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Abstract

Agreement is central to the morphosyntax of

many natural languages. Within contemporary

linguistic theory, agreement relations have of-

ten been analyzed as the result of a structure-

sensitive search operation. Neural language

models, which lack an explicit bias for this

type of operation, have shown mixed success at

capturing morphosyntactic agreement phenom-

ena. This paper develops an alternative neural

model that formalizes the search operation in a

fully differentiable way using gradient neural

attention, and evaluates the model’s ability to

learn the complex agreement system of Hindi-

Urdu from a large-scale dependency treebank

and smaller synthetic datasets. We find that

this model outperforms standard architectures

at generalizing agreement patterns to held-out

examples and structures.

1 Introduction

Agreement is central to the morphosyntax of many

natural languages (e.g., Moravcsik, 1978; Corbett,

2006; Baker, 2008). For example, in Hindi-Urdu

sentences such as (1), the main verb and auxiliary

agree in number and gender with the subject (as in-

dicated by bold; examples here from Bhatt, 2005).1

(1) Rahul
Rahul.M

kitaab
book.F

paRh-taa
read-Hab.MSg

thaa
be.Pst.MSg

Rahul used to read (a/the) book.

Across languages, agreement systems are sensitive

to a wide yet restricted range of properties: gram-

matical categories and features such as Case, gram-

matical functions such as subject and object, struc-

tural positions such as specifier and complement,

syntactic relations of dominance and c-command,

as well as syntactic locality (shortest-path node dis-

tance). Agreement is also distinguished by being

‘fallible’ (Preminger, to appear): when no suitable

1Example sentences provided throughout the paper follow
the glossing and transliteration of the original sources.

controller for agreement exists, the target can take

on default features (e.g., masculine singular).

Verb agreement in Hindi-Urdu illustrates much

of this complexity. For example, in (2), the verb

and auxiliary agree with the Nominative object in-

stead of the Ergative subject (cf. the Nominative

subject in (1)). In (3), verb agreement ‘fails’ be-

cause the subject and object both have overt Case

(Ergative and Accusative). Most strikingly, Hindi-

Urdu allows ‘long-distance’ agreement (LDA) as

in (4): when all of the local noun phrase arguments

have overt Case marking, a verb can agree with the

Nominative object of an embedded clause.

(2) Rahul
Rahul.M

ne
Erg

kitaab
book.FSg

paRh-ii
read-Pfv.FSg

thii
be.Pst.FSg

Rahul had read (a/the) book.

(3) Rahul
Rahul.M

ne
Erg

kitaab
book.F

ko
Acc

paRh-aa
read-Pfv

thaa
be.Pst.MSg

Rahul had read the book.

(4) Vivek
Vivek.M

ne
Erg

[kitaab
book.F

parh-nii]
read-Inf.F

chaah-ii
want-Pfv.FSg

Vivek wanted to read the book.

In this paper, we develop a neural model of mor-

phosyntactic agreement that is capable of represent-

ing intricate agreement systems like those attested

cross-linguistically, and evaluate its ability to learn

the system of Hindi-Urdu from a large dependency

treebank as well as much smaller synthetic datasets.

We begin by situating our model in the context

of morphosyntactic theory and previous computa-

tional approaches to agreement. Following many

contemporary theoretical proposals, our model for-

malizes agreement as structure-dependent search

from targets (probes) to controllers (goals). As in
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some previous models, agreement is implemented

with soft neural attention and other differentiable

mechanisms, rather than by symbolic tree traversal

and feature copying.

2 Related research

2.1 Morphosyntactic theory

In some contemporary linguistic theories, agree-

ment is a fundamental structure-building operation

of syntax (e.g., Chomsky, 1995; Deal, 2015). In

others, agreement is treated as postsyntactic: a part

of morphology that operates on fully-formed syn-

tactic structures (e.g., Bobaljik, 2008). Within both

approaches, there is broad consensus that agree-

ment relations are established by tree-based search

(e.g., Preminger, to appear; Baker, 2008; Ke, 2023).

The details of the search operation remain con-

troversial. Preminger (to appear) argues for strictly

serial and ‘downward’ search in which each agree-

ment probe explores the nodes of its c-command

domain in a preset order and halts when it finds

a suitable goal Ð or fails to find a goal before

reaching terminal and blocking ‘phase’ nodes (re-

sulting in default agreement). Others argue for

different directionality, allowing a probe to option-

ally or obligatorily look ‘upwards’ to nodes that

c-command it (e.g., Bjorkman and Zeijlstra, 2019;

Baker, 2008). Still others argue for more elabo-

rate operations that can occur as part of the search

(Béjar and Rezac, 2009; Deal, 2015), or propose al-

ternative conditions under which search halts (Deal,

2015).

The neural model that we propose is post-

syntactic, insofar as it takes complete syntactic

structures as inputs, but is otherwise compatible

with many theoretical frameworks and varieties of

search. We assume minimally that input structures

consist of nodes, that nodes are specified for gram-

matical category (e.g., noun vs. verb), that some

nodes have specifications for phi-features (e.g., per-

son, number, gender) and other morphosyntacti-

cally relevant properties such as Case (e.g., Nomi-

native vs. Ergative), that some nodes are designated

as agreement probes (or as having ‘uninterpretable’

phi-features to be satisfied by agreement), and that

nodes enter into (labeled) syntactic relations of

dominance or dependency with one another. The

model is architecturally agnostic about search di-

rectionality and our application to Hindi-Urdu uses

both ‘downward’ and ‘upward’ probing.

