
Molecular Ecology, 2024; 0:e17625
https://doi.org/10.1111/mec.17625

1 of 11

Molecular Ecology

FROM THE COVER

Pleistocene Glaciation Drove Shared Population 
Coexpansion in Eastern North American Snakes
Sean Harrington1,2  |  Isaac Overcast3  |  Edward A. Myers3  |  Frank T. Burbrink2

1INBRE Data Science Core, University of Wyoming, Laramie, Wyoming, USA | 2Department of Herpetology, American Museum of Natural History, New 
York, New York, USA | 3Department of Herpetology, California Academy of Sciences, San Francisco, California, USA

Correspondence: Sean Harrington (seanharrington256@gmail.com)

Received: 29 May 2024 | Revised: 8 October 2024 | Accepted: 14 November 2024

Handling Editor: Andrew DeWoody 

Funding: This work was supported by National Institute of General Medical Sciences, 2P20GM103432, Division of Environmental Biology, 2323125, 
Dimensions USBIOTA 1831241. American Museum of Natural History, Theodore Roosevelt Postdoctoral Fellowship.

Keywords: generalised dissimilarity modelling | machine learning | population genetics | range expansion

ABSTRACT
Glacial cycles during the Pleistocene had profound impacts on local environments and climatic conditions. In North America, 
some regions that currently support diverse biomes were entirely covered by ice sheets, while other regions were environmentally 
unsuitable for the organisms that live there now. Organisms that occupy these regions in the present day must have expanded 
or dispersed into these regions since the last glacial maximum, leading to the possibility that species with similar geographic 
distributions may show temporally concordant population size changes associated with these warming trends. We examined 
17 lineages from 9 eastern North American snake species and species complexes to test for a signal of temporally concordant 
coexpansion using a machine learning approach. We found that the majority of lineages show population size increases towards 
the present, with evidence for coexpansion in five out of fourteen lineages, while expansion in others was idiosyncratic. We also 
examined relationships between genetic distance and current environmental predictors and showed that genomic responses 
to environmental predictors are not consistent among species. We, therefore, conclude that Pleistocene warming resulted in 
population size increases in most eastern North American snake species, but variation in environmental preferences and other 
species- specific traits results in variance in the exact timing of expansion.

1   |   Introduction

Environmental and geological changes over space and time are 
major drivers of biological diversity (Bagley and Johnson 2014; 
Bidegaray- Batista, Ferrández, and Arnedo  2013; Harrington 
et  al.  2018; Ivory et  al.  2016; Pujolar et  al.  2022; Weir and 
Schluter 2004). Sharp changes between ecoregions and physical 
barriers often delineate the boundaries between species and pop-
ulations (Savage 1960). Climatic change can reduce the amount 

of suitable habitat for biological communities, causing popula-
tion contraction and restriction to refugial habitat. In contrast, 
climatic changes can also result in species' ranges expanding 
to track favourable habitat, with concomitant population size 
increases (Devitt et  al.  2013; Hewitt  1996; Nason, Hamrick, 
and Fleming  2002; Puckett et  al.  2015). Different species may 
have unique biotic and abiotic niche tolerances that limit dis-
persal and population growth, and thus climatic changes often 
have varying effects on the population size and structure 
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across communities (Moritz et al. 2008; Myers, Hickerson, and 
Burbrink 2017). However, if climatic or geological changes are 
drastic enough, ecologically similar species may share similar 
historical demographic changes (Burbrink et  al.  2016; Lessa, 
Cook, and Patton 2003).

Species with similar life histories are most likely to have con-
gruent signals of population expansion. Previous studies on de-
mographic histories of snakes typically showed strong historical 
demographic responses to climate change during the Pleistocene 
(Burbrink et  al.  2016; Fontanella et  al.  2008; Guiher and 
Burbrink  2008; Ruane, Torres- Carvajal, and Burbrink  2015). 
This is expected given that all snakes share many broad mor-
phological and physiological traits and therefore may show sim-
ilar responses to changing climatic conditions. Specifically in 
the forested Eastern Nearctic (ENA), a large number of snake 
species occur near or in formerly glaciated areas. The ENA also 
presents several present- day sharp environmental changes, in-
cluding precipitation and temperature gradients (Omernik 1987; 
Omernik and Griffith 2014), which may shape genetic structure 
in snakes and other organisms.

