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Abstract: This paper proposes a scalable learning framework to solve a system of coupled forward–
backward partial differential equations (PDEs) arising from mean field games (MFGs). The MFG
system incorporates a forward PDE to model the propagation of population dynamics and a backward
PDE for a representative agent’s optimal control. Existing work mainly focus on solving the mean
field game equilibrium (MFE) of the MFG system when given fixed boundary conditions, including
the initial population state and terminal cost. To obtain MFE efficiently, particularly when the initial
population density and terminal cost vary, we utilize a physics-informed neural operator (PINO) to
tackle the forward–backward PDEs. A learning algorithm is devised and its performance is evaluated
on one application domain, which is the autonomous driving velocity control. Numerical experiments
show that our method can obtain the MFE accurately when given different initial distributions of
vehicles. The PINO exhibits both memory efficiency and generalization capabilities compared to
physics-informed neural networks (PINNs).
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1. Introduction

In contrast to numerical solvers for partial differential equations (PDEs), recent years
have seen a growing trend of using neural networks (NNs) to approximate PDE solutions
because of its grid-free scheme [1–3], which, however, requires a large amount of data
samples to train. Physics-informed neural networks (PINNs) have demonstrated their
efficiency in training physics-uninformed neural networks to solve PDEs [4]. However,
a new NN has to be retrained each time a set of input initial conditions vary; thus, they
lack generalization capability to a family of PDEs with different parameters. To tackle this
challenge, Fourier neural operator (FNO) is developed to take in various initial conditions
to train an NN that could predict PDE outputs with different conditions [5,6]. The rationale
is to propagate information from initial or other boundary conditions by projecting them
into a high dimensional space using Fourier transformation. Physics information can be
further incorporated into FNO as a physics-informed neural operator (PINO) [7]. PINO
utilizes physics loss to train the neural operator, which could further reduce the required
training data size by leveraging the knowledge of PDE formulations.

In contrast to the classical PDE systems, here, we focus on a more complex class
of forward–backward PDE systems, which arise from the concept of game theory, in
particular, mean field games (MFGs). MFGs are micro/macro games that aim to model
the strategic interaction among a large amount of self-interested agents who make dy-
namic decisions (corresponding to the backward PDE), while a population distribution is
propagated to represent the state of interacting individual agents (corresponding to the
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forward PDE) [8–11]. The equilibrium of MFGs, so-called mean field equilibria (MFE), is
characterized by two PDEs, as follows:

(1) Agent dynamic: An individuals’ dynamics using optimal control, i.e., a backward
Hamilton–Jacobi–Bellman (HJB) equation, solved backward using dynamic programming,
given the terminal state. (2) Mass dynamic: A system evolution arising from each individ-
ual’s choices, i.e., a forward Fokker–Planck–Komogorov (FPK) equation, solved forward
when provided the initial state, representing agents’ anticipation of other agents’ choices
and future system dynamics.

MFE is challenging to solve due to the coupled forward and backward structure of
these two PDE systems. Therefore, researchers seek various machine learning methods,
including reinforcement learning (RL) [12–20], adversarial learning [21], and PINNs [22–25].
Unlike traditional methods, which may require fine discretization of the problem space
leading to high computational loads, learning-based approaches can learn to approximate
solutions in a continuous domain. However, once trained, it can be time-consuming and
memory-demanding for these learning tools to adapt to changes in different conditions.
Specifically, each unique initial condition may require the assignment and retraining of a
dedicated neural network to obtain the corresponding MFE. Motivated by the MFG frame-
work, this paper aims to tackle the problem of solving a set of coupled forward–backward
PDE systems with arbitrary initial conditions. To achieve this goal, we train a PINO, which
utilizes a Fourier neural operator (FNO) to establish a functional mapping to approximate
the solution to a family of the coupled PDE system with various boundary conditions.
After training PINO properly, we can obtain the MFE under different initial densities and
terminal costs.

The rest of this paper is organized as follows: Section 2 presents preliminaries about
the coupled PDE system and PINO. Section 3 proposes a PINO learning framework for
coupled PDEs. Section 4 presents the solution approach. Section 5 demonstrates numerical
experiments. Section 6 concludes the study.

