=1

∑

�∈ j\i

N j e��t

︸ ︷︷ ︸

E+
i

(13)

P
−
i

�t = W−
i

+ D−
i

+ B−
i

+ E−
i

= 0
︸︷︷︸

W−
i

+
∑

k∈i
|i |<R

∑

�∈R\{k}
Ni dk��t

︸ ︷︷ ︸

D−
i

+
∑

j∈S
j⊂i

1

2
Ni b

j
i\ j

�t

︸ ︷︷ ︸

B−
i

+
∑

�∈R
�∈i

Ni e��t

︸ ︷︷ ︸

E−
i

(14)
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Fig. 3 Graphical illustrations of probabilities of events following Eq. (13) shown in (a), and Eq. (14) shown

in (b) for a 2-region GeoSSE system with state space S = {{A}, {B}, {A, B}}. Ni represents the number

of species with range state i ∈ S. An incoming arrow into Ni compartment means there is an increase in

species count with range state i and an outgoing arrow from Ni means there is a decrease in species count

with range state i . All the events and arrows are color-coded accordingly (Color figure online)

Pi �t = 1 −
(

P
+
i

+ P
−
i

)

�t . (15)

For clarity, we provide the biogeographic interpretation on how each term in

Eqs. 13–15 is derived and a graphical illustration of the events in Fig. 3.

1. W+
i

. To gain a new species with range state i through a within-region speciation

event, the new species range i must contain only region � (� ∈ i and |i | = 1).

This endemic species can undergo a speciation event with probability w�Ni . Any

species with range state j that also occupies region � can undergo a within-region

speciation event with probability w�

∑

j∈S 1i⊆ j N j . The total probability of this

event occurring within �t is,

∑

j∈S

∑

�∈ j
{�}=i

N jw��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

W +
{A} =

(

N{A,B} + N{A}
)

wA�t

W +
{B} =

(

N{A,B} + N{B}
)

wB�t

W +
{A,B} = 0.

2. D+
i

. To gain a new species with range state i through a dispersal event, the species

adds the new region � to its ancestral range. Species are always widespread imme-

diately following dispersal. The total probability of this event occurring within �t

is,
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∑

k∈i

∑

�∈i
� �=k

Ni\{�}dk��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

D+
{A} = 0

D+
{B} = 0

D+
{A,B} = N{B}dB A�t + N{A}dAB�t .

3. B+
i

. To gain a new species with range state i through a between-region speciation

event, the new species can be either endemic or widespread |i | > 0 that originated

from a widespread ancestral species with larger range state j (i ⊂ j). In general,

we have no information of whether the new species occurs in left or right lineage

following a speciation event, so we do not consider the orientation. The total

probability of this event occurring within �t is,

∑

j∈S
i⊂ j

N j b
i
j\i�t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

B+
{A} = N{A,B}b

A
B�t

B+
{B} = N{A,B}b

B
A�t

B+
{A,B} = 0.

4. E+
i

. To gain a new species with range state i through a local extinction event, the

ancestral species must have a larger range state j with size that differs by 1 from

the new species’ range state i such that | j\i | = 1. The total probability of this

event occurring within �t is,

∑

j∈S
| j\i |=1

∑

�∈ j\i

N j e��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

E+
{A} = N{A,B}eB�t

E+
{B} = N{A,B}eA�t

E+
{A,B} = 0.

123



A Diffusion-Based Approach for Simulating… Page 13 of 46   101 

5. W−
i

. The probability of losing a either endemic or widespread species with range

state i through a within-region speciation event is 0. This is because the event will

only increase the local abundance in a region and causes the widespread abundance

to remain unchanged.

6. D−
i

. To lose a species with range state i through a dispersal event, the species

must disperse to a new region. The species count remains unchanged if the

species already occupies all regions (|i | = |R|). The total probability of this event

occurring within �t is,

∑

k∈i
|i |<R

∑

�∈R\{k}
Ni dk��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

D−
{A} = N{A}dAB�t

D−
{B} = N{B}dB A�t

D−
{A,B} = 0.

7. B−
i

. To lose a species with range state i through a between-region speciation event,

the species must be widespread and undergo a speciation event that gives rise to

a new species in state j with smaller range state size (| j | < |i |). The factor of

1/2 corrects for double-counting the new species with range j being either the left

daughter or right daughter lineage. The total probability of this event occurring

within �t is,

∑

j∈S
| j |<|i |

1

2
Ni b

j
i\ j�t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

B−
{A} = 0

B−
{B} = 0

B−
{A,B} = 1

2
N{A,B}

(

bA
B + bB

A

)

�t .

8. E−
i

. To lose a species with range state i through a local extinction event, a species

must undergo an extinction event in one of its regions. If the species is endemic,

this event leads to total extinction of the species. The total probability of this event
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occurring within �t is,

∑

�∈R
�∈i

Ni e��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

E−
{A} = N{A}eA�t

E−
{B} = N{B}eB�t

E−
{A,B} = N{A,B} (eA + eB)�t .

The next section uses Eqs. 13–15 to define the stochastic process {�i (t) : t > 0}
that models the frequency of species in range state i at time t. The infinitesimal mean

μ�i
and variance σ 2

�i
follow directly from Lemma 3.

2.5 Comparison on Diffusion-Based and Tree-BasedModels Using Simulation

In this section we show that our diffusion-based approach correctly models the tempo-

ral behaviour of range state frequencies in a GeoSSE model. To validate, we compare

our results with a tree-based approach that explicitly simulates phylogenetic trees

under the same GeoSSE parameter values using the MASTER package (Vaughan and

Drummond 2013) implemented in BEAST2 (Bouckaert et al. 2014). When simulat-

ing given a large number of species initially, N (0) >> 0, both diffusion-based and

MASTER-based simulations are conditioned only for the process to run until a specific

elapsed time T . Later in “Appendix 5.6”, when we simulate using both approaches

starting with a single species in random state, N (0) = 1, we condition the process

under both elapsed time and survival until the present. Details for setting up reaction

equations for the MASTER simulation can be found in “Appendix 5.5”.

For simulations under a diffusion, we generate sample paths on [0, T ], where T is

the simulation running time. Each simulation yields a time-series of state frequencies

for the provided SSE rate values. Simulations were generated as follows:

1. Given the following Itô stochastic differential equation (SDE) and the initial

number of species in each range state, Ni (0),∀i ∈ S,

d Ni = μi (t)dt + σi (t)dWt , (16)

where dWt is a Wiener process, we draw a sample path by using the following

approximation,

Ni (t + �t) = Ni (t) + μi (t)�t + σi (t)
√

�tUt , (17)
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where
√

�tUt ∼
√

�t N (0, 1) is a (discretized) standard Wiener process, and

μi (t) and σi (t) are computed using Eqs (7)–(8), respectively.

2. Given Ni (t + �t) for each i ∈ S from step 1, we compute the total number of

species at t + �t ∈ [0, T ]

N (t + �t) =
∑

i∈S

Ni (t + �t).

3. Next, using Ni (t) and N (t) from steps 1-2, we compute the infinitesimal mean,

μ�i
(t), and infinitesimal variance, σ�i

(t) using Eqs. (9)–(10), respectively. Given

μ�i
(t), σ�i

(t), and the following Itô SDE with the initial frequency of species of

range state i , �i (0) = Ni (0)
N (0)

,

d�i = μ�i
(t)dt + σ�i

(t)dWt , (18)

where dWt is a Wiener process, we draw a sample path by using the following

approximation,

�i (t + �t) = �i (t) + μ�i
(t)�t + σ�i

(t)
√

�tUt , (19)

where
√

�tUt ∼
√

�t N (0, 1) is a (discretized) standard Wiener process.