The glacial cycles of North America are a clear example of the 
types of broad- scale environmental changes that are expected to 
have shared effects on multiple taxa (Davis 1983; Hewitt 1996). 
Taxa with limited abilities to survive cold temperatures were 
extirpated from northern latitudes and, most dramatically, 
nearly all organisms were extirpated from regions covered by 
kilometres- thick glaciers, resulting in dramatic population de-
clines in many species (Hewitt  2000). During the last glacial 
maximum, glaciers covered large portions of what is now the 
northeast and midwest of the USA, where the terminal moraine 
extended to Harbour Hill, Long Island, New York (39.7°) in the 
east and Shelbyville, Illinois (39.4°) in the Midwest (Kleman 
et al. 2010; Marshall, James, and Clarke 2002). Species presently 
occupying these regions must have expanded into these habitats 
after glaciers receded as these areas became more hospitable. 
Although it is expected that species will rapidly colonise habitat 
as it becomes suitable, unique life histories and dispersal abili-
ties may lead to differing rates at which organisms expand their 
ranges (Burbrink et al. 2016).

Herein, we examine how climatic changes have influenced pop-
ulation sizes across nine species or species complexes of eastern 
North American snakes: Agkistrodon contortrix, Diadophis punc-
tatus, Farancia abacura, Farancia erytrogramma, Lampropeltis 
getula, Lampropeltis triangulum, Masticophis flagellum, 
Pantherophis guttatus, and Storeria dekayi. We hypothesised that 
glacial cycles have had similar effects across these snake species 
and therefore we should see synchronous population expansion 
during the late Pleistocene as climate warmed and glaciers re-
ceded. Despite the broad- level similarities among snakes as ec-
tothermic predators sharing a broadly similar body plan, there 
are differences in physiology, diet and habitat preferences among 
species; e.g., A. contortrix are heavy- bodied sit- and- wait preda-
tors that reach nearly a meter long and consume primarily mam-
mals, whereas Diadophis punctatus are slender, semi- fossorial 
snakes typically less than 40 cm that feed mostly on invertebrates 
and ectothermic vertebrates (Conant and Collins  1998). We, 
therefore, expect that climatic variables will not have the same 
effects on genetic diversity across all species. To understand if 

changes in environment throughout the Pleistocene affected 
snake demography in similar ways, we examined the signal and 
timing of population coexpansion in nine snake species or spe-
cies complexes. We then used a hierarchical simulation- based 
machine learning approach to simultaneously estimate the prob-
ability that species have coexpanded and the timing of expansion 
for expanding populations of snakes.

2   |   Materials and Methods

2.1   |   Data Generation

We obtained tissue samples from museum and personal col-
lections for the following 7 species and species complexes: 
Farancia abacura, Farancia erytrogramma, Agkistrodon contor-
trix, Diadophis punctatus, Masticophis flagellum, Pantherophis 
guttatus and Storeria dekayi (Appendix 1). We focused on sam-
ples from the ENA only, and thus samples do not cover the full 
geographic ranges of many species. We combined data that we 
generated with published data for the Lampropeltis triangulum 
(Burbrink et  al.  2022; using assembled data described below) 
and Lampropeltis getula species complexes (Harrington and 
Burbrink  2023; raw reads available on NCBI Sequence Read 
Archive under BioProject ID PRJNA889851). Species' ranges 
and sampling localities are shown in Figure 1.