2.2 Neural models

Previous computational research has explored

whether recurrent neural networks (RNNs) and

transformer models can capture morphosyntactic

agreement (Linzen et al., 2016; Li et al., 2023;

Bacon and Regier, 2019; Goldberg, 2019), with

mixed success. Evaluating on English subject-verb

agreement, Linzen et al. (2016) find that RNNs

require explicit supervision of verb inflection to ap-

proximate structure-sensitive dependencies, despite

seemingly high accuracy when trained only on a

language modeling task. More robust sensitivity

to structure is found for transformer architectures

(Goldberg, 2019; Wilson et al., 2023), though these

models are still not entirely unaffected by non-goal

‘distractors’ and are more susceptible to linearly

close distractors than humans.

Previous models further struggle to capture

agreement dependencies for languages with more

complex agreement phenomena. Ravfogel et al.

(2018) find that recurrent neural networks have dif-

ficulty learning the agreement system of Basque,

in which auxiliary verbs agree with several local ar-

guments, instead showing some reliance on surface

heuristics instead of syntactic structure. A cross-

linguistic evaluation of transformers (Bacon and

Regier, 2019), following (Goldberg, 2019), finds

that transformers struggle significantly with agree-

ment in a handful of languages, such as Persian,

Basque, and Finnish, as well as noting their sen-

sitivity to distractors even when performance is

overall high.

Similar results have been found for verb agree-

ment in French (Li et al., 2023). Evaluating an

RNN and a transformer on two different agreement

patterns in French, the authors find that both mod-

els achieve relatively high accuracy. However, they

see a degradation in performance when surface

heuristics Ð such as agreement with the linearly

first or most recent noun phrase Ð fail to predict

the correct inflection. Additionally, while the atten-

tion patterns of the transformer model indicate that

it appropriately distinguishes the two agreement

patterns, the sensitivity to heuristics makes atten-

tion difficult to interpret in a syntactically coherent

way.

A separate line of work explores models that

explicitly learn agreement rules. Chaudhary et al.

(2020) use a decision tree to extract rules predicting

agreement across multiple languages in the Uni-

versal Dependencies family of treebanks (Nivre
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et al., 2020). While this works well for certain lan-

guages like Greek or Russian, performance varies

widely from language to language and especially

drops in ‘zero-shot’ settings with minimal train-

ing data. Importantly, this model operates only

between nodes that are directly connected within a

dependency tree, making it unable to capture long-

distance agreement as in example (4) above.

Our contribution shares high-level aspects of

these proposals, including the use of continuous

embeddings and attention, but differs in its goals

and scope. We do not treat morphosyntactic agree-

ment as a language modeling problem, recurrent

or otherwise, but rather follow syntactic theory in

taking agreement to be essentially a (postsyntactic)

relation among syntactic nodes.

The model that we propose establishes these

relations through search Ð technically, iterative

redistribution of attention among nodes Ð condi-

tioned on the types of morphosyntactic relations

and features that are relevant for agreement cross-

linguistically. The model does not parse sentences

or generate inflected wordforms: it is designed

solely to capture agreement but, in virtue of be-

ing fully differentiable, could be incorporated into

larger neural models for parsing, inflection, or other

applications. It has a small number of trainable pa-

rameters that can be set for particular agreement

patterns, such as that of Hindi-Urdu.

3 Agreement in Hindi-Urdu

Agreement in the language of our case study has

been extensively investigated within descriptive

and theoretical linguistics (e.g., Pandharipande and

Kachru, 1977; Bhatt and Keine, 2017; Mohanan,

1994; Bhatt, 2005; Kachru, 1970; Butt, 1993). A

generalization that covers all of the examples in

(1) - (4) is that Hindi-Urdu verbs and auxiliaries in

the matrix clause agree in gender and number with

the highest non-overtly Case-marked noun phrase,

where all Cases other than Nominative/Absolutive

are overt.

The notion of ‘highest’ can be defined in many

technical ways (e.g., in terms of proximity to a

Tense or Inflection node), but basically tracks the

well-known accessibility hierarchy subject > direct

object > indirect object > other (e.g., Moravcsik,

1978; cf. Bobaljik, 2008). When there is no such

noun phrase, masculine singular is used by default.

Hindi-Urdu is particularly remarkable for allow-

ing long-distance agreement (LDA), and for the

intricacies of agreement in light-verb constructions.

Below we provide some further details about each

of these phenomena, both of which occur in the

datasets used to evaluate our model. For a more

comprehensive view of Hindi-Urdu agreement and

morphosyntax, we refer readers to original sources

(e.g., Bhatt, 2005; Butt, 1995; Mohanan, 1994).

