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Abstract

The South American Dry Diagonal, also called the Diagonal of Open Formations, is a
large region of seasonally dry vegetation extending from northeastern Brazil to north-
ern Argentina, comprising the Caatinga, Cerrado, and Chaco subregions. A growing body
of phylogeography literature has determined that a complex history of climatic changes
coupled with more ancient geological events has produced a diverse and endemic-
rich Dry Diagonal biota. However, the exact drivers are still under investigation, and
their relative strengths and effects are controversial. Pleistocene climatic fluctuations
structured lineages via vegetation shifts, refugium formation, and corridors between
the Amazon and Atlantic forests. In some taxa, older geological events, such as the re-
configuration of the Sdo Francisco River, uplift of the Central Brazilian Plateau, or the
Miocene inundation of the Chaco by marine incursions, were more important. Here, we
review the Dry Diagonal phylogeography literature, discussing each hypothesized driver
of diversification and assessing degree of support. Few studies statistically test these
hypotheses, with most support drawn from associating encountered phylogeographic
patterns such as population structure with the timing of ancient geoclimatic events.
Across statistical studies, most hypotheses are well supported, with the exception of the
Pleistocene Arc Hypothesis. However, taxonomic and regional biases persist, such as a
proportional overabundance of herpetofauna studies, and the under-representation of
Chaco studies. Overall, both Pleistocene climate change and Neogene geological events
shaped the evolution of the Dry Diagonal biota, though the precise effects are regionally
and taxonomically varied. We encourage further use of model-based analyses to test
evolutionary scenarios, as well as interdisciplinary collaborations to progress the field

beyond its current focus on the traditional set of geoclimatic hypotheses.
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1 | INTRODUCTION

The South American Dry Diagonal (DD), also known as the Diagonal
of Open Formations,encompasses the largest continuous area of sea-
sonally dry vegetation in the Neotropics, extending from northeast-
ern Brazil to northern Argentina, and occupying over 3,000,000 km?
(Prado & Gibbs, 1993; Vanzolini, 1963; Werneck, 2011). The DD
separates the two main humid tropical forests in South America:
the Amazon Rainforest in the northwest and the Atlantic Forest in
the east and southeast. A steep latitudinal gradient and a complex
history of geoclimatic events - marine incursions, tectonic uplift,
and climatic fluctuations - have divided the DD into three tradi-
tionally recognized subregions: (i) the Cerrado, with the world's
largest tropical savanna, in central Brazil; (ii) the Caatinga, with the
world's largest seasonally dry tropical forest (SDTF), in northeast-
ern Brazil; and (iii) the Chaco, a semi-arid plain in Bolivia, Paraguay
and northern Argentina (Figure 1a). These regions are not uniform
vegetation domains; rather, they are intricate mosaics of phytophys-
iognomies dispersed along gradients of other vegetation types such
as grasslands, savannas and woodlands. The Cerrado domain is
composed mainly of not only savannas, but also SDTFs, seasonal
grasslands, gallery forests, campos rupestres, and other vegetation
types (Oliveira-Filho & Ratter, 2002). Within the Caatinga, SDTFs
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dominate extensive areas while also including humid tropical for-
ests in elevated terrains alongside savannas and campos rupestres
situated on plateaus (de Queiroz et al., 2017). Similarly, the Chaco
domain predominantly features dry forest interspersed with savan-
nas and humid forests. However, in contrast to the SDTFs of the
Caatinga, the Chaco experiences periodic frosts and shares floristic
affinities with temperate vegetation, resulting in a mixture of sub-
tropical and temperate characteristics (Pennington et al., 2000).
High floristic diversity, endemism and differentiation across the
DD suggest that few species are widespread and shared across the
different regions (DRYFLOR et al., 2016). Although all three DD
subregions are characterized by xeric environments and steep dry
seasonal periods (Neves et al., 2015), they differ in their specific
climatic and edaphic conditions, geological histories, and associated
biotas. For example, though all subregions have dry and wet sea-
sons, rainfall in the Caatinga is highly sporadic, and monthslong ab-
solute droughts are frequent. Climatically, the Chaco's temperatures
are much more extreme than those of the other DD subregions,
from below freezing in winter and up to 48.9°C (the South American
record) in summer (Werneck, 2011). Because of this diversity and
complexity, the debate over which geographic and climatic factors
have been most important in shaping DD biodiversity is contentious
(Jaramillo, 2023).
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FIGURE 1 The South American Dry Diagonal (DD). (a) DD subregions and important geographical features. The rough extent of the
Central Brazilian Plateau (CBP; black) and the spine of the Serra do Espinhaco (SE; red) are shown. The Sio Francisco River (SFR) is drawn in
solid cyan, while its hypothesized paleocourse, partially following the course of the Parnaiba after Grabert (1968), is drawn in dashed cyan.
(b) Pleistocene Arc Hypothesis and hypothesized Amazon-Atlantic Forest connections (black arrows; adapted from Ledo & Colli, 2017).
Present-day SDTF nuclei, hypothesized to have been connected as the Pleistocene Arc, are drawn in green (adapted from Goncalves

et al., 2019). CA, Caatinga; CH, Chiquitania; MI, Misiones; SP, Subandean Piedmont. (c) Hypothesized Miocene marine incursions, adapted
from Hernandez et al. (2005). The first incursion () occurred ~15-13 mya. The second incursion (Il) occurred ~10-5mya. A ‘clean’ version of