We extracted DNA from all tissues using the Qiagen DNEasy 
kit following manufacturer protocol. We sent extracted DNA to 
the University of Wisconsin- Madison Biotechnology Center for 
ddRAD library preparation using enzymes PstI and Bfal and 
subsequent sequencing on an Illumina NovaSeq6000 to gener-
ate paired- end 150 bp reads. For the two Farancia species, which 
were prepped and assembled separately, library prep differed in 
that DNA was digested using PstI and MspI and libraries were 
sequenced on an Illumina HiSeq2500 sequencer. We generated 
2.8 million reads per sample on average. We used ipyrad v0.9.63 
to assemble the data (v0.7.28 for Farancia samples), using de-
fault settings for most parameters (see params files on Github 
at https:// github. com/ seanh arrin gton2 56/ Coexp_ scripts). After 
generating preliminary assemblies, individuals with high 
amounts of missing data were removed before generating final 
assemblies that we used for all downstream analyses. We gen-
erated datasets that were 25% missing data or less by specify-
ing the number of individuals required per locus separately for 
each assembly, depending on the number of total individuals. 
For the L. triangulum complex, we used the assembly generated 
by (Burbrink et al. 2022) and available on Dryad (https://data-
dryad.org/stash/dataset/doi:10.5061/dryad.g79cnp5qm) as file 
Data_D3_VCF_file_generated_for__Lampropeltis_triangu-
lum_L._gentilis_and_L._elapsoides_from_ipyrad_filtered.vcf 
as well as an unfiltered version of this file, available as file 
milks_denovo- 92.vcf on Dryad (https:// doi. org/ 10. 5061/ dryad. 
9cnp5 hqv5). This file is the raw output from ipyrad before the 
custom thinning and filtering applied by Burbrink et al. (2022).

2.2   |   Population Structure

After assembling the data, we used the sparse nonnegative ma-
trix factorization method (sNMF; Frichot et al. 2014) in the R 

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17625 by A
m

erican M
useum

 O
f N

atural H
istory, W

iley O
nline Library on [17/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/seanharrington256/Coexp_scripts
https://doi.org/10.5061/dryad.g79cnp5qm
https://doi.org/10.5061/dryad.g79cnp5qm
https://doi.org/10.5061/dryad.9cnp5hqv5
https://doi.org/10.5061/dryad.9cnp5hqv5


3 of 11

(v. 4.2.2; R Core Team 2023) package LEA v3.8.0 (Frichot and 
François  2015) to identify discrete population clusters within 
each species. This is an essential step because the methods we 
used to estimate population sizes changes through time as-
sume that individuals are all drawn from a single, panmictic 
population. Therefore, including multiple discrete populations 
in a single analysis can strongly bias estimates. We identified 
the optimal value of K, the number of discrete populations, 
by running sNMF for values of K from 1–10 and then identi-
fying which K value yielded the lowest cross- entropy score or 
the value of K that exhibited the sharpest drop followed by a 
plateau or increase in cross- entropy at higher values. For the 
L. triangulum complex, we used the population or species des-
ignations from the study that generated these data (Burbrink 

et  al.  2022) available as file “Data_D6_DAPC_TESS_assign-
ments_4_taxa.txt” on Dryad (https://datadryad.org/stash/data-
set/doi:10.5061/dryad.g79cnp5qm).

2.3   |   Environmental Correlates of Genetic 
Structure

Within each population, we then used generalised dissimilarity 
modelling (GDM) in the gdm v1.5.0–9.1 R package (Fitzpatrick 
et al. 2021) to identify significant geographic and environmental 
predictors of genetic distance within each population, therefore 
testing for both isolation- by- distance and isolation- by- environment 
simultaneously. We downloaded the Bioclim dataset (Hijmans 

FIGURE 1    |    Maps for each species/species complex showing the range in grey and samples as points. Points are coloured according to their esti-
mated ancestry in clusters as determined by sNMF. Maps use the Albers equal area projection.
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et al. 2005) and elevation data from the Worldclim database (Fick 
and Hijmans 2017) and combined these with the Envirem dataset 
(Title and Bemmels 2018) for our full set of environmental pre-
dictors. We removed highly correlated variables with r > 0.8, leav-
ing us with 13 climatic and environmental variables (Bio1, mean 
annual temperature; Bio2, mean diurnal temperature range; Bio4, 
temperature seasonality; Bio5, maximum temp of the warmest 
month; Bio8, mean temperature of the wettest quarter; Bio9, mean 
temperature of the driest quarter; Bio12 annual precipitation; 
Bio15, precipitation seasonality; Bio18, precipitation of the warmest 
quarter; SAGA- GIS topographic wetness index; terrain roughness 
index; Thorn's aridity index; PET seasonality; elevation). For each 
species/species complex, we calculated pairwise distances among 
our samples for each variable and then ran a GDM including all 
environmental distances plus geographic distance as predictors of 
genetic distance (calculated across all SNPs). We visualised the re-
lationship between geographic distance and genetic distance (i.e., 
isolation- by- distance; IBD) in each species/species complex using 
functions in the adegenet R package (Jombart 2008; Jombart and 
Ahmed 2011). We additionally visualised IBD using kernel density 
plots for subpopulations of D. punctatus to help determine how 
many populations to use for coexpansion analysis (see results).

