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ABSTRACT

Glacial cycles during the Pleistocene had profound impacts on local environments and climatic conditions. In North America,
some regions that currently support diverse biomes were entirely covered by ice sheets, while other regions were environmentally
unsuitable for the organisms that live there now. Organisms that occupy these regions in the present day must have expanded
or dispersed into these regions since the last glacial maximum, leading to the possibility that species with similar geographic
distributions may show temporally concordant population size changes associated with these warming trends. We examined
17 lineages from 9 eastern North American snake species and species complexes to test for a signal of temporally concordant
coexpansion using a machine learning approach. We found that the majority of lineages show population size increases towards
the present, with evidence for coexpansion in five out of fourteen lineages, while expansion in others was idiosyncratic. We also
examined relationships between genetic distance and current environmental predictors and showed that genomic responses
to environmental predictors are not consistent among species. We, therefore, conclude that Pleistocene warming resulted in
population size increases in most eastern North American snake species, but variation in environmental preferences and other
species-specific traits results in variance in the exact timing of expansion.

1 | Introduction of suitable habitat for biological communities, causing popula-

tion contraction and restriction to refugial habitat. In contrast,

Environmental and geological changes over space and time are
major drivers of biological diversity (Bagley and Johnson 2014;
Bidegaray-Batista, Ferrdndez, and Arnedo 2013; Harrington
et al. 2018; Ivory et al. 2016; Pujolar et al. 2022; Weir and
Schluter 2004). Sharp changes between ecoregions and physical
barriers often delineate the boundaries between species and pop-
ulations (Savage 1960). Climatic change can reduce the amount

climatic changes can also result in species' ranges expanding
to track favourable habitat, with concomitant population size
increases (Devitt et al. 2013; Hewitt 1996; Nason, Hamrick,
and Fleming 2002; Puckett et al. 2015). Different species may
have unique biotic and abiotic niche tolerances that limit dis-
persal and population growth, and thus climatic changes often
have varying effects on the population size and structure
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across communities (Moritz et al. 2008; Myers, Hickerson, and
Burbrink 2017). However, if climatic or geological changes are
drastic enough, ecologically similar species may share similar
historical demographic changes (Burbrink et al. 2016; Lessa,
Cook, and Patton 2003).

Species with similar life histories are most likely to have con-
gruent signals of population expansion. Previous studies on de-
mographic histories of snakes typically showed strong historical
demographic responses to climate change during the Pleistocene
(Burbrink et al. 2016; Fontanella et al. 2008; Guiher and
Burbrink 2008; Ruane, Torres-Carvajal, and Burbrink 2015).
This is expected given that all snakes share many broad mor-
phological and physiological traits and therefore may show sim-
ilar responses to changing climatic conditions. Specifically in
the forested Eastern Nearctic (ENA), a large number of snake
species occur near or in formerly glaciated areas. The ENA also
presents several present-day sharp environmental changes, in-
cluding precipitation and temperature gradients (Omernik 1987;
Omernik and Griffith 2014), which may shape genetic structure
in snakes and other organisms.

The glacial cycles of North America are a clear example of the
types of broad-scale environmental changes that are expected to
have shared effects on multiple taxa (Davis 1983; Hewitt 1996).
Taxa with limited abilities to survive cold temperatures were
extirpated from northern latitudes and, most dramatically,
nearly all organisms were extirpated from regions covered by
kilometres-thick glaciers, resulting in dramatic population de-
clines in many species (Hewitt 2000). During the last glacial
maximum, glaciers covered large portions of what is now the
northeast and midwest of the USA, where the terminal moraine
extended to Harbour Hill, Long Island, New York (39.7°) in the
east and Shelbyville, Illinois (39.4°) in the Midwest (Kleman
et al. 2010; Marshall, James, and Clarke 2002). Species presently
occupying these regions must have expanded into these habitats
after glaciers receded as these areas became more hospitable.
Although it is expected that species will rapidly colonise habitat
as it becomes suitable, unique life histories and dispersal abili-
ties may lead to differing rates at which organisms expand their
ranges (Burbrink et al. 2016).