map (a) is provided for community use in the Supplementary Data S1.
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The modern DD subregional assemblages are thought to have devel-
oped recently relative to the surrounding rainforest biomes, alongside
global aridification events linked to glacial cycles (Azevedo et al., 2020;
Pennington et al., 2009). The modern Caatinga arose from ~10-2.5mya,
probably due to a combination of aridification, erosional exposure of
nutrient-rich crystalline soils and the immigration of plant communities
from the Cerrado and neighbouring SDTF isolates in the Atlantic Forest
(Fernandes et al., 2022). The Caatinga's primary watercourse, the Sao
Francisco River, was shaped by these geoclimatic changes, which in turn
likely shaping the Caatinga biota in the Pleistocene (Rodrigues, 1986,
2003). Meanwhile, the Cerrado vegetation assemblage probably orig-
inated with the global expansion of C4 grasslands after 10mya, with
most lineages arising after 4mya (Edwards et al., 2010; Jaramillo, 2023;
Simon et al., 2009). The history of the Cerrado is further characterized
by the uplift of the underlying Central Brazilian Plateau and its subse-
quent erosion through the Neogene and beyond. The resulting land-
scape compartmentalization potentially shaped diversification in the
region (Ab'Saber, 1983; da Silva, 1997). Finally, the Chaco was most
likely formed from a combination of Pleistocene cooling and aridifica-
tion (Ortiz-Jaureguizar & Cladera, 2006), Pleistocene fluvial deposition
(Iriondo, 1993), Andean uplift (Gregory-Wodzicki, 2000), and vast ma-
rine incursions in the late Neogene (~10mya). These marine incursions
are suspected to have driven diversification in the Chaco via displace-
ment and allopatry (Brusquetti et al., 2018). The entire DD was also af-
fected by the strong climatic fluctuations of the Pleistocene, which in
turn may have driven the formation of temporary rainforest corridors
that connected Amazonia, the Yungas, and the Atlantic Forest while
forming barriers to dispersal in the DD itself (Sobral-Souza et al., 2015;
Trujillo-Arias et al., 2017). Importantly, the DD subregions are not the
only arid or semi-arid environments of South America - in fact the
term ‘Arid Diagonal’ is sometimes used to describe another such re-
gion stretching from coastal Peru to Patagonia (Abraham et al., 2020).
However, being continuous and affected by similar geoclimatic forces,
the Caatinga, Cerrado, and Chaco form a coherent and tractable system
of study and are the focus of this review.

The DD is very biodiverse, with many endemic species (Azevedo
et al., 2016; da Silva et al., 2017; Klink & Machado, 2005; Neves
et al., 2015). The richest subregion is the Cerrado, one of 35 global
biodiversity hotspots, boasting at least 10,000 plant species, of which
nearly half are endemic (Mittermeier et al., 2011). The Caatinga har-
bours at least 3150 species of plants, 23% of them endemic (da Silva
et al., 2017), while the Chaco has ~3400 plant species, 11% of which
are endemic (Baumann et al., 2016). However, the biodiversity of the
DD and the processes generating it have only recently seen signifi-
cant attention from researchers. For example, Vanzolini (1963, 1974)
and later Vitt (1991) regarded the fauna of the region as depauperate,
with low endemism and overall diversity. Increased sampling and the
advent of molecular phylogenetics in the past two decades have re-
vealed a vast underestimation of DD biodiversity. Numerous lineages
once thought to belong to a single widespread taxon are now known to
comprise multiple species (Bezerra et al., 2020; Collevatti et al., 2009;
Domingos et al., 2014; Oliveira et al., 2015; Recoder et al., 2014),
and other species new to science have also been described (Barboza
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et al., 2011; Jansen et al.,, 2009; José da Silva, 2014; Teixeira Jr.
etal., 2013).
Here, we review the growing DD phylogeography literature, which

suggests that a set of geoclimatic events drove the formation of DD
biodiversity. These include the aforementioned (i) Pleistocene climatic
fluctuations; (i) historical corridors between the Amazon Rainforest
and Atlantic Forest; (iii) the establishment of the S0 Francisco River in
the Caatinga; (iv) the uplift of the CBP in the Cerrado and (v) marine in-
cursions in the Chaco. We identified 142 DD phylogeography studies,
most of which address one or more of these hypotheses (Table S1 and
Appendix S1). In this review, we offer an overview of DD phylogeog-
raphy studies in terms of the geoclimatic hypotheses they investigate

and discuss trends, issues and possible future directions in the field.

2 | LITERATURE SURVEY

We conducted our literature survey of DD phylogeography studies
in multiple sessions between July 2021 and August 2023 by search-
ing Google Scholar with the keyword ‘phylogeography’, in combina-
tion with ‘dry diagonal’, ‘diagonal of open formations’, ‘open diagonal’,
‘cerrado’, ‘caatinga’, and ‘chaco’. Some studies were additionally identi-
fied among the references of other studies. We identified 142 studies
fitting our criteria, which were geographic and methodological. We
counted a study as a ‘Dry Diagonal study’ if it was at least partially
conducted with samples collected from one or more of the Caatinga,
Cerrado, and Chaco subregions. Some studies also include samples
from Amazonia or the Atlantic Forest (e.g. Fonseca et al., 2021); these
studies were still included so long as the balance of samples and dis-
cussion was at least equal between DD and non-DD regions. To qualify
as a ‘phylogeography study’, a given manuscript must be conducted
with genetic data from many samples across a relatively large area and
utilize phylogeographic methods. As such, we did not include studies
that focused on small areas (i.e. landscape genetics studies), on niche
modelling exclusively (i.e. did not use genetic data) nor phylogeny
and associated methods exclusively (i.e. did not use phylogeography
methods). Support for a given hypothesis is generally stated within the
discussion of the associated study, though it is important to note that
most studies (70%) did not perform explicit hypothesis tests. In these
cases, hypothetical support is based on the endorsement of the hy-
pothesis by that study's authors, given their results and knowledge of
the DD literature. For additional details on the literature survey meth-
odology, see Appendix S1.

