
TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing
Jaime Gould

University of New Mexico
Albuquerque, NM, USA

egould@unm.edu

Camila Friedman-Gerlicz
University of New Mexico
Albuquerque, NM, USA

friedmangerlicz99@unm.edu

Leah Buechley
University of New Mexico
Albuquerque, NM, USA
buechley@unm.edu

Figure 1: Four artifacts printed on a Direct Write (DW) 3D printer. TRAvel Slicer creates a continuous extrusion toolpath that results in successful prints of
complex models, (a) and (c). Toolpaths generated with a traditional slicer result in failed prints for the same models, (b) and (d). Here, travel movements are
erroneously printed because extrusion cannot be quickly stopped and restarted on DW printers.

ABSTRACT
In this paper we present Travel Reduction Algorithm (TRAvel)
Slicer, which minimizes travel movements in 3D printing. Con-
ventional slicing software generates toolpaths with many travel
movements–movements without material extrusion. Some 3D print-
ers are incapable of starting and stopping extrusion and it is difficult
to impossible to control the extrusion ofmanymaterials. This makes
toolpaths with travel movements unsuitable for a wide range of
printers and materials.

We developed the open-source TRAvel Slicer to enable the print-
ing of complex 3D models on a wider range of printers and in a
wider range of materials than is currently possible. TRAvel Slicer
minimizes two different kinds of travel movements–what we term
Inner- and Outer-Model travel. We minimize Inner-Model travel
(travel within the 3D model) by generating space-filling Fermat spi-
rals for each contiguous planar region of the model. We minimize
Outer-Model travel (travels outside of the 3D model) by ordering
the printing of different branches of the model, thus limiting tran-
sitions between branches. We present our algorithm and software
and then demonstrate how: 1) TRAvel Slicer makes it possible to
generate high-quality prints from a metal-clay material, CeraM-
etal, that is functionally unprintable using an off-the-shelf slicer.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0628-8/24/10. . . $15.00
https://doi.org/10.1145/3654777.3676349

2) TRAvel Slicer dramatically increases the printing efficiency of
traditional plastic 3D printing compared to an off-the-shelf slicer.

CCS CONCEPTS
•Applied computing→Computer-aided design; •Computing
methodologies → Computer graphics.

KEYWORDS
Slicing Software, g-code generation, Traveling Salesman Problem,
Direct Write 3D Printing, Clay 3D Printing, Fused Filament Fabri-
cation
ACM Reference Format:
Jaime Gould, Camila Friedman-Gerlicz, and Leah Buechley. 2024. TRAvel
Slicer: Continuous Extrusion Toolpaths for 3D Printing. In The 37th Annual
ACM Symposium on User Interface Software and Technology (UIST ’24), Octo-
ber 13–16, 2024, Pittsburgh, PA, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3654777.3676349

1 INTRODUCTION
Direct Write (DW) 3D printing—also known as Robotcasting—is an
approach to 3D printing where parts are built up from an extruded
paste [2]. Popular direct write printers include clay 3D printers,
which build ceramic objects from soft clay [7] and food printers,
which create edible objects from a variety of edible pastes including
chocolate [28] [34] [26] and dough [46] [31][6]. DW printers are
taking an increasingly prominent role in digital fabrication research
as they become more accessible—commercial models like the Eazao
Zero [11] and Tronxy Moore [43] now sell for under $1000 USD—
and the range of materials that can be printed with them expands.

DW printers are powerful platforms for material design and
exploration because they are capable of extruding almost any clay
or paste. They have been one of the primary platforms used to

https://orcid.org/0000-0002-7162-8271
https://orcid.org/0009-0005-3699-6764
https://orcid.org/0000-0003-2661-2761
https://doi.org/10.1145/3654777.3676349
https://doi.org/10.1145/3654777.3676349

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Gould, J. et al

explore the printing of biomaterials including cellulose, starch,
gelatin, calcium alginate [39], coffee grounds [38], and mussel shells
[35]. Direct write printers are also used to print cement [10] [15]
adobe [9] [16] and other experimental materials including metal
[5] and glass-based inks [36].

Despite themany advantages of DWprinting, the process presents
significant challenges. In particular, traditional slicing algorithms
depend on travel movements—movements taken while extrusion
is halted—to generate viable toolpaths. Most off-the-shelf slicing
software, including Cura [4] and Simplify3D [40] were developed
for Fused Filament Fabrication (FFF) 3D printers and thermoplastic
materials. It is easy to start and stop the extrusion of thermoplastic
materials on FFF printers. However, many direct write 3D printers,
including most PotterBot [1] models, do not support quick starts
and stops in extrusion; paste flows continuously out of the printer
nozzle for the duration of a print. Materials with non-linear rheol-
ogy may continuously flow out of a printer nozzle for the duration
of a print even when they are employed in a DW printer that sup-
ports extrusion control. For these printers and materials, toolpaths
that include travel moves lead to failed prints. Material continues to
extrude during travel moves and builds up on or around the desired
part, as can be seen in Figure 1 (b) and (d).

TRAvel Slicer was designed to overcome these challenges by re-
ducing or eliminating travel movements in toolpaths, thus enabling
the DW 3D printing of complex geometries in a wide variety of
materials.

In this work we demonstrate TRAvel Slicer’s ability to generate
toolpaths that produce viable prints for intricate geometries in con-
tinuous extrusion materials that otherwise fail to print successfully
when sliced with a traditional slicer, Cura. We slice five models with
TRAvel Slicer and Cura, and print them in a bronze-based paste
with non-linear rheology [5] on an Eazao Zero [11], and in Polylac-
tic Acid (PLA) on a Creality Ender 3D [8]. The main contributions
of this work are:

• TRAvel Slicer produces toolpaths that result in viable 3D
printed artifacts in continuous-extrusion materials that oth-
erwise fail to print.

• TRAvel Slicer dramatically improves printing efficiency by
decreasing print time and material waste as a result of re-
ducing the number and length of the travel movements.

• We combine two search spaces and methods of travel path
minimization that have not previously been integrated to-
gether.

• We expand upon prior methods continuous path infill, im-
proving the visual appearance of the outer surface of 3D
printed artifacts by separating the wall(s) from the infill.

• We leverage an understanding of the 3D printer nozzle di-
mensions to reduce the search space of model layer ordering.

2 RELATED WORK
2.1 G-code Generation
G-code is the language that provides instructions to most digital
fabrication machines, including 3D printers. A g-code file for 3D
printing consists of a list of spatial coordinates–that determine the
path followed by the print head–coupled with machine-specific

commands that control parameters like speed and material ex-
trusion. Slicers generate g-code files based on input geometries
and printer parameters. The g-code file, when interpreted by a 3D
printer reproduces the input geometry. Commercial slicers like
Cura and Simplify3D can be configured with DW printer parame-
ters like nozzle size and build volume. However, their toolpaths are
limited to non-continuous infill patterns–all standard infill patterns
require travel movements–and sequential layer ordering with re-
spect to 𝑧–all areas of a model at a given height are printed before
the machine moves up in 𝑧. The only continuous toolpaths that can
be generated with these slicers are "vase mode" prints, in which a
continuous spiral path follows the outer contour of a model. This
is a limited feature that can only produce single-walled prints for
non-branching solid models.

Bypassing traditional slicers and generating g-code files directly
enables fine-grained control over printer behavior. There is a robust
body of previous literature that explores custom g-code generation.
Custom g-code generators have been developed to print textiles
[13], hair [27], and foam-like [29] "meta-materials" on FDM printers.
They have also been employed to generate prints with novel surface
textures [37, 42]. Silkworm is a Rhino and Grasshopper-based tool
that allows for the direct generation of toolpaths via Grasshopper
programming–lines that are generated in Grasshopper are turned
into g-code commands [33]. CoilCAM [3] is a Grasshopper program
developed to support the design of 3D printable ceramic vessels
based on a series of mathematical operations performed on cylin-
ders. All of these tools generate g-code files, but they do not function
as slicers. They do not slice arbitrary input geometry.

Xylinus [19] is a slicer implemented in Grasshopper that repro-
duces the slicing behavior of commercial tools. Its utility stems
from its integration of slicing with Grasshopper programming. A
user can generate geometry and slice that geometry in a single
application and program.

Vespidae [14] is what might be termed a meta-slicer. This tool
functions as a standard slicer that also provides opportunities to
directly edit g-code files. For example, after slicing a model, a user
can replace an infill pattern on a given layer with a custom hand-
drawn pattern. Vespidae also allows users to manually re-order the
printing of different sections of a model. Though it is possible to
manually control the printer toolpath with some of these previous
tools, none of them provide travel minimization options.

2.2 Travel Minimization
Some traditional slicers such as Simplify 3D [41] and Prusa [24]
have a functionality called sequential printing. Sequential printing
allows the user to print different models or copies of models in a
non-planar positive-z order, but it does not account for collisions
and requires the user to manually consider path planning between
separate objects on the print bed. Additionally, sequential printing
only allows the user to print layers linearly within a single model,
it does not account for branching structures within the object itself.

Jiang and Ma compiled and reviewed work related to path plan-
ning strategies for 3D printing [23]. They discuss the need for a
path-planning platform that allows the user to prioritize differ-
ent strategies of travel path optimization depending on specific

TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

goals. They make the point that different optimization approaches–
including travel minimization–may be employed to achieve differ-
ent goals. For instance achieving a goal of high print quality may
require a different approach than improving print time efficiency.

Hergel et al. [18] approach travel minimization in DW clay 3D
printing by generating a large supportive shell that encloses the
model. All travel movements occur in this shell. The shell functions
as a support structure for the model and is removed after the print is
complete. Their strategy allows the printer to continuously extrude
while maintaining a sequential layer ordering with respect to height.
They demonstrate how their slicer enables the DW printing of a
range of ceramic artifacts. The downside of this approach is that
their toolpaths require the printing of a significant amount of extra
material (for the shell) and a post-processing step to remove the
shell from the model.

Zhong et al. [49]’s algorithm decomposes the surface of a model
in order to print its outer shell with as few travel movements as
possible, and similarly takes height-dependency, overlap, and nozzle
height constraint into consideration. However it only prints hollow
shells of models with no infill.

