

Small rodent disturbance impact on Arctic graminoid forage quality.

Gerardo Celis

gerardoc@uark.edu

University of Arkansas

Kari Anne Bråthen

UiT - The Arctic University of Norway

Dorothee Ehrich

UiT - The Arctic University of Norway

Oliver Paine

San Diego State University

Matt Sponheimer

University of Colorado Boulder

Mary Heskel

Macalester College

Eeva Soininen

UiT - The Arctic University of Norway

Peter Ungar

University of Arkansas

Short Report

Keywords: Herbivory, small rodents, Arctic, acid detergent fiber, crude protein, tundra

Posted Date: October 30th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-5300501/v1

License: © 1 This work is licensed under a Creative Commons Attribution 4.0 International License.

Read Full License

Additional Declarations: No competing interests reported.

Abstract

Arctic rodents influence tundra plant communities by altering species diversity, structure, and nutrient dynamics. These dynamics are intensified during rodent population peaks. Plants are known to induce defenses in response to rodent herbivory. However, changes in plant tissue digestibility may also play a role in deterring rodents or impacting their survival. This study presents a first look at the impacts of rodent herbivory on crude protein (CP) and acid detergent fiber (ADF) of three of the most common graminoid species (*Calamagrostis sp., Carex nigra* and *Deschampsia cespitosa*) in the tundra meadows of the Varanger Peninsula, Norway. We selected 32 experimental plots representing both rodent-disturbed and adjacent, undisturbed control graminoid patches. During a rodent population peak, the disturbed plots had higher ADF (28.5%) values than less disturbed ones (26.6%), controlling for plant species. We also found differences between species, with *Carex nigra* having the lowest fiber content (24.3%, ADF) and highest protein content (18.2% CP) – making it the most palatable species. These results show that rodent activity can potentially alter plant food quality, suggesting that increased fiber content may be a defensive adaptation against herbivory.

Introduction

Rodents have long been recognized as ecosystem engineers, (e.g., Dickman 1999; Legagneux et al. 2012) important for regulating biospheric activity. They are key species, affecting plant and predator abundances (Krebs 2011). They aerate and increase groundwater recharge through soil turbation, aid in decomposition and nutrient cycling, and provide habitats for other species. They control plant productivity, species richness and composition, and promote ecological succession (e.g., Zhang et al. 2003; Prugh and Brashares 2012; Tschumi et al. 2018; Ballová et al. 2019).

Rodent impact is especially predominant in the Arctic, where lemmings (*Dicrostonyx* spp. and *Lemmus* spp.) and voles (*Microtus* spp. and *Myodes* spp.) modify tundra plant communities influencing plant diversity, structure, and nutrient dynamics (Tuomi et al. 2019; Lindén et al. 2021). Indeed, small rodents often consume even more plant materials than larger herbivores, and they can have dramatic impacts on vegetation – especially during population peaks (Petit Bon et al. 2020). Not only do rodents eat tundra plants, but they also alter vegetation to create structures such as winter nest-storages, runways, and latrines (Roy et al. 2022). An understanding of high-latitude terrestrial ecosystems thus demands study of impacts of rodent activity on plant communities.

There have been hundreds of studies of the effects of rodents on vegetation in northern ecosystems (see Soininen and Neby, 2024 for review). Many of these focus on rodent population cycle dynamics and the complex interactions between these herbivores and the plant communities they rely on (Andreassen et al. 2021) – notwithstanding the role of predators (e.g., Hanski et al., 2001). In particular, reduced plant quality has been hypothesized to lead to rodent population cycles if high abundance of rodents leads to lower-quality foods, either through fallback on lower quality plant species or by decreased quality of the foods they prefer.

It has been long understood that northern latitude plants defend against herbivory by decreasing nutritional quality to herbivores (Schultz 1964; Batzli et al. 1980). In some plants, this happens through induction of defenses. Graminoids, for example, often respond to herbivory by increasing their silica content (Massey and Hartley 2006; Soininen et al. 2013a). This can wear teeth(Calandra et al. 2016) and lead to decreased digestive efficiency and calorie assimilation, which might explain decreased body mass, and increased mortality (Huitu et al. 2014). Phenolics have also been suggested as plant defenses against rodent activity (Oksanen et al. 1987). These defensive compounds bind to a herbivore's digestive enzymes and inactivate them (Velickovic and Stanic-Vucinic 2018); though support for induction of phenolics in response to herbivory by rodents is not clear (Saetnan and Batzli 2009; Huitu et al. 2014).