2. Preliminaries
2.1. Spatiotemporal Mean Field Games (ST-MFGs)

A spatiotemporal MFG (ST-MFG) models a class of MFGs defined in a spatiotemporal
domain over a finite horizon. The reward or cost arising from agents’ actions negatively
depends on the population density, indicating a congestion effect. Define a finite planning
horizon T = [0,𝑇], where 𝑇 ∈ [0,∞). A total of 𝑁 agents, indexed by 𝑛 = {1, 2, · · · , 𝑁},
move in a one- or two-dimensional space, denoted by X. Their positions at time 𝑡 are
denoted as x(𝑡) = [𝑥1 (𝑡), 𝑥2 (𝑡), · · · , 𝑥𝑁 (𝑡)]. Agent 𝑛 ∈ 𝑁 controls 𝑢𝑛 (𝑡) ∈ A, where A is the
feasible action set to minimize its cost functional: ∀𝑛 = 1, · · · , 𝑁 ,

𝐽𝑁𝑛 (𝑢𝑛, 𝑢−𝑛) =
∫ 𝑇

0
𝑓 𝑁𝑛 (𝑢𝑛 (𝑡), 𝑥𝑛 (𝑡), 𝑥−𝑛 (𝑡))|                          {z                          }

cost function

𝑑𝑡 +𝑉𝑇 (𝑥𝑛 (𝑇))|      {z      }
terminal cost

. (1)

As 𝑁 →∞, the optimal cost of a generic agent from 𝑥 at time 𝑡 becomes

𝑉 (𝑥, 𝑡) = 𝑚𝑖𝑛𝑢{
∫ 𝑇

𝑡

𝑓 (𝑢(𝑥(𝜏), 𝜏), 𝜌(𝑥(𝜏), 𝜏))𝑑𝜏 +𝑉 (𝑥(𝑇),𝑇)} (2)

where 𝑢(𝑥(𝜏), 𝜏) is the control of a generic agent. The agent state 𝑥(𝜏),∀𝜏 ∈ T is updated
based on the agent dynamics ⁄𝑥(𝜏) = 𝑢(𝑥(𝜏), 𝜏). 𝑥(𝜏) is the agent position at time 𝜏 and we
denote 𝑥 = 𝑥(𝜏), 𝑥 ∈ X. 𝜌(𝑥, 𝑡),∀(𝑥, 𝑡) ∈ X × T is the population density of all agents in the
system (i.e., mean field state). 𝑓 (𝑢, 𝜌) is the cost function. 𝑉 (𝑥, 𝑡),∀(𝑥, 𝑡) ∈ X × T is the value
function for each individual agent, which can be interpreted as the minimum cost of an
agent when starting from position 𝑥 at time 𝑡. 𝑉 (𝑥(𝑇),𝑇) denotes the terminal cost.
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The ST-MFG can be reformulated as a system of partial differential equations compris-
ing the forward FPK and backward HJB equations. Mathematically, we have the following
PDEs for ST-MFGs:

[ST-MFG]∀(𝑥, 𝑡) ∈ X × T
(FPK) 𝜌𝑡 + (𝜌 · 𝑢)𝑥 = 0, (3)

𝜌(𝑥, 0) ≡ 𝝆0, (4)

(HJB) 𝑉𝑡 +min
𝑢
{ 𝑓 (𝑢, 𝜌) + 𝑢𝑉𝑥} = 0, (5)

𝑉 (𝑥,𝑇) ≡ 𝑽𝑇 . (6)

We now explain the details of the PDE system.

Definition 1 (ST-MFG). A population of agents navigate a space domain X with a finite planning
horizon T = [0,𝑇],𝑇 ∈ [0,∞). At time 𝑡 ∈ T , a generic agent selects a continuous time–space
decision 𝑢(𝑥, 𝑡) at position 𝑥 ∈ X. The decision triggers the evolution of population density 𝜌(𝑥, 𝑡)
over the spatiotemporal domain. The generic agent aims to minimize the total cost arising from the
population density, indicating a congestion effect.

FPK (Equations (3) and (4)). 𝜌(𝑥, 𝑡),∀(𝑥, 𝑡) ∈ X × T is the population density of all agents
in the system (i.e., mean field state). 𝜌𝑡 , 𝜌𝑥 are partial derivatives of 𝜌(𝑥, 𝑡) with respect to 𝑡, 𝑥,
respectively. 𝝆0 denotes the initial population density over the space domain X. The FPK equation
captures the population dynamics starting from the initial density.

