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Camera traps are a powerful, practical, and non-invasive method used widely to monitor animal communities
and evaluate management actions. However, camera trap arrays can generate thousands to millions of images
that require significant time and effort to review. Computer vision has emerged as a tool to accelerate this image
review process. We propose a multi-step, semi-automated workflow which takes advantage of site-specific and
generalizable models to improve detections and consists of (1) automatically identifying and removing low-
quality images in parallel with classification into animals, humans, vehicles, and empty, (2) automatically
cropping objects from images and classifying them (rock, bait, empty, and species), and (3) manually inspecting a
subset of images. We trained and evaluated this approach using 548,627 images from 46 cameras in two regions
of the Arctic: “Finnmark” (Finnmark County, Norway) and “Yamal” (Yamalo-Nenets Autonomous District,
Russia). The automated steps yield image classification accuracies of 92% and 90% for the Finnmark and Yamal
sets, respectively, reducing the number of images that required manual inspection to 9.2% of the Finnmark set
and 3.9% of the Yamal set. The amount of time invested in developing models would be offset by the time saved
from automation after 960 thousand images have been processed. Researchers can modify this multi-step process
to develop their own site-specific models and meet other needs for monitoring and surveying wildlife, balancing
the acceptable levels of false negatives and positives.

1. Introduction

Digital camera traps have become widely used for surveying and
monitoring wildlife (Burton et al., 2015; Wearn and Glover-Kapfer,
2019). Camera traps are a non-invasive and relatively cost-effective
method with many applications in ecology such as monitoring biodi-
versity (Oliver et al., 2023), investigating site occupancy (Hamel et al.,
2013), estimating abundance (Stien et al., 2022), or studying species
interactions (R¢d-Eriksen et al., 2023). They make it realistic to obtain
sufficient data to address ecological questions also for species that can be
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difficult to observe (e.g. Perera et al., 2022). However, trap arrays often
generate thousands to millions of images requiring substantial effort to
review manually. Computer vision offers the potential to significantly
accelerate this image review process and is a rapidly developing field (e.
g. Vélez et al., 2022, Morris, 2024).

Computer vision tools have been developed to facilitate different
steps of image classification. A first step is often to remove empty im-
ages, here MegaDetector (Beery et al., 2019) or Machine Learning for
Wildlife Image Classification 2 (MLWIC2, Tabak et al., 2020) are
frequently used platforms. The next step is to classify and count animal
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species. A whole row of ready-made classifiers exist (Morris, 2024),
however, existing classifiers focus in general on the fauna of a specific
region, thus for example, MLWIC2 (Tabak et al., 2020) and Camera-
TrapDetectoR (Tabak et al., 2022) have been developed to classify North
American species, the DeepFaune initiative aims at identifying the
french fauna, WildID detects South African wildlife and the workflow
developed by Bohner et al., 2023 aims specifically at registering Fen-
noscandian small rodents. Other workflows or platforms have been
developed to allow users to train their own model (Mega Efficient
Wildlife Classifier, Aandahl and Brook, 2024; Wildlife ML, Bothmann
et al., 2023). This usually requires a large amount of images for training
and often rather advanced computer skills. For a comprehensive list of
available tools and options, see Morris (2024). However, the accuracy of
computer vision still lags that of human annotators, particularly when
images are derived from locations outside of a model’s training domain,
and several authors have emphasized the need for human review of
computer vision results (Fennell et al., 2022; Schneider et al., 2020;
Vélez et al., 2023).