3.1 Long Distance Agreement

As illustrated in (4), verbs and auxiliaries can agree

with non-overtly Case marked arguments of in-

finitival embedded clauses when no ‘higher’ noun

phrase is suitable. This agreement is optional: (5)

below, which differs from (4) in that both the ma-

trix and embedded verbs show default agreement,

is also acceptable. Mahajan (1990) notes some

interpretation differences between these cases, in

which LDA seems to make the object more ‘spe-

cific’ (examples below based on Bhatt, 2005).

(5) Vivek
Vivek.M

ne
Erg

[kitaab
book.M

parh-naa]
read-Inf.M

chaah-aa
want-Pfv.MSg

Vivek wanted to read the book.

Bhatt (2005) also notes a parasitism in LDA,

such that the matrix and embedded infinitival verb

must either both agree with the same noun phrase

or both take default features. Neither (6a), which

has infinitival agreement without LDA, nor (6b),

which has LDA but not infinitival agreement, is

acceptable according to that source.

(6) a. *Shahrukh
Shahrukh

ne
Erg

[tehnii kaat-nii]
branch.F

chaah-aa
cut-Inf.F want-Pfv.MSg

Shahrukh had wanted to cut the branch.

b. *Shahrukh
Shahrukh

ne
Erg

[tehnii
branch.F

kaat-naa]
cut-Inf.M

chaah-ii thii
want-Pfv.F be.Psts.FSg

Shahrukh had wanted to cut the branch.

However, this parasiticism may be dialect spe-

cific. Butt (1993) provides the following example

in which the infinitival verb agrees with its em-

bedded object but the matrix verb agrees with its

Nominative subject.

(7) Ram
Ram.M

[rotii
bread.F

khaa-nii]
eat.Inf.FSg

caah-taa
want-Impf.M.Sg

thaa
was

Ram wanted to eat the bread.
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Parasiticism motivates Bhatt to propose an ad-

ditional operation that allows a probe to create de-

pendencies between heads as part of the search

process. We do not formalize this extra mechanism

here, and therefore focus on Butt’s dialect, which

is consistent with the root and infinitival verbs be-

ing separate probes. Parasitic agreement should be

addressed by future elaborations of the model.

3.2 Light Verb Agreement

Light-verb constructions make up a majority of

verbal predications in the language (e.g., Ahmed

et al., 2012; Vaidya et al., 2019, 2016). In these

constructions, a semantically less meaningful light

verb (e.g. kar ‘do’, ho ‘be’) combines with a more

meaningful noun, verb, or adjective (example from

Ahmed et al., 2012).

(8) a. NAdiyah
Nadiya.F.Sg

hans
laugh

paR-I
fall.Perf.F.Sg

Nadya burst out laughing.

b. YAsIn
Yasin.M.Sg

nE
Erg

mEz
table.F.Sg

s3Af
clean

k-I
do.Perf.F.Sg

Yasin made the table clean.

Agreement morphology in these constructions

is always on the light verb. In both the V-V (8a)

and Adj-V (8b) constructions, agreement follows

from the same generalizations discussed earlier.

However, a somewhat different pattern is found

in N-V light verb constructions (examples from

Mohanan, 1994):

(9) a. Ilaa
Ila

ne
Erg

mohan
Mohan

kii
Gen

prasamsaa
praise.F

kii.
do.Perf.F

Ila praised Mohan.

b. Ilaa
Ila.F

ne
Erg

kissaa
incident.M

yaad
memory.F

kiyaa.
do.Perf.M

Ila remembered the incident.

c. Ilaa
Ila

ne
Erg

Mohan
Mohan

ko
Acc

yaad
memory.F

kiyaa
do.Perf.M

Ila remembered Mohan.

Unlike for Adj-V and V-V, members of one class of

nouns in N-V constructions are eligible for agree-

ment, as shown in (9a). When conjoined with a

light verb, these nouns select either an object with

oblique Case (e.g., Genitive in (9a)), or no object

at all (Mohanan, 1994). Members of another class

of nouns do not agree in N-V constructions, as in

(9b, 9c). These form a predicate that selects for a

direct Case (Nominative, Accusative, or Ergative)

object, and agreement patterns follow as expected.

LDA and light-verb constructions can occur to-

gether. For example, in (10) the embedded infinite

clause contains an N-V predicate. Both the matrix

and embedded verbs agree with the noun compo-

nent of the light verb (example from Bhatt, 2005).

(10) Akbar
Akbar

ne
Erg

[meri
my.F

madad
help.F

kar-nii]
do.Inf.F

chaahii
want.Pfv.F

thii
be.pst.FSg

Akbar had wanted to help me.

4 Model

The neural model that we propose takes as in-

put a syntactic tree, with certain nodes designated

as agreement probes, and outputs predicted phi-

feature values for each probe. Here we apply the

model to Hindi-Urdu dependency trees (Bhat et al.,

2017; Palmer et al., 2009) and synthetic trees based

on those (see section 5.2.2). The edges between

nodes are therefore directed and labeled by UD

relations Nivre et al. (2020, e.g., nsubj, obj, aux).

Future research could experiment with constituency

trees of the type that are more familiar in genera-

tive syntax, perhaps with minimal labeling of edges

(e.g., specifier vs. complement).

Below we describe our neural embedding of de-

pendency trees, the search process that distributes

attention from probes to goals (or defaults), the

transfer of predicted features to probes, as well

as the loss function and other model details. We

also describe two baseline transformer models, and

compare the performance of our model to those on

learning Hindi-Urdu verb agreement.