3 | CLIMATIC DRIVERS OF
DIVERSIFICATION IN THE DRY DIAGONAL

3.1 | Pleistocene climate fluctuations
Climatic change during the Pleistocene likely explains the most

recent speciation events, accounting for the regional distribution
of communities through to the Holocene. In South America, the

ASUAOIT SUOWIWOY) dANEAI) d[qedridde ayy Aq pauroao are sAONIE Y AN JO SI[NI I0J ATRIQIT dUIUQ) AJ[IA UO (SUOTIIPUOD-PUR-SULIA)/WOY KA[IM’ ATeIqriaur[uoy/:sdny) suonipuo) pue sud ], oy 33§ *[+20g/c1/L1] uo Areiqry auruQ ASIAL ‘1S3 L £q [€HL 109w/ [ ] ['01/10p/wiod Kafim’ Kreqrourfuoy//:sdny woiy papeo[umod ‘#1 ‘+20T ‘XH62S9E T



GUILLORY ET AL.

4 of 25
—I—WI LE Y-1e]8:Xe[5) WN:§:{ele) Xo]e)%

Pleistocene Refuge Hypothesis (Haffer, 1969) posits that repeated
glacial cycles during the Pleistocene led to fragmentation of the
Amazon Rainforest into isolated refugia, facilitating allopatric spe-
ciation of rainforest-adapted taxa. This hypothesis is supported
by some studies (Garzon-Ordufa et al., 2015), whereas others
have shown that many South American lineages arose earlier, in
the Neogene, due to geoclimatic processes such as Andean uplift
(Bush & de Oliveira, 2006; Hoorn et al., 2010; Rull & Carnaval, 2020;
Turchetto-Zolet et al., 2013). A similar Pleistocene versus Neogene
dichotomy emerges from the DD-specific literature (Collevatti
etal., 2020; Colli, 2005), though the exact hypothesized mechanisms
of speciation differ.

In the Cerrado, the majority of phylogeographic studies have
overwhelmingly demonstrated demographic or evolutionary re-
sponses to Pleistocene climate change, mostly in plants (Figure 2)
(Buzatti et al., 2017; Collevatti et al., 2015; Fiorini et al., 2020; Leal
et al,, 2019; Ramos et al., 2007; among many others - see Fava
et al.,, 2020, for a contradictory case). A meta-analysis by Collevatti
et al. (2020) found that the effects of Pleistocene climate fluctua-
tions in plants are reflected primarily as intra-specific diversity, with
the actual origin of major lineages occurring during the Neogene
due to geological events. Discordant demographic responses during
the Pleistocene are observed among plants, with some species
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expanding (Bonatelli et al., 2014; Leal et al., 2019) and others con-
tracting (Collevatti et al., 2015; Collevatti, Ribeiro, et al., 2012; de
Lima et al., 2014) or even remaining stable (Lima et al., 2017). Some
Cerrado plants exhibit an east-west pattern of lineage differentia-
tion (northeast-southeast in a few cases) (Correa Ribeiro et al., 2016;
Leal et al., 2019; Ramos et al., 2007; Resende-Moreira et al., 2017).
No physical barriers seem to account for this phylogeographic break,
which has been linked to historical range shifts of Cerrado vegeta-
tion during Pleistocene climate changes.

In animals, most Cerrado phylogeography studies focus on rep-
tiles and amphibians, which also show contradictory responses.
Frogs generally show refugial isolation in the older Pleistocene and
population expansion in the more recent Pleistocene due to the end
of the last glaciation (Arantes et al., 2023; Camurugi et al., 2021,
Miranda et al., 2019; Prado et al., 2012; Vasconcellos et al., 2019).
Similarly, Werneck, Nogueira, et al. (2012) demonstrated that squa-
mate reptiles persisted and diversified in Pleistocene refugia located
on Cerrado plateaus (Ab'Saber, 1983). However, further research
has revealed little genetic divergence between stable and unstable
regions (Santos et al., 2014; Werneck, Gamble, et al., 2012). Older,
Neogene diversification events (Domingos et al., 2014; Guarnizo
et al.,, 2016; Machado et al., 2014; Werneck et al., 2009) suggest
that Pleistocene refugia might have had limited effects on reptile
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FIGURE 2 Circos plots visualizing the DD phylogeography literature, constructed with the R package circlize v0.4.15 (Gu et al., 2014).

(a) Relationships between focal taxonomic groups and focal subregions (or combinations thereof), as well as the quantity of model-based
studies and studies using genome-scale data for each category. The outer ring of cells represents the total number of model-based and/

or genomic studies for a given category; the inner ring represents totals for the corresponding ribbon. (b) Relationships between focal
taxonomic groups, DD biogeographic hypotheses, and the corresponding degree of support. The outer layer of the ring of cells shows the
total number of addressed hypotheses (not studies; studies may address >1 or O hypotheses) showing full support, mixed support, or no
support for the given category, while the inner layer pertains to the corresponding ribbon. Am, Amphibian; An, Animal; Ca, Caatinga; CBPH,
Central Brazilian Plateau Hypothesis; Ce, Cerrado; Ch, Chaco; FCH, Forest Connections Hypothesis; MMIH, Miocene Marine Incursion
Hypothesis; PAH, Pleistocene Arc Hypothesis; PCFH, Pleistocene Climatic Fluctuations Hypothesis; PI, Plant; Re, Reptile; SFRH, Sdo

Francisco River Hypothesis.
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population structure and diversity, despite the small number of af-
firmative studies. For Cerrado reptiles, the effects of Pleistocene
climate change may therefore be limited to demographic changes.
Other animal taxa studied in this context have generally shown demo-
graphic changes and/or changes in population structure in response
to Pleistocene climatic fluctuations (mammals: Di-Nizo et al., 2022;
Gonzalez-Ittig et al., 2022; birds: Corbett et al., 2020; Lima-Rezende
et al., 2019; Luna et al., 2017; Rocha et al., 2020; Souza et al., 2022;
invertebrates: Andrade-Souza et al., 2017; Barrios-Leal et al., 2019;
Fernandez Campén et al., 2021; Franco & Manfrin, 2013; Francoso
et al., 2016; Moraes et al., 2009).