The vast majority of camera traps are configured to use a motion
sensor to trigger image capture when an animal is present in the cam-
era’s field of view (Bohner et al., 2023). However, in some cases, ani-
mals of interest may be too distant to trigger a motion sensor, or
environmental conditions may result in an impractical number of false
triggers, for instance during heavy snowfall; in these cases, a time-lapse
protocol may be more appropriate (Hamel et al., 2013). Time-lapse
camera trap datasets contain many more empty pictures than motion-
triggered datasets; but they produce data in a more standardized form
as the trigger behavior of motion sensors may vary quite substantially
depending on species and other factors (Findlay et al., 2020). Moreover,
time lapse protocols have the advantage of capturing small or distant
animals in the camera’s field of view that can be missed by motion
sensors. This allows time-lapse cameras to capture as many as six times
the number of animals recorded in motion trigger setups, but distant
animals can be difficult for computer vision systems to detect (Leorna
and Brinkman, 2022). A reliable method of identifying empty pictures is
especially important for a workflow aimed at minimizing hands-on time
required for analyzing time-lapse camera trap datasets. At the same
time, to maintain data quality and maximize detection probabilities for
animals that do not remain long at camera stations, it is important to
minimize false negatives. Moreover, empty pictures should be distin-
guished from pictures with bad visibility or obstructed lenses to relate
detections to observation effort (i.e., number of pictures per day) for
downstream statistical analyses (Burton et al., 2015).

This paper presents a multi-tool solution that is specifically tailored
to analyzing time-lapse camera trap datasets using site-specific models
in conjunction with generalized models. It provides a guided example of
a multi-step workflow for semi-automated classification of images from
camera traps using a personal computer.

Our approach combines training custom site-specific models that can
be adapted to a new context in a flexible way with a highly performant
openly available model, MegaDetector (Beery et al., 2019). Specifically,
our approach consists of (1) identifying high-quality images, for which
there is no model we are aware of currently available, (2) separating
empty images from images with animals, humans, or vehicles, (3)
cropping out detected objects from images and classifying them by ob-
ject type (rock, bait, empty and species), and (4) manually inspecting a
selection of images. We investigate trade-offs between false negatives
and manual reviewing time, and we evaluate the benefit of several en-
hancements to the typical MegaDetector workflow.

Because arctic ecosystems are at present rapidly changing under the
impact of climate change and increasing human activity (e.g., Ims et al.,
2013), there is an urgent need for thorough monitoring of important
arctic wildlife species such as carnivores. Camera traps are a well-suited
non-invasive method that can be deployed relatively easily in remote
areas (Hamel et al., 2013). Consequently, we demonstrate the proposed
workflow by applying it to two long-term programs from the Arctic
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monitoring changes in the predator/scavenger community in the
Yamalo-Nenets Autonomous District, Russia, and Finnmark County,
Norway. Our datasets consist of time-lapse images taken at bait stations
in the late winter, a time at which frequent snowfalls make the use of
motion sensors difficult.

2. Workflow

The multi-step, semi-automated workflow proposed here (Fig. 1) is
adapted from Bohner et al., 2023, including pre-processing of images,
model training, classification, manual quality checks, and final data
formatting. Specifically, we build on the results of Rigoudy et al. (2022)
and Fennell et al. (2022), who combined MegaDetector with manual
classification and custom-trained models. The workflow consists of the
following two classification steps in addition to pre-processing of images
and final manual inspection, quality control, and data formatting
(Fig. 1).

2.1. Classification 1 — Image quality and animal presence/absence

As an initial classification step, we categorized images by quality and
Animal presence/absence in parallel using two models. Separating
empty images from low-quality images is important to quantify the
observation effort (i.e., the number of high-quality images per day) for
downstream modeling of detections. We trained a custom model that
could classify images as Bad (low quality) or Good (high quality).

For animal detection on all images, we used MegaDetector v5.0'
(Beery et al., 2019), which detects animals, humans, and vehicles in
each image. In our case, MegaDetector was more accurate than other
products considered for detecting animals and minimizing the number
of false negatives. It further allows cropping individual detection from
images, thus facilitating counting and species identification. Combining
the results from both models, images were separated low quality images,
high quality empty images and images potentially containing an animal.

2.2. Classification 2 — Reducing false positives

We used the bounding boxes of each object detected in the images
potenitally containing an animal to crop parts with pixels that contain
an object (Fig. S1). We cropped only those classified by the model as
animals and applied a custom model to identify each crop into different
categories. This step greatly reduced the number of false positives, as
crops containing stones or other artifacts could be sorted out by the
custom model.