2.2.1 Reducing Travel Between Regions. Work done in minimizing
travel between branches of a part–minimizing what we term Outer-
Model travel–includes Liu et al.’s approach [30], in which they
create collections of "sub-parts" representing stacks of neighboring
planar regions that can be printed together in a non-planar order.
They implement metaheuristics to find reasonable paths between
these sub-parts. (Metaheuristics are employed to reduce the time
spent searching.) They test their algorithm by printing two different
models using PLA on a standard plastic 3D printer and metal on a
selective laser sintering machine. Kaplan et al. lengthened a tradi-
tional FFF 3D printer nozzle in order to increase the space between
the tip of the nozzle and the large heat block of the print head. This
similarly allows for the printing of neighboring planar regions in
a non-planar order. The lengthened nozzle supports non-planar
ordering because it reduces the likelihood of collisions between
the print head and already printed layers [25]. They tested their
algorithm by printing a number of branching models in PLA and
TPU on standard plastic 3D printers.

2.2.2 Reducing Travel Within a Planar Region. Work done in min-
imizing travel within planar regions–what we term Inner-Model
travel–includes approaches that minimize travel between walls and
infill via toolpath reordering. Gupta et al. [17], Flemming et al.[12],
and Hu et al. [20] achieve a modest reduction in travel by reordering
g-code commands for a individual planar regions within a model.
More useful techniques eliminating travel movements within planar
region altogether. Zhao et al. employ a continuous low-curvature
path composed of connected Fermat spirals that begin and end at
the same location [48]. Zhai et al.’s continuous path is generated by
decomposing porous structures with Voronoi diagrams and then
filling these subdomains with Fermat spirals [47]. Xia et al. generate
"hybrid" continuous paths by connecting walls to regions of zigzag
infill [45].

Our algorithm integrates and improves on these two categories
of travel reduction techniques. We develop an approach that was
informed by Kaplan et al.’s [25] and Liu et al.’s [30] prior work
to minimize travel between branches of a model and employ and

extend Zhao et al.’s connected Fermat spirals [48] to minimize travel
movements within a closed region of the model at a given layer.

2.3 Connected Fermat Spirals
A connected Fermat spiral [48] is a continuous space-filling path
of a complex shape that starts and stops at the same point and is
created by spiraling and connecting its equidistantly spaced inner
isocontours. This path completely fills the shape without the need
for travel movements between different areas of infill (see Figure 2
for an example). More information about how this path is generated
can be found in Appendix D.

Figure 2: An example of a space-filling continuous connected Fermat spiral
toolpath of a complex shape. (a) A duck shape. (b) The equidistantly spaced
isocontours of the shape, with two local "maxima", or separated inner con-
tour regions. (c) The connected Fermat spiral path. (d) A visualization of
the path in the material with the specified extrusion width.

3 OVERVIEW
Travel Reduction Algorithm (TRAvel) Slicer is a general purpose
slicing tool that takes a 3D model as input and generates a toolpath
in the form of a g-code file with few to no travel movements (see
Figure 3). TRAvel Slicer is an open source Python library written
to be used in Grasshopper and Rhino3D and is available in a public
Github repository [22]. (See Appendix A for more details.)

Conventional 3D printer software slices the model along the
𝑧-axis at intervals of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑙ℎ𝑒𝑖𝑔ℎ𝑡 parallel to the 𝑥-𝑦 plane,
where 𝑙ℎ𝑒𝑖𝑔ℎ𝑡 is the layer height and is determined by nozzle size,
desired print resolution, and material properties. The slices are
printed linearly with respect to the 𝑧-axis; all isolated regions at
layer 𝑙𝑖 are printed before the printer nozzle advances to the next
𝑧 = 𝑙𝑖+1 · 𝑙ℎ𝑒𝑖𝑔ℎ𝑡 . We define isolated regions as the following:

Definition 3.1 (Isolated Region). A single closed planar area bounded
by an outer contour that is generated when the model intersects
an 𝑥-𝑦−parallel plane. The region may also be bounded by inner

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Gould, J. et al

Figure 3: An overview of the TRAvel Slicer algorithm and software.

contours if there are holes in the model (see example in Figure 12).
There may be multiple isolated regions at any given layer height
due to branching in the 3D model.

To build the model, 3D printers deposit material within these
isolated planar regions (infill), and along the contours defining their
boundaries (walls), building the model up layer by layer.

Travel – or transfer – movements can occur within a given
isolated region (see Figure 4 (a)), and between isolated regions
when the 3D model contains branching structures (see Figure 4 (b)).

Figure 4: Types of travel movements in 3D printing, shown in green. (a)
Inner-Model travel within an isolated region. (b) Outer-Model travel be-
tween isolated regions.

The travel path reduction search can be separated into these two
loosely connected problem spaces, whichwe refer to as Inner-Model
and Outer-Model Travel Reduction.

Definition 3.2 (Inner-Model Travel). Given a single closed planar
contour belonging to a slice of the model at a given layer 𝑙𝑖 , we
define Inner-Model travel as any travel movements within this
contour (Figure 4 (a)).

Definition 3.3 (Outer-Model Travel). WedefineOuter-Model travel
as any travel movements between isolated closed regions. Outer-
Model travel is either due to a branching 3D model or to multiple
models present on the print bed (Figure 4 (b)).

Our algorithm first slices the model into layers (see Model Slicing
in Figure 3). Layers with more than one isolated region (layers
with branching structures) are split. We then generate a printable
ordering of these nodes that reduces travel between them, thus
reducing1 Outer-Model travel (see Outer-Model Travel Reduction
in Figure 3). Once this ordering has been generated, our algorithm
generates a continuous travel path for each isolated region, reducing
Inner-Model travel (see Inner-Model Travel Reduction in Figure
3). These two steps of our algorithm are described in detail in the
next two sections. The end result is a visualization of the printer
toolpath and a g-code file.

4 PARAMETERS AND MODEL SLICING
Our algorithm begins by slicing a 3D model into layers. Slicing
is based on parameters associated with the printer and/or print
material that is being used.

4.1 Parameters
TRAvel Slicer employs the same parameters that traditional slicers
do, including layer height, referred to as 𝑙ℎ𝑒𝑖𝑔ℎ𝑡 , and extrusion
width, referred to as𝑤𝑒 . The extrusion width of the nozzle (its inner
diameter) determines the spacing of the walls and infill toolpath.

TRAvel Slicer also takes two additional parameters for Outer-
Model travel reduction, nozzle width (𝑛𝑜𝑧𝑤𝑖𝑑𝑡ℎ) and nozzle height
(𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡). Nozzle width represents the maximum outer diameter
of the nozzle. The nozzle height is the measurement representing
the vertical clearance from the tip of the extruder to the rest of the
printer (see Figure 5).

4.2 Slicing
Our algorithm slices a 3D model into layers based on these pa-
rameters. The number of layers is determined by the layer height
(𝑙ℎ𝑒𝑖𝑔ℎ𝑡) and the height of the model.

Each slice consists of at least one closed curve. These curves are
generated by the intersection of the model with a plane at height
𝑧 = 𝑙𝑖 ·𝑙ℎ𝑒𝑖𝑔ℎ𝑡 . Once we have generated these curves, we group them
into isolated regions. An isolated region may consist of a single

1Note that our algorithm does not necessarily generate an optimal print ordering in
all cases. However, it reliably generates a very good approximation.

TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 5: A side view diagram of a 3D printer nozzle and corresponding
parameters layer height (𝑙ℎ𝑒𝑖𝑔ℎ𝑡), nozzle width (𝑛𝑜𝑧𝑤𝑖𝑑𝑡ℎ), and nozzle
height (𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡).

closed curve if the region is solid. Alternatively it may consist of
multiple outer curves if the region has holes (see Figure 12).

We then pass these isolated regions to Outer-Model travel reduc-
tion to generate a non-planar printable order.

5 OUTER-MODEL TRAVEL REDUCTION
Outer-Model travel reduction generates a print ordering for the
isolated regions that minimizes travel while ensuring that the print
head does not collide with the model during printing.

Figure 6: Constraints that dictate layer ordering; (a) height dependency,
(b) nozzle height restriction, and (c) collision avoidance. Region A must be
printed before region B in all three of these instances.

The ordering must fulfill the following constraints. First, region
B cannot be printed before region A if region A is underneath
region B, Figure 6 (a) and (b). Note that in Figure 6 (b), the printer
cannot return to print region A after printing region B because
of the nozzle height restriction; the armature will collide with the
previously printed part of the model. Lastly, note that in Figure 6
(c), region A must be printed before region B to avoid a collision
due to overlap.

To first satisfy the height-dependency constraint, we begin con-
structing our search space with a height-dependence tree.

5.1 Height-Dependence Tree
TRAvel Slicer’s Outer-Model travel optimization begins by con-
structing height-dependence tree 𝐻 (see Figure 7). In a branching
3D model, the intersection of the model and 𝑥-𝑦 parallel plane at
some layer 𝑙𝑖 can result in multiple isolated regions (each corre-
sponding to at least one closed curve) 𝐶𝑖 = {𝑐1

𝑖
, 𝑐2
𝑖
, ..., 𝑐𝑛

𝑖
}. In order

to simplify 𝐻 and later reduce the number of necessary compar-
isons when constructing a path, we compare the isolated regions
within each layer height to determine potential overlap, using the
approach described in Appendix B. If any two isolated regions
𝑐
𝑗
𝑖
, 𝑐𝑘
𝑖
𝜖 𝐶𝑖 | 𝑗 ≠ 𝑘 are a distance of less than or equal to 𝑛𝑜𝑧𝑤𝑖𝑑𝑡ℎ/2

from each other they cannot be printed in a non-planar order, there-
fore we group them in the same node 𝐻 .

Given consecutive layers 𝑖 and 𝑖 + 1 and corresponding sets of
isolated regions 𝐶𝑖 and 𝐶𝑖+1, we define the height dependence of a
given isolated region 𝑐𝑖+1 𝜖 𝐶𝑖+1 on region 𝑐𝑖 𝜖 𝐶𝑖 to be true if the
their projections onto the same plane results in overlapping areas.