The Caatinga's formation occurred during the Neogene and
Pleistocene, with an SDTF flora assembling in the region as regional
aridification and the exhumation of Paleo-Mesozoic sediments pro-
moted environmental heterogeneity (Fernandes et al., 2022). The
Pleistocene Caatinga contracted during dry glacial maxima as global
moisture was locked into ice sheets closer to the poles, expanding
again during interglacial periods (Werneck et al., 2011). The main
onset of diversification in the Caatinga flora probably occurred
during or after the Pliocene, in parallel with the diversification of
other SDTF isolates in South America (Colli-Silva et al., 2021), such
as the Subandean Piedmont and Misiones (Figure 1b), though they
probably developed in isolation from each other (see later section).
Just over half (13/24) of studies on the effects of Pleistocene cli-
matic fluctuations on Caatinga taxa are focused on herpetofauna.
As with the Cerrado, Caatinga amphibians in general demon-
strate demographic change and changes in population structure
in response to Pleistocene climatic change (Camurugi et al., 2021;
Gehara et al., 2017; Oliveira et al., 2021; Thomé et al., 2016; Thomé
& Carstens, 2016; Thomé, Carstens, Rodrigues, Alexandrino, &
Haddad, 2021; Thomé, Carstens, Rodrigues, Galetti Jr, et al., 2021),
while reptiles have responded more strongly to Neogene geological
events (Fonseca et al., 2018; Oliveira, Martinez, et al., 2018; Passoni
et al., 2008; Werneck et al., 2015; but see Camurugi et al., 2022).
However, synchronous population expansions in both Caatinga
reptiles and amphibians have been detected in the late Pleistocene
(118-224 kya), potentially coinciding with an expansion in Caatinga
habitat (Gehara et al., 2017). Studies on insects (Andrade-Souza
et al.,, 2017; Barrios-Leal et al., 2019; Bonatti et al., 2014; Maia
et al., 2022; Miranda et al., 2017) and plants (Balbino et al., 2018;
Caetano et al., 2008) also generally show Pleistocene climate change
effects. The exact patterns and mechanisms of Pleistocene climate
change in the Caatinga are still unclear (Colli-Silva et al., 2021); the
proposed Pleistocene Arc Hypothesis (Prado & Gibbs, 1993) is a
popular explanation but has seen only mixed support in phylogeo-
graphic studies (see later section).

Like other ecoregions in southern South America, the Chaco
experienced pulses of expansion and retraction during Pleistocene
glaciations that may also have influenced its biodiversity patterns
(Ortiz-Jaureguizar & Cladera, 2006). Of the few available studies,
consistent patterns include minimal population structure (Brusquetti
et al., 2019; Camps et al.,, 2018; Delgado et al., 2021; Ferreiro
et al., 2023; Robiatti et al., 2021) and species-specific demographic
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responses to glaciations. Some forest-associated species seem to
have expanded during glacial maxima (Camps et al., 2018; Trujillo-
Arias et al., 2017; Vergara et al., 2017), while other species expanded
during interglacials (Bartoleti et al., 2017; Brusquetti et al., 2019;
Gonzalez-Ittig et al., 2022; Scaldaferro et al., 2023). Additional phy-
logeographic studies of Chaco species are needed to assess the im-
portance of Pleistocene glaciations in the region's history. Recent
phylogeographic studies on various taxa (Byrne et al., 2022; Ferreiro
et al., 2023; Giudicelli et al., 2022; Gonzalez et al., 2023; Gonzalez-
Ittig et al., 2022; Sanchez-Restrepo et al.,, 2023; Scaldaferro
et al.,, 2023) all demonstrated significant effects of Pleistocene cli-
mate fluctuations.

When testing the effects of Pleistocene climate fluctuations, one
should expect populations in less stable areas to show larger popula-
tion size changes and less overall genetic diversity compared to pop-
ulations in more stable ones (e.g. Carnaval et al., 2009). Testing for
Pleistocene population change in a coalescent framework, such as
with FastSimCoal (Excoffier & Foll, 2011), Momi (Kamm et al., 2020)
or PipeMaster (Gehara et al., 2020), would show support for this
hypothesis. Additionally, paleoclimatic models should provide par-
allel predictions of genetic diversity and genetic distances between
samples (e.g. Camurugi et al., 2021; Oliveira, Martinez, et al., 2018;
Vasconcellos et al., 2019).

3.2 | Campos rupestres, the Serra do
Espinhaco, and Pleistocene climatic fluctuations