4.1 Tree embedding

The N nodes of a given syntactic tree are as-

sumed to be arbitrarily ordered (n0, n1, ...) and

represented as feature vectors with the minimal

cross-linguistically motivated content. Specifically,

separate one-hot vectors are used to embed gram-

matical category (e.g., noun, verb, auxiliary), each

phi-feature separately (e.g., person, gender, num-

ber), and Case (e.g., Nominative, Accusative, Erga-

tive). Zero vectors are used for unspecified features

(e.g., root verbs are not specified for Case). These
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vectors are stacked into a single embedding fi for

each node ni, and the embeddings are arranged as

rows in a matrix F following the arbitrary node

order. Each node also has a separate one-hot em-

bedding di of the dependency relation that it bears

with its (unique) parent, and these are likewise ar-

ranged as rows in a matrix D.

To facilitate our search algorithm, two minor

modifications are introduced for each tree. First,

we create a ‘self’ connection from each node to

itself that bears its own special dependency relation.

This gives the model the option to ‘stay’ at a node

during the search process, rather than being forced

to pick from one of its neighbors. Additionally,

we introduce a ‘default’ node to each tree that has

in-going connections from every other node, but

an out-going connection only to itself. This node

is entirely featureless in terms of phi-features, part-

of-speech, and Case during the search process, but

is associated with default phi-features during the

feature valuation step of the model (see below).

Because dependency relations are embedded as

properties of child nodes, including edge labels

would be redundant. Therefore, the edges of a tree

are represented with a binary adjacency matrix H,

where Hij = 1 indicates that node ni is the head

of node nj . The transposed adjacency matrix HT

relates dependents in rows to heads in columns.

4.2 Searching from probes to goals

Each designated probe in a tree searches for a goal

with which to agree by initially attending to itself

and then iteratively redistributing attention to other

nodes in the tree. The single-step redistribution

of attention is determined by a stochastic transi-

tion matrix conditioned on the topology of the tree

and learnable weight vectors via the softmax func-

tion. Multiple-step search simply iterates the same

transition matrix for a fixed topology and weights.

Within a language, probes seek goals that bear

particular features and dependency relations. We

formalize this with two weight vectors w (of the

same dimensionality as each fi) and v (of the

same dimensionality as di). The latter weights

the ‘downward’ direction of dependencies Ð from

heads to their dependents. To independently weight

the ‘upward’ direction Ð from dependents to their

heads Ð we use another vector u. The model has

two additional scalar weights, wself and wdefault,

which correspond to self and default node depen-

dencies as described above.

Each node assigns a logit score to its dependents

on the basis of their features and their relations.

These scores are represented in the N × N ma-

trix Sdown as defined below. Similarly, each node

assigns a logit score to its parent and these are col-

lected in the N × N matrix Sup. Finally, each

node also assigns a score to itself according to the

self dependency, represented in Sself . In our nota-

tion, ⊙ is the elementwise (Hadamard) product and

common broadcasting conventions are assumed.

Sdown = H ⊙ [ (F w)T
︸ ︷︷ ︸

1×N

+(D v)T
︸ ︷︷ ︸

1×N

]

Sup = HT ⊙ [ (F w)T
︸ ︷︷ ︸

1×N

+(D u)
︸ ︷︷ ︸

N×1

]

Sself = IN ⊙ [ (F w)T
︸ ︷︷ ︸

1×N

+ wself ]

S = Sdown + Sup + Sself

Âij =

{

Sij if Sij ̸= 0

−∞ if Sij = 0

Ai = softmax(Âi)

The ith row of the N × N matrix S contains

the logit scores that node ni assigns to every other

node nj with which it is related by dependency

(including self-dependency and the default node).

To convert these into probabilities, we mask out

zero entries of S and take the row-wise softmax to

derived the single-step transition matrix A.

Note that the zero-one encoding of adjacencies

in H and IN ensure that the transition probabili-

ties of A are only non-zero from nodes to their

immediate neighbors (including the default node).

Additionally, the default node has a transition prob-

ability of 1 to itself (hence 0 to all other nodes).

Let p be an N -dimensional binary vector that

indicates which nodes of the tree are probes (with a

final zero element for the default). The search pro-

cess begins with each probe node attending fully

to itself with a one-hot vector at its own position,

as stated in the definition of P(0). Search then

proceeds Ð attention in each row is iteratively re-

allocated Ð simply by multiplying the previous

Pt−1 with A.

P(0) = IN+1 ⊙ p

Pt = Pt−1 A

Observe that A is constant for a given tree and

weights, and can therefore be precomputed prior

5
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to search by all probes in the tree. Observe further

that rows of Pt for non-probe nodes are identically

zero; these could be ignored in sparse matrix im-

plementations.

The search process is repeated for a fixed num-

ber of steps tmax, allowing a probe to iteratively

explore the tree from its starting position. At the

end of search, we take the final attention scores of

a probe to be a distribution over the goal nodes that

a probe ‘returns.’ The entire search can thus be

viewed as a Markov process, with the nodes of a

tree being the states over which the transition ma-

trix operates (e.g., the default node is an absorbing

state).