Figure 7: Construction of Height-Dependency tree𝐻 . Every isolated region
(red lines) 𝑐𝑖 becomes a node in 𝐻 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐 𝑗

𝑖
, 𝑐𝑘

𝑖
) ≥ 𝑛𝑜𝑧𝑤𝑖𝑑𝑡ℎ/2 for

all other 𝑐𝑖 𝜖 𝐶𝑖 , 𝑗 ≠ 𝑘 .

Note that this could technically result in multiple nodes satis-
fying the definition of a parent for a subsequent node, producing
a Directed Acyclic Graph (DAG) rather than a tree. In order to
reduce the number of comparisons in our algorithm later on, we
arbitrarily assign the first node that satisfies this constraint as the
parent, resulting in a tree data structure.

5.2 Nozzle-Height and Overlap Tree
Once we have created a tree of isolated regions that captures height
dependencies, we begin to identify and eliminate potential collisions
that may occur during printing.

5.2.1 Nozzle-Height Tree. We begin by leveraging Kaplan et al.’s
insight that the nozzle’s width is very small compared to the print
head dimensions [25], also utilized in Liu et al.’s [30] and Zhong et
al.’s work [49]. Our algorithm avoids a large category of collisions
by requiring that all layers within a nozzle height are printed before
layers above that nozzle height—everything within a given height
range 𝑧𝑜 ≤ 𝑧 ≤ 𝑧𝑜 + 𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡 must be printed before the toolpath
can advance any higher. To capture this constraint, we generate
a new tree 𝐻 ′ whose nodes 𝑣 ′ contain contiguous sets of nodes
{𝑣𝑖 , 𝑣𝑖+1, ..., 𝑣𝑖+𝑘 } from 𝐻 in order to reduce the size of the shortest
toolpath search space in section 5.3. The nodes in 𝐻 ′ must satisfy
the following conditions as can be seen in Figure 8:

• Any two nodes (𝑣𝑘 , 𝑣𝑚) 𝜖 𝑣 ′ where 𝑘 ≠𝑚 are lineal descen-
dants; 𝑣𝑘 is either a descendant or ancestor of 𝑣𝑚 , but they

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Gould, J. et al

Figure 8: The construction of𝐻 ′ from𝐻 . The number of nodes |𝐻 ′ | ≤ |𝐻 | .

cannot be "siblings" or "cousins" within 𝐻 ′. This is to satisfy
the condition that they can be printed consecutively without
travel movements.

• For any 𝑣𝑖 𝜖 𝐻 , its regions have the same height 𝑧𝑖 . We com-
pute the segmented height 𝑧′

𝑖
of 𝑣𝑖 with respect to the nozzle

height of the printer: 𝑧′
𝑖
= 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 (𝑧𝑖

𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡
). All 𝑣 𝜖 𝑣 ′

must have the same segmented height 𝑧′.
• If a given node 𝑣 has multiple children in 𝐻 , it must be
the last node in its node 𝑣 ′ of 𝐻 ′. Relationships between a
parent node with more than one child and its children 𝐻 are
preserved in 𝐻 ′ (for example, in Figure 8 the very first layer
contains a single node, but layer 1 contains two nodes in 𝐻 .
Because this node in 𝐻 has two children, it remains a single
node in 𝐻 ′).

5.2.2 Sub-Divide by Overlap. There can still be collisions when
traveling between indirectly related nodes in 𝐻 ′ within a given
𝑧′ height if any subset of the set of regions within a node 𝑣 ′ 𝜖 𝐻 ′

overlaps above and below any set of regions in another node𝑢′ 𝜖 𝐻 ′.
We perform an additional overlap comparison of each node 𝑣 ′ with
its "siblings" and "cousins" at the same 𝑧′ height. If any region
within 𝑣 ′ overlaps 𝑢′ both above and below its region, we split 𝑣 ′
at the transition into two new nodes (see Figure 9).

The nodes in this tree indicate which groups of layers can be
printed together without generating collisions. However, we still
need to determine a valid ordering for these layer groups.

Figure 9: The comparison of indirectly related nodes 𝑢′ and 𝑣′ in 𝐻 ′,
resulting in a subdivision of 𝑢′ into 𝑢′

1,𝑢
′
2 and 𝑣′ into 𝑣′1, 𝑣

′
2 due to overlap.

5.3 Connected Graph and Hamiltonian Path
Once we have our sub-divided 𝐻 ′ we can search for a valid travel
path between the nodes at each given nozzle height section 0 ≤
𝑧′ ≤ 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 (model height/𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡). We iterate through 𝑧′, con-
structing a subset 𝑆 ⊂ 𝐻 ′ where 𝑆 = {𝑣 ′

𝑖
| 𝑧′
𝑖
= 𝑧′, 𝑣 ′

𝑖
𝜖 𝐻 ′}.

We create a directed weighted graph 𝐺 = (𝑉 , 𝐸), where there
exists a node in 𝑉 for every node in 𝑆 , and an edge (𝑣𝑘 , 𝑣𝑚) if 𝑣𝑘
is the parent node of 𝑣𝑚 in 𝐻 ′ or 𝑣𝑘 is an indirectly related node
and 𝑣𝑚 does not occlude it. The weight of these edges is equal to
the distance between the last contour in 𝑣𝑘 and the first contour in
𝑣𝑚 . We search for a Hamiltonian path within the graph, beginning
with any node containing contours at 𝑧 = 𝑧′ · 𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡 . These
nodes become the start nodes for our Hamiltonian Path Search, and
their initial weights are equal to the distance from the last node in
the path found in the previous nozzle height segment 𝑧 = 𝑧′ − 1.
Travel minimization at each height segment is dependent on the
path found in the previous segment.

Figure 10: The construction of graph𝐺 from subset 𝑆 ⊂ 𝐻 ′ and resulting
Hamiltonian path.

TRAvel Slicer performs a depth-first search on 𝐺 in order of
minimum weighted edges to find a Hamiltonian path. When adding
a node to the path, we account for height dependency by verify-
ing that the parent of that node in 𝐻 ′ has been printed. We then
check that no node in the current path occludes the node we are
attempting to add, otherwise the path is not viable due to overlap.

We iterate the search until either: we have traversed the entire
tree, we have found a specified number of Hamiltonian paths, or
we hit a specified search time limit. While iterating, a path search
in progress is halted and discarded if the summation of its edge
weights exceeds the minimum total weight of any path already
found.

5.4 Outer-Model Travel Reduction Output
Once a complete path of the model has been found and TRAvel
Slicer has generated an ordered sequence of isolated regions with
minimized travel movements, there is an extra step in which we
verify that a path parallel to the 𝑥-𝑦 plane at height equal to the
higher of the two nodes we are traversing between will not result in
a collision with the bounding boxes of nodes that have previously
been printed. If it will, we traverse between them at the highest
𝑧 that has been printed so far, satisfying the requirement that the
path does not collide with the model (see Figure 11).

TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 11: Side view of traversal between nodes in𝐻 ′ during printing. Path
𝑎 collides with a previously printed part of the model, so TRAvel Slicer uses
path 𝑏.

The result of this stage of our algorithm is an ordering of isolated
regions that minimizes Outer-Model travel and ensures that no
collisions will occur. Note that we have not yet generated a toolpath,
only an ordering of printable isolated regions. The actual toolpath
is generated in the next step of our algorithm.

5.5 Improvements on Previous Work
TRAvel Slicer’s Outer-Model travel minimization significantly re-
duces the search space and improves performance by: 1) combining
information about Inner- and Outer-Model travel to optimize travel
paths between regions, 2) generating a searchable graph based on
height-dependent nodes that are sectioned by nozzle height (Sec-
tion 5.2) and, 3) identifying overlaps through curve comparison as
opposed to bounding box or area centroid comparison (Section 5.1
and Appendix B)).

TRAvel Slicer waits to generate the infill path of a region until
after the Outer-Model travel reduction step, allowing us to start
and stop extrusion paths based on the ordering of the sections from
this step. We are able to improve performance by integrating the
two approaches. In contrast, NozMod’s [25] algorithm works by re-
ordering the horizontal printing of isolated regions–the horizontal
toolpaths are generated by traditional slicing tools. This limits their
ability to optimize the travel paths between regions. Furthermore,
while Kaplan et al. construct a tree (grouped into nozzle-height
chunks), they do not construct a graph of possible paths or search
for a shortest path through a graph. Instead, they opt for a depth-
first search search on their tree taking overlap into account. The
toolpath they generate is viable and does reduce travel movements,
but does not search for the shortest path throughout the entire
model.

Liu et al. [30] does search for a shortest path. However, they pro-
vide limited information about how they construct their searchable
graph. What is clear from the paper is that their search space ends
up being so large it requires metaheuristics to solve. Our algorithm
produces a much smaller graph and corresponding search space.
Additionally, they group regions according to their area centroids,
which leads to inaccuracies when dealing with complex models that
include nested geometry or interlocking curves (see Appendix B).
The algorithm they describe generates erroneous travel movements
between these regions. Our algorithm identifies and minimizes
travel movements in these especially difficult cases.

6 INNER-MODEL TRAVEL REDUCTION
Once Outer-Model travel has been reduced and returned a print
order for the isolated regions of the model, we turn to generating

Figure 12: The region on the left has a clear parent-child relationship
between the outer curve 𝑐0 and the subsequent isocontours: 𝑐0 → 𝐼0 →
𝐼1 → 𝐼2 → 𝐼3. The region on the right has ambiguity with respect to parent-
child relationships. 𝑐1’s parent can be either 𝑐0 → 𝑐1 or 𝐼0 → 𝑐1.

a continuous toolpath for each region. We compute a connected
Fermat Spiraling [48] for each of these isolated regions in order to
minimize travel paths generated due to printing and infill. A Fermat
spiral is a continuous space filling curve that first spirals in to the
center of an arbitrary shape and then spirals back out.