Campos rupestres (rupestrian grasslands) are a unique vegetational
assemblage associated with higher elevation in Brazil. This phytoge-
ographic unit is mainly characterized by a mosaic of rocky mountain-
top islands from 900 m to more than 2000 m above sea level (Silveira
et al., 2016), sharing substrate, climate and floristic elements (e.g.
grassy-shrubby vegetation and mild temperatures) that differ from
the surrounding Cerrado, Caatinga and Atlantic Forest (Alves
et al., 2014). Although much of the campos rupestres are techni-
cally found within the bounds of the DD, their character is different
with enough endemicity to merit their own detailed review; here, we
provide only a brief overview of the effects of Pleistocene climate
fluctuations on this system. In the DD, campos rupestres are primar-
ily found in the Serra do Espinhaco, a mountain range extending ap-
proximately 1200 km from northern Bahia to southern Minas Gerais,
parallel to the upper Sao Francisco River (Figure 1). Campos rupes-
tres in the Serra do Espinhaco act as a sky-island system (Oliveira
et al., 2021; Santana et al., 2023; Vasconcelos et al., 2020), harbour-
ing a megadiverse and highly endemic biota relative to the surround-
ing areas, associated with diversification processes decoupled from
lowland Cerrado and Caatinga assemblages (Colli-Silva et al., 2019;
Leite et al., 2008; Rapini et al., 2008; Silveira et al., 2016). Highest
rates of diversification in the sky islands are timed to the Pleistocene,
though major endemic lineages mostly originate in the Miocene
(Carvalho et al., 2021; Inglis & Cavalcanti, 2018; Ribeiro et al., 2014;
Vasconcelos et al., 2020). Pleistocene climatic fluctuations likely
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favoured dispersal and isolation events within and between these
isolated patches, shaping the demographic histories of endemic
campos rupestres species (Barres et al., 2019; Collevatti, de Castro,
etal., 2012; Dantas-Queiroz et al., 2021, 2023; Oliveira et al., 2021).
In general, Pleistocene climatic fluctuations induced population ex-
pansion in campos rupestres taxa due to climatic cooling as forests
retracted to lower altitudes. During wetter and warmer interglacial
periods, forests expanded to higher altitudes, isolating campos ru-
pestres at higher elevations. Consequently, the effects of genetic
drift on small and disjunctly distributed populations during periods
of isolation would promote the diversification of many endemic
lineages restricted to single mountaintops, as observed in frogs
(Nascimento et al., 2018; Oliveira et al., 2021; Oswald et al., 2022)
and plants (Dantas-Queiroz et al., 2023; Silva et al., 2020). Many DD
taxa are descended from common ancestors that diversified within
the campos rupestres (likely in the Miocene), rendering the Serra do
Espinhaco an ancient cradle of biodiversity.

3.3 | The Pleistocene Arc Hypothesis

The Pleistocene Arc Hypothesis (PAH) posits that a continuous
SDTF occupied much of the DD during the Last Glacial Maximum
(LGM) before fragmenting into the present-day Caatinga and
other non-DD SDTF isolates, such as the Misiones, Piedmont,
and Chiquitania (Figure 1b) (Goncalves et al., 2019; Pennington
et al.,, 2000; Prado, 2000; Prado & Gibbs, 1993). Similarly to the
Pleistocene Refuge Hypothesis, the PAH supposes that climate-
induced fragmentation of formerly continuous habitat resulted in
allopatric diversification within refugia. Previous phylogeographic
studies on SDTF plants by Caetano et al. (2008) and Collevatti,
Terribile, et al. (2012), as well as a genome-scale bird study (Corbett
et al., 2020), supported the PAH. On the other hand, paleoclimatic
modelling by Werneck et al. (2011) suggested that SDTFs had a more
limited extent during the LGM and have since expanded in area, con-
trary to expectations under the PAH. Colli-Silva et al. (2021) found
ambiguous support for the PAH with palaeoclimatic modelling, with
disjunct SDTF plant species responding differently to Pleistocene
climate fluctuations. Some studies have shown that divergences
in some SDTF taxa are older than the hypothesized age of the
Pleistocene Arc (Garcia et al., 2011; Hernandez et al., 2022; Lanna
et al., 2018; Magalhaes et al., 2014), and others have shown evi-
dence of post-LGM expansion sensu Werneck et al. (2011) (de Melo
et al., 2016; Franco & Manfrin, 2013; Vieira et al., 2015). Currently,
the majority of PAH-focused studies do not support it (69%). As the
most historically unstable region in South America (Costa, Hampe,
et al., 2018), the Caatinga did undergo cycles of expansion and con-
traction, but this does not necessarily imply that it joined with other
SDTFs in a continuous Pleistocene Arc.

Phylogeographic evidence for the PAH would constitute
Pleistocene divergences between sister lineages in disjunct SDTF
isolates (Figure 1b). Demographic modelling should show diver-
gence without migration and population contraction at the time of

divergence, and genetic distances should relate to resistance in non-
SDTF environments, which should form barriers to dispersal. Until
more phylogeographic studies of Caatinga and SDTF taxa show such

patterns, the generality of the PAH across taxa remains unlikely.

3.4 | Ecological speciation and potential hybrid
zones in the DD

Ecological speciation occurs when selective pressures cause popu-
lations to adapt to distinct environmental conditions (Burbrink &
Ruane, 2021; Nosil, 2012; Pyron et al., 2015). Encompassing three
ecologically distinct subregions arranged in a NE-SW latitudinal gra-
dient, the DD is sufficiently heterogeneous that we should expect
ecological speciation to occur there, either between DD subregions
(Fonseca et al., 2018) or between the DD and adjacent environments
(Rodriguez-Cajarville et al., 2022). The Caatinga-Cerrado transition
in particular appears to induce ecological speciation in several taxa
via environmental polarity (rather than secondary contact). This
ecotone occurs from east (Caatinga) to west (Cerrado) along a N-S
axis just west of the middle Sao Francisco River (Figure 1). Several
herpetofaunal studies have indicated population structure delimited
by the Caatinga-Cerrado transition (Fonseca et al., 2018; Oliveira
et al., 2015; Teixeira Jr. et al., 2016; Thomé, Carstens, Rodrigues,
Alexandrino, & Haddad, 2021; Werneck, Gamble, et al., 2012). The
presence of admixed individuals in most of these studies implies that
genetic divergence could be occurring in the presence of gene flow
(Thomé, Carstens, Rodrigues, Alexandrino, & Haddad, 2021). Some
studies have found support for a demographic model of divergence
with migration (Fonseca et al., 2018; Oliveira et al., 2015), which is
the expected model in the case of adaptation across an environmen-
tal gradient. Since recent divergence relative to population size can
also account for the presence of admixed individuals, statistical sup-
port for migration provides evidence for identifying this type of spe-
ciation; its prevalence in other DD taxa remains to be seen. Overall,
this phenomenon is not yet sufficiently well studied in DD taxa to
merit its inclusion as a major hypothesis in this manuscript.
Ecological divergences may also occur between the DD and
neighbouring environments such as the Amazon Rainforest, Atlantic
Forest or Andes Mountains. For example, Rodriguez-Cajarville
et al. (2022) identified divergence with gene flow across the Chaco-
Andes ecotone in the bird Phytotoma rutila. Other cases of bird sis-
ter lineages in the Cerrado and Atlantic Forest, with minimal gene
flow, may represent divergences at more complete stages of iso-
lation (Bolivar-Leguizamoén et al., 2024; Cabanne et al., 2011). The
Vanishing Refuge Model (Vanzolini & Williams, 1981) may particu-
larly apply to these and similar cases of potential ecological specia-
tion between DD biomes and the neighbouring rainforests, as the
relative spatial organization of these regions is known to be tem-
porally dynamic (Ledo & Colli, 2017). The Vanishing Refuge Model
suggests that climatic instability generates diversity by exposing
peripheral populations to new environments, subjecting them to di-
vergent selection and resulting in sister lineages occupying adjacent
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but different environments. However, the only genetic study of the
Vanishing Refuge Model, conducted on a lizard found in both coastal
Atlantic Forest and forest isolates within the Caatinga, found mixed
support for this hypothesis (Damasceno et al., 2014).