In Sect. 3.1, we show that the dynamic of the range state frequencies can be well-

approximated using the diffusion-based framework. We provide different examples

through numerical simulations under a variety of GeoSSE scenarios to visualize this

result. Specifically, we apply the following procedure,

1. We consider a 3-region GeoSSE model, then we simulate range state dynam-

ics using tree-based approach (via the MASTER package in BEAST2) and the

diffusion-based approach over 1000 replicates on [0, 10] time interval with 1000

time steps. Note that if one simulates over a longer time interval, then one needs to

choose larger time steps to reduce the chance that multiple events occur within �t

for the diffusion-based approach. For diffusion-based approach, at each time step,

we assign a zero value to any state with a count less than zero since the number

of species in any range states cannot be negative. This is reasonable because if

Ni (t) = 0, then some events are not permitted such as a local extinction. Note that

although some Ni ’s might be equal to 0, it is very unlikely for the whole clade to

become extinct, i.e., N (t) = 0, given a relatively large clade size at the beginning

of each process (Fig. 4) and value of each parameter we pick for the simulations

(Figs. 5, 6, 7, 8). We consider the following scenarios for the GeoSSE model,

Example 1 GeoSSE model with only within-region speciation and between-region

speciation events (Fig. 5).

Example 2 GeoSSE model with only within-region speciation and range dispersal

events (Fig. 6).
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Fig. 4 For each diffusion-based and MASTER-based simulation, we assume that we start each Ni (t)

simulation, given a relatively large clade size at the beginning, N (0) >> 0

Example 3 GeoSSE model with only within-region speciation and local extinction

events (Fig. 7).

Example 4 GeoSSE model with all the events included (Fig. 8).

2. We visualize the trajectory of mean state counts for each range state from both

diffusion and tree-based approaches. For each simulation, we start the forward-

in-time simulation given relatively large clade size for diffusion-based approach

to accurately predict the dynamics given by tree-based approach from MASTER

simulations. We also visualize stacked bar charts of expected state frequencies for

both approaches. To compute the state frequencies under the tree-based approach

across replicates, we use the following analytical formula

�i (t) = Ni (t)
∑

i∈S Ni (t)
.

We simulate frequency trajectories under the diffusion-based approach using

Eq. (19). Also for diffusion-based approach, we normalize �i (t) at each time step

for each i ∈ S. Thus, keeping �i (t) ≤ 1 at any time.
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Fig. 5 Top & middle panels: the trajectories of average count of range states for endemic species (b–c)

and widespread species (d–g) over [0, 10] time interval and over 1000 simulations runs for the three-

region GeoSSE model as described in Example 1 each simulated under both diffusion-based process (red

line) and tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates

simulated under diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies

over time using diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the

process with N (0) = 40 and the following initial state frequencies: �{A}(0) = �{B}(0) = �{C}(0) =
�{A,B}(0) = �{A,C}(0) = �{B,C}(0) = �{A,B,C}(0) = 1

7 . At t = 10, the mean frequencies for

each range state from both diffusion-based and tree-based simulations are as follows: �̄
di f f usion
{A} = 0.29,

�̄tree
{A} = 0.29; �̄

di f f usion
{B} = 0.29, �̄tree

{B} = 0.29; �̄
di f f usion
{C} = 0.29, �̄tree

{C} = 0.28; �̄
di f f usion
{A,B} =

0.04, �̄tree
{A,B} = 0.04; �̄

di f f usion
{A,C} = 0.04, �̄tree

{A,C} = 0.04; �̄
di f f usion
{B,C} = 0.04, �̄tree

{B,C} = 0.05;

�̄
di f f usion
{A,B,C} = 0.01, �̄tree

{A,B,C} = 0.01. Simulations are conducted using the following parameter values:

wA = wB = wC = 0.03, bA
B

= 0.08, bA
C

= 0.10, bB
C

= 0.06, bA
BC

= 0.04, bB
AC

= 0.12, bC
AB

=
0.06, eA = eB = eC = 0, dAB = dB A = dAC = dC A = dBC = dC B = 0 (Color figure online)
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Fig. 6 Top & middle panels: the trajectories of average count of range states for endemic species (a–c)

and widespread species (d–g) over [0, 10] time interval and over 1000 simulations runs for the three-region

GeoSSE model as described in Example 2 simulated under both diffusion-based process (red line) and tree-

based process (black line). The gray trajectories show the dynamics across 1000 replicates simulated under

diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies over time using

diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the process with

N (0) = 40 and the following initial state frequencies: �{A}(0) = �{B}(0) = �{C}(0) = �{A,B}(0) =
�{A,C}(0) = �{B,C}(0) = 1

6 , �{A,B,C}(0) = 0. At t = 10, the mean frequencies for each range state

from both diffusion-based and tree-based simulations are as follows: �̄
di f f usion
{A} = 0.14, �̄tree

{A} = 0.15;

�̄
di f f usion
{B} = 0.14, �̄tree

{B} = 0.14; �̄
di f f usion
{C} = 0.13, �̄tree

{C} = 0.13; �̄
di f f usion
{A,B} = 0.08, �̄tree

{A,B} =
0.09; �̄

di f f usion
{A,C} = 0.11, �̄tree

{A,C} = 0.11; �̄
di f f usion
{B,C} = 0.13, �̄tree

{B,C} = 0.13; �̄
di f f usion
{A,B,C} = 0.27,

�̄tree
{A,B,C} = 0.25. Simulations are conducted using the following parameter values: wA = wB = wC =

0.03, bA
B

= bA
C

= bB
C

= bA
BC

= bB
AC

= bC
AB

= 0, eA = eB = eC = 0, dAB = dB A = 0.03, dAC =
dC A = 0.04, dBC = dC B = 0.05 (Color figure online)
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Fig. 7 Top & middle panels: the trajectories of average count of range states for endemic species (a–c)

and widespread species (d–g) over [0, 10] time interval and over 1000 simulations runs for the three-

region GeoSSE model as described in Example 3 simulated under both diffusion-based process (red

line) and tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates

simulated under diffusion-based process. Bottom panel: stacked bar chart showing the state frequen-

cies over time using diffusion-based approach (h) and tree-based approach (i). In both approaches, we

start the process with N (0) = 40 and the following initial state frequencies: �{A}(0) = �{B}(0) =
�{C}(0) = �{A,B}(0) = �{A,C}(0) = �{B,C}(0) = �{A,B,C}(0) = 1

7 , the mean frequencies for

each range state from both diffusion-based and tree-based simulations are as follows: �̄
di f f usion
{A} = 0.26,

�̄tree
{A} = 0.26; �̄

di f f usion
{B} = 0.23, �̄tree

{B} = 0.23; �̄
di f f usion
{C} = 0.21, �̄tree

{C} = 0.21; �̄
di f f usion
{A,B} =

0.09, �̄tree
{A,B} = 0.09; �̄

di f f usion
{A,C} = 0.08, �̄tree

{A,C} = 0.08; �̄
di f f usion
{B,C} = 0.07, �̄tree

{B,C} = 0.07;

�̄
di f f usion
{A,B,C} = 0.06, �̄tree

{A,B,C} = 0.06. Simulations are conducted using the following parameter values:

wA = wB = wC = 0.03, bA
B

= bA
C

= bB
C

= bA
BC

= bB
AC

= bC
AB

= 0, eA = 0.01, eB = 0.02, eC =
0.025, dAB = dB A = dAC = dC A = dBC = dC B = 0 (Color figure online)
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Fig. 8 Top & middle panels: the trajectories of average count of range states for endemic species (a–c)

and widespread species (d–g) over [0, 10] time interval and over 1000 simulations runs for the three-region

GeoSSE model as described in Example 4 simulated under the diffusion-based process (red line) and

tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates simulated

under diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies over time

using diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the process

with N (0) = 40 and the following initial state frequencies: �{A,B}(0) = �{A,C}(0) = �{B,C}(0) =
�{A,B,C}(0) = 1

4 and �{A}(0) = �{B}(0) = �{C}(0) = 0. At t = 10, the mean frequencies for

each range state from both diffusion-based and tree-based simulations are as follows: �̄
di f f usion
{A} = 0.33,

�̄tree
{A} = 0.33; �̄

di f f usion
{B} = 0.21, �̄tree

{B} = 0.21; �̄
di f f usion
{C} = 0.25, �̄tree

{C} = 0.25; �̄
di f f usion
{A,B} =

0.06, �̄tree
{A,B} = 0.06; �̄

di f f usion
{A,C} = 0.06, �̄tree

{A,C} = 0.06; �̄
di f f usion
{B,C} = 0.05, �̄tree

{B,C} = 0.05;

�̄
di f f usion
{A,B,C} = 0.03, �̄tree

{A,B,C} = 0.03. Simulations are conducted using the following parameter values:

wA = 0.09, wB = 0.06, wC = 0.07, bA
B

= bA
C

= bB
C

= bA
BC

= bB
AC

= bC
AB

= 0.04, eA = 0.002, eB =
0.003, eC = 0.001, dAB = dB A = 0.006, dAC = dC A = 0.003, dBC = dC B = 0.001 (Color figure

online)
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3. We find the 95% confidence intervals of expected state counts at the end time

for both diffusion and tree-based simulations for each GeoSSE scenario described

above. Then, we apply the Welch’s unequal variances t-test (Welch 1947) for

testing the following hypothesis

H0 : μ̄Ni ,tree = μ̄Ni ,diffusion

H1 : μ̄Ni ,tree �= μ̄Ni ,diffusion,

where μ̄Ni ,tree and μ̄Ni ,diffusion are population means of state counts for range i at

the end time from tree and diffusion-based approaches, respectively.