We use connected Fermat spirals as our infill toolpath in TRAvel
Slicer due to their flexibility in setting the start and end point of
the path. Controlling the location of this point allows us to set the
"seam" of an individual branch, and start our path at the closest
location on an isolated region to our previous location, reducing the
length of the Outer-Model travel between branches and avoiding
depositing excess material over a previously printed layer due to
continuous extrusion.

Before generating a connected Fermat spiral path, we connect
outer walls to their inner walls in isolated regions with holes and
generate isocontours for each region. Isocontours are equidistantly
spaced contour curves within an isolated region that form the basis
of our Fermat spiraling.

6.1 Regions with Holes: Connect Inner and
Outer Contours

Generally, isocontour generation in regions with holes–regions that
contain more than one curve–is done in two directions. Both the
outer and inner curves generate contours that march toward each
other and meet in the middle of the region, forming a single closed
curve where they intersect [44]. This can result in ambiguity in the
order of parent-node and child-node relationships when generating
the tree data structure necessary for connecting contours within
the region. In regions without holes the order is very simple; the
outermost contour is the parent node, and the next isocontour
or isocontours within it are its children. In regions with holes
there may need to be an additional search to determine the closest
neighbor of an isocontour and thus its parent curve (see Figure 12).

In order to simplify these relationships, we connect the outer
and inner contours of closed regions before generating isocontours.
By connecting contours, we create a single closed curve for each
isolated region. This approach simplifies subsequent steps in our
algorithm. It also allows us to print the walls of the isolated region
separately from the infill.

We connect inner and outer contours by creating a fully con-
nected weighted graph 𝐺 = (𝑉 , 𝐸), where there exists a vertex

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Gould, J. et al

Figure 13: The Minimum Spanning Tree between an outer contour and its
inner hole contours.

𝑣 𝜖 𝑉 for every curve in the region, and an edge 𝑒 𝜖 𝐸 between every
node with weight equal to the shortest distance between those two
curves (13 (a)).

We search for the minimum-weighted spanning tree of this
graph, which gives us the shortest connection points between our
inner and outer curves (13 (b)). We break the curves at these lo-
cations and reconnect them to one another in order to create our
single outer contour (13 (c)). This is somewhat similar to Zhai et
al.’s method [47], though they employ Voronoi diagrams which
they then recombine before filling with Fermat spirals.

6.2 Infill
6.2.1 Generate Isocontours. Isocontours, or equidistantly spaced
contours within a closed curve, are used in the generation of walls
and concentric infill in traditional slicers. When the distance be-
tween these contours is equal to the extrusion width of the printer
nozzle, the toolpath following them is space-filling. For our algo-
rithm, isocontours serve as the foundation for our Fermat Spirals.

The built-in contour curve generation functionality in Rhino fails
to produce correct isocontours for complex non-convex geometry.
As a result, slicers written in Rhino and Grasshopper often use
packages available on food4rhino such as Clipper [44] to generate
isocontours for walls. However, these packages have limitations
with respect to what types of geometry they support as input.
We implemented our own method for finding isocontours that we
call "point marching", which is based off of the pixel marching
(or marching squares) method [32]. A detailed description of our
method can be found in Appendix C.

6.2.2 Fermat Spiral. Once we have the isocontours for an isolated
region, we use them to generate a connected Fermat spiral toolpath.
We implemented Zhao et al.’s method to generate these paths [48].
First we generate a tree data structure of the isocontours. Then, we
identify consecutive contours that can be Fermat-spiraled, and fi-
nally we connect all contours. The result is a single continuous path
that starts and ends an extrusion width𝑤𝑒 apart, while completely
filling the isolated region (see Figure 14). Detailed information about
this step in our algorithm can be found in Appendix D.

Figure 14: The isocontours (left) and toolpath (right) of an isolated region
with holes. The wall is in black, the infill in purple.

6.3 Walls
Our algorithm allows a user to choose between two slicing modes,
solid infill mode or wall mode. In solid infill mode, our algorithm
generates a space filling spiral path that fills each isolated region
completely. In wall mode, a user specifies a number of walls and our
algorithm generates a spiraling path that generates that number of
walls only.

Traditional slicing methods often designate walls and infill as
separate toolpaths with Inner-Model travel movements between
them. In Zhao et al.’s approach, no distinction is made between
walls and infill; each region is filled with a single spiraling path [48].
In contrast, TRAvel Slicer separates the outermost contour from
the inner isocontours, which results in a cleaner outer surface on
the final print. Furthermore, TRAvel Slicer starts and stops the infill
toolpath at the closest point to the start point of the wall, resulting
in zero Inner-Model travel movements between walls and infill (see
Figure 14, right).

In rare circumstances, it is possible for infill to be separated into
two or more regions with Inner-Model travel paths between them.
In this case, TRAvel Slicer begins the connected Fermat-spiral infill
of each region at the closest point to the previous region, resulting
in short Inner-Model travel movements.

6.4 Inner-Model Travel Reduction Output
Once a continuous path has been generated for every isolated
region, TRAvel Slicer has finished reducing both Outer-Model and
Inner-Model travel movements. It outputs a g-code file for the
specified 3D printer along with a visualization of the extrusion and
travel paths.

6.5 Improvements on Previous Work
Connecting the outer contour to its hole inner contours made defin-
ing relationships within the isocontour tree straightforward (Sec-
tion 6.1 and Appendix D), and allows us to specify the print order
of walls and infill without excessive Inner-Model travel movements.
Instead, it treats the wall as one continuous path with a single start
and end point in the same location.

Early tests of our implementation of connected Fermat spirals
[48] showed a noticeable seam on the outside of models. Separat-
ing the outermost contour (the wall) from the infill significantly
decreased the visibility of these seams.

TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

7 REAL-WORLD APPLICATION
7.1 Printing Process
To test our slicer and demonstrate its utility, we employed it to print
a range of complex models on two different printers and materials:
1) a DW clay 3D printer using a material called CeraMetal, and
2) a traditional FFF printer using standard Polylactic Acid (PLA)
filament. On both printers, we contrast prints generated by TRAvel
Slicer with those generated by a traditional slicer (Cura). We used
the same settings for layer height, wall thickness, speed, and extrude
rate (flow) in both slicers to facilitate comparison.

7.1.1 DW Printing in CeraMetal. For DW printing, we employed
an Eazao Zero [11], a small and affordable desktop DW printer that
was developed for clay 3D printing. Models are printed from CeraM-
etal, a novel "metal clay" material [5]. This material has a non-linear
rheology. Even when printed with an auger-based printer like the
Eazao Zero, it is impossible to start and stop extrusions; material
continues to ooze from the nozzle long after a stop extrusion com-
mand is given. CeraMetal provides a clear illustration of the benefits
of TRAvel slicer for 3D printing in these kinds of materials.

For all models printed in CeraMetal, we used a nozzle with an in-
ner diameter of .6 mm, a print and travel speed of 1000 mm/minute,
and an extrude rate of .25 mm of filament per mm traveled. Models
were sliced with a layer height of .3 mm.

The Outer-Model travel minimization portion of TRAvel Slicer
takes additional parameters nozzle height (𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡) and maxi-
mum nozzle width (𝑛𝑜𝑧𝑤𝑖𝑑𝑡ℎ). We sliced these models with nozzle
dimensions 𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡 = 14 mm, 𝑛𝑜𝑧𝑤𝑖𝑑𝑡ℎ = 6 mm.

Figure 15: A Stanford Bunny test model sliced with TRAvel Slicer and
printed in CeraMetal before (a) and after (b) firing.

Once a part is printed in CeraMetal, it is dried and then fired in
a kiln. During firing, the clay sinters into a solid bronze metal part.
Figure 15 shows images of a Stanford bunny model that was sliced
with TRAvel Slicer before (a) and after (b) firing.

7.1.2 Traditional Thermoplastic Printing. We used a Creality Ender
3D Pro [8], a commercial desktop FFF printer to conduct traditional
PLA printing. All models in PLA were printed at a print speed of
1000 mm/minute, a travel speed of 9000 mm/minute, and an extrude
rate of 0.033 mm of filament per mm traveled. Models were sliced
at a layer height of .2 mm.

The Creality Ender’s default nozzle height is approximately 2.5
mm from the heat box of the printer. We purchased and installed

a custom brass nozzle and insulator from IAMG/NonPlanar [21]
with an inner diameter of .4 mm, and dimensions 𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡 = 30
mm, 𝑛𝑜𝑧𝑤𝑖𝑑𝑡ℎ = 13 mm.

7.1.3 Models. We sliced and printed models that were designed
to test and demonstrate both the Inner- and Outer-Model travel
reduction capabilities provided by TRAvel slicer. We group these
tests into five categories: duplicates and horizontal holes, vertical
nesting, horizontal nesting, branching, and vertical holes.

Figure 16: Test: Duplicates With Holes. Four copies of a gear model with
six holes sliced with TRAvel Slicer (a) and Cura (b). The top images show
toolpath visualizations. Red: extrude paths, green: travel paths.

7.2 Duplicates and Holes
In traditional slicing, printing multiple instances of a model requires
traveling to each copy of the model for every layer printed. We
tested TRAvel Slicer on four copies of a gear model. Each gear also
has six holes. This model tests path planning for Outer-Model travel
reduction between the duplicates. It also tests the outer contour
to hole contour connection for Inner-Model travel reduction and
demonstrates that TRAvel Slicer can generate Fermat Spiraling
paths for complex non-convex 2D geometries.

The top two images in Figure 16 are an overhead view of the
generated toolpaths, with travel movements shown in green and
print movements shown in red. The top left image is TRAvel Slicer’s
toolpath, which has reduced travel movements by printing each of
the gears individually with a single continuous toolpath for each
gear. This path has four travel movements in total. In contrast,
Cura’s toolpath, shown on the top right, has 51 Outer-Model travel
movements and 2704 Inner-Model Travel movements (see Table 1).
The bottom two images are the printed results.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Gould, J. et al

The gears were printed with a solid infill. We can see excess
material due to Outer-Model travel movements between the gears
in the print generated by Cura’s toolpath, and close to the gears
due to Inner-Model Travel movement. The surface of the Cura gear
has some lumps of extra material due to traversal between regions
of infill. The print generated by TRAvel Slicer is cleaner, less excess
material is generated due to travel movements, and the top layer of
the print is smoother.