2.4   |   Single- Population and Assemblage- Level 
Demographic Inference

For analyses of population size change and coexpansion, we 
split each species/complex into populations as identified based 
on results from sNMF analyses and IBD plots. For each pop-
ulation, we generated vcf files using custom R scripts (avail-
able on Github https:// github. com/ seanh arrin gton2 56/ Coexp_ 
scripts) and used easySFS (https:// github. com/ isaac overc ast/ 
easySFS) to generate site frequency spectra (SFS) as input for 
single- population (Stairway Plot 2) and assemblage- level (PTA) 
demographic analysis. For both types of analyses, we assumed a 
mutation rate of 6.6x10−9 mutations/site/generation, based on a 
mutation rate of 2.2x10−9 mutations/site/year (Gottscho, Marks, 
and Jennings 2014; Kumar and Subramanian 2002) and assum-
ing an average generation time of 3 years for all taxa.

To investigate historical demographic trajectories both within 
and among these co- distributed snake taxa, we undertook a 
two- stage inference approach. We first inferred population 
size change histories for each population independently using 
Stairway Plot 2 v2.1.1 (Liu and Fu  2020). For Stairway Plot 2 
analyses, the numbers of haploid samples and numbers of 
SNPs retained in each population SFS after down projection 
in easySFS are shown in Table  S1. The power of coexpansion 
analysis is the highest when populations that are contracting or 
have been at a stable population size throughout their history 
are excluded because the timing of an expansion event cannot be 
shared between a species that is expanding and one that is not, 
by definition. We, therefore, used Stairway Plot 2 results to bin 
populations as either expanding or not expanding. Populations 
determined to be expanding were then included in analysis of 
coexpansion, with the exception of Lampropeltis gentilis, the 
western member of the L. triangulum species complex. We ex-
cluded L. gentilis because it is distributed primarily in central 
and western North America, and we retain a focus on eastern 
taxa that are likely to have encountered similar climatic changes 

in the recent geological past. We implemented a hierarchical 
simulation- based machine learning approach (Phylogeographic 
Temporal Analysis; PTA; https:// github. com/ isaac overc ast/ 
PTA) to infer the temporal concordance of co- expansion and the 
timing of any shared co- expansion event.

PTA is a simulation- based comparative phylogeographic infer-
ence method (similar in spirit to previous methods, e.g. Chan, 
Schanzenbach, and Hickerson 2014; Xue and Hickerson 2017), 
which uses information from the SFS aggregated across all co- 
distributed populations (following Xue and Hickerson 2015) to 
estimate the proportion of co- expanding taxa (ζ) and the timing 
of co- expansion (τs). The required input data for PTA is one SFS 
per population (in dadi format; Gutenkunst et al. 2009), which 
is converted internally into a multiSFS (mSFS). A special con-
sideration is that the dimension of each SFS must be identical 
to meet a requirement of the model to allow for exchangeabil-
ity among SFS bins. We, therefore, used easySFS to project all 
populations down to 8 haploid samples, matching the sample 
size of the population with the smallest number of individuals. 
To increase computational tractability, we sorted the values of 
the mSFS bins in order of decreasing magnitude, a standard 
efficiency adopted by similar methods (Overcast, Bagley, and 
Hickerson 2017; Xue and Hickerson 2015).