Intuitively, our formalization results in a gradi-

ent breadth-first search. Note that our structurally-

informed transition matrix ensures that for any in-

dividual step, attention can only reallocated from a

node to itself or its immediate neighbors. Thus, at

step t, each probe’s attention can only be allocated

among nodes that are at most t steps away from

its probe node. We additionally observe that after

learning this process converges to an approxima-

tion of greedy search, in which attention for a given

probe is nearly one-hot at each step.

4.3 Feature Valuation

The features that are copied to the probe are the

weighted sum of phi-features from each node the

probe attends to. To compute this, we construct a

phi-feature matrix Eφ, whose ith row contains the

concatenation of ni’s one-hot phi-feature embed-

dings, or the concatenated phi-feature embeddings

for a language’s default phi-features (masculine

singular for Hindi-Urdu) if ni is the default node.

This results in a N ×Dφ matrix, where Dφ is the

dimensionality of our concatenated embeddings.

The predicted features for a probe are then the

result of multiplying P(tmax) by Eφ:

Ypred = P(tmax)Eφ

4.4 Objective

During training, the model’s predicted features are

compared with the correct phi-features on each

probe node by cross-entropy loss. Assuming per-

fect annotation of phi-features on probes and goals,

this can be done directly. However, in our natu-

ralistic treebank, many lexical items that are not

overtly inflected for phi-features are mislabeled as

having null phi-features (e.g. proper nouns and cer-

tain auxiliaries that do not inflect for gender). To

account for this, we take the argmax of the one-hot

feature predictions as the discrete ‘prediction’ for a

probe, and mask out the parts of the cross-entropy

loss where either this prediction or the true feature

value is null. We similarly use the argmax at test

time to determine the predicted phi-features that

each probe returns.

5 Evaluation

We trained our model on both naturalistic data from

the Hindi UD treebank and synthetic data from a

hand-designed dependency grammar. As noted

above, we assume the dialect from Butt (1993),

which does not require a probe to additionally cre-

ate dependencies during its search. Therefore, we

initialized a probe at each verb and auxiliary. A

modest value of tmax = 3 steps was found to be

sufficient for these data sets. To test our model’s

structural generalization ability, we also increased

this to tmax = 5 on a relative clause distractor task

(see section 5.2.2 below).

5.1 Transformer Baselines

We compared our model, referred to below as

Search, against two transformer baselines: a

Cloze transformer that predicts the phi-features of

masked-out probes given the entire sentence, and a

language model (LM) transformer that predicts the

phi-features of masked-out probes given the pre-

ceding tokens in a sentence. These two transformer

models are identical in architecture, featuring a one-

head, one-layer transformer encoder, followed by a

linear decoder that maps each token’s embedding

to a phi-feature prediction.2

Linearized (surface order) trees were used as

inputs to these models, with each token embedded

by stacking one-hot vectors for its part-of-speech,

Case, phi-features, and dependency relation from

its parent. We further tested ‘structural’ versions of

the models in which the token’s parent index is also

given as part of the stacked one-hot embedding,

but found that this additional information had a

negligible impact on model performance in most

settings.

2These transformers are much smaller than state-of-the-art
models. However, our preliminary tests with larger models
showed drastic decreases in performance, likely due to the
smaller size of our training data.
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5.2 Datasets

5.2.1 Hindi UD Treebank

To evaluate our model on naturalistic data, we

sourced trees from the Hindi Universal Dependen-

cies Treebank (HDTB) (Bhat et al., 2017; Palmer

et al., 2009), a manually annotated collection of

sentences from news articles, heritage and tourism

sites, and a small amount of conversational data.

The standard split of this treebank contains 13,304

training sentences, 1,659 validation sentences, and

1,286 test sentences.

5.2.2 Synthetic Data

For more controlled data that includes the agree-

ment phenomena of interest, we also wrote a proba-

bilistic grammar that generates basic syntactic trees

within the UD framework. This grammar allowed

us to evaluate models without the annotation in-

consistencies present in parts of HDTB, as well

as to precisely control the types and frequencies

of structures in the learning data. Specifically, we

created production rules that generate transitive,

intransitive, and ditransitive sentence frames in the

perfective, progressive, and habitual aspects. Ac-

ceptable Case marking patterns are defined accord-

ing to Hindi-Urdu’s split-ergativity (Keine, 2007;

Mohanan, 1994; Butt, 1995). Verbs can either be

simple predicates or light verb constructions, and

can also introduce an embedded infinitival clause.

To account for optionality, we introduce a flag on

the infinitival clauses in which LDA is desired. Em-

bedded infinitivals can also introduce an agreeing

light verb construction as in (10). The full grammar

can be found in the Appendix.

A Full Set of trees is generated by normaliz-

ing probability across each structure type. This

contains 1700 sentences total, of which 1000 are

used for training, 200 reserved for validation, and

500 are reserved for evaluation. We additionally

generated a Minimal Training Set of examples by

enumerating over all 98 structures possible from

our grammar and then randomly permuting the

number of auxiliaries and the phi-features on noun

goals. This resulted in a set of 98 dependency trees.