7.3 Vertical Nesting
Models in which vertical nesting occurs — where portions of the
model overlap below and above other portions with respect to the
𝑧-axis — test TRAvel Slicer’s overhang and collision detection. We
test these features with a model that consists of two zig-zagging
pillars, seen in Figure 17.

This model was printed with three walls and no infill. The top
two images in the figure show toolpaths for the zig-zag model. The
corresponding prints are shown in the bottom two images. The
toolpath generated by TRAvel Slicer contains four travelmovements
between the two pillars. The toolpath generated by Cura contains
275 travel movements between the pillars; two travel movements
for each layer that includes pillars, one to move from the starting
pillar to the second pillar and another to return. As can be seen
in Figure 17 (b), when printed with the continuously extruding
CeraMetal, these travel movements obscure the form of the print,
completely filling the space between the two pillars.

Figure 17: Test: Vertical Nesting. A model with two zig-zagging pillars
sliced with TRAvel Slicer (a) and Cura (b). The top images show toolpath
visualizations. Red: extrude paths, green: travel paths.

7.4 Horizontal Nesting
Models with horizontally nested geometry, or geometry that con-
tains inner and outer structures, test TRAvel Slicer’s curve compar-
ison methods and Outer-Model path planning between the inner
and outer structure.

We test TRAvel Slicer’s ability to print horizontally nested ge-
ometry with a model consisting of a small solid heart nested within
a larger heart-shaped shell (Figure 18). This model was printed in
solid mode. TRAvel Slicer prints the base and the inner heart shape
before printing the outer structure, resulting in a total of five travel
movements. By contrast, Cura’s toolpath includes 101 Outer-Model
travel movements between the inner geometry and outer shell as a
result of traversing back and forth at each layer height. Cura also
generates 1799 Inner-Model travel movements as it travels between
walls and areas of infill.

As can be seen in Figure (18 (b)), Cura’s toolpath results in
extra material being extruded between the inner and outer struc-
tures during Outer-Model travel movement. The outer wall of the
shell collapses as a result of Inner-Model travel movement in this
wall–extra material gradually builds up and eventually results in
complete wall degradation.

Figure 18: Test: Horizontal Nesting. A nested heart model sliced with
TRAvel Slicer (left) and Cura (right). The top two images are toolpath
visualizations. Red: extrude paths, green: travel paths.

7.5 Branching
For models with branches, traditional slicers produce an especially
high number of travel movements, between all of the branches on
each layer. We sliced a tree model with many branches to investi-
gate performance on this particularly challenging class of shape.
This model also tests TRAvel Slicer’s overhang and collision detec-
tion and generates a very large search space for Outer-Model path
planning.

TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 19 shows a comparison of toolpaths for this model. Cura’s
toolpath results in excess material that is extruded between the
branches of the tree, producing a print that deviates significantly
from the original model. TRAvel Slicer produces a print with only
a handful of significant Outer-Model travels. This toolpath also
demonstrates how our algorithm generates a path that avoids col-
lisions with the branches during travel movements (as described
earlier and shown in Figure 11).

Figure 19: Test: Branching. A tree model sliced with TRAvel Slicer (left) and
Cura (right). The top two images are toolpath visualizations. Red: extrude
paths, green: travel paths.

7.6 Vertical Holes
Models with vertically-aligned holes, or branching structures that
split apart at a lower layer and meet again at a higher region,
result in travel movements back and forth within the empty space
when sliced traditionally. Author 2 is a mathematician and ceramic
artist who designed the sculpture seen in Figure 20. The model has
branching structures and a hole in the center that closes at the top.
We sliced this model with TRAvel Slicer and Cura. The toolpaths
can be seen in Figure 20.

Cura’s toolpath resulting in multiple travel movements between
the branches of the structure, which can be seen as excess material
at the center of the printed example and at the top of the model as
it traversed between the two peaks (Figure 20, (b) lower). TRAvel
Slicer’s toolpath produced very few travel movements, resulting in
less material extruded at the center of the model and a cleaner top.

Figure 20: Test: Vertical Holes. A mathematical sculpture model designed
by Author 2, sliced with TRAvel Slicer (left) and Cura (right). The top two
images are toolpath visualizations. Red: extrude paths, green: travel paths.

7.7 PLA Prints
We printed the same models on the Creality Ender 3D as well
(Figure 21). These prints demonstrate the versatility of TRAvel
Slicer. TRAvel Slicer produces viable toolpaths for traditional PLA
3D printing. It also produces neater seams than Cura’s toolpaths
in several cases (Figure 21, bottom). By eliminating travel between
branches of a model, TRAvel slicer produces a cleaner outer surface
on branches.

Figure 21: Top: All models printed in PLA with (a) TRAvel Slicer, (b) Cura.
Bottom: Zoomed in views of the seams generated by each toolpath.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Gould, J. et al

Model Outer-Model Travels Inner-Model Travels Travel Length (mm) Print Time (min)
TRAvel Slicer Cura TRAvel Slicer Cura TRAvel Slicer Cura TRAvel Slicer Cura

Multiple Gears 4 51 0 2704 112 14706 48 118

Zig Zags 4 275 0 23 152 5934 20 26

Nested Hearts 5 101 0 1799 50 7246 34 70

Tree 172 467 1 288 1107 12335 30 50

Sculpture 29 118 8 843 451 13359 107 134
Table 1: Results for CeraMetal. Nozzle Width: 6mm, Nozzle Height: 15mm.

Model Outer-Model Travels Inner-Model Travels Travel Length (mm) Print Time (min)
TRAvel Slicer Cura TRAvel Slicer Cura TRAvel Slicer Cura TRAvel Slicer Cura

Multiple gears 4 71 0 6499 103 22337 175 223
Zig Zags 10 762 0 3432 207 22706 167 209
Nested Hearts 3 150 0 4764 36 15649 118 149
Tree 343 828 1 2870 1588 12358 71 93
Sculpture 57 155 6 2029 556 14184 295 355

Table 2: Results for PLA. Nozzle Width: 13mm, Nozzle Height: 30mm.

7.8 Print Results
Tables 1 and 2 provide a summary of printing information. The table
includes information on travel movements, travel path length, and
print time. The table shows that TRAvel slicer provides significant
advantages, particularly in printing efficiency, over Cura in most
cases. For all models, TRAvel Slicer prints had fewer travel move-
ments, shorter travel lengths, and significantly shortened print
times compared to Cura prints.

TRAvel Slicer’s toolpath reduced the number of Outer-Model
travel movements by a factor of 10 or more in the multiple gears,
zig-zag, and nested hearts models in both materials. The number
of Outer-Model travel movements in the tree model was reduced
by more than half of the number of travel movements produced
by Cura’s toolpath. For the tree, the number of travel movements
is somewhat misleading. For TRAvel Slicer, this number includes

many small travel movements between branches that are very close
together–too close to separate into different regions. These small
travel movements are visible in the "vees" between branches in
Figure 19. The number of travel movements between these branches
could be reduced by using a nozzle with a smaller width.

Travel Slicer eliminated Inner-Model travels completely for the
gears, zig zags, and nested hearts. The tree model has a single very
short Inner-Model travel movement between two branches just
before they diverge, resulting in two separate regions of infill from
the outer wall. Similarly, the sculpture model also has multiple
regions of infill separate from the outer wall on a few of its layers,
resulting in 8 Inner-Model travel movements in the CeraMetal, and
6 in PLA.

The length of the travel movements generated by TRAvel Slicer
is smaller than Cura’s by an order of magnitude in all cases. In

TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

the case of the multiple gears printed in CeraMetal TRAvel Slicer’s
travel length is smaller than Cura’s travel length by a factor of 100.

It is also worth noting that print time is significantly shorter for
all TRAvel Slicer prints. This is especially apparent in the multiple
gears and the nested hearts. Print time was cut in half or lower in
CeraMetal, and significantly reduced by comparison to Cura’s print
time in PLA.

7.9 Limitations and Improvements
In general, depending on the model geometry and the input pa-
rameters, TRAvel Slicer’s slicing time typically takes between 20
seconds to 3 minutes. Though the slicing time is negligible com-
pared to print time, there is room for potential improvement in the
efficiency of the algorithm. Overall we consider the slicing time to
be worth the improved print performance.

Currently travel movements are minimized only within a given
height segment that is determined by the nozzle height. Travel paths
could be minimized further, by considering all layers. However, this
would significantly increase the size of the graph that we search.
When traversing this graph, the search would need to perform an
additional check that all nodes at a given nozzle height section 𝑧′

𝑖
have been printed before moving to a node within the next height
section 𝑧′

𝑖+1.
The geometry of the nozzle could additionally be considered.

Currently TRAvel Slicer treats the nozzle as though it is a cylinder
of height equal to the nozzle height 𝑛𝑜𝑧ℎ𝑒𝑖𝑔ℎ𝑡 and diameter equal to
the maximum width of the nozzle 𝑛𝑜𝑧𝑤𝑖𝑑𝑡ℎ . The nozzles employed
on both the Eazao and the Creality Ender have some tapering that
could be taken into consideration when computing collisions. This
could decrease the number of short travels like the ones produced
between nearby branches for the tree model.

Our code currently lacks support generation. However, if sup-
ports were generated, TRAvel Slicer’s Outer-Model travel reduction
section would operate the same as it does with the rest of the model
and would print support structures before the (overhanging) layers
they are intended to support. The infill of the support structures
could be treated differently than the infill of the model. Infill pat-
terns are currently limited to Fermat spirals. However, we should
be able to employ other approaches to inner travel minimization
(i.e. the zig zagging approach described by [45]) while maintaining
our current approach to Outer-Model travel minimization since
these two phases of our algorithm are distinct.

When comparing TRAvel Slicer’s algorithm to other methods
such as Liu et al. [30] and Kaplan et al. [25], we are limited in our
quantitative assessment as a result of the lack of accessibility to
their source code. We leave a more in-depth analysis of how TRAvel
Slicer compares to other algorithms to future work.