PTA inference proceeds in three phases: 1) generating simula-
tions (using msprime; Kelleher, Etheridge, and McVean 2016), 2) 
training and validating a machine learning (ML) model (scikit- 
learn; Pedregosa et  al.  2011) and 3) parameter estimation and 
model adequacy checks using the empirical data. We generated 
300,000 simulations while sampling from uniform priors on ζ 
(proportion of coexpanding taxa; 0–1), τs (timing of coexpan-
sion; 1x104- 1x106 years), Ne (contemporary effective population 
size; 2x105- 5x106) and ε (expansion magnitude; 0.01–0.1). For the 
purpose of the simulation ζ is transformed into ζe (the effective 
number of co- expanding populations, which takes on integer 
values). Other model parameters were fixed to values which 
most closely represent the empirical data, including number 
of populations (n = 14), length of sequenced reads (150 bp) and 
mutation rate (6.6x10−9). Next we implemented a random forest 
model (Breiman 2001), using 75% of simulations as training data 
and 25% as testing data. We also adopted a cross- validation ap-
proach to iteratively split simulations into multiple, independent 
train/test sets, to better evaluate model performance. We used 
random forest regression to evaluate the performance in esti-
mating τs, Ne and ε, using R2 as the performance criterion. We 
also used random forest classification to evaluate performance 
in estimating ζe, using average precision and recall as perfor-
mance criteria. Finally, we used the trained ML model and the 
empirical mSFS to classify ζe and estimate model parameters for 
the empirical assemblage.

3   |   Results

3.1   |   Population Structure

Cross- entropy scores from sNMF support single populations 
within our samples of A. contortrix, F. erytrogramma, L. get-
ula, S. dekayi and M. flagellum (Figure S1). Within F. abacura 
and P. guttatus, we find strong evidence for two populations 
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each (Figure 1, Figure S1). Results for D. punctatus were sim-
ilar, with a slightly lower cross- entropy score for K = 2 than 
K = 1. Examination of admixture plots for D. punctatus at 
K = 2 and K = 3 (Figure 1, Figure S1) shows that clusters are 
geographically cohesive. The kernel density plot of genetic dis-
tance versus geographic distance for all samples of D. puncta-
tus showed disjunct clouds, with jumps in genetic distances 
at the same geographic distances, suggesting the presence of 
some discrete structure (Figure  S2, S3). Because population 
structure is known to bias estimates of population sizes, we 
opted to split D. punctatus into three populations for analyses 
of population size change through time in Stairway Plot 2 and 
PTA. Similarly, we split our L. getula samples into three popu-
lations, despite evidence for a single population in our samples 
from our sNMF analyses here and a previous study (Harrington 
and Burbrink  2023). We did this because of the particularly 
steep relationship between genetic and geographic distances 
seen in the kernel density plot (Figure S2), and because these 
samples form geographically cohesive groupings, which 
closely correspond to divergent mitochondrial DNA clades 
(Pyron and Burbrink 2009). We additionally split A. contortrix 
into two populations for the same reason, as all samples com-
bined show strong isolation- by- distance, and at K = 2, samples 
form geographically cohesive eastern and western clusters 
(Figures S1, S2) and also following previously identified lin-
eage structure (Burbrink and Guiher 2015). After splitting A. 
contortrix and D. punctatus, we no longer see disjunctions in 
kernel density plots of isolation- by- distance (Figure  S3). We 
additionally support splitting D. punctatus into three clusters 
and A. contortrix into two clusters on the basis that prelimi-
nary Stairway Plot 2 analyses using all samples for each data-
set showed strong downward spikes in population sizes near 
the oldest time points (Figure S4). This pattern largely disap-
pears when samples are split into different clusters, suggest-
ing that this is an artefact of population substructure (Heller, 
Chikhi, and Siegismund  2013). Therefore, the splitting of L. 
getula and D. punctatus into three populations each is an at-
tempt to more closely fit the assumptions of Stairway Plot 2 

and PTA that populations are not substructured and approx-
imate panmixia. These population designations resulted in a 
total of 17 populations that were treated as separate lineages 
for Stairway Plot 2 analyses.

3.2   |   Environmental Correlates of Genetic 
Structure

Generalised dissimilarity models were significant (p < 0.01) for 
all species/species complexes, indicating that some combina-
tion of geographic and environmental distances are related to 
genetic distance in each case. Geographic distance stands out as 
the most important predictor of genetic distance for most spe-
cies/complexes, consistent with kernel density plots of isolation- 
by- distance (Figure 2). Several precipitation variables also show 
strong importance in multiple models. When considering only 
variables that are individually significant in predicting genetic 
distance (Figure  S5), we find that variables related to precipi-
tation, topographic wetness and temperature are significant in 
some taxa, with none shared across two or more taxa. All nine 
taxa include multiple environmental variables in the best GDM 
model in addition to geographic distance.