An alternative mechanism leading to reduced plant quality due to rodent herbivory is changes in the nutritional content. For instance, structural compounds, such as lignin and cellulose, reduce plant digestibility and the energy that an herbivore can extract from a plant (e.g., Distel et al. 2005). In this light, there has been surprisingly little work done to consider the impact of herbivory by rodents on plant fiber content (but see Bergeron & Jodoin 1989 and Hambäck et al 2002). Alternatively, plant quality may increase due to rodent herbivory, as plants may contain more protein where they have been fertilized by small rodent feces. See, for example, Tuomi et al. (2019), who found high rodent density associated with higher plant N content.

Our study presents a first look at the impacts of rodent herbivory on crude protein, and acid detergent fiber (ADF - cellulose and lignin) on common tundra graminoids in the tundra meadows of the Varanger Peninsula, Norway. We selected the graminoid species based on growth form: the mat grass, *Calamagrostis sp.*, the sedge, *Carex nigra*, and the tussock grass, *Deschampsia cespitosa*.

Material and Methods

Site and experimental design

This study took place in the riparian meadows along tributaries of river Bergebyelva, Varanger Peninsula, Norway (70.30° N, 29.02° E). These riparian meadows are vegetated by a diverse composition of species which include graminoids (e.g., *Avenella flexuosa, Carex spp. Deschampsia cespitosa, Juncus filiformis*), forbs (e.g., *Rumex acetosa, Trollius europaeus, Viola spp.*), and cryptograms (e.g., *Equisetum spp.* and mosses). Annual precipitation was 595 mm, and annual temperature – 1.16° C during 1961–1990, and the bedrock is a mixture of rich slate and limestone dominated types and poor sandstone types (Ims et al. 2013). These valleys are part of the study area of the Climate-ecological Observatory for Arctic Tundra (COAT, www.coat.no), which is a long-term monitoring system of food webs, including rodents and plants. The study was conducted in 2023, which was a peak year of the cyclic small rodent populations in the region (https://coat.no/en/Small-rodent).

We established a total of 16 sites in two riparian valleys (Torvhaugdalen, 70.31° N, 29.08° E and Bergebydalen 70.29° N, 28.96° E) in July 2023. At each site, areas with low and high rodent disturbance

of (hereafter denoted as Undisturbed and Rodent Disturbed) indicated by vegetation clipping, runways, and feces presence were located within each dominant plant type (Fig. S1). We then established a 0.5m x 0.5m plot in both disturbed and undisturbed, so that each plot-pair was dominated by one of the targeted graminoids (Table 1). The plots were at least 7m from each other.

Initial plot conditions were determined by listing all vascular plant species for a measure of species richness, estimating the percent cover per species, measuring plant height (four corners of the plot), and rodent disturbance intensity—percentage of the plot with graminoid clippings or runways and feces presence.

Table 1

Number of plots by location (Bergebydalen & Torvhaugdalen) in Varanger, Norway for each dominant graminoid and rodent disturbance treatment. Mean percent cover and range of the dominant graminoid for each treatment.

River Valley	Dominant graminoid	Rodent Disturbance	N	Mean % cover (range)	
Bergebydalen	Calamagrostis sp.	Undisturbed	3	67.5 (60-75)	
		Disturbed	3	41.6 (25-70)	
	Carex nigra	Undisturbed	2	67.5 (60-75)	
		Disturbed	4	56.7 (40-70)	
	Deschampsia cespitosa	Undisturbed	2	75.0 (70-80)	
		Disturbed	3	66.7 (60-75)	
Torvhaugdalen	Calamagrostis sp.	Undisturbed	3	60.0 (50-70)	
		Disturbed	2	55.0 (30-95)	
	Carex nigra	Undisturbed	3	90.0 (80-100)	
		Disturbed	3	93.3 (80-100)	
	Deschampsia cespitosa	Undisturbed	3	80.0 (75-85)	
		Disturbed	3	71.7 (50-85)	