8 CONCLUSION
In this work, we introduced a new Travel Reduction Algorithm
(TRAvel) Slicer and demonstrated its utility and versatility by print-
ing a range of complex geometry on two different printers and
materials.

TRAvel Slicer makes it possible to print complex models in con-
tinuously extruding materials like CeraMetal. As our results demon-
strate, these models could not be printed using traditional slicers.

TRAvel Slicer also improves performance and efficiency in any 3D
printing context. For models in which a traditional slicer generates
travel movements, TRAvel Slicer decreases print time and, in some
cases, also increases print quality.

In addition to our empirical results, our algorithm is unique in
combining Inner- and Outer-Model travel reduction methods. We
also expand on previous methods of continuous path infill to pro-
duce smoother outer surfaces with our methods of wall and hole
curve connection. For Outer-Model travel, we generate a signifi-
cantly reduced path search space that is easily and quickly traversed.
Our approach also works for a broader class of geometries, includ-
ing models with horizontally nested or interlocking features.

ACKNOWLEDGMENTS
This work is supported by National Science Foundation (NSF) Grant
No. 2026218. We would like to thank Hand and Machine lab mem-
bers Fiona Bell, Alyshia Bustos, Erin McClure, Alyssa Johnson, and
Lasair Servilla.

REFERENCES
[1] 3Dpotter. [n. d.]. 3Dpotter. https://3dpotter.com/
[2] Shahriar Bakrani Balani, Seyed Hamidreza Ghaffar, Mehdi Chougan, Eujin

Pei, and Erdem Şahin. 2021. Processes and materials used for direct writ-
ing technologies: A review. Results in Engineering 11 (Sept. 2021), 100257.
https://doi.org/10.1016/j.rineng.2021.100257

[3] Samuelle Bourgault, Pilar Wiley, Avi Farber, and Jennifer Jacobs. 2023. CoilCAM:
Enabling Parametric Design for Clay 3D Printing Through an Action-Oriented
Toolpath Programming System. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (CHI ’23). Association for Computing
Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3544548.3580745

[4] David Braam et al. 2016. UltiMaker Cura. https://ultimaker.com/software/
ultimaker-cura/

[5] Leah Buechley, Jaime Gould, and Fiona Bell. 2024. CeraMetal: A New Approach
to Low-Cost Metal 3D Printing with Bronze Clay. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (CHI ’24). Association for
Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/
3613904.3642155

[6] Leah Buechley and Ruby Ta. 2023. 3D Printable Play-Dough: New Biodegrad-
able Materials and Creative Possibilities for Digital Fabrication. In Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI
’23). Association for Computing Machinery, New York, NY, USA, 1–15. https:
//doi.org/10.1145/3544548.3580813

[7] Zhangwei Chen, Ziyong Li, Junjie Li, Chengbo Liu, Changshi Lao, Yuelong Fu,
Changyong Liu, Yang Li, Pei Wang, and Yi He. 2019. 3D printing of ceramics:
A review. Journal of the European Ceramic Society 39, 4 (April 2019), 661–687.
https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

[8] Creality. 2023. Creality Ender 3D. https://www.creality.com/products/ender-3-
3d-printer

[9] Alexander Curth, Barrak Darweesh, Logman Arja, and Ronald Rael. 2020. Ad-
vances in 3D printed earth architecture: Onsite prototyping with local materials.

[10] R. Duballet, O. Baverel, and J. Dirrenberger. 2017. Classification of building
systems for concrete 3D printing. Automation in Construction 83 (Nov. 2017),
247–258. https://doi.org/10.1016/j.autcon.2017.08.018

[11] Eazao. 2022. Eazao Zero - Eazao. https://www.eazao.com/product/eazao-zero/
[12] Chloë Fleming, Stephanie Walker, Callie Branyan, Austin Nicolai, and Geoffrey

Hollinger. 2020. Toolpath Planning for Continuous Extrusion Additive Manufac-
turing. (May 2020).

[13] Jack Forman, Mustafa Doga Dogan, Hamilton Forsythe, and Hiroshi Ishii. 2020.
DefeXtiles: 3D Printing Quasi-Woven Fabric via Under-Extrusion. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
Association for Computing Machinery, New York, NY, USA, 1222–1233. http:
//doi.org/10.1145/3379337.3415876

[14] Frikk H Fossdal, Vinh Nguyen, Rogardt Heldal, Corie L. Cobb, and Nadya Peek.
2023. Vespidae: A Programming Framework for Developing Digital Fabrication
Workflows. In Proceedings of the 2023 ACM Designing Interactive Systems Con-
ference (DIS ’23). Association for Computing Machinery, New York, NY, USA,
2034–2049. https://doi.org/10.1145/3563657.3596106

https://3dpotter.com/
https://doi.org/10.1016/j.rineng.2021.100257
https://doi.org/10.1145/3544548.3580745
https://ultimaker.com/software/ultimaker-cura/
https://ultimaker.com/software/ultimaker-cura/
https://doi.org/10.1145/3613904.3642155
https://doi.org/10.1145/3613904.3642155
https://doi.org/10.1145/3544548.3580813
https://doi.org/10.1145/3544548.3580813
https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
https://www.creality.com/products/ender-3-3d-printer
https://www.creality.com/products/ender-3-3d-printer
https://doi.org/10.1016/j.autcon.2017.08.018
https://www.eazao.com/product/eazao-zero/
http://doi.org/10.1145/3379337.3415876
http://doi.org/10.1145/3379337.3415876
https://doi.org/10.1145/3563657.3596106

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Gould, J. et al

[15] N. Gaudillière, R. Duballet, C. Bouyssou, A. Mallet, Ph. Roux, M. Zakeri, and
J. Dirrenberger. 2019. Chapter 3 - Building Applications Using Lost Form-
works Obtained Through Large-Scale Additive Manufacturing of Ultra-High-
Performance Concrete. In 3D Concrete Printing Technology, Jay G. Sanjayan,
Ali Nazari, and Behzad Nematollahi (Eds.). Butterworth-Heinemann, 37–58.
https://doi.org/10.1016/B978-0-12-815481-6.00003-8

[16] Mohamed Gomaa, Wassim Jabi, Alejandro Veliz Reyes, and Veronica Soebarto.
2021. 3D printing system for earth-based construction: Case study of cob. Au-
tomation in Construction 124 (April 2021), 103577. https://doi.org/10.1016/j.
autcon.2021.103577

[17] Prashant Gupta, Bala Krishnamoorthy, and Gregory Dreifus. 2020. Continuous
Toolpath Planning in Additive Manufacturing. Computer-Aided Design 127 (Oct.
2020), 102880. https://doi.org/10.1016/j.cad.2020.102880 arXiv:1908.07452 [cs].

[18] Jean Hergel, Kevin Hinz, Sylvain Lefebvre, and Bernhard Thomaszewski. 2019.
Extrusion-based ceramics printing with strictly-continuous deposition. ACM
Transactions on Graphics 38, 6 (Dec. 2019), 1–11. https://doi.org/10.1145/3355089.
3356509

[19] Ryan Hoover. 2018. Ryan Hoover | Xylinus. http://www.ryanhoover.org/rd/
xylinus.php

[20] Kaiyu Hu, Hailong Li, and Kou Xi. 2023. A Toolpath Optimization Algorithm for
Layered 3D Printings based on Solving the TSP. Journal of Physics: Conference
Series 2456, 1 (March 2023), 012039. https://doi.org/10.1088/1742-6596/2456/1/
012039

[21] IAMG/NonPlanar. 2020. nonplanar.xyz. https://www.nonplanar.xyz/
[22] Jaime Gould. 2024. TRAvel_Slicer Github Repository. https://github.com/Hand-

and-Machine/TRAvel_Slicer
[23] Jingchao Jiang and Yongsheng Ma. 2020. Path Planning Strategies to Optimize

Accuracy, Quality, Build Time and Material Use in Additive Manufacturing: A
Review. Micromachines 11, 7 (July 2020), 633. https://doi.org/10.3390/mi11070633
Number: 7 Publisher: Multidisciplinary Digital Publishing Institute.

[24] Josef Prusa. [n. d.]. Sequential printing | Prusa Knowledge Base. https://help.
prusa3d.com/article/sequential-printing_124589

[25] Daphna Kaplan, Shir Rorberg, Mirela Ben Chen, and Yoav Sterman. 2022. NozMod:
Nozzle Modification for Efficient FDM 3D Printing. In Proceedings of the 7th
Annual ACM Symposium on Computational Fabrication (SCF ’22). Association
for Computing Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/
3559400.3561999

[26] Matthew Lanaro, David P. Forrestal, Stefan Scheurer, Damien J. Slinger, Sam Liao,
Sean K. Powell, and Maria A. Woodruff. 2017. 3D printing complex chocolate
objects: Platform design, optimization and evaluation. Journal of Food Engineering
215 (Dec. 2017), 13–22. https://doi.org/10.1016/j.jfoodeng.2017.06.029

[27] Gierad Laput, Xiang ’Anthony’ Chen, and Chris Harrison. 2015. 3D Printed Hair:
Fused Deposition Modeling of Soft Strands, Fibers, and Bristles. In Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology. ACM,
Charlotte NC USA, 593–597. https://doi.org/10.1145/2807442.2807484

[28] Phoebe Li, Stephen Mellor, James Griffin, Charlotte Waelde, Liang Hao, and
Richard Everson. 2014. Intellectual property and 3D printing: a case study on
3D chocolate printing. Journal of Intellectual Property Law & Practice 9, 4 (April
2014), 322–332. https://doi.org/10.1093/jiplp/jpt217

[29] Jeffrey I. Lipton and Hod Lipson. 2016. 3D Printing Variable Stiffness Foams
Using Viscous Thread Instability. Scientific Reports 6, 1 (Aug. 2016), 29996. https:
//doi.org/10.1038/srep29996 Number: 1 Publisher: Nature Publishing Group.