2.3. Final step — data formatting and quality check

Quality control is an important part of every automated image
classification workflow (Bohner et al., 2023), and applying an automatic
classification workflow to a new dataset requires particular care. Opti-
mally, in the case of a multi-annual monitoring program, a workflow
should be validated by applying it to a year or season of data that has not
been used for its development. As species identification depends in large
part on the number of images available for training and the complexity
of the community in a specific study, it may be necessary to manually
check all images with animals.

3. Materials and methods
3.1. Camera trap setup and data collection
Images were obtained from monitoring programs of the tundra

carnivore scavenger guild in two low Arctic regions: “Yamal” (the
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Image collection and renaming
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Images are downloaded from field camera traps and renamed with unique identifiers
based on location, camera number, date, and time.

¥

Classification 1 — Image quality and Animal presence/absence

Our trained classification model is used to detect low- and high-quality images in

parallel with MegaDector to classify images into animal, person, vehicle and empty.

¥

Classification 2 — False-positive

Images containing animals according to MegaDetector are cropped from the original
images. Cropped images are then classified by object type (rock, bait, empty, and
species) using our trained classification model.

¥

Final data formatting, quality check, and manual classification

Classification results from the two steps are combined to produce a final data file with
classification labels. A random subset of computer-classified images is selected to check

model performance. All images containing animals are manually reviewed.

Fig. 1. Time-lapse camera trap workflow. Data preparation and model steps are adapted from Bohner et al., 2023.

Yamalo-Nenets Autonomous District, Russia) and “Finnmark” (Finn-
mark County, Norway). In Yamal, ten cameras were deployed at one
site, Erkuta (68.2° N, 69.1° E), and in Finnmark, 36 cameras were spread
across five sites (70-71° N, 25-30° E; Table 1; Killengreen et al., 2012).
Cameras were activated from the end of February to early April. Data
used in this study were collected from 2016 to 2022.

We used RECONYX® cameras (RapidFire, HyperFire and HyperFire
2, Holmen, WI, USA) placed on a permanently fixed metal pole at 30-50
cm above the snow surface. Cameras were painted in white and equip-
ped with external batteries. In Finnmark, each camera station was baited
with a ca 15 kg block of frozen slaughterhouse remains of reindeer
(tendons, entrails, small meat fragments). In Yamal, frozen pelvis bones
of reindeer with 1-2 kg of meat were mounted on a metal pole placed
2-5 m north of the camera. Cameras were programmed to take a picture
every 5 min (no motion sensor). After 2-3 weeks of deployment, baits
were replaced if needed, and memory cards were collected and replaced
until the end of the observation period.

Initially, all images were reviewed manually by trained observers
using the software MapView Professional (RECONYX ®) and separated
into low-quality images (Bad) that were out of focus or obstructed
(snow/ice in front of the lens or snowstorms), and high-quality images
(Good) where an animal could have been detected. Good images were

Table 1

The number of cameras deployed in the field for each site and the total number
of images available for workflow development (model training, validation, and
testing; see supporting information for details) from Finnmark, Norway
(2016-2018, 2020-2021) and Yamal, Russia (2017-2021), and an independent
test set from years not used in training (Finnmark 2019, and Yamal 2022).

Region Site Number of Training/ Test
cameras validation images images
Finnmark  Komagdalen 8 461,407 75,824
Vestre 7 367,483 79,807
Jakobselv
Stjernevann 5 284,994 53,555
Ifjordfjellet 8 401,039 58,652
Gaissene 8 426,970 78,620
Yamal Erkuta 10 535,910 120,840

classified by animal presence/absence (Animal), and species and number
of animal(s), when present. A total of 2,288,351 images were annotated
in Finnmark (2016-2021) and 656,750 images in Yamal (2017-2022;
Table 1). Most images from both locations were classified as Good
(>83%). In Finnmark, Bad images represented 18.1% and in Yamal Bad
images represented 8.7% (Table 2). At least one animal was detected in
6.9% of all images from Finnmark and in 2% of the images in Yamal.
Twelve species of mammals and birds were documented in both loca-
tions, although community structure differed (Table 3). In Finnmark, the
most common species was the raven (Corvus corax), appearing in
121,409 images, followed by the red fox (Vulpes vulpes) in 14,903 im-
ages. In Yamal, the most common species was the Arctic fox (Vulpes
lagopus), appearing in 5017 images, followed by the magpie (Pica pica)
in 4269 images.