2. We also conduct the F test for testing the following hypothesis

H0 : σ̄ 2
Ni ,tree = σ̄ 2

Ni ,diffusion

H1 : σ̄ 2
Ni ,tree �= σ̄ 2

Ni ,diffusion,

where σ̄ 2
Ni ,tree and σ̄ 2

Ni ,diffusion are population variances of state counts for range i

at the end time from tree and diffusion-based approaches, respectively.

5. We compute ratio of two sample variances for range state i as

ri,var =
s2

i,diffusion

s2
i,tree

,

where s2
i,diffusion and s2

i,tree are sample variances from diffusion- and tree-based

simulations for range state i , respectively. Then, we construct the 95% confidence

interval for ri,var.

If the diffusion-based and tree-based simulation methods are statistically indis-

tinguishable, we should fail to reject all null hypotheses and that the confidence

intervals of the ratios of variances include the value 1 at the appropriate signifi-

cance levels.

While all the diffusion-based simulations presented in the main text assume that we

always start with a relatively large clade size, this is not how phylogenetic trees are

normally simulated. Instead, most simulations generate the entire clade, beginning

with one stem or two sister lineages to represent the origin of the process. However,

the diffusion approximation assumes the number of species is large. Therefore, to

adapt our diffusion-based model for clade-generation scenarios where the initial

number of species is small, we adapted our diffusion-based simulation method

to start the process with a single species in a random state (see “Appendix 5.6”).

We show that the difference between diffusion-based and tree-based simulations

is reduced after applying the correction.
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2.6 Deriving Rate Parameters that Lead to Stationary State FrequenciesWhen N is

Large

In this section, we derive conditions for the rate parameters such that there is no change

in state frequency, �i , over time for a given a range state i ∈ S, assuming large N .

That is, we derive the conditions when d�i

dt
= 0,∀i ∈ S.

Knowing that �i = Ni

N
, we re-write Eqs. (13)–(14) as follows,

P
+
i = N

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

j∈S

∑

�∈ j
{�}=i

� jw�

︸ ︷︷ ︸

Ŵ+
i

+
∑

k∈i

∑

�∈i
� �=k

�i\{�}dk�

︸ ︷︷ ︸

D̂+
i

+
∑

j∈S
i⊂ j

� j b
i
j\i

︸ ︷︷ ︸

B̂+
i

+
∑

j∈S
| j\i |=1

∑

�∈ j\i

� j e�

︸ ︷︷ ︸

Ê+
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= N P̂
+
i (20)

P
−
i = N

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
︸︷︷︸

Ŵ−
i

+
∑

k∈i
|i |<R

∑

�∈R\{k}
�i dk�

︸ ︷︷ ︸

D̂−
i

+
∑

j∈S
j⊂i

1

2
�i b

j
i\ j

︸ ︷︷ ︸

B̂−
i

+
∑

�∈R
�∈i

�i e�

︸ ︷︷ ︸

Ê−
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= N P̂
−
i (21)

Then, Eqs. (7)–(8) can be re-written as follows

μi = N
(

P̂
+
i − P̂

−
i

)

, (22)

σ 2
i = N

(

P̂
+
i + P̂

−
i

)

. (23)

Given Eqs. (22)–(23), as N → ∞, Eqs. (9)–(10) become

μ̂�i
= lim

N→∞
μ�i

= P̂
+
i − P̂

−
i , (24)

σ̂ 2
�i

= lim
N→∞

σ 2
�i

= 0. (25)

Moreover, we no longer have the stochastic component from the SDE given in Eq. (18).

Instead, we solve the following ordinary differential equation

d�i = μ̂�i
dt
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d�i

dt
= μ̂�i

. (26)

Given stationary frequency of each range state, �̂i , where
∑

i �̂i = 1, the rate

parameters must satisfy

μ̂�i
= 0 ⇐⇒ P̂

+
i = P̂

−
i .

Furthermore, we assume all rate parameters must be positive, as all modeled events

have some non-zero probability of occurring. That is,

wi > 0, ei > 0, di j > 0,∀i, j ∈ R. and bs
t > 0,∀s, t ∈ S

Next, we define total rates of all events occurring in each range state i , 	total,i , as

follows

	total,i =
(

rW+
i

+ rD+
i

+ rB+
i

+ rE+
i

)

−
(

rD−
i

+ rB−
i

+ rE−
i

)

,

where rW+
i

, rD+
i
, rB+

i
, rE+

i
, rD−

i
, rB−

i
, rE−

i
consist of sums of rates across all adjacent

states that correspond to the events W +
i , D+

i , B+
i , E+

i , D−
i , B−

i , E−
i , respectively.

	total,i can also be thought as a flux for range state i . That is, it is a difference between

total incoming rates and outgoing rates. For example, in a two-region GeoSSE model,

we can define 	total,{A} as follows,

	total,{A} =
(

2wA + 0 + bA
B + eB

)

− (dAB + 0 + eA),

where we have rW+
{A}

= 2wA because within-region speciation rate wA is acting on

both endemic species with state {A} and widespread species with state {A, B}.

Lemma 4 Given a GeoSSE with state space S, set of stationary frequencies, {�̂i ,∀i ∈
S}, and initial state frequencies �i (0), the rate parameters satisfy the following system

of equations

P̂
+
i = P̂

−
i

	total,i

⎧

⎪
⎨

⎪
⎩

= 	total, j , if �̂i = �̂ j

> 	total, j , if �̂i > �̂ j

< 	total, j , if �̂i < �̂ j
∑

i∈S

�i (0) = 1

wi > 0, ei > 0, di j > 0, bs
t > 0,�i (0) ≥ 0, ∀i, j ∈ R and ∀s, t ∈ S. (27)

In Sect. 3.2, we demonstrate the application of Lemma 4 for a 2-region GeoSSE

model.
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2.7 Deriving Stationary State Frequencies Given Rate Parameters in a GeoSSE

Model

In this section, we use our framework to find the stationary state frequencies that

result from a given set of rate parameters. This result links the configuration of a data-

generating process to its expected pattern, which complements results from Sect. 2.6

that link expected patterns to data-generating processes. We present the result in

Lemma 5 for the case of a 2-region GeoSSE model for simplicity.

Lemma 5 Consider a 2-region GeoSSE model with state space S =
{{A}, {B}, {A, B}}. Given the rate parameters from the model and initial state fre-

quencies, �{A}(0) = �0
A, �{B}(0) = �0

B , �{A,B}(0) = �0
AB , the general solution to

Eq. (26) is given by,

� =
[

�{A}(t)
�{B}(t)

]

= C1ν1eλ1t + C2ν2eλ2t + K , (28)

and �{A,B}(t) = 1 − �{A}(t) − �{B}(t), provided that �{A}(t) + �{B}(t) ≤ 1.