Plant harvest and nutritional analyses

The plots were sampled in July 2023. Approximately 40 grams of fresh leaves were collected from the dominant graminoid in each control and rodent-disturbed plot. Plant samples were dried in the field in dehydrators at 40°C. Dried samples were sealed in paper bags with desiccant and were exported to the Nutritional and Isotopic Ecology Lab (NIEL) at the University of Colorado Boulder for nutritional analyses. Approximately ~ 10 grams of dried sample were ground with a Retsch® centrifugal mill using a ~ 2mm sieve. The ground sample was used to analyze crude protein (CP), and acid detergent fiber (ADF), with all values reported as a percentage of dry weight. Crude protein was measured with a LECO® FP 528

nitrogen analyzer using the standard %N × 6.25 conversion to obtain %CP. %ADF were measured with an ANKOM® 2000 fiber analyzer.

Statistical analyses

A generalized linear mixed model was used to evaluate the effects of plant species and rodent disturbance fixed effects on CP, ADF, and CP/ADF responses, and riparian valley as a random effect. The *glmmTMB* function within the *glmmTMB* package (1.1.9) using R statistical software (4.4.0), Models were assessed using the simulation-based package *DHARMa* (0.4.6) and *ggplot2* package (v3.5.1) for figures were used. For significant treatment effects, we performed a post-hoc pairwise comparison with Tuckey adjustment using *emmeans* (*emmeans* package v1.10.1)

Results

Fiber (ADF)

Calamagrostis sp. had the highest ADF (30.8%), Carex nigra had the lowest ADF (24.3%), and Deschampsia cespitosa an intermediate ADF (27.7%, Fig. 1). We found statistically significant effects of both species and disturbance, but not interaction (Table 2). Rodent-disturbed plots had the highest ADF (28.5%) compared to undisturbed plots 26.6%.

Crude Protein

Carex nigra had the highest crude protein content, with 18.2%. In Calamagrostis sp. it was 15.9% and lowest in *D. cespitosa* (11.1%). We found statistically significant effect of species, but not of disturbance or interaction (Table 2). Yet, all species showed a tendency of change to the same direction, i.e. lower CP in disturbed plots.

CP/ADF

Carex nigra had the highest CP/ADF ratio 0.76, followed by Calamagrostis sp. 0.53 and Deschampsia cespitosa 0.40. We found statistically significant effect of species, and a significant effect of disturbance, but none for interaction (Table 2). Rodent-disturbed plots had the lowest ratio (0.533) compared to undisturbed plots 0.588.

Table 2

Generalized linear mixed model results for the relationship between species and disturbance and their interaction on crude percent protein - CP, Acid detergent fiber - ADF, and ration CP/ADF responses. Analysis of Deviance Table (Type II Wald chisquare tests).

	Variable	Chisq	df	p-value
ADF				
	Dominant graminoid	58.650	2	< 0.0001
	Rodent disturbance	7.119	1	0.0076
	Dominant graminoid X Rodent disturbance	0.281	2	0.8687
СР				
	Dominant graminoid	142.640	2	< 0.0001
	Rodent disturbance	1.200	1	0.2734
	Dominant graminoid X Rodent disturbance	2.958	2	0.2279
CP/ADF				
	Dominant graminoid	134.128	2	< 0.0001
	Rodent disturbance	4.572	1	0.0325
	Dominant graminoid X Rodent disturbance	2.194	2	0.3338

Discussion

Rodents have a vast impact on ecosystems and understanding the drivers of their population cycles is needed due to their cascading effects on plants, other herbivores, and predators. Plants are thought to be one of the drivers by reducing plant quality in the presence of high rodent densities. A key assumption of this hypothesis is that rodent herbivory modifies the plant quality. Our study evaluated the impacts of rodent herbivory on two plant quality metrics, crude protein and acid detergent fiber (ADF) for three of the common graminoid species in tundra meadows.