Finally, we created a Relative Clause Test Set by

randomly appending relative clauses to 25% of the

eligible goals in the original 500-sentence test set.

These sets were used in three tasks: a Synthetic

(Synth) task that is trained, validated, and tested

on the Full Set, a Minimal task that is trained on

the Minimal Training Set but validated and tested

on the Full Set, and a Relative Clause (ReCl) task

that is trained and validated on the Full Set but

tested on the Relative Clause Test Set.

5.3 Results

The average test accuracies over 10 runs of each

model are shown in Table 1. Each model was

trained for a minimum of 1000 steps and a maxi-

mum of 100,000 steps, saving the checkpoint with

the lowest validation loss for testing.

We find that the models performed similarly

on the naturalistic treebank (HDTB). Our Search

model slightly outperforms the transformer models

without structural information, but not the Cloze

model with access to parent information. Each

model also performed similarly on the synthetic

task, with both the Search model and the Cloze

models reaching perfect or near-perfect test accu-

racy. However, compared to our Search model,

the transformer models see a larger drop-off in

synthetic accuracy in the low-data setting of the

minimal task. This suggests that our Search model

is particularly well-suited to low-resource data.

Most strikingly, while our Search model main-

tains near-perfect test accuracy on the relative

clause generalization task, all of the baseline trans-

former models show a significant drop in perfor-

mance compared to other tasks. This demonstrates

an ability of our model to generalize agreement pat-

terns to held-out examples and structures that the

transformer models do not share. We hypothesize

that the poor performance of the latter is due to

an overreliance on heuristicsÐ they have difficulty

avoiding agreement with the subject and object dis-

tractors introduced by the relative clauses because

they lack the structural biases of Search.

We note that the transformer models performed

similarly with or without access to structural infor-

mation (parent indexes), with the possible excep-

tion of the Cloze model on the naturalistic treebank.

This suggests that these models do not consistently

assign high weights to structural relations relative

to other cues such as dependency relation or part

of speech.

5.4 Learned Search Algorithm

To further examine the search algorithm that our

model induces, we dissect a subset of a particular

model’s learned weights (see Table 2). We can see

that the model has learned a coherent search algo-

rithm for Hindi-Urdu agreement. Weights on all

phi-features are similar, suggesting that the model
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Gender Accuracies Number Accuracies

Model Masculine Feminine Total Singular Plural Total Overall

D
at

as
et

H
D

T
B

Search 0.904± 0.026 0.904 ± 0.012 0.904± 0.019 0.990 ± 0.003 0.796± 0.032 0.96± 0.005 0.924± 0.011
Cloze 0.965± 0.004 0.808± 0.011 0.924± 0.003 0.978± 0.003 0.846 ± 0.017 0.958± 0.001 0.909± 0.002
Cloze* 0.970 ± 0.006 0.867± 0.019 0.942 ± 0.004 0.987± 0.003 0.826± 0.013 0.963 ± 0.002 0.942 ± 0.003

LM 0.940± 0.009 0.782± 0.033 0.898± 0.006 0.975± 0.003 0.778± 0.02 0.945± 0.002 0.881± 0.005
LM* 0.947± 0.012 0.778± 0.028 0.902± 0.004 0.977± 0.004 0.785± 0.020 0.947± 0.002 0.888± 0.003

S
y

n
th

Search 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0

Cloze 1.0 ± 0 0.999± 0.0008 0.999± 0.0003 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.999± 0.0003
Cloze* 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0

LM 0.991± 0.005 0.992± 0.001 0.991± 0.003 0.984± 0.009 0.995± 0.001 0.989± 0.005 0.983± 0.007
LM* 0.992± 0.005 0.992± 0.000 0.992± 0.003 0.989± 0.007 0.989± 0.008 0.989± 0.006 0.982± 0.008

M
in

im
al

Search 0.995 ± 0.01 0.995 ± 0.014 0.995 ± 0.011 0.99 ± 0.027 0.996 ± 0.014 0.993 ± 0.02 0.989 ± 0.029

Cloze 0.990± 0.004 0.969± 0.015 0.982± 0.007 0.979± 0.002 0.995± 0.009 0.986± 0.004 0.972± 0.007
Cloze* 0.989± 0.004 0.951± 0.017 0.973± 0.005 0.980± 0.002 0.977± 0.018 0.978± 0.007 0.960± 0.007
LM 0.987± 0.003 0.906± 0.073 0.954± 0.031 0.943± 0.094 0.899± 0.165 0.924± 0.125 0.896± 0.131
LM* 0.982± 0.026 0.846± 0.109 0.927± 0.059 0.876± 0.198 0.853± 0.212 0.866± 0.156 0.812± 0.180

R
eC

l

Search 0.996 ± 0.008 1.0 ± 0 0.998 ± 0.005 0.995 ± 0.010 1.0 ± 0 0.997 ± 0.006 0.997 ± 0.005

Cloze 0.828± 0.013 0.904± 0.013 0.861± 0.004 0.833± 0.013 0.915± 0.016 0.870± 0.001 0.797± 0.004
Cloze* 0.829± 0.026 0.890± 0.025 0.855± 0.004 0.852± 0.008 0.876± 0.014 0.863± 0.004 0.787± 0.011
LM 0.846± 0.016 0.894± 0.009 0.867± 0.006 0.820± 0.041 0.928± 0.018 0.869± 0.015 0.802± 0.02
LM* 0.828± 0.035 0.866± 0.022 0.844± 0.013 0.833± 0.015 0.878± 0.023 0.853± 0.008 0.774± 0.02