3.2. Image quality classification: Training dataset and model training

Using the manual classifications, we randomly selected images from
each site, camera, and year, to obtain ~15,000 images of Bad quality
and ~ 57,000 images of Good quality for each location (Finnmark
2016-2018 and 2020-2021 and Yamal 2017-2021). These images were
then reexamined by GC and DE, and any misclassified images were
removed or reclassified. We also excluded marginal images (e.g., partly
blurred images, images where an animal is only visible with a tail in a

Table 2

Total number of images per classification group as assessed manually in Finn-
mark and Yamal (N), together with median and mean (standard deviation)
percentage of images for each individual camera trap per year. The total dataset
(workflow development and independent validation) comprised 36 cameras at 5
sites for 6 years in Finnmark and 9 or 10 cameras for 6 years in Yamal.

Location Class ID N Median [%] Mean (SD) [%]

Finnmark Bad 402,409 14.5 18.1 (14.5)
Good Animal 150,532 6.5 6.9 (3.5)
Good Empty 1,735,410 78.5 75.7 (13.5)

Yamal Bad 55,420 5.4 8.7 (9.4)
Good Animal 14,133 1.3 2.0(1.7)
Good Empty 587,197 93.4 90.1 (9.3)




G. Celis et al.

Table 3
The total number of individuals or crops for each species assessed manually in
Finnmark (2016-2021) and Yamal (2017-2022).

Class ID Finnmark  Yamal Included in model
Moose - Alces alces 66 0 Yes
Golden eagle - Aquila chrysaetos 5168 0 Yes
Snowy owl - Bubo scandiacus 69* 2 No
Dog - Canis familiaris 0 19 No
Raven - Corvus corax 121,409 246 Yes
Hooded crow - Corvus cornix 1011 38 Yes
Wolverine Gulo gulo 1103 171 Yes
White-tailed eagle - Haliaeetus albicilla 1474 0 Yes
Human — Homo sapiens 152 1044 No
Ptarmigan — Lagopus spp.** 0 131 Yes
Mountain hare — Lepus timidus 0 1677 Yes
Magpie - Pica pica 1 4269 Yes
Reindeer - Rangifer tarandus 3143 679 Yes
Arctic fox - Vulpes lagopus 2341 5017 Yes
Red fox - Vulpes vulpes 14,903 1037 Yes

“ Al snowy owl images were from the test set (2019), this species was thus not
used to train the model.

™ Most ptarmigan observed in Erkuta are willow ptarmigan (Lagopus lagopus),
but rock ptarmigan (Lagopus muta) occur as well. It is difficult to identify the
species reliably on camera trap pictures. Both species are also present in Finn-
mark, but they were not recorded systematically in that data set because the
focus was on predator monitoring.

corner etc.), as high-quality training data are important for model
training (Bohner et al., 2023). In particular, images of animals at large
distances (e.g., appearing as points on the horizon) that could be iden-
tified by humans only because they moved in and out of frame were
excluded from model training. The resultant data subsets (46,491 im-
ages for Finnmark and 33,889 for Yamal; Table S1) were randomly
divided into 92% to be used for model training, 8% for validation of the
trained model.

Separate two-class models were trained for Finnmark and Yamal
using the keras package in R (Allaire and Chollet, 2023) with a Ten-
sorFlow backend (Allaire and Tang, 2023). Preliminary trials showed
that region-specific models performed better. The ResNet-50 architec-
ture, a convolutional neural network that is 50 layers deep (He et al.,
2015), was used to train the models with 55 epochs (number of times the
algorithm goes through the entire training data set) and a batch size of
64 (number of samples to work through before updating model pa-
rameters) with a one-cycle learning rate (hyperparameter controlling
model response to estimated error each time the model weights are
updated) policy with a minimum of 0.000001 and a maximum of 0.001
(Smith, 2018).