Herein, we examine how climatic changes have influenced pop-
ulation sizes across nine species or species complexes of eastern
North American snakes: Agkistrodon contortrix, Diadophis punc-
tatus, Farancia abacura, Farancia erytrogramma, Lampropeltis
getula, Lampropeltis triangulum, Masticophis flagellum,
Pantherophis guttatus, and Storeria dekayi. We hypothesised that
glacial cycles have had similar effects across these snake species
and therefore we should see synchronous population expansion
during the late Pleistocene as climate warmed and glaciers re-
ceded. Despite the broad-level similarities among snakes as ec-
tothermic predators sharing a broadly similar body plan, there
are differences in physiology, diet and habitat preferences among
species; e.g., A. contortrix are heavy-bodied sit-and-wait preda-
tors that reach nearly a meter long and consume primarily mam-
mals, whereas Diadophis punctatus are slender, semi-fossorial
snakes typically less than 40 cm that feed mostly on invertebrates
and ectothermic vertebrates (Conant and Collins 1998). We,
therefore, expect that climatic variables will not have the same
effects on genetic diversity across all species. To understand if

changes in environment throughout the Pleistocene affected
snake demography in similar ways, we examined the signal and
timing of population coexpansion in nine snake species or spe-
cies complexes. We then used a hierarchical simulation-based
machine learning approach to simultaneously estimate the prob-
ability that species have coexpanded and the timing of expansion
for expanding populations of snakes.

2 | Materials and Methods
2.1 | Data Generation

We obtained tissue samples from museum and personal col-
lections for the following 7 species and species complexes:
Farancia abacura, Farancia erytrogramma, Agkistrodon contor-
trix, Diadophis punctatus, Masticophis flagellum, Pantherophis
guttatus and Storeria dekayi (Appendix 1). We focused on sam-
ples from the ENA only, and thus samples do not cover the full
geographic ranges of many species. We combined data that we
generated with published data for the Lampropeltis triangulum
(Burbrink et al. 2022; using assembled data described below)
and Lampropeltis getula species complexes (Harrington and
Burbrink 2023; raw reads available on NCBI Sequence Read
Archive under BioProject ID PRINA889851). Species’' ranges
and sampling localities are shown in Figure 1.

We extracted DNA from all tissues using the Qiagen DNEasy
kit following manufacturer protocol. We sent extracted DNA to
the University of Wisconsin-Madison Biotechnology Center for
ddRAD library preparation using enzymes PstI and Bfal and
subsequent sequencing on an Illumina NovaSeq6000 to gener-
ate paired-end 150 bp reads. For the two Farancia species, which
were prepped and assembled separately, library prep differed in
that DNA was digested using PstI and MsplI and libraries were
sequenced on an Illumina HiSeq2500 sequencer. We generated
2.8 million reads per sample on average. We used ipyrad v0.9.63
to assemble the data (v0.7.28 for Farancia samples), using de-
fault settings for most parameters (see params files on Github
at https://github.com/seanharrington256/Coexp_scripts). After
generating preliminary assemblies, individuals with high
amounts of missing data were removed before generating final
assemblies that we used for all downstream analyses. We gen-
erated datasets that were 25% missing data or less by specify-
ing the number of individuals required per locus separately for
each assembly, depending on the number of total individuals.
For the L. triangulum complex, we used the assembly generated
by (Burbrink et al. 2022) and available on Dryad (https://data-
dryad.org/stash/dataset/doi:10.5061/dryad.g79cnp5qm) as file
Data_D3_VCF_file_generated_for__Lampropeltis_triangu-
lum_L._gentilis_and_L._elapsoides_from_ipyrad_filtered.vcf
as well as an unfiltered version of this file, available as file
milks_denovo-92.vef on Dryad (https://doi.org/10.5061/dryad.
9cnp5hqvs). This file is the raw output from ipyrad before the
custom thinning and filtering applied by Burbrink et al. (2022).

2.2 | Population Structure

After assembling the data, we used the sparse nonnegative ma-
trix factorization method (sSNMF; Frichot et al. 2014) in the R
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FIGURE1 | Maps for each species/species complex showing the range in grey and samples as points. Points are coloured according to their esti-
mated ancestry in clusters as determined by sSNMF. Maps use the Albers equal area projection.