Furthermore, the stationary frequencies are given by

�̂{A} = num A

denom A

, (29)

�̂{B} = 1 −
(

eA + dAB + bA
B + eB

wA + bA
B + eB

)
(

num A

denom A

)

, (30)

�̂{A,B} = 1 − �̂{A} − �̂{B}, (31)

where

num A =
(

wA + bA
B + eB

)

(eB + dB A − wB) ,

denom A =
(

eA + dAB + bA
B + eB

) (

eB + dB A + bA
B + eA

)

−
(

wB + bA
B + eA

) (

wA + bA
B + eB

)

,

R =
√

R1 + R2,

R1 = 4
(

bA
B

)2
+ 4

(

bA
BeA + bA

BeB + bA
BwA + bA

BwB

)

+4 (eAeB + eAwA + eBwB + wAwB) ,

R2 = −2dABdB A +
(

d2
AB + d2

B A

)

,

λ1 = 1

2

(

−2bA
B − dAB − dB A − 2eA − 2eB − R

)

,

λ2 = 1

2

(

−2bA
B − dAB − dB A − 2eA − 2eB + R

)

,
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ν1 =
[

− 1

2
(

bA
B+eA+wB

) (−dAB + dB A − R)

1

]

,

ν2 =
[

− 1

2
(

bA
B+eA+wB

) (−dAB + dB A + R)

1

]

,

K =
[

�̂{A}
�̂{B}

]

,

C1 =
(

�0
A − K1

) (

bA
B + eA + wB

)

R
−
(

�0
B − K2

)

(dAB − dB A − R)

2R
,

C2 =
(

K1 − �0
A

) (

bA
B + eA + wB

)

R
+
(

�0
B − K2

)
(

1 + dAB − dB A − R

2R

)

.

Proof Proof of Lemma 5 is given in “Appendix 5.4”. ��

We note that this strategy can be generalized to accommodate arbitrary mod-

els within the ClaSSE family. Specifically, as seen in the proof of Lemma 5 in

“Appendix 5.4”, for a ClaSSE model with |S| states, one only needs to find eigen-

values (either numerically or analytically) and eigenvectors that correspond to a

(|S| − 1) × (|S| − 1) matrix to obtain a general solution. The resulting solution

for the stationary frequencies would then reflect the parameterization of the particular

ClaSSE model variant being studied. Note that this approach of solving a matrix with

one dimension lower than the state space only holds providing that the sum of the

remaining frequencies is less than or equal to 1. This assumption, however, can be

ignored if one is to solve the full system by finding eigenvalues and eigenvectors that

correspond to a |S| × |S| matrix, and normalize the resulting stationary frequencies.

In Sect. 3.2, we use Lemma 5 using rates obtained from Lemma 4 to verify that the

system, indeed, converges to the true stationary frequencies that we observe through

simulations.

2.8 Deriving Time to Reach Stationary State Frequencies in a GeoSSEModel

In this section, we describe a method for deriving time to reach stationary state fre-

quencies in a 2-region GeoSSE model. Note that we have assumed a relatively large

clade size at the start of the process for simulating �i (t). Thus, the following is time

to stationary frequencies since some relatively large clade size (Fig. 4).

From Lemma 5 in Sect. 2.7, we have derived an analytical expression to compute

state frequencies over time, given large N . In order to find the time to stationarity for

each range state, we define the following procedure, as follows

1. Given the initial state frequencies, �0
A,�0

B,�0
AB , and that the system runs from

[0, T ], we find the mixing time t∗i for all i ∈ S such that,

∣
∣�i

(

t∗i
)

− �i

(

t∗i − �t
)∣
∣ < ε, (32)
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for some �t > 0 and ε > 0. t∗i is the stationary time for the range state i , given

the ε value.

2. We visually check that t∗i derived from the theory reconciles with what we observe

from simulations.

We apply this procedure to an example in Sect. 3.2.

3 Results

3.1 Diffusion-Based Approach is a Good Approximation to Tree-Based Approach

for Describing State Dynamics

In this section, we visualize the range state dynamics using tree-based and diffusion-

based approaches under several GeoSSE scenarios described in Sect. 2.5 (Figs. 5, 6,

7, 8). In all these scenarios, we show that the null hypothesis that the average counts

of the ranges states at the end of the simulation time between these approaches are

equal cannot be rejected (Table 1). This shows that the diffusion-based approach is a

good approximation for means to the tree-based approach.

In most cases, we observe that data (state counts and frequencies) simulated under

diffusion-based approach relatively have higher variances compared to data simulated

under tree-based approach (Table 1). The 95% confidence interval for the ratio of two

variances, shown in Table 1, gives an interval estimate on how much variation one

would expect to get for generating state patterns under the diffusion process. Moreover,

assuming that data simulated using the MASTER package (Vaughan and Drummond

2013) represent the true distribution of range state counts, this observation implies that

diffusion process is not a good approximation for the second moment of the sampled

state state frequencies. While this is not ideal, this is to be expected since diffusion

is an approximation method to a generative model. Therefore, we should not expect

state counts from both approaches to be drawn from the same distribution.

3.2 Multiple Rate Scenarios Lead to the Same Stationary State Frequencies

We apply the theoretical results from Sects. 2.6–2.8 for a 2-region GeoSSE model.

The different sets of relationships between rate parameters given stationary frequen-

cies in Example 5 are derived using Mathematica (Wolfram Research Inc 2023). In

this example, we show that there exist alternative rate scenarios leading to the same

stationary frequencies. Furthermore, using Lemma 5, we confirm that the stationary

frequencies observed from simulations converge to the theoretical frequencies given

the rate parameters, which are derived using Lemma 4. Using the procedure described

in Sect. 2.8, we compute time to stationary frequencies in Example 5 for each rate

scenario and different sets of initial frequencies.

Example 5 We consider a 2-region GeoSSE model with range state space S =
{{A}, {B}, {A, B}}. We find a set of rate parameters and initial state frequencies that

give the following stationary range state frequencies,
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Table 1 The sample mean count for each range state at the end of simulation time, N̄i,end , computed under tree-based and diffusion-based simulations across different

GeoSSE scenarios described in Sect. 2.5

Range state N̄i,end Lower bound Upper bound pmean pvar 95% CI ri,var

Tree Diffusion Tree Diffusion Tree Diffusion

Example 1: GeoSSE with within-region and between-region speciation events

{A} 40.835 40.897 40.517 40.156 41.153 41.638 0.880 � 0.001 [4.794, 6.144]
{B} 40.240 40.544 39.906 39.842 40.574 41.246 0.444 � 0.001 [3.908, 5.008]
{C} 39.875 40.234 39.555 39.518 40.195 40.950 0.370 � 0.001 [4.409, 5.651]
{A, B} 5.980 5.981 5.858 5.837 6.102 6.125 0.992 � 0.001 [1.219, 1.562]
{A, C} 6.239 6.305 6.107 6.128 6.371 6.481 0.558 � 0.001 [1.587, 2.033]
{B, C} 6.506 6.625 6.391 6.494 6.621 6.756 0.182 � 0.001 [1.139, 1.459]
{A, B, C} 1.185 1.112 1.121 1.048 1.25 1.176 0.115 0.782 [0.899, 1.152]
Example 2: GeoSSE with within-region speciation and dispersal events

{A} 14.689 14.642 14.450 14.282 14.928 15.002 0.831 � 0.001 [2.002, 2.566]
{B} 13.960 13.993 13.728 13.637 14.192 14.349 0.879 � 0.001 [2.076, 2.661]
{C} 13.339 13.387 13.109 13.035 13.568 13.739 0.823 � 0.001 [2.082, 2.669]
{A, B} 8.870 8.740 8.707 8.512 9.033 8.968 0.363 � 0.001 [1.732, 2.220]
{A, C} 11.107 10.870 10.930 10.596 11.284 11.144 0.155 � 0.001 [2.113, 2.709]
{B, C} 13.175 13.172 12.985 12.853 13.365 13.491 0.987 � 0.001 [2.482, 3.182]
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Table 1 continued

Range state N̄i,end Lower bound Upper bound pmean pvar 95% CI ri,var

Tree Diffusion Tree Diffusion Tree Diffusion

{A, B, C} 24.427 24.790 24.189 24.172 24.665 25.408 0.283 � 0.001 [5.968, 7.649]
Example 3: GeoSSE with within-region speciation and local extinction events