HJB (Equations (5) and (6)). The HJB equation depicts the optimal control of a generic agent.
We specify each element in the optimal control problem as follows:

1. State (𝑥, 𝑡) is the agent’s position at time 𝑡. (𝑥, 𝑡) ∈ X × T .
2. Action 𝑢(𝑥, 𝑡) is the velocity of the agent at position 𝑥 at time 𝑡. The optimal velocity evolves

as time progresses.
3. Cost 𝑓 (𝑢, 𝜌) is the congestion cost depending on agents’ action 𝑢 and population density 𝜌.
4. Value function 𝑉 (𝑥, 𝑡) is the minimum cost of the generic agent starting from position 𝑥 at

time 𝑡. 𝑉𝑡 ,𝑉𝑥 are partial derivatives of 𝑉 (𝑥, 𝑡) with respect to 𝑡, 𝑥, respectively. 𝑽𝑇 denotes the
terminal cost.

Definition 2 (Mean Field Equilibrium (MFE)). In an ST-MFG, (𝑢∗ (𝑥, 𝑡), 𝜌∗ (𝑥, 𝑡)),∀(𝑥, 𝑡) ∈
X × T is called an MFE if the following conditions hold: (1) 𝜌∗𝑡 + (𝜌∗ · 𝑢∗)𝑥 = 0; (2) 𝑉∗𝑡 + 𝑢∗𝑉∗𝑥 +
𝑓 (𝑢∗, 𝜌∗) = 0; (3) 𝑢∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝{ 𝑓 (𝑝, 𝜌) + 𝑝𝑉𝑥}.

In this work, we adopt a neural operator to find MFE.

2.2. Physics-Informed Neural Operator (PINO)

The Physics-Informed Neural Operator (PINO) is an innovative approach designed to
address partial differential equations (PDEs) with a focus on high computational efficiency [7].
At its core, PINO utilizes a Fourier Neural Operator (FNO) as its foundational component [5],
which enables the learning of operators mapping between infinite-dimensional function spaces.
This is achieved through the application of Fourier transformations, facilitating the projection of
inputs into a higher-dimensional space where relationships between variables can be modeled
more effectively. The PINO framework incorporates physics-informed regularization by embed-
ding the physical laws governing the system into the loss function, ensuring that predictions
adhere to known dynamics. Unlike traditional Physics-Informed Neural Networks (PINNs) that
might struggle with efficiently propagating information across various conditions, PINO excels
by leveraging the Fourier transformation within the FNO framework. This transformation
projects boundary conditions into a higher dimensional space, thereby facilitating the seamless
integration of initial or other boundary conditions into the learning process.

This unique capability of PINO to utilize Fourier transformations is particularly advan-
tageous in handling complex problems like solving ST-MFGs that demand consideration of
varying initial population densities. Traditionally, addressing such problems would require
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the cumbersome and computationally intensive task of retraining multiple PINNs for each
new initial condition. However, PINO avoids this by offering a scalable learning framework
that can adapt to different initial conditions without the need for retraining. This not only
underscores the model’s computational efficiency but also highlights its flexibility and
robustness in solving PDEs across a broad spectrum of conditions.

3. Learning ST-MFGs via PINOs

We introduce our PINO framework to capture population dynamics and system value
functions. The dynamics of ST-MFGs are influenced by initial densities and terminal value func-
tions, and bounded by the periodicity of 𝑥 on the ring road, i.e., 𝜌(0, 𝑡) = 𝜌(1, 𝑡), 𝑢(0, 𝑡) = 𝑢(1, 𝑡),
∀𝑡 ∈ T . Figure 1 depicts the workflow of our proposed framework, where the PINO module
employs a Fourier neural operator (FNO) to represent the population density 𝝆0−𝑇 and value
functions 𝑽0−𝑇 over time. The FNO is updated according to the physical residual that adheres
to the Fokker–Planck–Kolmogorov (FPK) equation. This rule elucidates the interplay between
population evolution and velocity control. The FNO also expresses the propagation of the
system value function according to the Hamilton–Jacobi–Bellman (HJB) equation. Then, the
optimal velocity, represented as 𝒖0−𝑇 , is derived from the HJB, considering the given population
density 𝝆0−𝑇 . We further elaborate PINO framework in the following parts.