We wused the keras image data generator function for image
augmentation, which included random assignment of the following:
rotation 0-40°, width and height shift range of 20%, shear range 0-0.2
rad, zoom range 0-0.2 scalar range, a horizontal flip and a fill mode with
the nearest pixel.

We trained and validated the image quality classifier on a laptop
(MacBook Pro, M1 Pro 8-core central processing unit (CPU), 14-core
graphics processing unit (GPU), 16GB RAM), using the GPU rather
than CPU for data processing. GPUs are optimized for complex imaging
tasks and, in our case, outperform CPUs by ~7x.

After evaluating a range of confidence thresholds for each of the two
classes, we found that the best results were obtained by using a 0.95
threshold for the Bad class in the image quality model. Images that are
below this threshold are considered to be of adequate quality for further
review. Furthermore, any image that contains an animal detection ac-
cording to MegaDetector is considered for further review, regardless of
the output of the image quality model.

3.3. Animal detection with MegaDetector

Two versions of MegaDetector are available, trained on slightly
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different datasets: MegaDetector v5.0a (MDv5a) and v5.0b (MDv5b).
Both versions of MegaDetector were applied to all images. MegaDetector
also provides two optional enhancements that can be combined with
either model version:

1. MegaDetector normally resizes each image to be 1280 pixels wide
prior to detecting objects. The tiling feature instead breaks each
image into overlapping 1280-pixel by 1280-pixel “tiles”, runs Meg-
aDetector independently on each tile, and combines the results.

2. The test-time augmentation (TTA) feature makes several copies of each
image and applies a different transformation to each copy prior to
detecting objects, then combines the results.

To our knowledge, this is the first evaluation of the impact of tiling
and TTA on MegaDetector’s accuracy.

We found that detection of animals was slightly better using MDv5a
than MDv5b, and that tiling and TTA with MDv5a further enhanced
detection (Fig. S3) (see Table S2 for settings). Tiling helped detect ani-
mals at a distance and also those less conspicuous in the snow (white
hares and arctic foxes). Test-time augmentation was also helpful for
detection of less conspicuous animals, and especially for those under low
light or night conditions (Fig. S4). We merged all detections from the
MDv5a results with tiling and the MDv5a results with TTA which pro-
vided the lowest number of false negatives (Table S3); all subsequent
analysis of MegaDetector results is based on this merged set of de-
tections. We used a confidence threshold of 0.1 for all three Mega-
Detector categories (animal, person, vehicle).

To reduce the number of false-positive detections, MegaDetector has
a post-processing tool for identifying detections that occur in the same
location in many images from the same camera, which are often rocks or
sticks, but may also be sleeping or stationary animals. Consequently, this
tool is semi-automated: a human reviewer examines one example of
each detection, along with a grid showing each instance of that detection
(Fig. S5). The repeat detection elimination (RDE) tool was applied to the
merged output (see Table S2 for settings). We found that ~8 k tiled
images take about 1.5 h to review, which reduced 99,509 animal de-
tections to 36,886 from our merged output (Table S4, Figs. S3 & S6).

MegaDetector was run on a Windows PC with two Nvidia RTX 4090
GPUs.

3.4. False-positive classification: Training dataset and model training

In the previous sections, we primarily referred to MegaDetector as a
tool for categorizing images. MegaDetector also predicts the location of
each object within the image, in the form of a bounding box around each
object. For each image that MegaDetector identified as containing one or
more animals, objects were cropped from the images using Mega-
Detector’s predicted bounding boxes, and those crops were used to train
a model for false positive classification. We include all classes that had
>50 images from the combined sites (Finnmark and Yamal). For the 12
species classes and 4 non-animal classes (baits, rocks and empty) we
retained (Table 3), we obtained 42,591 image crops to train the model,
and 3746 for validation at each object detection class (Table S5). The
classes used for training included empty, rock, and bait in addition to
animal species, as one of the aims of this classification step was to
further reduce the number of false positive detections. The animal false
positive classification model was trained using the ResNet-50 architec-
ture with the same approach as the image quality model described
above. Each crop was assigned to a class, obtaining the maximum con-
fidence value from the model without any threshold. The results from
this model were combined with the detection confidence obtained from
MegaDetector. For images classified as containing an animal with a
confidence >0.35, the maximum confidence value from the animal false
positive model was chosen only among species predictions. This allowed
us to reduce the number of false positives without a large impact on false
negatives.
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3.5. Workflow performance