{A} 25.672 25.950 25.385 25.550 25.959 26.350 0.269 � 0.001 [1.714, 2.196]
{B} 22.540 22.630 22.266 22.262 22.814 22.998 0.701 � 0.001 [1.592, 2.040]
{C} 20.804 21.179 20.536 20.825 21.072 21.533 0.098 � 0.001 [1.547, 1.983]
{A, B} 8.960 9.105 8.843 8.973 9.077 9.237 0.108 < 0.001 [1.111, 1.425]
{A, C} 8.467 8.370 8.355 8.244 8.579 8.496 0.260 < 0.001 [1.109, 1.421]
{B, C} 7.007 7.024 6.902 6.911 7.112 7.137 0.829 0.027 [1.016, 1.302]
{A, B, C} 5.805 5.811 5.703 5.711 5.907 5.911 0.934 0.469 [0.844, 1.081]
Example 4: GeoSSE with full events

{A} 53.067 53.494 52.420 52.235 53.714 54.753 0.555 � 0.001 [3.347, 4.290]
{B} 33.919 34.425 33.472 33.575 34.366 35.275 0.302 � 0.001 [3.193, 4.092]
{C} 39.981 41.044 39.476 40.060 40.486 42.028 0.060 � 0.001 [3.353, 4.297]
{A, B} 10.096 10.193 9.942 9.968 10.250 10.418 0.486 � 0.001 [1.880, 2.409]
{A, C} 9.229 9.224 9.091 9.028 9.367 9.420 0.967 � 0.001 [1.772, 2.271]
{B, C} 8.309 8.138 8.181 7.969 8.437 8.307 0.115 � 0.001 [1.526, 1.956]
{A, B, C} 3.897 3.890 3.789 3.767 4.005 4.013 0.933 � 0.001 [1.149, 1.472]

The “Lower bound" and “Upper bound" represent the 95% confidence interval of the average count for each range state using diffusion and tree based approaches. The

“95% CI ri,var " correspond to the 95% confidence interval of the ratio of two sample variances from diffusion and tree based approaches for range state i . pvar and pmean

correspond to p value from the F test and the Welch’s unequal variances t-test, respectively

1
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�̂{A} = 1

3
, �̂{B} = 1

3
, �̂{A,B} = 1

3
.

That is, by Eq. (27), we have,

2

3
wA + 1

3
bA

B + 1

3
eB = 1

3
(dAB + eA)

2

3
wB + 1

3
bA

B + 1

3
eA = 1

3
(dB A + eB)

1

3
(dAB + dB A) = 1

3
(bA

B + eA + eB)

2wA + bA
B + eB − eA − dAB = 2wB + bA

B + eA − eB − dB A

2wB + bA
B + eA − eB − dB A = dAB + dB A − bA

B − (eA + eB)
∑

i∈S

�i (0) = 1, �{A}(0),�{B}(0),�{A,B}(0) ≥ 0

wA, wB, eA, eB , dAB , dB A, bA
B > 0. (33)

We found a set of solutions to Eq. (33). That is,

wA = 1

2

(

−2bA
B + 2dAB + dB A − 2eB

)

wB = 1

2
(−dAB + 2eB)

eA = −bA
B + dAB + dB A − eB

0 < bA
B ≤ dAB − eB, eB < dAB < 2eB

dB A > 0, eB > 0. (34)

Another set of solutions is given by,

wA = 1

2

(

−2bA
B + 2dAB + dB A − 2eB

)

wB = 1

2
(−dAB + 2eB)

eA = −bA
B + dAB + dB A − eB

bA
B > 0, 0 < dAB ≤ eB

dB A > 2
(

bA
B − dAB + eB

)

, eB > 0. (35)

Next, we simulate the range state dynamics, shown in Fig. 9, using the method
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Fig. 9 The expected range state dynamics over [0, 250] time interval and over 100 trajectories for

the two-region GeoSSE model as described in Example. 5. Each process is simulated under the fol-

lowing initial state frequencies and rate parameters according to Eq. (34): (Left panel) �{A}(0) =
�{B}(0) = 0.45,�{A,B}(0) = 0.1, wA = 0.090, eA = 0.176, wB ≈ 0, eB = 0.008, dAB =
0.015, dB A = 0.173, bA

B
= 0.004; (Right panel) �{A}(0) = 0.1,�{B}(0) = �{A,B}(0) = 0.45, wA =

0.160, eA = 0.315, wB = 0.002, eB = 0.009, dAB = 0.014, dB A = 0.310, bA
B

= 0.001. In both pan-

els, E(�̂{A}) → 1
3 , E(�̂{B}) → 1

3 , E(�̂{A,B}) → 1
3 . Using Lemma 5, we confirm that these expected

stationary frequencies from simulations converge to the theoretical, and true stationary frequencies given

these sets of rates. Furthermore, using the procedure described in Sect. 2.8 with ε = 10−9, we found that

the stationary frequencies are reached at: t∗
A

= 114.114, t∗
B

= 111.862, t∗
AB

= 102.603 (Left panel);

t∗
A

= 76.827, t∗
B

= 75.576, t∗
AB

= 70.320 (Right panel) (Color figure online)

described in Sect. 2.5 and rate parameters chosen according to Eq. (34).

To show that there are multiple rate scenarios that lead to the same stationary distri-

bution, we simulate the range state dynamics, shown in Fig. 10, using rate parameters

that satisfy the alternative set of solutions described in Eq. (35), but do not satisfy

Eq. (34).

3.3 Comparing Our Method of Computing Stationary State Frequencies with

Existing Literature

In this section, we compare our method for computing stationary state frequencies from

rate parameters introduced in Sect. 2.7 with another method used in diversitree pack-

age (FitzJohn 2012) for the ClaSSE (Goldberg and Igić 2012) and GeoSSE (Goldberg

et al. 2011) models. Although the technique used in diversitree has not been dis-

cussed in any SSE papers, such as the papers introducing the MuSSE (FitzJohn 2012),

ClaSSE (Goldberg and Igić 2012), and GeoSSE (Goldberg et al. 2011) models, the

technique applies projection matrix models that are widely used in the context of pop-

ulation biology to obtain ClaSSE and GeoSSE stationary frequencies (pers. comm. E.

E. Goldberg and R. FitzJohn). Originally developed for applications in discrete-time

models with either size-structured or age-structured population (Van Groenendael

et al. 1988), this approach has also been adapted for continuous-time models with
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Fig. 10 The expected range state dynamics over [0, 60] time interval and over 100 trajectories for the

two-region GeoSSE model as described in Example. 5. Each process is simulated under the following

initial state frequencies and rate parameters according to Eq. (35): (Left panel) �{A}(0) = �{B}(0) =
0.45,�{A,B}(0) = 0.1, wA = 0.107, eA = 0.309, wB = 0.008, eB = 0.008, dAB = 0.001, dB A =
0.405, bA

B
= 0.089; (Right panel) �{A}(0) = 0.1,�{B}(0) = �{A,B}(0) = 0.45, wA = 0.049, eA =

0.470, wB = 0.005, eB = 0.008, dAB = 0.006, dB A = 0.843, bA
B

= 0.371. In both panels, E(�̂{A}) →
1
3 , E(�̂{B}) → 1

3 , E(�̂{A,B}) → 1
3 . Using Lemma 5, we confirm that these expected stationary frequencies

from simulations converge to the theoretical, and true stationary frequencies given these sets of rates.

Furthermore, using the procedure described in Sect. 2.8 with ε = 10−9, we found that the stationary

frequencies are reached at: t∗
A

= 53.153, t∗
B

= 51.952, t∗
AB

= 48.048 (Left panel); t∗
A

= 30.781, t∗
B

=
30.330, t∗

AB
= 28.378 (Right panel) (Color figure online)

the latter structured population (Kapur 1979). Under this approach, one would cre-

ate a square matrix with entries that map the state of a structured population from

one time to the next. Then, the dominant eigenvalue of such matrix represents

the overall population growth rate with its eigenvector represents the stable stage

distribution (Van Groenendael et al. 1988).