𝝆𝟎~𝑻𝝆𝟎

𝜌 𝜌

Physical Residual

𝒖𝟎~𝑻

𝑢

Input

Fourier 
layer 1𝑽𝑻 𝑽𝟎~𝑻

Output

Fourier 
layer N

. . . 
FNO

Figure 1. Scalable learning framework for an ST-MFG.

3.1. FPK Module

As shown in Figure 1, the initial density 𝝆0 over the space domainX in ST-MFG serves as
the FPK module input for PINO. It is linearly merged with the HJB module input and processed
by the FNO. The output of the FPK module is the population density over a spatiotemporal
domain 𝝆0−𝑇 . FNO is composed of 𝑁 Fourier layers. Each layer performs a Fourier transform F
to capture frequency–domain features by decomposing the signals into Eigenmodes. Following
a linear transformation 𝑙 to eliminate the high-frequency signals, an inverse Fourier transform
F −1 is applied to recover them. Furthermore, for each layer, a linear transformation 𝑙′ is also
applied to capture time–domain features. The combined output from these transformations is
then passed through a nonlinear activation function 𝜎 for the subsequent Fourier layers.

The training of the FNO for the FPK module follows the residual (marked in red)
determined by the FPK equation of population evolution. Mathematically, the residual
𝑅𝐹𝑃𝐾 is calculated as

𝑅𝐹𝑃𝐾 =

˝
𝝆0∈𝝆D 𝐿𝐹𝑃𝐾 (𝝆0,G𝜃 (𝝆0,𝑽𝑇 ))

|𝝆D |
, (7)

where the set 𝝆D is the training set containing various initial densities. 𝐿𝐹𝑃𝐾 (𝝆0,G𝜃 ) is the
physics loss, which is calculated as

𝐿𝐹𝑃𝐾 = 𝛼 | |G𝜃 |𝑡=0 − 𝝆0 | |2 + 𝛽 | |
𝜕G𝜃
𝜕𝑡
+ 𝜕 (G𝜃 · 𝑢)

𝜕𝑥
| |2. (8)
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The first term of the physics loss function measures the gap between the operator’s
output at time zero and the initial density. Meanwhile, the second term measures the physi-
cal deviation using Equation (3). Weight parameters, denoted as 𝛼 and 𝛽, are employed to
tune the relative significance of these terms. The process culminates in the derivation of the
optimal control, 𝑢, which is obtained from the HJB module.

3.2. HJB Module

We solve the HJB equation (Equation (5)) to determine the optimal velocity, given the
population dynamics. Since HJB is an inverse process of FPK, and the propagation rules
of FPK and HJB are the same, we use the same FNO as the FPK module. Combined with
the initial density 𝝆0, the terminal costs 𝑽𝑇 of the ST-MFG system is input into the FNO to
obtain the costs of spatiotemporal domain 𝑉0−𝑇 .

The training of FNO for the HJB module follows the residual (marked in red) deter-
mined by the HJB equation. Mathematically, the residual 𝑅𝐻𝐽𝐵 is calculated as

𝑅𝐻𝐽𝐵 =

˝
𝑽𝑇 ∈𝑽D 𝐿𝐻𝐽𝐵 (𝑽𝑇 ,G𝜃 (𝝆0,𝑽𝑇 ))

|𝑽D |
, (9)

where the set 𝑽D is the training set containing various terminal values over the spatial
domain X. 𝐿𝐻𝐽𝐵 (𝑽𝑇 ,G𝜃 ) is the physics loss, which is calculated as

𝐿𝐻𝐽𝐵 = 𝛼 | |G𝜃 |𝑡=𝑇 −𝑽𝑇 | |2 + 𝛽 | |
𝜕G𝜃
𝜕𝑡
+ 𝜕 (G𝜃 · 𝑢)

𝜕𝑥
| |2. (10)

The first term of the physics loss function measures the discrepancy between the oper-
ator’s output in the end and the terminal values. The second term measures the physical
deviation using Equation (5). Weight parameters, denoted as 𝛼 and 𝛽, are employed to tune
the relative significance of these terms. Thus, the total residual of FNO is 𝑅 = 𝑅𝐹𝑃𝐾 + 𝑅𝐻𝐽𝐵.