(v. 4.2.2; R Core Team 2023) package LEA v3.8.0 (Frichot and
Frangois 2015) to identify discrete population clusters within
each species. This is an essential step because the methods we
used to estimate population sizes changes through time as-
sume that individuals are all drawn from a single, panmictic
population. Therefore, including multiple discrete populations
in a single analysis can strongly bias estimates. We identified
the optimal value of K, the number of discrete populations,
by running SNMF for values of K from 1-10 and then identi-
fying which K value yielded the lowest cross-entropy score or
the value of K that exhibited the sharpest drop followed by a
plateau or increase in cross-entropy at higher values. For the
L. triangulum complex, we used the population or species des-
ignations from the study that generated these data (Burbrink

et al. 2022) available as file “Data_D6_DAPC_TESS_assign-
ments_4_taxa.txt” on Dryad (https://datadryad.org/stash/data-
set/doi:10.5061/dryad.g79cnp5qm).

2.3 | Environmental Correlates of Genetic
Structure

Within each population, we then used generalised dissimilarity
modelling (GDM) in the gdm v1.5.0-9.1 R package (Fitzpatrick
et al. 2021) to identify significant geographic and environmental
predictors of genetic distance within each population, therefore
testing for both isolation-by-distance and isolation-by-environment
simultaneously. We downloaded the Bioclim dataset (Hijmans
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et al. 2005) and elevation data from the Worldclim database (Fick
and Hijmans 2017) and combined these with the Envirem dataset
(Title and Bemmels 2018) for our full set of environmental pre-
dictors. We removed highly correlated variables with r> 0.8, leav-
ing us with 13 climatic and environmental variables (Biol, mean
annual temperature; Bio2, mean diurnal temperature range; Bio4,
temperature seasonality; Bio5, maximum temp of the warmest
month; Bio8, mean temperature of the wettest quarter; Bio9, mean
temperature of the driest quarter; Biol2 annual precipitation;
Biol5, precipitation seasonality; Biol8, precipitation of the warmest
quarter; SAGA-GIS topographic wetness index; terrain roughness
index; Thorn's aridity index; PET seasonality; elevation). For each
species/species complex, we calculated pairwise distances among
our samples for each variable and then ran a GDM including all
environmental distances plus geographic distance as predictors of
genetic distance (calculated across all SNPs). We visualised the re-
lationship between geographic distance and genetic distance (i.e.,
isolation-by-distance; IBD) in each species/species complex using
functions in the adegenet R package (Jombart 2008; Jombart and
Ahmed 2011). We additionally visualised IBD using kernel density
plots for subpopulations of D. punctatus to help determine how
many populations to use for coexpansion analysis (see results).

2.4 | Single-Population and Assemblage-Level
Demographic Inference

For analyses of population size change and coexpansion, we
split each species/complex into populations as identified based
on results from SNMF analyses and IBD plots. For each pop-
ulation, we generated vcf files using custom R scripts (avail-
able on Github https://github.com/seanharrington256/Coexp_
scripts) and used easySFS (https://github.com/isaacovercast/
easySFS) to generate site frequency spectra (SFS) as input for
single-population (Stairway Plot 2) and assemblage-level (PTA)
demographic analysis. For both types of analyses, we assumed a
mutation rate of 6.6x10~° mutations/site/generation, based on a
mutation rate of 2.2x10~° mutations/site/year (Gottscho, Marks,
and Jennings 2014; Kumar and Subramanian 2002) and assum-
ing an average generation time of 3years for all taxa.