Through examples below we find that our method returns similar state frequencies

to those computed under the projection matrix model in diversitree package (FitzJohn

2012). For example, under the following rate parameters in a two-region GeoSSE

model,

wA = 0.01, wB = 0.02, bA
B = 0.003, eA = 0.169, eB = 0.008,

dAB = 0.002, dB A = 0.178,

our method gives �̂{A} ≈ 0.057, �̂{B} ≈ 0.506, �̂{A,B} ≈ 0.437 while the pro-

jection matrix approach implemented in diversitree returns �̂{A} ≈ 0.055, �̂{B} ≈
0.490, �̂{A,B} ≈ 0.455. Another example using the following rate parameters,

wA ≈ 0.0006, wB ≈ 0.0003, bA
B ≈ 0, eA ≈ 0.0048,

eB ≈ 0.0045, dAB ≈ 0.0370, dB A ≈ 0.03703,
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Fig. 11 The trajectories of mean counts of range states for endemic species (a–c) and widespread species (d–

g) over the [0, 10] time interval. Trajectories were simulated under the diffusion-based process (red line) and

tree-based process (black line), starting with 1 species in a random state. For each starting state, we simulate

150 trajectories (1050 trajectories in total) for each approach. The gray trajectories show the dynamics across

1050 replicates simulated under diffusion-based process. Simulations are conducted using the following

parameter values: wA = 0.36, wB = 0.24, wC = 0.28, bA
B

= bA
C

= bB
C

= bA
BC

= bB
AC

= bC
AB

=
0.16, eA = 0.02, eB = 0.03, eC = 0.01, dAB = dB A = 0.12, dAC = dC A = 0.06, dBC = dC B = 0.02

(Color figure online)

we have �̂{A} ≈ 0.0996, �̂{B} ≈ 0.0996, �̂{A,B} ≈ 0.8008 while the other method

produces �̂{A} ≈ 0.0997, �̂{B} ≈ 0.0997, �̂{A,B} ≈ 0.8006.

4 Discussion and Conclusion

In our paper, we have constructed a general framework using diffusion processes

to study state dynamics over time from a general state-dependent speciation and

extinction model with both anagenetic and cladogenetic state transitions, making it

suitable for studying members of the ClaSSE model family (Goldberg and Igić 2012;

Magnuson-Ford and Otto 2012; Goldberg et al. 2011; Freyman and Höhna 2018). We

have applied this framework under various diversification scenarios for the GeoSSE

model (Goldberg et al. 2011), a special case of the ClaSSE model, as described in

Sects. 2.4–2.5. Our framework can easily be applied to other discrete state-dependent

diversification models, such as simpler BiSSE and MuSSE models (Maddison et al.

2007; FitzJohn 2012) and Markovian Binary Tree (MBT) models (Kontoleon 2006;

Hautphenne et al. 2009; Soewongsono et al. 2023). Through simulations and statis-

tical analyses, we have shown that state dynamics simulated under diffusion-based

approach and tree-based approach are comparable, given that we start the simula-

tions with relative large clade size (Figs. 5, 6, 7, 8, Table 1). We also obtain good

agreement between diffusion-based and tree-based simulations when beginning the

process with a single species in random state, after applying a model-based correc-

tion procedure (“Appendix 5.6”, Fig. 12). We also show, using a statistical test, that

our diffusion framework offers a good approximation for the mean of state counts.

This result allows one to understand how data generating process i.e. rate parameters
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from a diversification model can explain observed state patterns without using phy-

logenetic information. For inferring rates using empirical state data at present, this

diffusion-based approach to simulate state dynamics could be treated as a way to vali-

date whether rates estimated from biological datasets using phylogenetic methods are

sensible.

Moreover, in Sects. 2.6–2.7, we have derived theoretical results to deduce the

expected state frequencies generated by a set of rates, and what possible rates will

generate a given set of expected state frequencies. These results are generalizable to

accommodate a system having more states, and provide an alternative way to validate

the correctness of SSE simulation and inference methods. Additionally, in Sect. 2.8, we

described a procedure to compute the minimum time for an SSE process to reach sta-

tionarity in its state frequencies. We have applied these results for a 2-region GeoSSE

model. As seen in Figs. 9 and 10, we showed that there exist multiple different rate sce-

narios that can lead to the same stationary behaviour of state pattern. Our framework

also creates an alternative mathematical approach to tree-based models that could help

establish conditions for which SSE model parameters are and are not identifiable.

We next plan to study the time for perturbed SSE models to reach stationarity.

This would help biologists understand how evolutionary systems re-equilibrate and

how long that re-equilibration takes following perturbation. In particular, we plan to

apply this framework to study scenarios where SSE rates shift across time (Condamine

et al. 2013; Quintero et al. 2023). Scenarios with time-heterogeneous rates are par-

ticularly interesting for GeoSSE model variants, mainly because regions experience

changes in their features (e.g., region size, distance with nearby regions, separation

types) over time. As studied in Landis et al. (2022) and Swiston and Landis (2023),

paleogeographically-changing regional features should influence rates of speciation,

extinction, and dispersal over time. Mathematical knowledge of expected state (range)

frequencies for arbitrary biogeographical systems could help biodiversity researchers

assess whether certain clades of regions are within or between states of equilibrium.

5 Appendix

5.1 Proof of Lemma 1

From Eq. (1), we compute g′(N ) and g′′(N ),

g′(N ) = ∂g

∂ N
=

∂
(∑

i h(ni )
)

∂ N

=
∂
(∑

i h(ni )
)

∂ni

(For each i, the other partial derivatives w.r.t j �= iequals 0)

= ∂g

∂ni

= ∂ X

∂ni

. (36)
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Similarly, we have,

g′′(N ) = ∂2 X

∂n2
i

. (37)

Now applying Theorem (1) to Eq. (1), we have,

μX =
∑

i

∂ X

∂ni

μi + 1

2

∑

i

∂2 X

∂n2
i

σ 2
i , (38)

σ 2
X =

∑

i

(
∂ X

∂ni

)2

σ 2
i . (39)

��

5.2 Proof of Lemma 2

By definition, following Eqs. 1.2–1.3 of Chapter 5 in Karlin and Taylor (1981), we

define the infinitesimal mean μi and infinitesimal variance σ 2
i of the stochastic process

{Ni (t) : t > 0} as follows,

μi = lim
�t→0

1

�t
E (Ni (t + �t) − Ni (t)|Ni (t) = Ni )

= lim
�t→0

1

�t
{E(Ni (t + �t)) − E(Ni (t)|Ni (t) = Ni )}

= lim
�t→0

1

�t
{E(Ni (t + �t)) − Ni },

σ 2
i = lim

�t→0

1

�t
E

(

(Ni (t + �t) − Ni (t))
2|Ni (t) = Ni

)

= lim
�t→0

1

�t
E

(

N 2
i (t + �t) − 2Ni (t)Ni (t + �t) + N 2

i (t)|Ni (t)
)

= lim
�t→0

1

�t
{E
(

N 2
i (t + �t)

)

− 2Ni E (Ni (t + �t)) + N 2
i }.

By definition of the first-order and second-order moments we have,

E(Ni (t + �t)) = (Ni + 1)P+
i �t + (Ni − 1)P−

i �t + (Ni )Pi�t

= Ni

(

P
+
i + P

−
i + Pi

)

�t +
(

P
+
i − P

−
i

)

�t

= Ni +
(

P
+
i − P

−
i

)

�t,

E(N 2
i (t + �t) = (Ni + 1)2

P
+
i �t + (Ni − 1)2

P
−
i �t + (Ni )

2
Pi�t .
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Thus,

μi = P
+
i − P

−
i , (40)

σ 2
i = P

+
i + P

−
i . (41)

��

5.3 Proof of Lemma 3

We compute the following and substitute to Eqs. (2)–(3).