We calculate the optimal control 𝑢0−𝑇 after obtaining 𝜌0−𝑇 and 𝑉0−𝑇 . Numerical meth-
ods commonly employed for solving the HJB equation include backward induction [16],
the Newton method [26], and variational inequality [27]. Learning-based methods, such
as RL [28,29] and PIDL [25], can also be used for solving the HJB equation. In this work,
we adopt backward induction since the dynamics of the agents and the cost functions are
known in the MFG system.

4. Solution Approach

We develop Algorithm 1 based on the proposed scalable learning framework in the
autonomous driving velocity control scenario. A population of autonomous vehicles (AVs)
navigate a ring road (Figure 2). At the time 𝑡, a generic AV selects 𝑢(𝑥, 𝑡) at position 𝑥. At a
given moment 𝑡, a typical autonomous vehicle (AV) selects a velocity 𝑢(𝑥, 𝑡) at a specific
location 𝑥 on the ring road. This decision regarding speed selection influences the dynamic
evolution of the population density of AVs circulating on the ring road. In this model, all
AVs are considered to be homogeneous, implying that any decision made by one AV could
be representative of decisions made by others in the same conditions. The primary objective
of this study is to devise an optimal speed control strategy that minimizes the overall costs
incurred during the specified time interval [0,𝑇] for a representative AV. Through the
application of mathematical models and optimization techniques, it seeks to determine the
most cost-effective speed profiles that can lead to an optimal distribution of AVs on the
road, reducing congestion and improving the collective utility of the transportation system.

In Algorithm 1, we first initialize the neural operator G𝜃 , parameterized by 𝜃. During
the 𝑖th iteration of the training process, we first sample a batch of initial population
densities 𝝆0 and terminal costs 𝑽𝑇 . We use FNO to generate the population density and
value function over the entire spatiotemporal domain 𝝆0−𝑇 and 𝑽0−𝑇 . According to 𝝆0−𝑇
and 𝑽0−𝑇 , we calculate the optimal speed 𝒖 (𝑖)0−𝑇 . The parameter 𝜃 (𝑖) of the neural operator
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is updated according to the residual. We check the following convergence conditions for
𝝆0−𝑇 and 𝑽0−𝑇 obtained by G𝜃 (𝝆0,𝑽𝑇 ).˝

𝝆0∈𝝆D
˝

𝑽𝑇 ∈𝑽D |G𝜃 (𝑖) (𝝆0,𝑽𝑇 ) − G𝜃 (𝑖−1) (𝝆0,𝑽𝑇 ) |
|𝝆D | |𝑽D |

< 𝜖 (11)

Figure 2. Autonomous driving speed control.

The training process moves on to the next iteration until the convergence condition holds.

Algorithm 1 PINO for ST-MFG

1: Initialization: FNO: G𝜃 (0) ;
2: for 𝑖 ← 0 to 𝐼 do
3: Sample a batch of initial densities 𝝆0 and terminal values 𝑽𝑇 from the training set;
4: Generate 𝝆 (𝑖)0−𝑇 and 𝑽 (𝑖)0−𝑇 using the neural operator G𝜃 (𝑖) (𝝆0,𝑽𝑇 );
5: for each 𝝆 (𝑖)0−𝑇 and 𝑽 (𝑖)0−𝑇 generated by FNO do
6: for 𝑡 ← 𝑇 to 1 do
7: 𝑢

(𝑖)
𝑡−1 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑢{ 𝑓 (𝑢, 𝜌) + 𝑢𝑉𝑥 (𝑡, 𝑥)};

8: end for
9: Obtain 𝒖 (𝑖)0−𝑇 and calculate 𝒖 (𝑖)𝑥 ;

10: end for
11: Obtain residual 𝑅𝜃 (𝑖) according to Equations (7) and (9);
12: Update the neural operator to obtain G𝜃 (𝑖+1) according to Equations (8) and (10);
13: Check convergence (Equation (11)).
14: end for
15: Output 𝝆0−𝑇 , 𝑽0−𝑇 , 𝒖0−𝑇

We evaluate two PINN-based algorithms for solving ST-MFGs, as detailed in [25].
The first, a hybrid RL and PIDL approach, employs an iterative process where the HJB
equation is solved via the advantage actor-critic method, and the FPK equation is addressed
using a PINN. This approach allows for the dynamic updating of agents’ actions and the
population’s distribution in response to evolving game conditions, leveraging the strengths
of both RL and PIDL. The second is a pure PIDL algorithm that updates agents’ states and
population density altogether using two PINNs. We refer to these baseline algorithms as
“RL-PIDL” and “Pure-PIDL”, respectively.