[30] Wenyang Liu, Ling Chen, Guangzhen Mai, and Lijun Song. 2020. Toolpath
Planning for Additive Manufacturing Using Sliced Model Decomposition and
Metaheuristic Algorithms. Advances in Engineering Software 149 (Nov. 2020),
102906. https://doi.org/10.1016/j.advengsoft.2020.102906

[31] Yaowen Liu, Xue Liang, Ahmed Saeed, Weijie Lan, and Wen Qin. 2019. Properties
of 3D printed dough and optimization of printing parameters. Innovative Food
Science & Emerging Technologies 54 (June 2019), 9–18. https://doi.org/10.1016/j.
ifset.2019.03.008

[32] William E. Lorensen andHarvey E. Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. ACM SIGGRAPH Computer Graphics 21, 4
(Aug. 1987), 163–169. https://doi.org/10.1145/37402.37422

[33] Arthur Mamou-Mani and Adam Holloway. 2023. ProjectSilkworm/Silkworm.
https://github.com/ProjectSilkworm/Silkworm original-date: 2013-02-
17T11:04:21Z.

[34] Sylvester Mantihal, Sangeeta Prakash, Fernanda Condi Godoi, and Bhesh Bhan-
dari. 2017. Optimization of chocolate 3D printing by correlating thermal and
flow properties with 3D structure modeling. Innovative Food Science & Emerging
Technologies 44 (Dec. 2017), 21–29. https://doi.org/10.1016/j.ifset.2017.09.012

[35] Marita. [n. d.]. Reprintable Mussel shell. https://commons.materiom.org/data-
commons/recipe/649c36218e0f06dcab0b7d2c

[36] Du T. Nguyen, Cameron Meyers, Timothy D. Yee, Nikola A. Dudukovic, Joel F.
Destino, Cheng Zhu, Eric B. Duoss, Theodore F. Baumann, Tayyab Suratwala,
James E. Smay, and Rebecca Dylla-Spears. 2017. 3D-Printed Transparent Glass.
Advanced Materials 29, 26 (July 2017), 1701181. https://doi.org/10.1002/adma.
201701181 Publisher: John Wiley & Sons, Ltd.

[37] Franklin Pezutti-Dyer and Leah Buechley. 2022. Extruder-Turtle: A Library for
3D Printing Delicate, Textured, and Flexible Objects. In Sixteenth International
Conference on Tangible, Embedded, and Embodied Interaction (TEI ’22). Association
for Computing Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/
3490149.3501312

[38] Michael L. Rivera, S. Sandra Bae, and Scott E. Hudson. 2023. Designing a
Sustainable Material for 3D Printing with Spent Coffee Grounds. In Proceed-
ings of the 2023 ACM Designing Interactive Systems Conference (DIS ’23). As-
sociation for Computing Machinery, New York, NY, USA, 294–311. https:
//doi.org/10.1145/3563657.3595983

[39] Eva Sanchez-Rexach, Trevor G. Johnston, Coralie Jehanno, Haritz Sardon, and
Alshakim Nelson. 2020. Sustainable Materials and Chemical Processes for Ad-
ditive Manufacturing. Chemistry of Materials 32, 17 (Sept. 2020), 7105–7119.
https://doi.org/10.1021/acs.chemmater.0c02008 Publisher: American Chemical
Society.

[40] Simplify3D. 2013. Simplify3D. https://www.simplify3d.com/
[41] Simplify3D Software. [n. d.]. Multi-Part Printing | Simplify3D Software. https:

//www.simplify3d.com/resources/articles/multi-part-printing/
[42] Haruki Takahashi and Homei Miyashita. 2017. Expressive Fused Deposition

Modeling by Controlling Extruder Height and Extrusion Amount. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, Denver
Colorado USA, 5065–5074. https://doi.org/10.1145/3025453.3025933

[43] Tronxy. 2024. Tronxy 3D Printers Official Store. https://www.tronxy3d.com/
products/tronxy-moore-2-pro-ceramic-clay-3d-printer

[44] Arend van Waart. 2023. arendvw/clipper. https://github.com/arendvw/clipper
original-date: 2014-07-05T09:15:32Z.

[45] Lingwei Xia, Guowei Ma, Fang Wang, Gang Bai, Yi Min Xie, Weiguo Xu, and
Jianzhuang Xiao. 2022. Globally continuous hybrid path for extrusion-based
additive manufacturing. Automation in Construction 137 (May 2022), 104175.
https://doi.org/10.1016/j.autcon.2022.104175

[46] Fan Yang,Min Zhang, Sangeeta Prakash, and Yaping Liu. 2018. Physical properties
of 3D printed baking dough as affected by different compositions. Innovative
Food Science & Emerging Technologies 49 (Oct. 2018), 202–210. https://doi.org/10.
1016/j.ifset.2018.01.001

[47] Xiaoya Zhai and Falai Chen. 2019. Path Planning of a Type of Porous Structures
for Additive Manufacturing. Computer-Aided Design 115 (Oct. 2019), 218–230.
https://doi.org/10.1016/j.cad.2019.06.002

[48] Haisen Zhao, Fanglin Gu, Qi-Xing Huang, Jorge Garcia, Yong Chen, Changhe
Tu, Bedrich Benes, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2016.
Connected fermat spirals for layered fabrication. ACM Transactions on Graphics
35, 4 (July 2016), 1–10. https://doi.org/10.1145/2897824.2925958

[49] Fanchao Zhong, Yonglai Xu, Haisen Zhao, and Lin Lu. 2023. As-Continuous-As-
Possible Extrusion-Based Fabrication of Surface Models. ACM Trans. Graph. 42,
3 (March 2023), 26:1–26:16. https://doi.org/10.1145/3575859

A SOFTWARE
TRAvel Slicer is written in python and is implemented in Rhino 7
and Grasshopper3D. The code is open-source and publicly available
in a Github repository [22]. The code includes a Grasshopper file
that can be used to slice closed polysurfaces in Rhino that have
either been created in Rhino’s CAD interface or imported. It also
allows the user to set the printer parameters (see Figure 22). TRAvel
Slicer uses Pezutti et al.’s Extruder Turtle Library [37] to generate
the g-code file, another open source python library used in conjunc-
tion with Rhino and Grasshopper. Extruder Turtle supports g-code
generation for the Eazao Ceramic 3D printer [11] and the Creality
Ender 3D printer [8].

B OVERLAP
In order to determine overlap between curves, we compare the
distance between their projections onto the same 𝑥-𝑦 parallel plane.
TRAvel Slicer can determine this by either bounding box compari-
son or Rhinoscript’s built-in functions for planar curve comparison.

The bounding box method compares the overlap between the
bounding boxes of two curves. If overlap in 𝑥 and 𝑦 exceeds𝑤𝑒/2,
we say the curves overlap. This method is much quicker than other
overlap calculations, but it can fail when given more complex ge-
ometry in which the curves maintain a distance greater than𝑤𝑒/2

https://doi.org/10.1016/B978-0-12-815481-6.00003-8
https://doi.org/10.1016/j.autcon.2021.103577
https://doi.org/10.1016/j.autcon.2021.103577
https://doi.org/10.1016/j.cad.2020.102880
https://doi.org/10.1145/3355089.3356509
https://doi.org/10.1145/3355089.3356509
http://www.ryanhoover.org/rd/xylinus.php
http://www.ryanhoover.org/rd/xylinus.php
https://doi.org/10.1088/1742-6596/2456/1/012039
https://doi.org/10.1088/1742-6596/2456/1/012039
https://www.nonplanar.xyz/
https://github.com/Hand-and-Machine/TRAvel_Slicer
https://github.com/Hand-and-Machine/TRAvel_Slicer
https://doi.org/10.3390/mi11070633
https://help.prusa3d.com/article/sequential-printing_124589
https://help.prusa3d.com/article/sequential-printing_124589
https://doi.org/10.1145/3559400.3561999
https://doi.org/10.1145/3559400.3561999
https://doi.org/10.1016/j.jfoodeng.2017.06.029
https://doi.org/10.1145/2807442.2807484
https://doi.org/10.1093/jiplp/jpt217
https://doi.org/10.1038/srep29996
https://doi.org/10.1038/srep29996
https://doi.org/10.1016/j.advengsoft.2020.102906
https://doi.org/10.1016/j.ifset.2019.03.008
https://doi.org/10.1016/j.ifset.2019.03.008
https://doi.org/10.1145/37402.37422
https://github.com/ProjectSilkworm/Silkworm
https://doi.org/10.1016/j.ifset.2017.09.012
https://commons.materiom.org/data-commons/recipe/649c36218e0f06dcab0b7d2c
https://commons.materiom.org/data-commons/recipe/649c36218e0f06dcab0b7d2c
https://doi.org/10.1002/adma.201701181
https://doi.org/10.1002/adma.201701181
https://doi.org/10.1145/3490149.3501312
https://doi.org/10.1145/3490149.3501312
https://doi.org/10.1145/3563657.3595983
https://doi.org/10.1145/3563657.3595983
https://doi.org/10.1021/acs.chemmater.0c02008
https://www.simplify3d.com/
https://www.simplify3d.com/resources/articles/multi-part-printing/
https://www.simplify3d.com/resources/articles/multi-part-printing/
https://doi.org/10.1145/3025453.3025933
https://www.tronxy3d.com/products/tronxy-moore-2-pro-ceramic-clay-3d-printer
https://www.tronxy3d.com/products/tronxy-moore-2-pro-ceramic-clay-3d-printer
https://github.com/arendvw/clipper
https://doi.org/10.1016/j.autcon.2022.104175
https://doi.org/10.1016/j.ifset.2018.01.001
https://doi.org/10.1016/j.ifset.2018.01.001
https://doi.org/10.1016/j.cad.2019.06.002
https://doi.org/10.1145/2897824.2925958
https://doi.org/10.1145/3575859

TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 22: A screenshot of the Grasshopper file included in TRAvel Slicer’s Github repository.

from one another but still have overlapping boundaries, see Figure
23.

Figure 23: Bounding box comparison for overlap between contours. Green
arrows between contours indicate space for nozzle travel. In (a) and (b) this
method succeeds. In (c) it fails due to concave curves and (d) it fails due to
nested contours.