3.3   |   Single- Population and Assemblage- Level 
Demographic Inference

Stairway Plot 2 analyses show population size increases through 
time in all populations except the western population of F. aba-
cura, F. erytrogramma and the western cluster of the P. gutta-
tus complex corresponding to Pantherophis emoryi (Figure  3; 
see Figure S4 for confidence intervals for each population). All 
three of these clusters/species were estimated to have experi-
enced recent population declines, rather than population size 
increases. Therefore, these three species were removed for the 
purpose of the downstream comparative phylogeographic PTA 
co- expansion analysis. We note that for some populations, such 

FIGURE 2    |    Heatmap showing the variable importance of each predictor in generalised dissimilarity models for each species or complex. Absent 
cells (grey background) represent predictors that were not identified as part of the model for a given species.
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as northern D. punctatus, we do not have complete sample cov-
erage across the northern part of the range, which may influence 
estimates. Inclusion of samples from poorly sampled northern 
parts of population ranges would likely increase the signal for 
recent expansion.

For the PTA co- expansion analysis, in evaluating the perfor-
mance of the random forest classification scheme for ζe, we 
found the ML model produced adequate precision and recall 
with weighted average values of 0.31 and 0.32, respectively, 
which compares favourably to a random model with precision/
recall of ~0.07. Importantly, visual inspection of the confusion 
matrix (Figure S6) demonstrated a key feature of the classifi-
cation performance not readily apparent from the evaluation 
criteria, namely that the vast majority of incorrectly predicted 
ζe values were directly adjacent to correct ζe values. In other 
words, when the model failed to accurately classify ζe, it did 
so in a way that was not arbitrarily bad, rather it was often 
close to the true value. In evaluating random forest regres-
sion for parameter estimation, we found that some parameters 
were well estimated (e.g., τs, R2 = 0.47; mean ε, R2 = 0.59; see 
Figure S7), while others were quite poorly estimated (standard 
deviation of contemporary Ne; R2 = 0.12). We focus on those 
parameters that are most accurately estimated, including the 
timing of co- expansion (τs) and the expansion magnitude (ε), 
which also happen to be the parameters of greatest interest 

(all estimated model parameters and 95% prediction intervals 
are in Table S2).

The ML classifier for empirical PTA analysis predicted ζe = 5 as 
most probable, with another peak of prediction probability at 
ζe = 3. While the prediction probability was diffuse around these 

FIGURE 3    |    Plot of log of median effective population size (Ne) through time for each lineage as estimated by Stairway Plot 2. Inset images show 
individuals of: Lampropeltis triangulum from Ulster Co., NY (top left); Agkistrodon contortrix from Westchester Co., NY (top right) and Lampropeltis 
getula complex from East Baton Rouge Parish, LA (bottom). All photos taken by FTB.
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FIGURE 4    |    Bar plot depicting the full distribution of predicted ζe 
values for the empirical dataset. The x- axis shows the predicted number 
of co- expanding taxa, and the y- axis indicates the prediction probability 
from the random forest machine learning classifier.
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intermediate values, there was little support for either total syn-
chronous (ζe = 14) or asynchronous (ζe = 0) expansion (Figure 4). 
The ML regression model estimated the timing of co- expansion 
(τs) as 32,000 ybp (95% prediction interval: 19,000–45,000 ybp), 
with an expansion magnitude (ε) of 0.061 (95% prediction in-
terval: 0.058–0.065). The average time of expansion of those 
taxa expanding asynchronously (i.e., not involved in the co- 
expansion pulse) was slightly older than the estimated τs (36,740 
ybp; 95% prediction interval 30,364–43,539 ypb), though the pre-
diction intervals somewhat overlapped. To evaluate goodness of 
fit, we generated posterior predictive simulations parameterized 
based on the model estimated parameter values and projected 
these into PC- space, along with the empirical data. The empir-
ical mSFS fell within the cloud of posterior simulated mSFS, 
demonstrating the model and chosen parameter values were a 
good fit to the data (Figure S8).