Hybrid zones between diverging lineages can form due to differ-
ential fitness along an environmental gradient (Barton & Gale, 1993;
Barton & Hewitt, 1985; Burbrink & Ruane, 2021). Some DD studies
with widespread taxa show admixed individuals between genetic
clusters corresponding to the Caatinga and Cerrado; however, in the
absence of sufficient spatial sampling depth, whether these individ-
uals are isolated cases or constitute potential hybrid zones cannot
be verified, let alone their widths, or degrees of coincidence among
different species. Characterizing hybrid zones in this way can have
important implications for our understanding of ecological specia-
tion or secondary contact in the DD. For example, determining the
width of the zone (i.e. the region across which alleles are exchanged)
relative to the actual spatial cline (i.e. the region across which the
environmental gradient occurs), and identifying which alleles diffuse
across it, might demonstrate which traits change across the zone,
and consequently the role of selection in determining those changes.
Oliveira et al. (2015) showed that genetic variation in whiptail liz-
ards was correlated with climate, but future studies with whole ge-
nomes can implement gene ontology-based and GWAS methods
to determine the actual genes affected, and identify potential ge-
nomic islands of speciation. This will further help disentangle the
effects of environmental gradients from simple isolation by distance.
Ultimately, comparisons across taxa may identify common mecha-
nisms of selection and hybridization, allowing for more generalized
knowledge of ecological speciation in the DD.

4 | HISTORICAL CONNECTIONS
BETWEEN THE AMAZONIAN AND
ATLANTIC FORESTS AS BARRIERS FOR
DRY-ADAPTED TAXA

Climatic fluctuations during the Pleistocene may have contributed
to the subsectioning of the DD subregions with the formation of
forest connections/corridors between the Atlantic and Amazonian
rainforests (Coelho, Camurugi, et al., 2022; Dal Vechio et al., 2018;
Sobral-Souza et al., 2015). Paleontological evidence of humid cycles
in South America supports the Plio-Pleistocene expansion of rain-
forest connections crossing the DD (Figure 1b) (Cheng et al., 2013;
Ledo & Colli, 2017; Melo Santos et al., 2007). The subsequent dis-
connection of the rainforests corresponds to the expansion of DD
habitats, resulting in the formation of disjunct rainforest lineages
(Batalha-Filho et al., 2013; Costa, 2003; Dal Vechio et al., 2018;
Gehara et al., 2014; Prates et al., 2016). For example, studies of
disjunctly distributed birds suggest ancient forest connections be-
tween the Atlantic Forest and central Andean rainforests (Yungas)
through the Cerrado and/or Chaco (Trujillo-Arias et al., 2017, 2019).

Forest connections drove the diversification of DD taxa as well
as rainforest taxa, primarily by allopatry and niche conservatism.
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Some frogs and snakes restricted to mesic, high-altitude forest
enclaves surrounded by dry vegetation in the Caatinga (brejos de
altitude) are more closely related to Amazonian than DD species
(Mangia et al., 2018; Roberto & Loebmann, 2016), indicating that
the enclaves are relics of ancient forests. The saffron-billed sparrow
Arremon flavirostris likely colonized gallery forests in the Chaco and
Cerrado through intermittent rainforest connections (Trujillo-Arias
et al., 2017). Additionally, the Caatinga four-eyed frog Pleurodema
diplolister shows north-south genetic structure, the boundary possi-
bly coherent with a putative trans-Caatinga forest corridor (Thomé
et al., 2016). The proximity of such divergent habitats to each other
may also have promoted diversification via the Vanishing Refuge
Model (Vanzolini & Williams, 1981). However, allopatry and stabiliz-
ing selection (i.e. niche conservatism) seem to be more important for
understanding the relationship of rainforests and the DD subregions
in generating biodiversity.

Uncertainty in the geographic location of the hypothesized for-
est connections makes predicting and testing their spatial effects
on DD species difficult. The forest connections may have acted as
physical barriers within the DD, leading to populations structured on
either side of hypothetical wet forest corridors (Pinaya et al., 2019;
Thomé et al., 2016). In this case, it is expected that a demographic
model of divergence without migration, plus population contraction,
would be supported, since isolation would coincide with a reduction
in habitat availability, followed by expansion after the connections
disappeared. Because of the dynamic nature of this process, isola-
tion could be recurrent with opportunities for secondary contact
after expansion, potentially forming areas of high genetic diversity.
Thomé et al. (2016) represents the most comprehensive and exem-
plar test of whether the forest connections acted as barriers to date.