To investigate historical demographic trajectories both within
and among these co-distributed snake taxa, we undertook a
two-stage inference approach. We first inferred population
size change histories for each population independently using
Stairway Plot 2 v2.1.1 (Liu and Fu 2020). For Stairway Plot 2
analyses, the numbers of haploid samples and numbers of
SNPs retained in each population SFS after down projection
in easySFS are shown in Table S1. The power of coexpansion
analysis is the highest when populations that are contracting or
have been at a stable population size throughout their history
are excluded because the timing of an expansion event cannot be
shared between a species that is expanding and one that is not,
by definition. We, therefore, used Stairway Plot 2 results to bin
populations as either expanding or not expanding. Populations
determined to be expanding were then included in analysis of
coexpansion, with the exception of Lampropeltis gentilis, the
western member of the L. triangulum species complex. We ex-
cluded L. gentilis because it is distributed primarily in central
and western North America, and we retain a focus on eastern
taxa that are likely to have encountered similar climatic changes

in the recent geological past. We implemented a hierarchical
simulation-based machine learning approach (Phylogeographic
Temporal Analysis; PTA; https://github.com/isaacovercast/
PTA) to infer the temporal concordance of co-expansion and the
timing of any shared co-expansion event.

PTA is a simulation-based comparative phylogeographic infer-
ence method (similar in spirit to previous methods, e.g. Chan,
Schanzenbach, and Hickerson 2014; Xue and Hickerson 2017),
which uses information from the SFS aggregated across all co-
distributed populations (following Xue and Hickerson 2015) to
estimate the proportion of co-expanding taxa ({) and the timing
of co-expansion (t ). The required input data for PTA is one SFS
per population (in dadi format; Gutenkunst et al. 2009), which
is converted internally into a multiSFS (mSFS). A special con-
sideration is that the dimension of each SFS must be identical
to meet a requirement of the model to allow for exchangeabil-
ity among SFS bins. We, therefore, used easySFS to project all
populations down to 8 haploid samples, matching the sample
size of the population with the smallest number of individuals.
To increase computational tractability, we sorted the values of
the mSFS bins in order of decreasing magnitude, a standard
efficiency adopted by similar methods (Overcast, Bagley, and
Hickerson 2017; Xue and Hickerson 2015).

PTA inference proceeds in three phases: 1) generating simula-
tions (using msprime; Kelleher, Etheridge, and McVean 2016), 2)
training and validating a machine learning (ML) model (scikit-
learn; Pedregosa et al. 2011) and 3) parameter estimation and
model adequacy checks using the empirical data. We generated
300,000 simulations while sampling from uniform priors on ¢
(proportion of coexpanding taxa; 0-1), 7, (timing of coexpan-
sion; 1x10%-1x10° years), N, (contemporary effective population
size; 2x10°-5x10°) and ¢ (expansion magnitude; 0.01-0.1). For the
purpose of the simulation ¢ is transformed into ¢, (the effective
number of co-expanding populations, which takes on integer
values). Other model parameters were fixed to values which
most closely represent the empirical data, including number
of populations (n=14), length of sequenced reads (150bp) and
mutation rate (6.6x10~°). Next we implemented a random forest
model (Breiman 2001), using 75% of simulations as training data
and 25% as testing data. We also adopted a cross-validation ap-
proach to iteratively split simulations into multiple, independent
train/test sets, to better evaluate model performance. We used
random forest regression to evaluate the performance in esti-
mating t, N, and ¢, using R? as the performance criterion. We
also used random forest classification to evaluate performance
in estimating ¢, using average precision and recall as perfor-
mance criteria. Finally, we used the trained ML model and the
empirical mSFS to classify {, and estimate model parameters for
the empirical assemblage.

3 | Results

3.1 | Population Structure

Cross-entropy scores from sNMF support single populations
within our samples of A. contortrix, F. erytrogramma, L. get-

ula, S. dekayi and M. flagellum (Figure S1). Within F. abacura
and P. guttatus, we find strong evidence for two populations

40of 11

Molecular Ecology, 2024

ol 0 “Xr6TSIEL

:sdny wouy papeoy

:sdny) suonipuo)) pue swd [, a1 298 *[#207/1/L1] uo Kreiqry auruQ L[ipy *KI0ISIH [eIMEN JO WNaSNJy UBOLIdWY AQ GZ9/ [ 0aW/ [ [ [ ['(]/10p/Wwod Ko[im'

SULIS) /WO K[ Im A.