Workflow performance was assessed using data sets representing a
separate year of data from each site (2019 for Finnmark and 2022 for
Yamal, Table 1; hereafter ‘test data sets’). Although cameras were placed
at the same location every year, the background within the site varied
both within and between years (e.g., snow cover, lighting, exact camera
positioning), creating distinct image sets (Fig. S2). This added
complexity to the images allowed us to test our workflow (Fig. 1) under
“real-world” conditions. This approach corresponds to the situation of
long-term monitoring programs, where new image datasets are obtained
annually and should be classified with a procedure developed based on
available data from previous years (Bohner et al., 2023).

Performance was measured in terms of accuracy, precision, recall,
and F1 metrics as defined in Table 4 using the caret R package (Kuhn,
2008). For the test data, we also compared the number of days and time
of day with detection of each species between the workflow results and
the manual scoring, in addition to the picture-by-picture performance
evaluation. Indeed, daily or time of day detections are often used in
downstream analyses of camera trap data for ecological analyses (Hamel
et al., 2013; Rgd-Eriksen et al., 2023).

4. Results
4.1. Model performance on test data

4.1.1. Image quality models

The image quality models had high accuracy for the test data sets
both in Finnmark (0.977) and Yamal (0.959), with higher precision
(0.920) and recall (0.910) for low-quality class in Finnmark and Yamal
(0.764 and 0.779, respectively) (Table 5, Fig. S7).

4.1.2. MegaDetector

All results presented in this subsection refer to the merged detections
from the MDv5a results with tiling and the MDv5a results with TTA,
with a confidence threshold of 0.1.

There were 123 images classified as Bad that included animals, but
this was reduced to 31 after including animal detection using Mega-
Detector. After eliminating all Bad images and excluding images in
which MegaDetector predicted an animal and a human in the same
image (1165 images Finnmark, 434 Yamal; Fig. S8), because these did
not occur in the manual classification. For Finnmark, MegaDetector had
an overall accuracy of 0.890. For animals, MegaDetector had a precision
of 0.514 and recall of 0.992 (Table 6). The empty class had a precision of
0.999 and 0.880 recall. A total of 48,704 (14.0%) images were classified
as having animals present, but approximately half of those were empty
(Fig. S8). Excluding false positives (assuming that animal images would
be reviewed manually), the total number of days with detection of an
animal per camera station was similar to that of manual classification,
with 12 individual camera station of the 138 underestimating by one

Table 4

Definitions of model performance metrics based on “caret” R package, based on
true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN).

Metric Equation Definition
Accuracy TP + TN Proportion of correct predictions in the whole
TP+FP+TN+FN  data set.
Precision TP The proportion of images that a model classified
TP +FP as a specific category C that are actually category
C.
Recall P The proportion of images that are actually a
TP +FN specific category C that the a model classified as
C.
F1 2*precision*recall Weighted average of precision and recall.

precision + recall

Ecological Informatics 81 (2024) 102578

Table 5
Performance of the image quality model on the test data.
Location 1d Precision Recall F1
Finnmark Bad 0.920 0.910 0.915
Good 0.986 0.988 0.987
Yamal Bad 0.764 0.779 0.771
Good 0.979 0.977 0.978
Table 6

MegaDetector performance on the test data. Excludes Bad images with no
MegaDetetor confidence below 0.35 and images in which MegaDetector pre-
dicted animals and humans, because these did not occur in the manual
classification.