∂�i

∂ Ni

= ∂

∂ Ni

⎛

⎝
Ni

∑

k∈s
k �=i

Nk + Ni

⎞

⎠

=

∑

k∈S
k �=i

Nk

(∑

k∈S Nk

)2

= 1 − �i

N
,

∂�i

∂ N j

= ∂

∂ N j

⎛

⎝
Ni

∑

k∈s
k �=i

Nk + Ni

⎞

⎠ , j �= i

= − Ni

N 2

= −�i

N
,

∂2�i

∂ N 2
i

= ∂

∂ Ni

(
1 − �i

N

)

=
− ∂�i

∂ Ni
N − (1 − �i )

∂ N
∂ Ni

)

N 2

= −(1 − �i ) − (1 − �i )

N 2

= −2(1 − �i )

N 2
,

∂2�i

∂ N 2
j

= ∂

∂ N j

(

− Ni

N 2

)

, j �= i

= Ni (2N )

N 4

= 2�i N

N 3

= 2�i

N 2
.
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Thus,

μ�i
=
∑

j∈S

∂�i

∂ N j

μ j + 1

2

∑

j∈S

∂2�i

∂ N 2
j

σ 2
j

= ∂�i

∂ Ni

μi +
∑

j∈S
j �=i

∂�i

∂ N j

μ j + 1

2

∂2�i

∂ N 2
i

σ 2
i + 1

2

∑

j∈S
j �=i

∂2�i

∂ N 2
j

σ 2
j

= 1 − �i

N
μi +

∑

j∈S
j �=i

−�i

N
μ j − 1 − �i

N 2
σ 2

i +
∑

j∈S
j �=i

�i

N 2
σ 2

j

=
(

1 − �i

N

)
(

μi −
σ 2

i

N

)

+
∑

j∈S
j �=i

�i

N

(

−μ j +
σ 2

j

N

)

= 1

N

(

μi −
σ 2

i

N

)

+ �i

N

∑

j∈S

(

−μ j +
σ 2

j

N

)

, (42)

σ 2
�i

=
∑

j∈S

(
∂�i

∂ N j

)2

σ 2
j

=
(

∂�i

∂ Ni

)2

σ 2
i +

∑

j∈S
j �=i

(
∂�i

∂ N j

)2

σ 2
j

=
(

1 − �i

N

)2

σ 2
i +

∑

j∈S
j �=i

(
�i

N

)2

σ 2
j

=
(σi

N

)2
(1 − 2�i ) +

(
�i

N

)2 ∑

j∈S

σ 2
j , (43)

where μi and σ 2
i follow Eqs. (7)–(8), respectively. ��

5.4 Proof of Lemma 5

We find �̂i such that limt→∞ �i (t) = �̂i for all i ∈ S, S = {{A}, {B}, {A, B}}.
For i = {A} we have,

μ̂�A
= P̂

+
A − P̂

−
A

=
[

wA

(

�{A} + �{A,B}
)

+ �{A,B}b
A
B + eB�{A,B}

]

−
[

dAB�{A} + eA�{A}
]

= �{A} (wA − eA − dAB) + �{A,B}
(

wA + bA
B + eB

)

. (44)
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For i = {B} we have,

μ̂�B
= P̂

+
B − P̂

−
B

=
[

wB

(

�{B} + �{A,B}
)

+ �{A,B}b
A
B + eA�{A,B}

]

−
[

dB A�{B} + eB�{B}
]

= �{B} (wB − eB − dB A) + �{A,B}
(

wB + bA
B + eA

)

. (45)

For i = {A, B} we have,

μ̂�AB
= P̂

+
AB − P̂

−
AB

=
[

dAB�{A} + dB A�{B}
]

−
[

bA
B�{A,B} + (eA + eB)�{A,B}

]

=
(

dAB�{A} + dB A�{B}
)

− �{A,B}
(

bA
B + eA + eB

)

. (46)

Thus, we want to find the general solution for the following system of differential

equations

d�{A}
dt

= �{A} (wA − eA − dAB) + �{A,B}
(

wA + bA
B + eB

)

, (47)

d�{B}
dt

= �{B} (wB − eB − dB A) + �{A,B}
(

wB + bA
B + eA

)

, (48)

d�{A,B}
dt

=
(

dAB�{A} + dB A�{B}
)

− �{A,B}
(

bA
B + eA + eB

)

. (49)

given initial state frequencies �{A}(0) = �0
A,�{B}(0) = �0

B,�{A,B}(0) = �0
AB .

However, since �̂{A} + �̂{B} + �̂{A,B} = 1, we can always derive �̂{A,B} using

�̂{A} and �̂{B}. Therefore, we want to solve the following system instead.

d�{A}
dt

= �{A} (wA − eA − dAB) + �{A,B}
(

wA + bA
B + eB

)

, (50)

d�{B}
dt

= �{B} (wB − eB − dB A) + �{A,B}
(

wB + bA
B + eA

)

. (51)

Since �{A}(t) + �{B}(t) + �{A,B}(t) = 1, we have,

d�{A}
dt

= �{A}
(

−eA − dAB − bA
B − eB

)

− �{B}
(

wA + bA
B + eB

)

+
(

wA + bA
B + eB

)

, (52)

d�{B}
dt

= �{B}
(

−eB − dB A − bA
B − eA

)

− �{A}
(

wB + bA
B + eA

)

+
(

wB + bA
B + eA

)

. (53)
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We write the above system in a matrix form as follows,

�
′ = M� + r, (54)

where

�
′ =

[

�
′
{A}

�
′
{B}

]

, � =
[

�{A}
�{B}

]

,

M =

⎡

⎣
−
(

eA + dAB + bA
B

+ eB

)

−
(

wA + bA
B

+ eB

)

−
(

wB + bA
B

+ eA

)

−
(

eB + dB A + bA
B

+ eA

)

⎤

⎦ ,

r =
[

wA + bA
B

+ eB

wB + bA
B

+ eA

]

. (55)

First, we find the complimentary solution to the following equation using eigenval-

ues and eigenvectors of matrix M ,

�
′ = M�. (56)

Using Mathematica, the eigenvalues (λ1, λ2) and eigenvectors (ν1, ν2) of M are given

by,

λ =
[

λ1

λ2

]

(57)

=
[

1
2

(

−2bA
B − dAB − dB A − 2eA − 2eB − R

)

1
2

(

−2bA
B − dAB − dB A − 2eA − 2eB + R

)

]

, (58)

ν1 =
[

− 1

2
(

bA
B+eA+wB

) (−dAB + dB A − R)

1

]

, (59)

ν2 =
[

− 1

2
(

bA
B+eA+wB

) (−dAB + dB A + R)

1

]

, (60)

where

R =
√

R1 + R2,

R1 = 4
(

bA
B

)2
+ 4

(

bA
BeA + bA

BeB + bA
BwA + bA

BwB

)

+4 (eAeB + eAwA + eBwB + wAwB) ,

R2 = −2dABdB A +
(

d2
AB + d2

B A

)

.

The complimentary solution for Eq. (56) is given by,

�C = C1ν1eλ1t + C2ν2eλ2t , (61)
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where C1 and C2 are arbitrary constants.

Next, we find the particular solution �P for Eq. (54) using the method of

undetermined coefficients. Suppose the solution �P is of the form

�P =
[

K1

K2

]

, �
′
P =

[

0

0

]

. (62)

Substitute Eq. (62) to Eq. (54) we have,

�
′

P = M�P + r. (63)

That is, we want to solve the following system of linear equations,

(

eA + dAB + bA
B + eB

)

K1 +
(

wA + bA
B + eB

)

K2 = wA + bA
B + eB (64)

(

wB + bA
B + eA

)

K1 +
(

eB + dB A + bA
B + eA

)

K2 = wB + bA
B + eA. (65)

Thus,

K1 =

(

wA + bA
B

+ eB

)

(eB + dB A − wB)
(

eA + dAB + bA
B

+ eB

) (

eB + dB A + bA
B

+ eA

)

−
(

wB + bA
B

+ eA

) (

wA + bA
B

+ eB

)

= num A

denom A
. (66)

Substitute Eq. (66) to Eq. (64) to get,

K2 = 1 −
(

eA + dAB + bA
B + eB

wA + bA
B + eB

)
(

num A

denom A

)

. (67)

Therefore, the general solution is given by,

� = �C + �P

= C1ν1eλ1t + C2ν2eλ2t + K , (68)

where

K =
[

K1

K2

]

. (69)

By taking a limit of Eq. (68) as t → ∞, the exponential terms in Eq. (68) will approach

0. Therefore, we have,

�̂ = lim
t→∞

�

123



  101 Page 40 of 46 A. C. Soewongsono, M. J. Landis

[

�̂{A}
�̂{B}

]

=
[

K1

K2

]

. (70)

�̂{A} and �̂{B} from Eq. (70) are the stationary frequencies for state {A} and {B},
respectively, as shown in Lemma 5.