Table 1: Test accuracies for each model broken down by phi-feature type and value, where * indicates that a

transformer model had access to structural information about node parents.

does not prioritize any particular phi-feature com-

bination (e.g., masculine singular) over others. Tak-

ing the weights on Case and dependency relation

together, we see that the model strongly prefers

Nominative subjects, and prefers Nominative ob-

jects over Ergative subjects. Moreover, the default

weight by itself is preferred over an Ergative subject

and an Accusative object. To additionally handle

LDA and light verb agreement, we see a very high

weight on embedded infinitival clauses, likely to

overcome the otherwise low priority given to verbs.

On the other hand, low priority is given to light

verb noun compound dependents, as Nominative

nouns are already given high priority

In practice, the learned weights of Search en-

courage the softmax that the model takes at each

time step to be close to one-hot. Thus, by examin-

ing the softmax scores at each time step, we can

recover the ‘path’ that a probe takes to reach its

goal. We sketch one such path in Figure 1. In this

example of long-distance agreement, both probes

must take multiple steps to reach their goal. The

verb probe must first take the compound transition

to its embedded infinitival clause, from where it

can then transition to the embedded object. The

tense probe requires an additional iteration, first

taking the auxiliary arc to the root verb, then the

compound arc to the infinitival verb, and then fi-

nally the object arc to the embedded object. The

model has learned a coherent and efficient search

path from each probe to the correct goal.

Verb Probe Scores

Node Step 0 Step 1 Step 2 Step 3

root_verb 1 0.004 0.000 0.001

tense 0 0.000 0.0004 0.005

inf_verb-ag 0 0.879 0.065 0.005

embedded_object 0 0.000 0.782 0.837

subject-erg 0 0.058 0.020 0.007

default 0 0.041 0.106 0.136

Tense Probe Scores

Node Step 0 Step 1 Step 2 Step 3

root_verb 0 0.917 0.006 0.001

tense 1 0.002 0.000 0.000

inf_verb-ag 0 0.000 0.807 0.061

embedded_object 0 0.000 0.001 0.72

subject-erg 0 0.000 0.054 0.019

default 0 0.057 0.110 0.174

Figure 1: Attention patterns at each step for the verb and

tense probe for a sentence with long distance agreement.
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Case Weight Phi-Features Weight Part of Speech Weight Dependencies Weight

Nominative 7.96 Masculine 2.79 Noun 3.33 Subject dependent 4.36

Accusative -4.55 Feminine 3.04 Verb 0.003 Object dependent -4.79

Ergative -6.58 Singular 2.77 Auxiliary -1.74 Infinitival Clause dependent 6.40

Plural 2.85 Light Verb Noun Compound dependent 0.61

Auxiliary head 10.11

Default node 3.49

Table 2: A subset of learned weights for a model trained on synthetic data. Taken together, we see that the model

prefers Nominative (unmarked) subjects over all objects, Nominative (unmarked) objects over Ergative subjects, the

default dummy node over Ergative subjects and Accusative objects. We also see a high preference for embedded

infinitival clauses (6.40) to overcome the otherwise low preference for verbs (0.003), and a high preference for the

heads of auxiliaries (10.11) to allow auxiliary probes to travel to the matrix verb.

6 Conclusion and Future Directions

Artificial neural networks are often seen as black-

box models with little or no inductive bias. We

present a counterpoint to this view, creating an

efficient, minimal, and interpretable neural network

model that possesses a strong inductive bias for

agreement as structurally-informed search.

Our goal in building this model is not neces-

sarily to adjudicate between neural networks and

traditional symbolic models as opposing models

of language or cognition. Rather, we aim to show

that insights from symbolic modeling can provide

useful inductive biases for neural network mod-

els. Indeed, our structure-dependent model is ca-

pable of correctly learning a search algorithm for

the agreement pattern in Hindi-Urdu, and matches

or exceeds performance compared to much larger

models without such biases. Our model is also ca-

pable of achieving near-perfect performance on a

structural generalization task, something that more

generic models could not match.

While we tested our model on the complex agree-

ment system of Hindi-Urdu, our model is theoret-

ically capable of accounting for a range of agree-

ment phenomena cross-linguistically. For example,

an agreement system in which a verb obligatorily

agrees with the subject of a clause can be easily ac-

counted for by setting a high weight on the subject

dependency (nsubj). Our model can also capture

the various sensitivities that agreement has with

Case in languages other than Hindi-Urdu. Nepali,

for example, allows agreement with Ergative sub-

jects as well as Nominative subjects, while Gujarati

allows agreement with Accusative objects but not

Ergative subjects (Bhatt, 2005). Our model can

capture the Nepali case with an equal setting of our

Case weights for Nominative and Ergative, and the

Gujarati case with a positive weight on Accusative

and a negative weighting of Ergative.

However, there do exist some agreement phe-

nomenon that our model cannot yet account for.