Both algorithms, RL-PIDL and Pure-PIDL, offer significant advantages over conventional
methods [26,27] in the context of autonomous driving MFGs. Notably, they are not restricted
by the spatiotemporal mesh granularity, enhancing their ability to learn the MFE efficiently.
Pure-PIDL, in particular, demonstrates superior efficiency in scenarios where the dynamics
of the environment are known, requiring less training time and space compared to RL-
PIDL. However, despite their advancements over traditional numerical methods, both RL-
PIDL and Pure-PIDL encounter challenges concerning the propagation of information from
initial conditions. This limitation necessitates the assignment and retraining of new NNs
for various initial population densities, a process that significantly hampers the efficiency
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and scalability [7]. Conversely, our PINO framework effectively addresses these limitations,
avoiding the memory and efficiency constraints observed in the baseline models.

5. Numerical Experiments

We conduct numerical experiments in the scenario shown in Figure 2, which are
designed to explore the dynamics of a MFG focused on AV navigating a circular road
network, a scenario framed by specific initial and terminal conditions. The initial condition
for this MFG is the distribution of AV population 𝜌(𝑥, 0) over the ring road when 𝑡 = 0 and
the preference 𝑉 (𝑥,𝑇) for their location when 𝑡 = 𝑇 . To model the initial distribution 𝜌(𝑥, 0)
of AVs, we utilize sinusoidal wave functions characterized by the formula (𝜙 + sin(2𝜋𝑘𝑥))/6,
where 𝑘 represents the ordinary frequency and 𝜙 denotes the phase of the wave. Both
𝑘 and 𝜙 are randomly selected from uniform distributions, specifically U(0.1, 2.1) for 𝑘

andU(1.5, 2) for 𝜙. This approach ensures a wide range of sinusoidal patterns, reflecting
diverse initial traffic distributions, as illustrated in Figure 3, which shows a selection of
initial density curves drawn from our training set 𝝆D . We assume AVs have no preference
for their locations at time 𝑇 , i.e., 𝑉 (𝑥,𝑇) = 0,∀𝑥 ∈ [0, 1]. The boundary condition for this
MFG is the periodicity of 𝑥.
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Figure 3. Sample initial conditions 𝜌(𝑥, 0).

Figure 4 demonstrates the performance of the algorithm in solving ST-MFGs. The
x-axis represents the iteration index during training. Figure 4a displays the conver-
gence gap, calculated as |𝜌 (𝑖) − 𝜌 (𝑖−1) |. Figure 4b displays the 1-Wasserstein distance
(W1-distance), which measures the closeness [30] between our results and the MFE (mean
field equilibrium) obtained by numerical methods, represented as |𝜌 (𝑖) − 𝜌∗ |. Our proposed
algorithm converges to the MFE after 200 iterations.
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Figure 4. Algorithm performance.

Figures 5 and 6 demonstrate the population density 𝜌∗ and velocity choice 𝑢∗ at MFE
for an unseen initial density in two different ST-MFG settings. We implement our methods
on the ST-MFG with 2 cost functions:

1. ST-MFG1: The cost function is

𝑓 (𝑢, 𝜌) = 1
2
( 𝑢

𝑢𝑚𝑎𝑥
)2|       {z       }

energy

− 𝑢

𝑢𝑚𝑎𝑥|{z}
efficiency

+ 𝑢𝜌

𝑢𝑚𝑎𝑥𝜌 𝑗𝑎𝑚|       {z       }
safety

. (12)
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In this model, AVs tend to decelerate in high-density areas and accelerate in low-
density areas.

2. ST-MFG2: The Lighthill–Whitham–Richards model is a traditional traffic flow model
where the driving objective is to maintain some desired speed. The cost function is

𝑓 (𝑢, 𝜌) = 1
2
(𝑈 (𝜌) − 𝑢)2 (13)

where, 𝑈 (𝜌) is an arbitrary desired speed function with respect to density 𝜌. It is straight-
forward to find that the analytical solution of the LWR model is 𝑢 = 𝑈 (𝜌), which means
that at MFE, vehicles maintain the desired speed on roads.

