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Figure 1: We develop new materials, software, and hardware for small-scale, low-cost Direct Write (DW) 3D printing.
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ABSTRACT

There has been a surge of recent interest in new materials and tools
for digital fabrication. In this work, we introduce a range of materi-
als that we have developed for use in Direct Write (DW) 3D printers.
These materials include play-dough, clay-dough, bronze clay, glass
paste, and eggshell paste. Many of our materials exhibit unique
properties, so to support and extend the capabilities of printing
with these materials, we develop new slicer software and hardware
components. For example, we designed new CAM software for
successfully printing dramatic overhangs in clay and for printing
rheologically non-linear materials by generating toolpaths with
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little to no travel movements. We also created hardware such as
custom heaters that improve the structural stability of prints. By
presenting an overview of all these works in one demonstration, we
call attention to how the development of new materials, software,
and hardware are interconnected in digital fabrication.
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1 BACKGROUND

Digital fabrication (especially 3D printing) has been a continual
topic of interest within HCI [19]. In this demonstration, we present
new materials, software, and hardware that we have recently devel-
oped in our lab to extend the possibilities for Direct Write (DW) 3D
printing. DW printers are used to extrude paste-like materials to
build forms [9]. Our DW printers are small-scale low-cost printers
that were designed for use with clay. They are widely available
and easily accessible pieces of digital fabrication equipment. 3D
printing in clay has been explored by researchers and artists alike
for sculpture [21, 26, 27], data physicalization [11, 12], architecture
[2, 23], and material science [17]. Beyond clay, other paste-like
materials have been developed for DW printers including spent
coffee grounds [1, 24], olive pomace [3], mussel shells [18], mica
[13], and cookie dough [20]. We extend this existing library of ma-
terials for DW printing by developing the following new materials:
play-dough [8], clay-dough [4], bronze clay (7], glass paste, and
eggshell paste.

Beyond material development, we are also focused on creat-
ing new slicing software to support some of the unique properties
these new materials afford. Our software includes WeaveSlicer [15],
which expands the range of printable geometries in clay and paste-
like materials, and TRAvel Slicer [7], which generates continuous
extrusion toolpaths to cleanly print our rheologically nonlinear
pastes. These tools are situated in a landscape of other tools for
.gcode generation and 3D printing including CoilCam, which gener-
ates toolpaths for 3D printing complex forms and surface textures
in clay [6], and Vespidae, which develops custom toolpaths and
visualizations for multiple materials and fabrication machines on a
single design [14]. Lastly, we also design new pieces of hardware
that can be added to modify the commercially available DW 3D
printers that we utilize in our lab, such as a custom heater [8] that
improves the structural stability of our prints.
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By presenting these materials—alongside new software and hard-
ware that was developed to support their use in DW 3D printing—
we contribute to the ongoing discourse on materiality in HCI and
design [5, 16, 25, 28]. Moreover, we highlight the entangled nature of
materials, software, and hardware, thus illustrating the advantages
of developing these three technological areas in tandem. Through
this demonstration (shown in Figure 1), we hope to introduce the
CHI community to a wide range of new materials and tools for 3D
printing in a hands-on manner, ultimately showcasing the potential
research, design, and artistic opportunities that arise from our lab’s
work in digital fabrication.

2 MATERIALS

The following section presents six materials we commonly use with
our 3D printers: clay, play-dough, clay-dough, bronze clay, glass
paste, and eggshell paste (demonstrated in Figure 2). Other than
clay, we developed each material recipe specifically for DW 3D
printing.

Clay. We use a variety of different clay bodies in our lab such
as various mid-range stonewares, mid-range porcelain, low-fire
earthenware, and a low-fire sculpture body. The mid-range clay
bodies reach full vitrification at cone 6 (2232°), and the low-fire
bodies reach full vitrification at cone 04 (1940°). The sculpture
bodies have larger particles (grog) mixed in with the finer clay
particles and are well-suited for printers with larger nozzles. They
are more robust and shrink less. The porcelain clay is completely
smooth and more prone to collapse in its wet state [10].

Play-Dough. Play-dough is a brightly-colored, easy-to-make,
and familiar material made from corn and wheat flour mixed with
several different binding ingredients. We developed and tested cus-
tom play-dough recipes that can be used in 3D printers that are
typically used to print clay. We have explored the design potential
of play-dough as a sustainable fabrication material, highlighting its
recyclability, compostability, and repairability [8].

Clay-Dough. We arrived at clay-dough by combining different
ratios of clay with play-dough. While not sustainable like the play-
dough, clay-dough exhibits unique shrinkage behavior when dried
and fired in a kiln. This dramatic shrinkage is caused by the play-
dough burning away when fired. Thus, we explore clay dough as
a tunable, shape-changing material for 4D printing, where we 3D
print an initial form that shrinks into new forms based on the ratios
of clay-to-play-dough we utilize and how we load the clay-dough
materials into the printer [4].

Bronze Clay. Bronze clay is a paste-like material often used
in jewelry practices made from bronze powder and several binder
ingredients. Once fired at high temperatures, the bronze clay sinters
to become solid bronze. Unlike other types of metal 3D printing
that are expensive and require specialized equipment, our approach
uses commercially available bronze clay for jewelry and small, low-
cost DW 3D printers, which makes 3D printing metal significantly
more cost-efficient and accessible [7].