4   |   Discussion

When examining historical responses of eastern North American 
snakes to climatic fluctuations during the Pleistocene, we find 
that, as expected, most populations (14 out of 17, 82%) show pop-
ulation size expansions towards the present. The geographic 
distributions of each of these species are expected to have been 
restricted during glacial cycles compared to present day, with 
the most dramatic and obvious example being that the ranges of 
some populations presently extend into regions that would have 
been covered by ice sheets at the last glacial maximum (Conant 
and Collins  1998; Kleman et  al.  2010; Marshall, James, and 
Clarke  2002). Two of the exceptions to this expansion pattern 
(western F. abacura, F. erytrogramma) are distributed primarily 
in the southern USA in regions that were never glaciated, and 
so may have experienced less severe population contractions 
and less subsequent opportunity for expansion than popula-
tions with more northern distributions. The third exception to 
the population expansion pattern, western P. guttatus complex 
corresponding to P. emoryi, does show a population expansion 
in recent history; however, it is followed by a more recent sharp 
population size decline and therefore we did not include it as one 
of the potentially coexpanding taxa.

We expected a signal of simultaneous population expansion, 
as the fourteen population expansions we detected are likely 
responses to the same climatic event in the same general geo-
graphic region. However, we found only moderate support for 
this hypothesis, with PTA estimating only 21%–36% of expanding 
taxa as showing a signal of temporally congruent coexpansion. 
The late Pleistocene was characterised by multiple 100,000 year 
glacial cycles over the span of ~800,000 years, and populations 
may have responded differently to any of these glacial cy-
cles depending on a number of factors (Abe- Ouchi et al. 2013; 
Bintanja and van de Wal  2008; Hobart et  al.  2023). Although 
all of the populations we include are distributed in the ENA, 
they do not have completely overlapping geographic distribu-
tions, with some having more southern or eastern distributions 
than others (Figure 1). These differences may affect the extent 
to which climatic factors in any given glacial cycle influenced 
population contraction and expansion. Populations that extend 
into regions covered by ice during the last glacial maximum 
could only have expanded into these regions since the retreat of 

glaciers, whereas more southern populations could have started 
to expand earlier as southern habitats became more hospitable, 
even while northern habitats were still glaciated. In each region, 
the timing of expansion can be further modulated by species- 
specific responses to environmental conditions. Temperatures 
did not warm to present conditions instantaneously, and there-
fore species better able to tolerate environments associated with 
lower temperatures may have been able to expand earlier into 
habitats that were still inhospitable for other taxa (Burbrink and 
Myers 2015). Population size change may also exhibit some lag 
when suitable habitat becomes available, and this lag will de-
pend on dispersal and reproductive rates, among other factors 
(Blonder et al. 2017; Hewitt 1996; Sandel et al. 2011).

A role for species- specific responses to climate is supported by 
our analyses of the influence of present day environmental con-
ditions on genetic distance. In these models, we found broadly 
varying environmental responses across the nine snake species/
complexes. The most consistent response observed was that 
nearly all species show strong isolation- by- distance in eastern 
North America. This is an expected pattern in dispersal- limited 
organisms (Meirmans 2012; Wright 1943) and has been found in 
many previous snake phylogeographic studies (e.g., Harrington 
and Burbrink 2023; Harrington et al. 2018; Myers et al. 2019). 
However, we find varied importances of environmental vari-
ables, with no clear patterns, suggesting taxon- specific re-
sponses and tolerances. The taxa we have included vary widely 
in body size, prey base, foraging mode, and other traits. For ex-
ample, Diadophis punctatus is a small (< 40 cm in eastern North 
America), secretive species that feeds on small vertebrates and 
invertebrates, whereas Masticophis flagellum is a large (typi-
cally > 1 m), diurnal species that actively forages for prey includ-
ing many kinds of vertebrates and invertebrates (Conant and 
Collins 1998). Variation in these and other organismal traits can 
lead to different environmental variables being more important 
for some taxa than others in influencing genetic variation.