Graminoid species generally have higher fiber content (ADF) compared to forbs (Lee 2018) and show high variability between species, particularly in temperate and tundra regions (1–55% ADF, Lee 2018). Differences between species we observed were as expected, and *Carex nigra* exhibited the lowest fiber content (24.3% ADF) and highest protein content (18.2% CP), making it the most palatable species we analyzed. Crude protein and fiber change with plant phenology, having the highest crude protein and lowest fiber concentration during early plant development (Klein 1990; Barboza et al. 2018). The marked difference between species in crude protein and fiber may be related to differences in phenology between sedges and grasses synchrony of leaf and root production (Sloan et al. 2016; Li et al. 2021).

Although tundra voles' diet is species rich in the tundra grasslands (~ 26 species), graminoids are among the preferred plants (~ 13% of diet) after forbs, with minimal variation in seasonal or spatial preference (Soininen et al. 2013b). Any changes to the palatability or quality of graminoid species could, therefore, have dramatic impacts on rodent diets.

We found that graminoids in rodent disturbed plots decreased on nutrient quality, as they increased in fiber (ADF) and decrease in crude protein:ADF ratio. This differs from the findings of an earlier study on rodent impacts on graminoid ADF, which found an opposite pattern (Bergeron and Jodoin 1989). However, as this study addressed different plant and rodent species than our study, it is difficult to make direct comparisons. Still, other studies of graminoids in Northern Norwegian tundra have shown them to respond to rodent disturbance with increased nitrogen and phosphorus content (Tuomi et al. 2019; Petit Bon et al. 2020), thus increasing their nutritional quality. One explanation to the seemingly contradictory results could be in methodology, as we measured different compounds than Petit-Bon et al (2020), and contrasted individual plants in the same study site and year rather than different locations and years like Tuomi et al (2019). Furthermore, the strength of rodent-plant interactions can differ between population peaks even in the same location (Soininen et al. 2018) and differences between studies may be related to such phenomena. Yet, our results support the idea that rodent herbivory can alter plant palatability and thus affect rodents' food selectivity or quality.

Our results indicate that rodent herbivory may decrease graminoid nutritional quality through increased fiber content and consequent decreased digestibility. Whether such mechanism can have feedback effects to rodent population dynamics requires further knowledge on the extent rodents ingest these nutritionally lower quality plants, whether such diet has negative consequences to their health to the extent that it affects population growth rate, and whether the low nutritional quality prevails long enough to affect rodent population densities with a time-lag. In any case, our results suggest that increased fiber content may be a defensive adaptation against herbivory.

Declarations

Competing interests

The authors declare that they have no conflict of interest.

Funding

This research was made possible by funding from Navigating the New Arctic – National Science Foundation (award – 2126796).

Author Contribution

G.C., K.B., D.E., O.P., M.S., M.H., E.S., and P.U. conceived the ideas and designed methodology; G.C., K.B., D.E., O.P., M.S., M.H., and P.U. collected the data; GC was involved in formal analysis; PU project administration and funding acquisition; G.C. led the writing of the manuscript and visualization. All authors contributed critically to the drafts and gave final approval for publication.

Acknowledgement

We thank Berit Tønsberg Gaski for help with field assistance. This study is a contribution from the Navigating the New Arctic Fennoscandia project and the Climate-Ecological Observatory for Arctic Tundra (COAT).