Alternatively, the forest connections may have been composed
of forest galleries, facilitating dispersal between rainforests and
fragmenting the DD, but not necessarily acting as hard barriers
(André et al., 2022; Leal et al., 2019, 2021; Trujillo-Arias et al., 2017).
Despite the lack of a contemporary barrier to gene flow in the re-
gion, an east-west divergence during the Pleistocene observed in
tree populations in the central Cerrado (54-43°W) underscores
the possibility of a barrier there (Buzatti et al., 2018; Correa Ribeiro
et al., 2016; Leal et al., 2019, 2021; Ramos et al., 2007; Resende-
Moreira et al., 2017). This potential phylogeographic break could
offer an opportunity to investigate the role of forest corridors in the
formation of the DD biota. In this scenario, one should expect high
genetic diversity in stable areas that were not replaced by forest

galleries.

5 | THE SAO FRANCISCO RIVER AS A
PUTATIVE BARRIER IN THE CAATINGA

The Riverine Barrier Hypothesis is one of the oldest and most en-
during biogeographic hypotheses of South America, beginning with
Wallace's (1854) proposal that the Amazon River acts as a barrier
to species on either side. The hypothesis has been proposed for
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rivers in the DD, including the Tocantins in the Cerrado (Werneck,
Gamble, et al., 2012) and the Parana-Paraguay system at the east-
ern boundary of the Chaco (Kopuchian et al., 2020). However, the
Sdo Francisco River (SFR) is by far the most prominent in discus-
sions of the Riverine Barrier Hypothesis as applied to the DD. The
SFR is the fourth longest river in South America and drains most
of the Caatinga (Figure 1a). It was originally proposed to form a
biogeographic barrier for several reptile species pairs inhabiting
opposite margins of the river (Rodrigues, 1986, 1993, 1996, 2003;
Rodrigues & Junca, 2002) and has since been extended to other
taxa. Rodrigues (1996) proposed that the formerly endorheic SFR
(i.e. not flowing into the ocean) became exorheic (flowing into the
ocean) at the end of the Wiirm glaciation ~12kya (Ab'Saber, 1969;
Tricart, 1974), traversing the Caatinga to divide formerly continuous
habitat and promote vicariance. The Sdo Francisco River Hypothesis
(SFRH) has remained a popular explanation for Caatinga biodiversity
patterns, especially in herpetological studies, which are dispropor-
tionately represented in explorations of the SFRH (Figure 2b).

The geological literature on the SFR's history is very limited, with
considerable uncertainty around the origin of the river and the tim-
ing of events relevant to the development of the Caatinga and its
biota (Thomé, Carstens, Rodrigues, Alexandrino, & Haddad, 2021).
The endo-exorheism theory (Ab'Saber, 1969; Tricart, 1974) of
SFR paleocourse change at the end of the most recent glaciation
(~12kya) remains uncorroborated. Most other studies that discuss
the paleocourse change infer a much older event, wherein the
SFR trended eastward, from an ancient south-north paleocourse
along the present-day course of the lower Parnaiba, to its mod-
ern course (Figure 1a). This was possibly due to erosion in the Sao

Francisco basin (Grabert, 1968) and/or neighbouring uplift events
(Mabesoone, 1994; Potter, 1997). The estimated ages of this event
range from mid-Eocene (Karner & Driscoll, 1999) to mid-Miocene
(Potter, 1997; Valadao, 1998) to mid-Pleistocene (~0.45mya)
(Mabesoone, 1994). Mabesoone (1994) also inferred an endorheic
period (Figure 3), and is most often cited in SFRH studies.

Phylogeographic support for the SFRH has generally been based
on inferring divergence times for sister lineages separated by the
river and associating them with one of the suggested paleocourse
changes listed earlier. Because of the variation in ages of suggested
paleocourse changes, the divergence times ‘supporting’ the SFRH
vary considerably as well. Divergences, including Mio-Pliocene
(Almeida et al., 2020; Passoni et al., 2008; Werneck, Gamble,
et al., 2012), Plio-Pleistocene (Costa, Amorim, & Mattos, 2018; do
Nascimento et al., 2011), early Pleistocene (Bruschi et al., 2019;
Faria et al., 2013; Oliveira, Martinez, et al.,, 2018; Siedchlag
et al., 2010), and late Pleistocene (Coutinho-Abreu et al., 2008;
Fegies et al., 2021), either highlight the inconsistency in associating
genetic divergence with SFR geology or indicate that the barrier is
older, with species entering the region at different times since its
origin (Figure 3; Table 1). Few studies used model- or simulation-
based tools to unambiguously identify SFR-based vicariance
(Almeida et al., 2020; Bruschi et al., 2019). However, some model-
based studies recovered shallow structure with ongoing gene
flow across the SFR (Coelho, Guillory, & Gehara, 2022; Oliveira,
Martinez, et al., 2018; Thomé, Carstens, Rodrigues, Alexandrino,
& Haddad, 2021) or negligible structure/high gene flow across the
SFR (Miranda et al., 2016; Oliveira et al., 2015; Thomé, Carstens,
Rodrigues, Galetti Jr, et al., 2021).
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FIGURE 3 Timeline of Sdo Francisco River Hypothesis (SFRH)-related animal divergence events (above timeline) and geological
hypotheses (below). Note that the geological hypotheses almost certainly did not all occur: the timeline shows hypothesized events, not an
agreed-upon geological history. Only divergence events treated as unambiguously supporting the SFRH are shown. Temporal uncertainty

is displayed for those taxa where it was provided. Dashed lines correspond to rough estimates provided by the authors rather than exact
dates, while solid lines correspond to exact estimates provided by the authors sans uncertainty. Letters A-M correspond to the studies listed