ASULOI] SUOWIOY) 2ANEa1)) d[qear[dde ay) £q PauIaA0S ale SA[ONIE V() SN JO SA[NI J0f KIRIQIT AuI[uQ) K1 UO (:


https://github.com/seanharrington256/Coexp_scripts
https://github.com/seanharrington256/Coexp_scripts
https://github.com/isaacovercast/easySFS
https://github.com/isaacovercast/easySFS
https://github.com/isaacovercast/PTA
https://github.com/isaacovercast/PTA

Topo wetness -

Thorn's aridity -

Terr roughness -

T. seas B4 -

Prec. warmest Q B18 -

Prec. seas B15 -

PET seasonality =

Max T warmest mon. B5 -

M. T. wettest Q B8 -

M. T. driest Q B9 -

M diurn. range B2 -
Geographic - -

Ann. prec. B12 -

Ann. mean T. B1 -

GDM variable
importance

40
30
20

10

d 0 “XP6TSIEL

:sdny woiy paproy

Altitude -
' ' ' ' ' ' ' '
& & > < S & KN
& > N N >
\0\ O\ rz;‘}) &é‘ S » S & NG
& § NS @& 9 & O
€ @ TP . Q‘Q @
LRV & AR

FIGURE2 | Heatmap showing the variable importance of each predictor in generalised dissimilarity models for each species or complex. Absent
cells (grey background) represent predictors that were not identified as part of the model for a given species.

each (Figure 1, Figure S1). Results for D. punctatus were sim-
ilar, with a slightly lower cross-entropy score for K=2 than
K=1. Examination of admixture plots for D. punctatus at
K =2 and K=3 (Figure 1, Figure S1) shows that clusters are
geographically cohesive. The kernel density plot of genetic dis-
tance versus geographic distance for all samples of D. puncta-
tus showed disjunct clouds, with jumps in genetic distances
at the same geographic distances, suggesting the presence of
some discrete structure (Figure S2, S3). Because population
structure is known to bias estimates of population sizes, we
opted to split D. punctatus into three populations for analyses
of population size change through time in Stairway Plot 2 and
PTA. Similarly, we split our L. getula samples into three popu-
lations, despite evidence for a single population in our samples
from our sNMF analyses here and a previous study (Harrington
and Burbrink 2023). We did this because of the particularly
steep relationship between genetic and geographic distances
seen in the kernel density plot (Figure S2), and because these
samples form geographically cohesive groupings, which
closely correspond to divergent mitochondrial DNA clades
(Pyron and Burbrink 2009). We additionally split A. contortrix
into two populations for the same reason, as all samples com-
bined show strong isolation-by-distance, and at K =2, samples
form geographically cohesive eastern and western clusters
(Figures S1, S2) and also following previously identified lin-
eage structure (Burbrink and Guiher 2015). After splitting A.
contortrix and D. punctatus, we no longer see disjunctions in
kernel density plots of isolation-by-distance (Figure S3). We
additionally support splitting D. punctatus into three clusters
and A. contortrix into two clusters on the basis that prelimi-
nary Stairway Plot 2 analyses using all samples for each data-
set showed strong downward spikes in population sizes near
the oldest time points (Figure S4). This pattern largely disap-
pears when samples are split into different clusters, suggest-
ing that this is an artefact of population substructure (Heller,
Chikhi, and Siegismund 2013). Therefore, the splitting of L.
getula and D. punctatus into three populations each is an at-
tempt to more closely fit the assumptions of Stairway Plot 2

and PTA that populations are not substructured and approx-
imate panmixia. These population designations resulted in a
total of 17 populations that were treated as separate lineages
for Stairway Plot 2 analyses.

3.2 | Environmental Correlates of Genetic
Structure

Generalised dissimilarity models were significant (p <0.01) for
all species/species complexes, indicating that some combina-
tion of geographic and environmental distances are related to
genetic distance in each case. Geographic distance stands out as
the most important predictor of genetic distance for most spe-
cies/complexes, consistent with kernel density plots of isolation-
by-distance (Figure 2). Several precipitation variables also show
strong importance in multiple models. When considering only
variables that are individually significant in predicting genetic
distance (Figure S5), we find that variables related to precipi-
tation, topographic wetness and temperature are significant in
some taxa, with none shared across two or more taxa. All nine
taxa include multiple environmental variables in the best GDM
model in addition to geographic distance.