Location Class id Precision Recall F1

Finnmark Animal 0.514 0.992 0.677
Empty 0.999 0.880 0.936
Human 0.0009 0.381 0.018

Yamal Animal 0.206 0.862 0.332
Empty 0.996 0.908 0.950
Human 0.046 0.426 0.084

camera day in most cases for arctic fox, red fox, wolverine, raven, and
reindeer (Fig. S9). The detection frequency for each hour of the day was
also very similar between manual review and MegaDetector predictions,
with no directional bias by time of day (Fig. S11). The model thus results
in an acceptably low level of false negatives randomly distributed in
time.

For Yamal, MegaDetector had an accuracy of 0.906. The animal class
had a low precision of 0.206, but a relatively high recall of 0.862
(Table 6, Fig. S8), whereas the empty class had a precision of 0.996 and a
recall of 0.908. Excluding the false positive animal images, 6 of the 32
individual species camera detections for all camera stations were
underestimated (mostly by one day) for willow ptarmigan, mountain
hare, and magpie (Fig. S10). The detection frequency for each hour of
the day was also very similar between manual review and MegaDetector
predictions, with no particular bias to any specific time of day, for all
species except willow ptarmigan and mountain hare (Fig. S12). For
willow ptarmigans, MegaDetector predicted more detections between 5
and 10 h and very few detections during evenings than human re-
viewers. MegaDetector predicted fewer mountain hare detections dur-
ing mid-day than human reviewers.

4.1.3. False positive model

A total of 83,941 image crops were created from MegaDetector re-
sults for Finnmark. Forty-nine images were of new classes that were not
included in the model (human, snowy owl, black-backed gull). After
excluding these, the accuracy for the false positive model in Finnmark
was 0.919. The model was very precise at classifying cropped images as
“No animal” (>0.985; Table 7), with only one animal image mis-
classified as empty (Fig. S13) and there were 408 false positives.

For Yamal, a total of 15,276 image crops were created. Nine images
were of animals not included in the trained model (snowy owl and
ptarmigan). After excluding these, the overall accuracy for the false
positive model in Yamal was 0.898. The model was precise at classifying
image crops that did not contain an animal (0.985 precision for the “no
animal” class; Table 7) with 128 false positives.

4.1.4. All automated steps combined

After combining all model predictions (image quality, MegaDetector,
and false positive) and manual inspections we obtain an overall classi-
fication accuracy of 0.942 for Finnmark and 0.926 for Yamal. Including
the false positive classification model reduced the animal false positives
created by MegaDetector from 23,593 to 6242 images for the Finnmark
data set and from 6990 to 2534 images for the Yamal data set (Figs. S8 &
S14), but at a cost of 132 and 45 false negatives, respectively. This
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Table 7

False positive model performance on the test data. To estimate model perfor-
mance metrics, classes that were exclusively in the manual assessment or model
output were not included. The “No animal” class combines the Empty, Bait,
Bait_yamal, and Rock model classes.

Finnmark Yamal

Class ID Precision  Recall F1 Precision  Recall F1
No animal 0.985 0.860 0.919 0.985 0.834  0.904
Golden eagle 0675 0.899 0.771 - - -
White-tailed

eagle 0.623 0.812 0.706 - - -
Raven 0.921 0.985 0.952 0.04 1.00 0.079
Hooded crow 0.941 0.888 0.914 - - -
Magpie - - - 0.964 0.908  0.936
Mountain hare - - - 0.684 0.181 0.286
Reindeer 0.084 0.375 0.138 - - -
Wolverine 0.612 0.719 0.661 0.013 0.600 0.027
Arctic fox 0.310 0.781 0.444 0.683 0.693  0.688
Red fox 0.557 0.944 0.701 0.012 0.833  0.025

equates to animal detection of 4806 images or 3.9% of the total images
from camera traps in Yamal, and 32,208 or 9.2% in Finnmark (Fig. 2).
These results are higher than the mean animal detection rates obtained
by manual inspection — 2.0% for Yamal and 6.9% for Finnmark (Table 2)
due to the remaining false positives.