References

- 1. Andreassen HP, Sundell J, Ecke F, et al (2021) Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia 195:601–622. https://doi.org/10.1007/s00442-020-04810-w
- 2. Ballová Z, Pekárik L, Píš V, Šibík J (2019) How much do ecosystem engineers contribute to landscape evolution? A case study on Tatra marmots. CATENA 182:104121. https://doi.org/10.1016/j.catena.2019.104121
- 3. Barboza PS, Someren LLV, Gustine DD, Bret-Harte MS (2018) The nitrogen window for arctic herbivores: plant phenology and protein gain of migratory caribou (Rangifer tarandus). Ecosphere 9:. https://doi.org/10.1002/ecs2.2073
- 4. Batzli G, White R, MacLean S, et al (1980) The herbivore-based trophic system. In: Miller P, Tieszen L, Bunnell F, Brown J (eds) An arctic ecosystem: The coastal tundra at Barrow, Alaska. Dowden, Hutchison & Ross, Stroudsburg, PA, pp 335–410
- 5. Bergeron J-M (1997) Changes in habitat and in quality of food intake after a summer of grazing by fenced voles (Microtus pennsylvanicus). Annales Zoologici Fennici 34:
- 6. Bergeron J-M, Jodoin L (1989) Patterns of resource use, food quality, and health status of voles (Microtus pennsylvanicus) trapped from fluctuating populations. Oecologia 79:306–314. https://doi.org/10.1007/bf00384309
- 7. Calandra I, Zub K, Szafrańska PA, et al (2016) Silicon-based plant defences, tooth wear and voles. J Exp Biol 219:501–507. https://doi.org/10.1242/jeb.134890
- Cook RC, Shipley LA, Cook JG, et al (2022) Sequential detergent fiber assay results used for nutritional ecology research: Evidence of bias since 2012. Wildl Soc Bull 46:. https://doi.org/10.1002/wsb.1348
- 9. Dickman CR (1999) Rodent-ecosystem relationships: a review. In: Singleton GR, Hinds LA, Leirs H, Zhang Z (eds) Ecologically-based Management of Rodent Pest. pp 113–133

- 10. Hambäck PA, Grellmann D, Hjältén J (2002) Winter herbivory by voles during a population peak: the importance of plant quality. Ecography 25:74–80. https://doi.org/10.1034/j.1600-0587.2002.250108.x
- 11. Hanski I, Henttonen H, Korpimaki E, et al (2001) Small-Rodent Dynamics and Predation. Ecology 82:1505. https://doi.org/10.2307/2679796
- 12. Huitu O, Forbes KM, Helander M, et al (2014) Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Front Plant Sci 5:478. https://doi.org/10.3389/fpls.2014.00478
- 13. Ims RA, Jespen JU, Stien A, Yoccoz NG (2013) Science Plan for COAT: Climate-Ecological Observatory for Arctic Tundra. Fram Centre by the University of Tromsø, Tromsø, Norway
- 14. Klein DR (1990) Variation in quality of caribou and reindeer forage plants associated with season, plant part, and phenology. Rangifer 10:123–130. https://doi.org/10.7557/2.10.3.841
- 15. Krebs CJ (2011) Of lemmings and snowshoe hares: the ecology of northern Canada. Proc R Soc B: Biol Sci 278:481–489. https://doi.org/10.1098/rspb.2010.1992
- 16. Lee MA (2018) A global comparison of the nutritive values of forage plants grown in contrasting environments. J Plant Res 131:641–654. https://doi.org/10.1007/s10265-018-1024-y
- 17. Legagneux P, Gauthier G, Berteaux D, et al (2012) Disentangling trophic relationships in a High Arctic tundra ecosystem through food web modeling. Ecology 93:1707–1716. https://doi.org/10.1890/11-1973.1
- 18. Li P, Zhu W, Xie Z (2021) Diverse and divergent influences of phenology on herbaceous aboveground biomass across the Tibetan Plateau alpine grasslands. Ecol Indic 121:107036. https://doi.org/10.1016/j.ecolind.2020.107036
- 19. Lindén E, Gough L, Olofsson J (2021) Large and small herbivores have strong effects on tundra vegetation in Scandinavia and Alaska. Ecol Evol 11:12141–12152. https://doi.org/10.1002/ece3.7977
- 20. Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc B: Biol Sci 273:2299–2304. https://doi.org/10.1098/rspb.2006.3586
- 21. Oksanen L, Oksanen T, Lukkari A, et al (1987) The Role of Phenol-Based Inducible Defense in the Interaction between Tundra Populations of the Vole Clethrionomys rufocanus and the Dwarf Shrub Vaccinium myrtillus. Oikos 50:371. https://doi.org/10.2307/3565498
- 22. Petit Bon M, Inga KG, Jónsdóttir IS, et al (2020) Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities. Oikos 129:1229–1242. https://doi.org/10.1111/oik.07074
- 23. Prugh LR, Brashares JS (2012) Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways. J Anim Ecol 81:667–678. https://doi.org/10.1111/j.1365-2656.2011.01930.x