3.3 | Single-Population and Assemblage-Level
Demographic Inference

Stairway Plot 2 analyses show population size increases through
time in all populations except the western population of F. aba-
cura, F. erytrogramma and the western cluster of the P. gutta-
tus complex corresponding to Pantherophis emoryi (Figure 3;
see Figure S4 for confidence intervals for each population). All
three of these clusters/species were estimated to have experi-
enced recent population declines, rather than population size
increases. Therefore, these three species were removed for the
purpose of the downstream comparative phylogeographic PTA
co-expansion analysis. We note that for some populations, such
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FIGURE 3 | Plot of log of median effective population size (N,) through time for each lineage as estimated by Stairway Plot 2. Inset images show
individuals of: Lampropeltis triangulum from Ulster Co., NY (top left); Agkistrodon contortrix from Westchester Co., NY (top right) and Lampropeltis
getula complex from East Baton Rouge Parish, LA (bottom). All photos taken by FTB.

as northern D. punctatus, we do not have complete sample cov-
erage across the northern part of the range, which may influence
estimates. Inclusion of samples from poorly sampled northern
parts of population ranges would likely increase the signal for
recent expansion.

For the PTA co-expansion analysis, in evaluating the perfor-
mance of the random forest classification scheme for ¢, we
found the ML model produced adequate precision and recall
with weighted average values of 0.31 and 0.32, respectively,
which compares favourably to a random model with precision/
recall of ~0.07. Importantly, visual inspection of the confusion
matrix (Figure S6) demonstrated a key feature of the classifi-
cation performance not readily apparent from the evaluation
criteria, namely that the vast majority of incorrectly predicted
¢, values were directly adjacent to correct ¢, values. In other
words, when the model failed to accurately classify ¢, it did
so in a way that was not arbitrarily bad, rather it was often
close to the true value. In evaluating random forest regres-
sion for parameter estimation, we found that some parameters
were well estimated (e.g., T, R?=0.47; mean ¢, R*=0.59; see
Figure S7), while others were quite poorly estimated (standard
deviation of contemporary N_; R?=0.12). We focus on those
parameters that are most accurately estimated, including the
timing of co-expansion (tr) and the expansion magnitude (),
which also happen to be the parameters of greatest interest

ity

Prediction probabil

6 8 10 12 14
Predicted (.

FIGURE 4 | Bar plot depicting the full distribution of predicted ¢,
values for the empirical dataset. The x-axis shows the predicted number
of co-expanding taxa, and the y-axis indicates the prediction probability
from the random forest machine learning classifier.

(all estimated model parameters and 95% prediction intervals
are in Table S2).

The ML classifier for empirical PTA analysis predicted {, =5 as
most probable, with another peak of prediction probability at
¢,=3. While the prediction probability was diffuse around these
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intermediate values, there was little support for either total syn-
chronous (¢, = 14) or asynchronous (¢, =0) expansion (Figure 4).
The ML regression model estimated the timing of co-expansion
(zy) as 32,000 ybp (95% prediction interval: 19,000-45,000 ybp),
with an expansion magnitude (g) of 0.061 (95% prediction in-
terval: 0.058-0.065). The average time of expansion of those
taxa expanding asynchronously (i.e., not involved in the co-
expansion pulse) was slightly older than the estimated t, (36,740
ybp; 95% prediction interval 30,364-43,539 ypb), though the pre-
diction intervals somewhat overlapped. To evaluate goodness of
fit, we generated posterior predictive simulations parameterized
based on the model estimated parameter values and projected
these into PC-space, along with the empirical data. The empir-
ical mSFS fell within the cloud of posterior simulated mSFS,
demonstrating the model and chosen parameter values were a
good fit to the data (Figure S8).