The population of AVs incurs a penalty in ST-MFG 1 if they select the same velocity
control. The x-axis represents position 𝑥, and the y-axis represents time 𝑡. Figures 5a,b and 6a,b
have an initial density with 𝑘 = 1.0, 𝜙 = 2.1. Figures 5c,d and 6c,d have an initial density with
𝑘 = 1.4, 𝜙 = 2.2. Compared to the equilibrium 𝜌∗ in ST-MFG 2, the population density and
velocity in ST-MFG 1 dissipate without waveforms, demonstrating smoother traffic conditions
at time 𝑇 .

Table 1 compares the total training time (unit: s) required for solving ST-MFGs with
various initial conditions with different learning methods.

We summarize the results from our numerical experiments as follows:
(1) Our proposed PINO needs fewer neural networks (NNs) and shorter training time

compared to PINN-based algorithms, demonstrating the scalability of our method. This is
because the input of neural architecture in the PINN framework fails to capture various
boundary conditions, which leads to an iterative training process to solve MFEs. In a
comparison to PINN, PINO is scalable to initial population density along with terminal
cost among the space domain.

(2) In this study, the PINO-based learning method is designed to significantly enhance
the adaptability of neural networks across various initial conditions. This advancement is
pivotal for tackling large-scale Mean Field Games (MFGs), especially within graph-based
frameworks. The applications of this method are broad and diverse, encompassing, but
not limited to, managing autonomous vehicles on road networks, analyzing pedestrian or
crowd movements, optimizing vehicle fleet network operations, routing internet packets
efficiently, understanding social opinion trends, and tracking epidemiological patterns.

(a) ST-MFG 1 𝜌∗: 𝑘 = 1.0, 𝜙 = 2.1 (b) ST-MFG 1 𝑢∗: 𝑘 = 1.0, 𝜙 = 2.1

(c) ST-MFG 1 𝜌∗: 𝑘 = 1.4, 𝜙 = 2.2 (d) ST-MFG 1 𝑢∗: 𝑘 = 1.4, 𝜙 = 2.2

Figure 5. Population density 𝜌∗ and speed choice 𝑢∗ at MFE for ST-MFG 1.
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(a) ST-MFG 2 𝜌∗: 𝑘 = 1.0, 𝜙 = 2.1 (b) ST-MFG 2 𝑢∗: 𝑘 = 1.0, 𝜙 = 2.1

(c) ST-MFG 2 𝜌∗: 𝑘 = 1.4, 𝜙 = 2.2 (d) ST-MFG 2 𝑢∗: 𝑘 = 1.4, 𝜙 = 2.2

Figure 6. Population density 𝜌∗ and speed choice 𝑢∗ at MFE for ST-MFG 2.

Table 1. Comparison of existing learning methods.

PINO RL-PIDL Pure-PIDL

Memory
(Number of NNs) 1 48 32

Time (s) ST-MFG 1 46.56 1488.53 742.25

ST-MFG 2 44.68 1210.14 421.64

6. Conclusions

This work presents a scalable learning framework for solving coupled forward–
backward PDE systems using a physics-informed neural operator (PINO). PINO allows for
efficient training of the forward PDE with varying initial conditions. Compared to tradi-
tional physics-informed neural networks (PINNs), our proposed framework overcomes
memory and efficiency limitations. We also demonstrate the efficiency of this method on a
numerical example motivated by optimal autonomous driving control. The PINO-based
framework offers a memory- and data-efficient approach for solving complex PDE systems
with generalizability similar to PDE systems, differing only in boundary conditions.

This work is motivated by the computational challenge faced by the mean field game
(MFG). MFGs have gained increasing popularity in recent years in finance, economics, and
engineering due to its power to model the strategic interactions among a large number of
agents in multi-agent systems. The equilibria associated with MFGs, also known as mean
field equilibra (MFE), are challenging to solve due to their coupled forward and backward
PDE structure. That is why computational methods based on machine learning have gained
momentum. The PINO-based learning method developed in this study empowers the
generalization of the trained neural networks to various initial conditions, which holds the
potential to solve large-scale MFGs, in particular, graph-based applications, including but
not limited to optimization of autonomous vehicle navigation in complex road networks,
the management of pedestrian or crowd movements in urban environments, the efficient
coordination of vehicle fleet networks, the strategic routing of Internet packets to enhance
network efficiency, the analysis of social opinion dynamics to understand societal trends,
and the study of epidemiological models to predict the spread of diseases.
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