- 24. Roy A, Gough L, Boelman NT, et al (2022) Small but mighty: Impacts of rodent-herbivore structures on carbon and nutrient cycling in arctic tundra. Funct Ecol 36:2331–2343. https://doi.org/10.1111/1365-2435.14127
- 25. Saetnan ER, Batzli GO (2009) Effects of Simulated Herbivory on Defensive Compounds in Forage Plants of Norwegian Alpine Rangelands. J Chem Ecol 35:469–475. https://doi.org/10.1007/s10886-009-9616-6
- 26. Schultz AM (1964) The nutrient recovery hypothesis for arctic microtine cycles. II. Ecosystem variables in relation to arctic microtine cycles. In: Crisp DJ (ed) Grazing in terrestrial and marine environments. Blackwell Science, Oxford, pp 57–68
- 27. Soininen EM, Bråthen KA, Jusdado JGH, et al (2013a) More than herbivory: levels of silica-based defences in grasses vary with plant species, genotype and location. Oikos 122:30–41. https://doi.org/10.1111/j.1600-0706.2012.20689.x
- 28. Soininen EM, Henden J, Ravolainen VT, et al (2018) Transferability of biotic interactions: Temporal consistency of arctic plant-rodent relationships is poor. Ecol Evol 8:9697–9711. https://doi.org/10.1002/ece3.4399
- 29. Soininen EM, Neby M (2024) Small rodent population cycles and plants after 70 years, where do we go? Biol Rev 99:265–294. https://doi.org/10.1111/brv.13021
- 30. Soininen EM, Ravolainen VT, Bråthen KA, et al (2013b) Arctic Small Rodents Have Diverse Diets and Flexible Food Selection. Plos One 8:e68128. https://doi.org/10.1371/journal.pone.0068128
- 31. Terrill TH, Wolfe RM, Muir JP (2010) Factors affecting ANKOM[™] fiber analysis of forage and browse varying in condensed tannin concentration. J Sci Food Agric 90:2723–2726. https://doi.org/10.1002/jsfa.4119
- 32. Tschumi M, Ekroos J, Hjort C, et al (2018) Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia 188:863–873. https://doi.org/10.1007/s00442-018-4242-z
- 33. Tuomi M, Stark S, Hoset KS, et al (2019) Herbivore Effects on Ecosystem Process Rates in a Low-Productive System. Ecosystems 22:827–843. https://doi.org/10.1007/s10021-018-0307-4
- 34. Velickovic TDC, Stanic-Vucinic DJ (2018) The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Compr Rev Food Sci Food Saf 17:82–103. https://doi.org/10.1111/1541-4337.12320
- 35. Zhang Y, Zhang Z, Liu J (2003) Burrowing rodents as ecosystem engineers: the ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Rev 33:284–294. https://doi.org/10.1046/j.1365-2907.2003.00020.x
- 36. Andreassen HP, Sundell J, Ecke F, et al (2021) Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia 195:601–622. https://doi.org/10.1007/s00442-020-04810-w
- 37. Ballová Z, Pekárik L, Píš V, Šibík J (2019) How much do ecosystem engineers contribute to landscape evolution? A case study on Tatra marmots. CATENA 182:104121.