4 | Discussion

When examining historical responses of eastern North American
snakes to climatic fluctuations during the Pleistocene, we find
that, as expected, most populations (14 out of 17, 82%) show pop-
ulation size expansions towards the present. The geographic
distributions of each of these species are expected to have been
restricted during glacial cycles compared to present day, with
the most dramatic and obvious example being that the ranges of
some populations presently extend into regions that would have
been covered by ice sheets at the last glacial maximum (Conant
and Collins 1998; Kleman et al. 2010; Marshall, James, and
Clarke 2002). Two of the exceptions to this expansion pattern
(western F. abacura, F. erytrogramma) are distributed primarily
in the southern USA in regions that were never glaciated, and
so may have experienced less severe population contractions
and less subsequent opportunity for expansion than popula-
tions with more northern distributions. The third exception to
the population expansion pattern, western P. guttatus complex
corresponding to P. emoryi, does show a population expansion
in recent history; however, it is followed by a more recent sharp
population size decline and therefore we did not include it as one
of the potentially coexpanding taxa.

We expected a signal of simultaneous population expansion,
as the fourteen population expansions we detected are likely
responses to the same climatic event in the same general geo-
graphic region. However, we found only moderate support for
this hypothesis, with PTA estimating only 21%-36% of expanding
taxa as showing a signal of temporally congruent coexpansion.
The late Pleistocene was characterised by multiple 100,000 year
glacial cycles over the span of ~800,000years, and populations
may have responded differently to any of these glacial cy-
cles depending on a number of factors (Abe-Ouchi et al. 2013;
Bintanja and van de Wal 2008; Hobart et al. 2023). Although
all of the populations we include are distributed in the ENA,
they do not have completely overlapping geographic distribu-
tions, with some having more southern or eastern distributions
than others (Figure 1). These differences may affect the extent
to which climatic factors in any given glacial cycle influenced
population contraction and expansion. Populations that extend
into regions covered by ice during the last glacial maximum
could only have expanded into these regions since the retreat of

glaciers, whereas more southern populations could have started
to expand earlier as southern habitats became more hospitable,
even while northern habitats were still glaciated. In each region,
the timing of expansion can be further modulated by species-
specific responses to environmental conditions. Temperatures
did not warm to present conditions instantaneously, and there-
fore species better able to tolerate environments associated with
lower temperatures may have been able to expand earlier into
habitats that were still inhospitable for other taxa (Burbrink and
Myers 2015). Population size change may also exhibit some lag
when suitable habitat becomes available, and this lag will de-
pend on dispersal and reproductive rates, among other factors
(Blonder et al. 2017; Hewitt 1996; Sandel et al. 2011).

A role for species-specific responses to climate is supported by
our analyses of the influence of present day environmental con-
ditions on genetic distance. In these models, we found broadly
varying environmental responses across the nine snake species/
complexes. The most consistent response observed was that
nearly all species show strong isolation-by-distance in eastern
North America. This is an expected pattern in dispersal-limited
organisms (Meirmans 2012; Wright 1943) and has been found in
many previous snake phylogeographic studies (e.g., Harrington
and Burbrink 2023; Harrington et al. 2018; Myers et al. 2019).
However, we find varied importances of environmental vari-
ables, with no clear patterns, suggesting taxon-specific re-
sponses and tolerances. The taxa we have included vary widely
in body size, prey base, foraging mode, and other traits. For ex-
ample, Diadophis punctatus is a small (<40cm in eastern North
America), secretive species that feeds on small vertebrates and
invertebrates, whereas Masticophis flagellum is a large (typi-
cally > 1m), diurnal species that actively forages for prey includ-
ing many kinds of vertebrates and invertebrates (Conant and
Collins 1998). Variation in these and other organismal traits can
lead to different environmental variables being more important
for some taxa than others in influencing genetic variation.