Rhinoscript’s built-in PlanarClosedCurveContainment function
takes two curves as its input and an optional tolerance value. When
the tolerance is set to𝑤𝑒/2 we can determine overlap in the case
of more complex geometry like in (c) and (d) of Figure 23. Though
this method is slower than the bounding box comparison it is much
more accurate, so we have found this trade-off with respect to time
to be preferable.

C POINT MARCHING
Our method of "point marching" is inspired by Marching Squares
[32].

We divide a given curve into 𝑛 = 𝑐𝑢𝑟𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ/(𝑤𝑒 · 𝑘) equidis-
tant points, where𝑤𝑒 is the printer nozzle’s extrude width and 𝑘 is
a coefficient that is determined by the precision of the printer. We
have found a value of 𝑘 = 1/2 to be sufficient. We then "march" all

of these points inward by the extrusion width in order to find the
next isocontour of the shape (see Figure 24).

Figure 24: "Point Marching" for generating isocontours.

For all 𝑝 𝜖 𝑝𝑜𝑖𝑛𝑡𝑠 , we compute new points 𝑝′:
®𝑡𝑖 = 𝑝𝑖+1 − 𝑝𝑖−1

𝑡𝑖 =
®𝑡𝑖
| ®𝑡𝑖 |

®𝑜𝑖 = 𝑅𝑧 × (𝑤𝑒 · 𝑡𝑖)
𝑝′𝑖 = 𝑝𝑖 + ®𝑜𝑖

Where 𝑡𝑖 is the normalized tangent vector at a given point 𝑝𝑖 , ®𝑜𝑖
is the offset vector orthogonal to the tangent with magnitude equal
to 𝑤𝑒 , and 𝑅𝑧 is a rotation matrix around the z axis. 𝑅𝑧 rotates a
given vector by 90◦ if the winding order of the points’ indices is
counter-clockwise, and −90◦ if the order is clockwise.

Marching these points inward can result in displacing them
into the space between the curve and the new inner isocontour or
even outside of the curve, particularly when the curve has sharp
corners. As a result, we do an additional check to determine that
all 𝑝′ 𝜖 𝑛𝑒𝑤 𝑝𝑜𝑖𝑛𝑡𝑠 are distance ≤ 𝑤𝑒 from all 𝑝 𝜖 𝑝𝑜𝑖𝑛𝑡𝑠 .

In order to avoid comparing every 𝑝′ to 𝑝 , which results in𝑂 (𝑛2)
time complexity for a single contour, we utilize a two-dimensional

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Gould, J. et al

Figure 25: Grid𝐺 [𝑢] [𝑣] and its eight neighbors. The left image shows a
point at the center𝐺 [𝑢] [𝑣]. The gray shaded areas indicate distances of
𝑤𝑒/2 from that point. The right image shows the boundary of the search
space within these grid squares.

grid data structure 𝐺 [𝑢] [𝑣]. We retrieve the minimum and max-
imum 𝑥 and 𝑦 coordinate values of all 𝑝 𝜖 𝑝𝑜𝑖𝑛𝑡𝑠 then construct
𝐺 [𝑢] [𝑣] with dimensions 0 ≤ 𝑢 ≤ 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 (𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑤𝑒/2) and 0 ≤
𝑣 ≤ 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 (𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

𝑤𝑒/2).
We then place all 𝑝 𝜖 𝑝𝑜𝑖𝑛𝑡𝑠 into G by computing their indices:

𝑢𝑖𝑛𝑑𝑒𝑥 = 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 (𝑝𝑖 .𝑥 − 𝑥𝑚𝑖𝑛

𝑤𝑒/2
)

𝑣𝑖𝑛𝑑𝑒𝑥 = 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 (𝑝𝑖 .𝑦 − 𝑦𝑚𝑖𝑛

𝑤𝑒/2
)

𝐺 [𝑢𝑖𝑛𝑑𝑒𝑥] [𝑣𝑖𝑛𝑑𝑒𝑥] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑖)

Given 𝑝′
𝑖
, we compute its 𝑢𝑖 and 𝑣𝑖 in order to retrieve a subset

of points 𝑆𝑖 , which include the points at 𝐺 [𝑢𝑖] [𝑣𝑖] and the points
in its eight neighbors (see Figure 25):

𝑆𝑖 = {𝐺 [𝑢] [𝑣] | 𝑢𝑖 − 1 ≤ 𝑢 ≤ 𝑢𝑖 + 1, 𝑣𝑖 − 1 ≤ 𝑣 ≤ 𝑣𝑖 + 1}

Then we compute the distance between 𝑝′
𝑖
and 𝑝 𝜖 𝑆𝑖 . If any

|𝑝′
𝑖
− 𝑝 | < 𝑤𝑒 , we discard that 𝑝𝑖 .
If no 𝑝′ is discarded, we can then pass the computed new points

as a single consecutive sequence directly to Rhino’s curve interpo-
lation function to generate our next isocontour.

If one or more 𝑝′ has been discarded we have an additional
step to reconnect broken line segments in the curve. We identify
all point sequences with contiguous indices and take their first
and last indices as start and end points. For every end point we
determine the closest start point, which can belong to the same
contiguous sequence in the case of an isocontour "pinching" into
two separate contours. Once we have determined all connections
between sequences, we pass the connected sequences to Rhino’s
curve interpolation function and return one or more isocontours.

For a solid infill, we continuously pass our isocontours to our
point marching algorithm in order to generate the next set of one
or more isocontours until the curve area is too small. If all 𝑝′ are
discarded, the given curve is the innermost contour of its region.

D CONNECTED FERMAT SPIRALS
D.1 Tree Isocontours
We define a tree data structure𝑇 that we use to construct a new tree,
𝑇 ′ for identifying spiral-able regions and connecting all contours
and regions for a single continuous path.

Tree 𝑇 ’s nodes represent the individual contours of a single
closed region. The root node of our tree contains the outermost
curve.When we pass a curve to our code for generating isocontours,
the returned contours become children nodes of that curve’s node
in 𝑇 . Once the isocontours have been generated, 𝑇 is complete.

We then construct 𝑇 ′ by traversing 𝑇 with Depth-First search,
beginning from 𝑇 .𝑟𝑜𝑜𝑡 . The nodes in 𝑇 ′ each represent a set of
contours rather than a single curve. We adopt Zhao et al.’s [48]
terminology and classification and assign a "type" property to these
nodes; type I nodes contain consecutive contours from 𝑇 with one
or fewer children. These are spiral-able collections of contours with
a single local "maxima," or innermost contour. Type II nodes contain
a single contour with two or more children (see Figure 26). Once
we have constructed 𝑇 ′ we spiral and Fermat-spiral all collections
of isocontours in our type I nodes.

Figure 26: From left to right: Tree𝑇 , in which each node represents a single
contour; Tree 𝑇 ′, in which type I nodes contain a set of contours with a
local maxima and type II nodes contain a single contour with two or more
children in𝑇 ; and the region containing all isocontours.

D.2 Spiral and Fermat-Spiral
As in [48], we spiral regions with a single local maxima by con-
tinuously breaking and connecting consecutive contours 𝐼𝑖 , 𝐼𝑖+1
in either clockwise or counter-clockwise order with an offset of
extrusion width 𝑤𝑒 , resulting in a single path beginning on the
outermost curve and ending at the innermost curve.

We then create a Fermat spiral from the spiral. Our initial break
point on the outermost contour for connecting to the subsequent
isocontour becomes our last point in the path out in order to keep
the start and end points at the same location (separated by𝑤𝑒) to
minimize travel. We compute a new point that acts as a connection
inward, a distance of𝑤𝑒 counter-clockwise from the point acting
as the "out" connection. The segment of the spiral between these
two points is removed, and the new "in" point is connected to the
next isocontour as shown in Figure 27. This is repeated for every
other contour until the innermost contour is reached.

TRAvel Slicer: Continuous Extrusion Toolpaths for 3D Printing UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 27: A collection of Type I isocontours that can be spiraled. Left:
Finding connections between contours. Middle: The resulting spiral with
start point at outermost contour and the end point at the center. Right: The
resulting Fermat spiral with start and end points extrusion width 𝑤𝑒 apart.

D.3 Connect All Nodes in Region for a Single
Path

Beginningwith the leaf nodeswithin𝑇 ′, we connect Fermat-spiraled
type I nodes to their type II parent at the closest points along their
curve to the "in" and "out" points of the Fermat spiral. We connect
type II nodes to their parent contours, provided the connection
does not conflict with any other connections in the region. Once
all nodes are connected, the region contains a single space-filling
toolpath that starts and ends at the same location (see Figure 28).

Figure 28: Connecting all type I and type II nodes to their parent node for
a single continuous space-filling curve.

	Abstract
	1 Introduction
	2 Related Work
	2.1 G-code Generation
	2.2 Travel Minimization
	2.3 Connected Fermat Spirals

	3 Overview
	4 Parameters and Model Slicing
	4.1 Parameters
	4.2 Slicing

	5 Outer-Model Travel Reduction
	5.1 Height-Dependence Tree
	5.2 Nozzle-Height and Overlap Tree
	5.3 Connected Graph and Hamiltonian Path
	5.4 Outer-Model Travel Reduction Output
	5.5 Improvements on Previous Work

	6 Inner-Model Travel Reduction
	6.1 Regions with Holes: Connect Inner and Outer Contours
	6.2 Infill
	6.3 Walls
	6.4 Inner-Model Travel Reduction Output
	6.5 Improvements on Previous Work

	7 Real-World Application
	7.1 Printing Process
	7.2 Duplicates and Holes
	7.3 Vertical Nesting
	7.4 Horizontal Nesting
	7.5 Branching
	7.6 Vertical Holes
	7.7 PLA Prints
	7.8 Print Results
	7.9 Limitations and Improvements

	8 Conclusion
	Acknowledgments
	References
	A Software
	B Overlap
	C Point Marching
	D Connected Fermat Spirals
	D.1 Tree Isocontours
	D.2 Spiral and Fermat-Spiral
	D.3 Connect All Nodes in Region for a Single Path