- https://doi.org/10.1016/j.catena.2019.104121
- 38. Barboza PS, Someren LLV, Gustine DD, Bret-Harte MS (2018) The nitrogen window for arctic herbivores: plant phenology and protein gain of migratory caribou (Rangifer tarandus). Ecosphere 9:. https://doi.org/10.1002/ecs2.2073
- 39. Batzli G, White R, MacLean S, et al (1980) The herbivore-based trophic system. In: Miller P, Tieszen L, Bunnell F, Brown J (eds) An arctic ecosystem: The coastal tundra at Barrow, Alaska. Dowden, Hutchison & Ross, Stroudsburg, PA, pp 335–410
- 40. Bergeron J-M (1997) Changes in habitat and in quality of food intake after a summer of grazing by fenced voles (Microtus pennsylvanicus). Annales Zoologici Fennici 34:
- 41. Bergeron J-M, Jodoin L (1989) Patterns of resource use, food quality, and health status of voles (Microtus pennsylvanicus) trapped from fluctuating populations. Oecologia 79:306–314. https://doi.org/10.1007/bf00384309
- 42. Calandra I, Zub K, Szafrańska PA, et al (2016) Silicon-based plant defences, tooth wear and voles. J Exp Biol 219:501–507. https://doi.org/10.1242/jeb.134890
- 43. Dickman CR (1999) Rodent-ecosystem relationships: a review. In: Singleton GR, Hinds LA, Leirs H, Zhang Z (eds) Ecologically-based Management of Rodent Pest. pp 113–133
- 44. Hambäck PA, Grellmann D, Hjältén J (2002) Winter herbivory by voles during a population peak: the importance of plant quality. Ecography 25:74–80. https://doi.org/10.1034/j.1600-0587.2002.250108.x
- 45. Hanski I, Henttonen H, Korpimaki E, et al (2001) Small-Rodent Dynamics and Predation. Ecology 82:1505. https://doi.org/10.2307/2679796
- 46. Huitu O, Forbes KM, Helander M, et al (2014) Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Front Plant Sci 5:478. https://doi.org/10.3389/fpls.2014.00478
- 47. Ims RA, Jespen JU, Stien A, Yoccoz NG (2013) Science Plan for COAT: Climate-Ecological Observatory for Arctic Tundra. Fram Centre by the University of Tromsø, Tromsø, Norway
- 48. Klein DR (1990) Variation in quality of caribou and reindeer forage plants associated with season, plant part, and phenology. Rangifer 10:123–130. https://doi.org/10.7557/2.10.3.841
- 49. Krebs CJ (2011) Of lemmings and snowshoe hares: the ecology of northern Canada. Proc R Soc B: Biol Sci 278:481–489. https://doi.org/10.1098/rspb.2010.1992
- 50. Lee MA (2018) A global comparison of the nutritive values of forage plants grown in contrasting environments. J Plant Res 131:641–654. https://doi.org/10.1007/s10265-018-1024-y
- 51. Legagneux P, Gauthier G, Berteaux D, et al (2012) Disentangling trophic relationships in a High Arctic tundra ecosystem through food web modeling. Ecology 93:1707–1716. https://doi.org/10.1890/11-1973.1
- 52. Li P, Zhu W, Xie Z (2021) Diverse and divergent influences of phenology on herbaceous aboveground biomass across the Tibetan Plateau alpine grasslands. Ecol Indic 121:107036.

- https://doi.org/10.1016/j.ecolind.2020.107036
- 53. Lindén E, Gough L, Olofsson J (2021) Large and small herbivores have strong effects on tundra vegetation in Scandinavia and Alaska. Ecol Evol 11:12141–12152. https://doi.org/10.1002/ece3.7977
- 54. Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc B: Biol Sci 273:2299–2304. https://doi.org/10.1098/rspb.2006.3586
- 55. Oksanen L, Oksanen T, Lukkari A, et al (1987) The Role of Phenol-Based Inducible Defense in the Interaction between Tundra Populations of the Vole Clethrionomys rufocanus and the Dwarf Shrub Vaccinium myrtillus. Oikos 50:371. https://doi.org/10.2307/3565498
- 56. Petit Bon M, Inga KG, Jónsdóttir IS, et al (2020) Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities. Oikos 129:1229–1242. https://doi.org/10.1111/oik.07074
- 57. Prugh LR, Brashares JS (2012) Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways. J Anim Ecol 81:667–678. https://doi.org/10.1111/j.1365-2656.2011.01930.x
- 58. Roy A, Gough L, Boelman NT, et al (2022) Small but mighty: Impacts of rodent-herbivore structures on carbon and nutrient cycling in arctic tundra. Funct Ecol 36:2331–2343. https://doi.org/10.1111/1365-2435.14127
- 59. Saetnan ER, Batzli GO (2009) Effects of Simulated Herbivory on Defensive Compounds in Forage Plants of Norwegian Alpine Rangelands. J Chem Ecol 35:469–475. https://doi.org/10.1007/s10886-009-9616-6
- 60. Schultz AM (1964) The nutrient recovery hypothesis for arctic microtine cycles. II. Ecosystem variables in relation to arctic microtine cycles. In: Crisp DJ (ed) Grazing in terrestrial and marine environments. Blackwell Science, Oxford, pp 57–68
- 61. Sloan VL, Fletcher BJ, Phoenix GK (2016) Contrasting synchrony in root and leaf phenology across multiple sub-Arctic plant communities. J Ecol 104:239–248. https://doi.org/10.1111/1365-2745.12506
- 62. Soininen EM, Bråthen KA, Jusdado JGH, et al (2013a) More than herbivory: levels of silica-based defences in grasses vary with plant species, genotype and location. Oikos 122:30–41. https://doi.org/10.1111/j.1600-0706.2012.20689.x
- 63. Soininen EM, Henden J, Ravolainen VT, et al (2018) Transferability of biotic interactions: Temporal consistency of arctic plant-rodent relationships is poor. Ecol Evol 8:9697–9711. https://doi.org/10.1002/ece3.4399
- 64. Soininen EM, Neby M (2024) Small rodent population cycles and plants after 70 years, where do we go? Biol Rev 99:265–294. https://doi.org/10.1111/brv.13021
- 65. Soininen EM, Ravolainen VT, Bråthen KA, et al (2013b) Arctic Small Rodents Have Diverse Diets and Flexible Food Selection. Plos One 8:e68128. https://doi.org/10.1371/journal.pone.0068128