A previous study using mitochondrial DNA datasets to ex-
amine population coexpansion across multiple eastern North
American tetrapod groups, including snakes, found that most
snake lineages expanded, but with considerable variance in
the timing of expansion, similar to our findings (Burbrink
et al. 2016). Burbink et al. (2016) demonstrated that other ver-
tebrate taxa exhibit signatures of expansion in the region, but
that the timing of expansions varies particularly widely among
higher taxonomic groups (e.g., among birds, mammals and
snakes) with very different physiologies and evolutionary histo-
ries. At a more restricted taxonomic scale, but wider geographic
scale Bai et al. (2018) found wide variation in population size
trajectories among species in the walnut genus Juglans across
temperate regions of the northern hemisphere, including but
not limited to North America. In contrast, Kuhn et al. (2022)
found synchronous expansion in most lineages across reptiles
and amphibians only in the humid rainforest biome of eastern
Madagascar, but not in other biomes. Other studies have shown
synchronous population expansion across reptiles and amphibi-
ans in the Caatinga biome of Brazil (Gehara et al. 2017) and that
expansion dynamics in marine turtles vary depending on ocean
basin and other traits (Reid et al. 2019). Taken together, these
studies and our own results suggest that patterns of expansion
may be most likely to be similar in species with broadly similar
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physiology and restricted geographic distributions within single
distinct biomes. However, while these are potentially necessary
conditions for coexpansion, they are not fully predictive for the
potential of community responses. For example, unique physiol-
ogy, specific adaptations, life history, evolutionary history, bio-
geographic origins and underlying genetic diversity may have
unpredictable consequences on population sizes through time
when acting synergistically, even among ecologically similar
species within the same biome.

Though such trait variation may drive increasing variation in
the timing of expansion events, the degree at which such events
should be considered synchronous or asynchronous is at some
level a function of the temporal scale at which synchrony is
evaluated (Gehara et al. 2017). Within the PTA model, a nec-
essary simplification assumes the synchrony of co-expansion
is absolute (i.e., instantaneous co-expansion at a single time
point). In contrast, our Stairway Plot 2 analyses show popula-
tion size increases over many thousands of years in some cases
(Figure 3). Taking a more biologically relevant approach and
sampling expansion times from within a temporal co-expansion
‘window’ might better capture some of the natural variability
in demographic responses, allowing for a more general concept
of synchrony. Taking a broad enough temporal view, we could
consider all 14 expanding snake lineages in our study as hav-
ing synchronously expanded during the late Pleistocene, despite
PTA results indicating that only up to 36% of the populations
expanded at the same time. The average time of expansion of
non-coexpanding taxa is ~37 kya, which is not much older than
the point estimate of the time of coexpansion at ~32 kya, sug-
gesting that most taxa expanded at similar, but not identical,
times. This might indicate that all taxa were responding to the
same environmental events occurring over thousands of years.
Both of these times predate, but are relatively similar to, the last
glacial maximum of ~20 kya (Clark et al. 2009). Additionally,
estimates of the timing of past events from genetic data are often
subject to even more uncertainty than is present in confidence
intervals returned by most methods, as these intervals only in-
clude the sources of uncertainty that are built into the models.
PTA treats the mutation rate and generation time parameters as
fixed values known without error that do not vary across taxa or
through time, assumptions that are never fully met (e.g., Baer,
Miyamoto, and Denver 2007). Given that the confidence inter-
vals from PTA are likely overly precise, we consider the timing
of most expansions to be broadly congruent with the LGM and
suggest that most lineages of snakes in eastern North America
expanded as climate warmed following the LGM.

5 | Conclusions

We show that there is a consistent pattern of population ex-
pansion in populations of eastern North American snakes, as
expected given the glacial and climatic history of the region.
We show only a moderate degree of synchrony in these ex-
pansions, suggesting idiosyncratic responses to glacial cycles
through the Pleistocene, rather than a single, concerted re-
sponse to warming since the last glacial maximum. Consistent
with this, we find that the effects of present day environmen-
tal variables on genetic distances vary widely across species,
suggesting niche and life history variation that may drive

different genetic responses to climatic fluctuations. However,
timings of expansions are broadly similar across most taxa and
roughly correspond to the timing of the last glacial maximum,
suggesting the possibility that eastern North American snake
taxa have generally expanded as climate has warmed since the
LGM. However, estimates of population sizes through time for
individual taxa show much longer, protracted expansions that
start earlier in the Pleistocene with no discernable relation to
glacial cycles. Future studies aggregating data across diverse
regions and species could examine the effects of different traits
on the degree to which species do or do not coexpand, giving
further insight into the mechanisms driving genetic metrics of
population size.
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