A previous study using mitochondrial DNA datasets to ex-
amine population coexpansion across multiple eastern North 
American tetrapod groups, including snakes, found that most 
snake lineages expanded, but with considerable variance in 
the timing of expansion, similar to our findings (Burbrink 
et al. 2016). Burbink et al. (2016) demonstrated that other ver-
tebrate taxa exhibit signatures of expansion in the region, but 
that the timing of expansions varies particularly widely among 
higher taxonomic groups (e.g., among birds, mammals and 
snakes) with very different physiologies and evolutionary histo-
ries. At a more restricted taxonomic scale, but wider geographic 
scale Bai et  al.  (2018) found wide variation in population size 
trajectories among species in the walnut genus Juglans across 
temperate regions of the northern hemisphere, including but 
not limited to North America. In contrast, Kuhn et  al.  (2022) 
found synchronous expansion in most lineages across reptiles 
and amphibians only in the humid rainforest biome of eastern 
Madagascar, but not in other biomes. Other studies have shown 
synchronous population expansion across reptiles and amphibi-
ans in the Caatinga biome of Brazil (Gehara et al. 2017) and that 
expansion dynamics in marine turtles vary depending on ocean 
basin and other traits (Reid et al. 2019). Taken together, these 
studies and our own results suggest that patterns of expansion 
may be most likely to be similar in species with broadly similar 
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physiology and restricted geographic distributions within single 
distinct biomes. However, while these are potentially necessary 
conditions for coexpansion, they are not fully predictive for the 
potential of community responses. For example, unique physiol-
ogy, specific adaptations, life history, evolutionary history, bio-
geographic origins and underlying genetic diversity may have 
unpredictable consequences on population sizes through time 
when acting synergistically, even among ecologically similar 
species within the same biome.

Though such trait variation may drive increasing variation in 
the timing of expansion events, the degree at which such events 
should be considered synchronous or asynchronous is at some 
level a function of the temporal scale at which synchrony is 
evaluated (Gehara et  al.  2017). Within the PTA model, a nec-
essary simplification assumes the synchrony of co- expansion 
is absolute (i.e., instantaneous co- expansion at a single time 
point). In contrast, our Stairway Plot 2 analyses show popula-
tion size increases over many thousands of years in some cases 
(Figure  3). Taking a more biologically relevant approach and 
sampling expansion times from within a temporal co- expansion 
‘window’ might better capture some of the natural variability 
in demographic responses, allowing for a more general concept 
of synchrony. Taking a broad enough temporal view, we could 
consider all 14 expanding snake lineages in our study as hav-
ing synchronously expanded during the late Pleistocene, despite 
PTA results indicating that only up to 36% of the populations 
expanded at the same time. The average time of expansion of 
non- coexpanding taxa is ~37 kya, which is not much older than 
the point estimate of the time of coexpansion at ~32 kya, sug-
gesting that most taxa expanded at similar, but not identical, 
times. This might indicate that all taxa were responding to the 
same environmental events occurring over thousands of years. 
Both of these times predate, but are relatively similar to, the last 
glacial maximum of ~20 kya (Clark et  al.  2009). Additionally, 
estimates of the timing of past events from genetic data are often 
subject to even more uncertainty than is present in confidence 
intervals returned by most methods, as these intervals only in-
clude the sources of uncertainty that are built into the models. 
PTA treats the mutation rate and generation time parameters as 
fixed values known without error that do not vary across taxa or 
through time, assumptions that are never fully met (e.g., Baer, 
Miyamoto, and Denver 2007). Given that the confidence inter-
vals from PTA are likely overly precise, we consider the timing 
of most expansions to be broadly congruent with the LGM and 
suggest that most lineages of snakes in eastern North America 
expanded as climate warmed following the LGM.

5   |   Conclusions

We show that there is a consistent pattern of population ex-
pansion in populations of eastern North American snakes, as 
expected given the glacial and climatic history of the region. 
We show only a moderate degree of synchrony in these ex-
pansions, suggesting idiosyncratic responses to glacial cycles 
through the Pleistocene, rather than a single, concerted re-
sponse to warming since the last glacial maximum. Consistent 
with this, we find that the effects of present day environmen-
tal variables on genetic distances vary widely across species, 
suggesting niche and life history variation that may drive 

different genetic responses to climatic fluctuations. However, 
timings of expansions are broadly similar across most taxa and 
roughly correspond to the timing of the last glacial maximum, 
suggesting the possibility that eastern North American snake 
taxa have generally expanded as climate has warmed since the 
LGM. However, estimates of population sizes through time for 
individual taxa show much longer, protracted expansions that 
start earlier in the Pleistocene with no discernable relation to 
glacial cycles. Future studies aggregating data across diverse 
regions and species could examine the effects of different traits 
on the degree to which species do or do not coexpand, giving 
further insight into the mechanisms driving genetic metrics of 
population size.
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