Glass Paste. Our glass paste material is made up of glass frit
(crushed up sheet glass) mixed with several binder ingredients to
arrive at a printable material. Once printed and dried, the objects are
fired to a temperature that sinters the glass particles to form a glass
object. Like metal, existing glass 3D printing methods are expensive


https://doi.org/10.1145/3613905.3648647
https://doi.org/10.1145/3613905.3648647

Demonstrating New Materials, Software, and Hardware from the Hand and Machine Lab

=

clay-dough

clay play-dough

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

bronze clay

glass paste

eggshell paste

Figure 2: We 3D print a variety of clay-like materials that vary drastically in their properties, aesthetics, and affordances.

and require specialized equipment. Our approach to printing our
glass paste with low-cost, DW 3D printers and then firing the
printed glass paste to arrive at solid glass pieces is significantly
more accessible.

Eggshell Paste. Inspired by the sustainability of the play-dough,
we developed a 3D printable Eggshell Paste that is made from dis-
carded eggshells that are ground into a powder and combined with
the same bio-based binder ingredients used for the Bronze Clay
and Glass Paste. Our Eggshell Paste has a ceramic-like quality once
it dries due to the high mineral content present within eggshells.
Unlike clay, however, eggshell paste artifacts biodegrade rapidly in
soil environments when disposed of. The eggshell paste also pro-
motes other sustainable practices such as reusing waste materials
and recycling.

3 SOFTWARE

Like many digital fabrication machines, clay 3D printers read .gcode
files. These files can be generated with commercial slicers like Cura
or Simplify3D, or they can be generated by writing code directly
[22]. Our lab has found that we like the control and customization
we can achieve when we write our own gcode. We mostly use
Grasshopper and Python to write this code, which allows us to
expand the capabilities of 3D printing in clay and support printing
in some of our more unique materials like bronze and glass.
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Figure 3: We developed Weaveslicer to extend the range of
printable geometries in clay-like materials by maintaining
constant wall thickness throughout the form.

WeaveSlicer for Expanding Printable Geometries. Only a
narrow range of geometries is 3D printable with clay if one is em-
ploying commercially available slicing software. WeaveSlicer is a
slicer software that expands the range of printable geometries for
3D printing in clay by maintaining constant wall thickness through-
out the form. We achieve constant wall thickness by generating
an oscillating path where the amplitude of the oscillation is de-
termined by the form’s overhang angle. WeaveSlicer works like
many other slicers, where the user inputs a 3D model and chooses
various parameters. WeaveSlicer then produces a .gcode file that
can be used on various clay 3D printers (see figure 3). Traditional
slices maintain a constant layer thickness throughout the print, but
this results in a thinner wall where there is a steeper overhang.
WeaveSlicer prompts the user to pick a wall thickness and produces
a sinusoidal curve whose amplitude will vary to maintain the same
wall thickness throughout. Using WeaveSlicer allowed us to suc-
cessfully print clay sculptures that initially failed to print during an
artist residency program in our lab. Beyond clay, we have used this
software with our other materials to achieve dramatic geometries
that would typically collapse if sliced with traditional software [15].
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Figure 4: We developed TRAvel Slicer to print continuous
extrusion toolpaths using fermat spiraling for rheologically
non-linear materials like bronze clay and glass paste.

TRAuwvel Slicer for Continuous Extrusion Toolpaths. Many
of our materials like the bronze clay and glass paste have a non-
linear rheology, which makes them particularly challenging to work
with because they have significant delays between when a start
or stop extrude action is executed by the printer and when the
material reflects this action are common. To support printing with
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the materials, we employ a custom slicing software that takes an
imported 3D model and constructs a continuous spiraling path for
the 3D printer to follow based on the contour paths of the model
using Fermat spirals (see figure 4). It further employs nontraditional
vertical ordering of isolated regions to minimize travel paths and
produce cleaner prints [7].

4 HARDWARE

Beyond materials and software, we have begun to develop new hard-
ware components that can be added to modify our commercially
available DW 3D printers.

extruder

custom
heater

build plate
T—

printer -‘ \

Figure 5: We develop new hardware that can be added to com-
mercially available clay 3D printers. One example is a custom
heater that fits around the extruder to dry the materials as
they are printed to improve the structural stability of the
print.

custom heater

Custom Heater. To improve the print quality of our materials
(especially the quality of the play-dough, bronze clay, glass paste,
and eggshell paste), we modify our printer with a custom heater (see
Figure 5). The heater is made from two fans and two nichrome wire
heating elements that sit within a custom case. The case fits around
the extruder and is attached to the metal frame of the extruder with
magnets for easy attachment and removal. The fans and heating
coils are positioned on either side of the extruder to dry out layers
of material as they are printed, thus improving the overall structural
stability of prints [8].

5 CONCLUSION

We present a collection of materials that we can print using low-cost,
commercially available, desktop, DW 3D printers including clay
(such as stonewares, porcelain, and earthenwares), play-dough (a
flour-based dough that is recyclable and compostable), clay-dough
(a mixture of clay and play-dough that exhibits dramatic shrink-
age behavior), bronze clay (a paste made from bronze powder that
sinters into solid bronze when fired), glass paste (a paste made
from glass frit that sinters into solid glass when fired), and eggshell
paste (a paste that is made from ground eggshells that rapidly biode-
grades). Working with these materials can be incredibly challenging
given that clay printing technologies are relatively new and that
each material presents different properties and behaviors. Accord-
ingly, we design new software like WeaveSlicer (for expanding the
range of printable geometries) and TRAvel Slicer (for generating
continuous extrusion toolpaths), as well as new hardware (like
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custom heaters) to support and extending the capabilities of 3D
printing with our materials. Developing our materials, software,
and hardware was often an entangled and interdependent process.
Accordingly, we underscore how material, software, and hardware
technologies overlap and converge in 3D printing, which we find
opens up new opportunities and directions for digital fabrication
in general.
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