- 66. Tschumi M, Ekroos J, Hjort C, et al (2018) Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia 188:863–873. https://doi.org/10.1007/s00442-018-4242-z
- 67. Tuomi M, Stark S, Hoset KS, et al (2019) Herbivore Effects on Ecosystem Process Rates in a Low-Productive System. Ecosystems 22:827–843. https://doi.org/10.1007/s10021-018-0307-4
- 68. Velickovic TDC, Stanic-Vucinic DJ (2018) The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Compr Rev Food Sci Food Saf 17:82–103. https://doi.org/10.1111/1541-4337.12320
- 69. Zhang Y, Zhang Z, Liu J (2003) Burrowing rodents as ecosystem engineers: the ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Rev 33:284–294. https://doi.org/10.1046/j.1365-2907.2003.00020.x

Figures

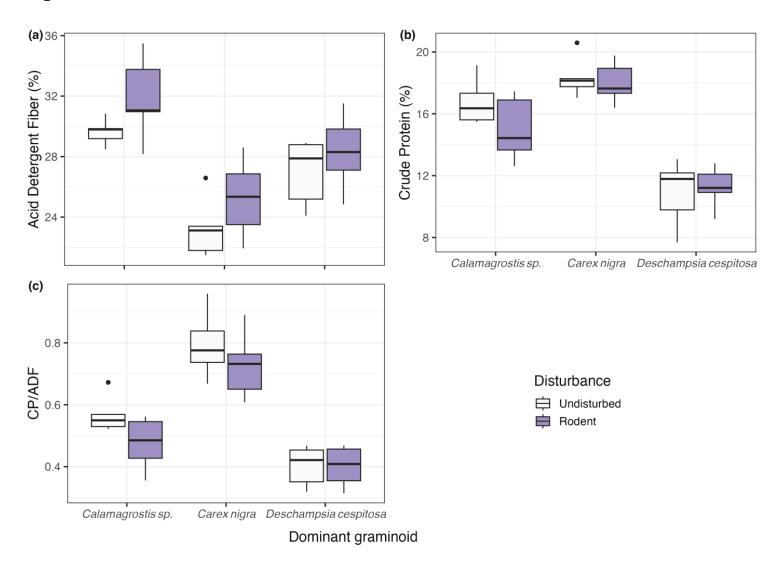


Figure 1

Boxplots (horizontal line is median and box are first and third quartiles) of measured percentage of acid fiber (a), crude protein (b) and the ratio of crude protein to acid detergent fiber (c) for each dominant graminiod and type of disturbance in tundra meadows, Varanger, Norway.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

• SupplementCelis2024.pdf