5. Discussion

Our workflow correctly classified, on average, 91% of images into
Bad. While it may at first seem to be an easy task to exclude bad-quality
images from the data set, the number of Bad images can be large (on
average 18% in Finnmark and 8.7% in Yamal, Table 2), vary by site, and
change quickly depending on environmental conditions. Nevertheless,
separating good images from bad images is particularly important for
analyses that consider sampling effort, such as relative abundance
indices (Burton et al., 2015) and exclusion of periods when the camera
cannot determine the presence or absence of an animal. We are unaware
of any other available models that are better able to parse good from bad
images.
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The detection of images with and without animals was 91% for our
time-lapse cameras, similar to what other researchers have reported
using MegaDetector for cameras using motion sensor triggers. We found
that MegaDetector’s test-time augmentation, tiling, and repeat detection
elimination tools improved detection for animals with time-lapse trig-
gers. It could detect smaller objects in images than previously reported
resolution (60px for Reindeer; Leorna and Brinkman, 2022). For
example, the smallest reindeer detected in our images was 18px, and the
cropped image was correctly classified by our false positive model. This
enhanced detection is attributable to the tiling of images, which im-
proves identification of small objects, but some detections can be du-
plicates (Unel et al., 2019) when an animal spans two or more tiles.
Therefore, downstream use, such as counting the number of individuals
from MegaDetector crops (Mitterwallner et al., 2023; Wang et al., 2022),
must be considered cautiously, as it may overestimate the number of
individuals.

Fals positive classification of all images with animals was 77% ac-
curate when compared with a manually derived classification. These
results are promising, though further work is needed to improve accu-
racy. Although MegaDetector’s repeat detection elimination tool (RDE)
helped reduce the number of false positives, using our false positive
model, which included classes of species, baits, rocks or empty, we could
reduce the number of images with false positives even further.

We obtained for the final portion of the workflow an animal recall
accuracy of 0.985 for Finnmark and 0.843 for Yamal, with false-negative
rates for animals of 1.4% and 15%, respectively within the range of what
other studies have found (Clarfeld et al., 2023) but are dependent on the
confidence threshold used (Bothmann et al., 2023). Assuming that all
pictures where animals were detected by our workflow would be
reviewed manually, something we would recommend given the per-
formance of the present false positive classification model for other
classes, this would reduce the number of images that require manual
inspection to 9.2% of the total number of images to review in Finnmark
and 3.9% in Yamal. Implementing this procedure could, therefore, save
a great deal of time and effort associated with manual inspection/clas-
sification of imagery. Other computer-assisted workflows have have
shown to reduce the processing time of image classification load by as
much as 5x to 13x depending on the tasks (Fennell et al., 2022; Henrich
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Fig. 2. Confusion matrix for the results of the complete workflow applied to the test data, which represents a full season of data not used in model development at (a)
Finnmark and (b) Yamal. False positive model results were aggregated in the “Animal” class. The percentage and number of images with correct (diagonal, green) and
incorrectly predicted classes (off-diagonal) are displayed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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et al., 2023). Our workflow reduces the load by ~62 h, however the
amount of time required to develop the site-specific models and work-
flow took ~160 h. It would take approximately 960 k processed images
to recover the time invested in developing the workflow, which makes
sense for long-term projects where the initial investment of time is
recouped over the life of the project.

6. Conclusion

The proposed semi-automatic workflow for classifying camera trap
images is a robust method for identifying high-quality images, identi-
fying images that contain animals, and reducing the number of false
positives. Our workflow detected low-quality images and those with
animals within the ranges of those detected by manual classification.
The false positive classification step reduced the number of false positive
animal detections generated by MegaDetector. Although the false posi-
tive model reduced the number of false positives, we recommend that
users manually review images with animals because the model was not
sufficiently accurate to rely solely on computer vision for species clas-
sification (hence our description of our workflow as “semi-automated™).

We provide code ((https://github.com/gerlis22/CameraTrap.git) for
this multi-step process so that researchers can create their own site-
specific models and modify it to meet their needs for monitoring and
surveying wildlife. Because our workflow is subdivided into several
steps, it is flexible and can be adapted to various situations. The initial
classification step could, for instance, be modified to include a classifi-
cation into pictures with and without bait in addition to quality, or with
and without snow, depending on the study’s aims.
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