Next, to get the general solution to the system in Eq. (54), we find the constants,

C1 and C2 by substituting the initial value condition to Eq. (68) for t = 0. We have,

C1

[

− 1

2
(

bA
B+eA+wB

) (−dAB + dB A − R)

1

]

+

C2

[

− 1

2
(

bA
B+eA+wB

) (−dAB + dB A + R)

1

]

+
[

K1

K2

]

=
[

�0
A

�0
B

]

. (71)

That is, we solve the following system of linear equations,

C1

(

R + dAB − dB A

2
(

bA
B + eA + wB

)

)

+ C2

(

dAB − dB A − R

2
(

bA
B + eA + wB

)

)

= �0
A − K1, (72)

C1 + C2 = �0
B − K2. (73)

Thus,

C1 =
(

�0
A − K1

) (

bA
B + eA + wB

)

R
−
(

�0
B − K2

)

(dAB − dB A − R)

2R
. (74)

Then, substitute Eq. (74) to Eq. (73) we get,

C2 =
(

K1 − �0
A

) (

bA
B + eA + wB

)

R
+
(

�0
B − K2

)
(

1 + dAB − dB A − R

2R

)

.(75)

��

5.5 Simulating Range State Dynamics UsingMASTER

We can express events in MASTER for GeoSSE using the following reaction equations.

Ŝ[{i}] ei−→ R̂[i] + L[i], (extinction of endemic species in region i)

Ŝ[{i}]
di j−−→ Ŝ[{i} ∪ { j}] + G[ j], (dispersal from region i to region j)

Ŝ

⎡

⎣

⋃

i∈R

{i}

⎤

⎦
e j−→ Ŝ

⎡

⎣

⋃

i∈R;i �= j

{i}

⎤

⎦+ L[ j], (local extinction in region j)

Ŝ

⎡

⎣

⋃

i∈R

{i}

⎤

⎦

bi
j−→ Ŝ

⎡

⎣

⋃

i∈R;i �= j

{i}

⎤

⎦+ Ŝ[{ j}], (between-region speciation into ranges{i}and{ j})
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Ŝ

⎡

⎣

⋃

i∈R

{i}

⎤

⎦
w j−−→ Ŝ

⎡

⎣

⋃

i∈R

{i}

⎤

⎦+ S[ j] + G[ j], (within region speciation in region j for a widespread species)

Ŝ[{i}] wi−→ Ŝ[{i}] + Ŝ[{i}] + G[i], (within region speciation in regioni for an endemic species),

where Ŝ[{i}] indicates the number of endemic species with range {i}, Ŝ
[⋃

i∈R{i}
]

indicates the number of widespread species with range
⋃

i∈R{i}, R̂[i] indicates the

number of species in region i , L[i] indicates a species lost in region i , and G[i]
indicates a species gain in region i .

5.6 Simulation Under the DiffusionModel Starting with a Single Species

We propose a procedure to correct the diffusion-based simulation for state dynamics

when starting with a single species in random states under an SSE model, as demon-

strated for a GeoSSE model. Note that without this correction procedure, the bias

between the tree-based and diffusion-based approaches is apparent as described in

Example 6.

Example 6 Consider a 3-region GeoSSE system with state space S =
{{A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}}. Suppose we start with a single

species in state {A, B}.
That is, at t = 0 we have

N{A} = 0, N{B} = 0, N{C} = 0, N{A,B} = 1, N{A,C} = 0, N{B,C} = 0, N{A,B,C} = 0.

It is very likely, given a small total species number, for diffusion-based simulation

to give a pattern at the next time step such as the one below,

N{A} = 0, N{B} = 0, N{C} = 1, N{A,B} = 1, N{A,C} = 0, N{B,C} = 0, N{A,B,C} = 0.(76)

The transition described in Eq. (76) cannot be explained using just one GeoSSE

event. Furthermore, since the diffusion parameters for simulating species count across

states, described in Eqs. (7)–(8), dynamically depend on the number of species in each

state, the difference between diffusion-based and tree-based simulations becomes more

apparent over time (Fig. 11).

In general, the correction procedure works by preventing a diffusion-based path to

enter a disallowed regime when there are few species (Table 2). This procedure only

applies for simulating state counts. However, we can get the state frequencies from

species counts in each state using the following formula,

�i (t) = Ni (t)
∑

i∈S Ni (t)
.

1. For each simulated trajectory for state counts under the diffusion-based approach

where we start with a single species in a random state, we simulate the next path

according to the procedure described in Sect. 2.5.
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Table 2 List of allowed differences between two consecutive paths in a 3-region GeoSSE model

Condition N i (t + �t) − N i (t)

{A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

Within region speciation

If N{A}(t) �= 0, N j (t) = 0,∀ j ∈ S \ {A} 1 0 0 0 0 0 0

If N{B}(t) �= 0, N j (t) = 0,∀ j ∈ S \ {B} 0 1 0 0 0 0 0

If N{C}(t) �= 0, N j (t) = 0,∀ j ∈ S \ {C} 0 0 1 0 0 0 0

If N{A,B} �= 0, N{A,B,C} = 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0

If N{A,C} �= 0, N{A,B,C} = 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0

If N{B,C} �= 0, N{A,B,C} = 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0

If N{A,B,C} �= 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

Extinction in species with range size 1

−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

Extinction in species with range size 2

1 0 0 −1 0 0 0

1 0 0 0 −1 0 0

0 1 0 −1 0 0 0

0 1 0 0 0 −1 0

1
23
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Table 2 continued

Condition N i (t + �t) − N i (t)

{A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

0 0 1 0 −1 0 0

0 0 1 0 0 −1 0

Extinction in species with range size 3

0 0 0 1 0 0 −1

0 0 0 0 1 0 −1

0 0 0 0 0 1 −1

Between-region speciation

1 1 0 −1 0 0 0

1 0 1 0 −1 0 0

0 1 1 0 0 −1 0

1 0 0 0 0 1 −1

0 1 0 0 1 0 −1

0 0 1 1 0 0 −1

Dispersal in species with range size 1

−1 0 0 1 0 0 0

−1 0 0 0 1 0 0

0 −1 0 1 0 0 0

0 −1 0 0 0 1 0

0 0 −1 0 1 0 0

0 0 −1 0 0 1 0

Dispersal in species with range size 2

0 0 0 −1 0 0 1

0 0 0 0 −1 0 1

0 0 0 0 0 −1 1

1
23
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Fig. 12 The trajectories of average count of range states for endemic species (a–c) and widespread species

(d–g) over the [0, 10] time interval simulated under the diffusion-based process (red line) after applying

the correction procedure and tree-based process (black line), starting with 1 species in a random state.

For each starting state, we simulate 150 trajectories (1050 trajectories in total) for each approach. The gray

trajectories show the dynamics across 1050 replicates simulated under diffusion-based process. Simulations

are conducted using the following parameter values: wA = 0.36, wB = 0.24, wC = 0.28, bA
B

= bA
C

=
bB

C
= bA

BC
= bB

AC
= bC

AB
= 0.16, eA = 0.02, eB = 0.03, eC = 0.01, dAB = dB A = 0.12, dAC =

dC A = 0.06, dBC = dC B = 0.02 (Color figure online)

2. Next, we compute the difference in paths at t and t + �t . That is, we find

N(t + �t) − N(t) = {Ni (t + �t) − Ni (t)}∀i∈S, (77)

where S is the range state space of the GeoSSE model. Then, round each element

of the vector in Eq. (77) to the nearest integer value.

3. We check whether this difference in paths is in the list described in Table 2. If

it is not in the list, we reject this future path and re-sample until it satisfies the

table. In effect, this correction approximates model-based conditional sampling

for diffusion-based paths.

4. Repeat steps 1–2 until we reach a path where every state has at least 1 representative

species, ∀i : Ni (t) > 0. Then, we generate the future paths as usual, according to

the procedure described in Sect. 2.5.

As seen in Fig. 12, the difference between diffusion-based and tree-based simulation

is reduced after applying the correction procedure. Note that it is possible to apply this

correction procedure to any discrete-state SSE models by modifying the table (Table 2)

according to events described by the model. Also, this procedure only minimizes the

difference between diffusion-based and tree-based trajectories as it is still possible for

a diffusion-based simulation to construct disallowed paths at a later time, despite the

starting condition. However, these differences become negligible for as N (t) >> 0

for our example.
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