Our model is specified to return a simple weighted

combination of phi-features among existing nodes

in a tree, making it impossible to account for agree-

ment with coordinated noun phrases that have phi-

features computed by ‘resolution rules’ applied to

their constituents (Bhatia, 2011). Additionally, the

weighted combination that our model returns is

often exactly the phi-features from a single node,

as the model typically converges to near one-hot

attention patterns after training. Thus, it seems un-

likely that the model can account for agreement

phenomena that depend on multiple goals (Shen,

2019) Ð though distribution of attention over mul-

tiple nodes does remain a logical possibility and

may be encouraged by some training patterns.

Finally, the model as deployed here does not

provide a perfect match to the theories of agree-

ment typically proposed by syntacticians. While

most theoretical work on agreement is oriented

around constituency trees, our model was trained

and tested on dependency trees. However, the

model can be minimally adapted to operate on any

tree structure, including constituency trees, giving

us the potential to address questions regarding di-

rectionality and feature weighting in other settings.
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A Synthetic grammar

Our synthetic grammar, designed to capture the agreement phenomena of interest in the paper, is shown
below. Each row corresponds to an expansion rule of the grammar. The leftmost number of each row
corresponds to the weight of that expansion rule, while the first entry immediately after the number
corresponds to the parent node that the expansion rule targets. The remaining entries are nodes that are
added to the tree as children of the parent node. Entries with parentheses are optional and generated with
50% probability. For example, the rule 1.35 root_verb subject-erg object-nom (tense) denotes
a rule with weight 1.35 that expands a root_verb node with an Ergative subject child, an Nominative
object child, and an optional tense child. In practice, each node is fully specified for features, dependency
relation, and part of speech, but this has been truncated here for readability.

# ROOT

2 R root_verb

1 R root_verb_prog

# HABITUAL AND PERFECTIVE

# Simple Transitive

1.35 root_verb subject-erg object-nom (tense)

1.35 root_verb subject-nom object-nom (tense)

1.35 root_verb subject-nom object-acc (tense)

1.35 root_verb subject-erg object-acc (tense)

# Simple Intransitive

2.7 root_verb subject-erg (tense)

2.7 root_verb subject-nom (tense)

# Simple Ditransitive

2.7 root_verb subject-erg object-dat object-nom (tense)

2.7 root_verb subject-nom object-dat object-nom (tense)

# Light Verb Constructions

0.385 root_verb subject-nom object-nom host_adj (tense)

0.385 root_verb subject-nom object-acc host_adj (tense)

0.385 root_verb subject-nom object-nom host_verb (tense)

0.385 root_verb subject-nom object-acc host_verb (tense)

0.385 root_verb subject-nom object-nom host_noun (tense)

0.385 root_verb subject-nom object-acc host_noun (tense)

0.385 root_verb subject-nom host_noun_agreeing (tense)

0.385 root_verb subject-erg object-nom host_adj (tense)

0.385 root_verb subject-erg object-nom host_verb (tense)

0.385 root_verb subject-erg object-nom host_noun (tense)

0.385 root_verb subject-erg host_noun_agreeing (tense)

0.385 root_verb subject-erg object-acc host_adj (tense)

0.385 root_verb subject-erg object-acc host_verb (tense)

0.385 root_verb subject-erg object-acc host_noun (tense)

# Infinitivals

1.08 root_verb subject-erg inf_verb-agree (tense)

1.08 root_verb subject-nom inf_verb-nonagree (tense)

1.08 root_verb subject-nom inf_verb-nonagree-acc (tense)

1.08 root_verb subject-erg inf_verb-nonagree (tense)

1.08 root_verb subject-erg inf_verb-nonagree-acc (tense)

# PROGRESSIVE

# Simple Transitive

1.2 root_verb_prog subject-nom object-nom aspect (tense)

1.2 root_verb_prog subject-nom object-acc aspect (tense)

# Simple Intransitive

2.4 root_verb_prog subject-nom aspect (tense)

# Simple Ditransitive

2.4 root_verb_prog subject-nom object-dat object-nom aspect (tense)

# Light Verb Constructions

0.34 root_verb_prog subject-nom object-nom host_adj aspect (tense)

0.34 root_verb_prog subject-nom object-acc host_adj aspect (tense)

0.34 root_verb_prog subject-nom object-nom host_verb aspect (tense)

0.34 root_verb_prog subject-nom object-acc host_verb aspect (tense)

0.34 root_verb_prog subject-nom object-nom host_noun aspect (tense)

0.34 root_verb_prog subject-nom object-acc host_noun aspect (tense)

0.34 root_verb_prog subject-nom host_noun-agreeing aspect (tense)

# Infinitivals = 1

2.4 root_verb_prog subject-nom inf_verb-nonagree aspect (tense)

# EXPANSIONS

# Light Verb Construction Expansions
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1 host_agreeing object-gen

1 host_agreeing object-loc

1 host_agreeing object-ins

1 host_agreeing

# Agreeing Infinitival Expansions

1 inf_verb-agreeing object-nom

1 inf_verb-agreeing host_noun-agreeing

# Non-Agreeing Infinitival Clause Expansions

1 inf_verb-non object-nom

1 inf_verb-non object-acc
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