in Table 1.
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Just under half (13/27) of SFRH-focused studies show mixed
or negative support for the SFRH (Figure 2b). For example, Lanna
et al. (2020) found that the SFR's proposed north-south paleocourse
had no effect on the population structure of the gecko Lygodactylus
klugei, while its modern course may have led to shallow mitochondrial
DNA (mtDNA) divergence. Other studies found genetic structure
between sites along the SFR (i.e. upstream vs. downstream) rather
than across it (Machado et al., 2014), or no population structure at
all (Andrade-Souza et al., 2017; Balbino et al., 2018; da Conceicao
Lazarino et al., 2023). Notably, few studies have tested the SFRH on
plant species. While the SFR was rejected as a barrier to gene flow
in two of these plant-focused studies (Balbino et al., 2018; Moreira &
Fernandes, 2013), two others did identify population structure con-
cordant with the SFRH (Menezes et al., 2016; Souza et al., 2018). The
remaining SFRH studies focus on animals, and over half of those on rep-
tiles and amphibians, which commonly show strong to mixed effects of
the SFR (Figure 2b), especially arid-adapted or fossorial species that
may have lower vagility than less specialized taxa. In most species, the
SFR s likely to act as a soft barrier that permits some gene flow while
leading to weakly structured lineages on either bank (Coelho, Guillory,
& Gehara, 2022; Fegies et al., 2021; Oliveira, Martinez, et al., 2018;
Werneck et al., 2015), especially if the SFR has fluctuated in width and
the steepness of its banks (i.e. its strength as a barrier) over time.

High support for a model of divergence (with high or low mi-
gration), temporally concordant with the SFR's paleocourse change,
would offer the best support for the SFRH. However, divergence
times seen in the literature fit the proposed paleocourse change
times poorly (Figure 3). Resistance across the river should predict
genetic distances more strongly than other factors such as climate
change or topography. Unfortunately, without new geological stud-
ies to demystify the SFR's origin and paleocourse, it remains difficult
to derive generally consistent theories that are temporally conguent

regarding the effect of the river on Caatinga biodiversity.

6 | THE ROLE OF THE CENTRAL
BRAZILIAN PLATEAU IN STRUCTURING THE
CERRADO

The uplift of the Central Brazilian Plateau (CBP) is frequently cited as
adriver of diversification in the Cerrado, but the geological origins of
the plateau are poorly understood. The CBP comprises the highlands
of central and southeastern Brazil, covering most of the Cerrado at
altitudes ranging from ~100 to 1670m (Figure 1a). Relevant phy-
logeography studies typically cite Del'Arco and Bezerra (1989) in
support of a late Neogene to early Pleistocene plateau uplift event.
There are several proposed mechanisms by which the CBP may have
structured populations. Some studies find evidence of allopatry
between sister lineages isolated to either side of the CBP (Oliveira,
Gehara, et al., 2018) or on and adjacent to it (i.e. altitudinal segrega-
tion) (Ishihara et al., 2022). Other studies propose that a system of
sub-plateaus and intervening riverine depressions, formed by inci-
sion after the CBP's initial uplift, contributed to diversification and
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population structure, between either related populations on differ-
ent sub-plateaus (Mittan et al., 2022) or related populations on the
sub-plateaus and in the riverine depressions (Camurugi et al., 2021).
Collectively, we refer to this group of hypotheses as the Central
Brazilian Plateau Hypothesis (CBPH).

The principal uplift of the CBP is thought to have occurred
through the Neogene, followed by peripheral subsidence and sub-
plateau formation in the Plio-Pleistocene. The most frequently cited
sources in support of these events are da Silva (1997) and Colli (2005),
who themselves cite older geological literature, the most important
being Del'Arco and Bezerra (1989) (but see also Ab'Saber, 1983;
Brasil & Alvarenga, 1989; Cole, 1986). The authors of modern phy-
logenetics and phylogeography studies pertaining to the CBP have
generally asserted that late Neogene to early Pleistocene divergence
dates (~18-2mya) demonstrate the CBP's effect on population
structure (Figure 4) (e.g. Costa et al., 2017; Domingos et al., 2014;
Santos et al., 2014). However, Del'Arco and Bezerra (1989) propose
a more protracted scenario than these studies suggest, consisting
of Paleogene wet/dry cycles that first promoted valley and plateau
formation in the central Brazilian highlands via intense erosion, in-
cluding Eocene pediplanation (i.e. plain formation from erosional
scarp retreat) and Oligocene fault reactivations and uplifts, form-
ing the essential definition of the Cerrado landscape. Late Neogene
(Mio-Pliocene) and Pleistocene wet/dry cycles further defined the
modern system of plateaus and depressions. As such, the uplift of
the CBP being a specifically late-Neogene phenomenon may be
overstated, with the landscape instead having formed throughout
the Cenozoic.

Despite uncertainty around the timing of the CBP uplift and
associated events, many CBP phylogeography studies have undeni-
ably recovered late Neogene divergences between pertinent taxa
(Figure 4). As with the SFRH, there is a strong herpetological bias in
CBPH studies (Figure 2b). Two studies of frogs revealed highly con-
cordant divergences ~3.5mya between lowland lineages separated
by the CBP to its northeastern and southwestern margins (Oliveira,
Gehara, et al., 2018; Porto et al., 2022; G and E in Figure 4). Thus,
the CBP may itself form an allopatric barrier, as suggested in earlier
studies (Lanna et al., 2018; Recoder et al., 2014; Werneck, Gamble,
et al,, 2012). The elevational difference between the plateau and the
surrounding lowlands may also have segregated sister lineages on
and off the plateau. Ishihara et al. (2022) and Costa et al. (2017) both
identified this pattern, though at very different time periods - the
former among populations of a lizard in the Plio-Pleistocene, the lat-
ter between killifish genera well within the Miocene. The CBP has
seemingly structured Cerrado diversity at multiple taxonomic scales
throughout the Neogene. However, it should be noted that this vi-
cariant effect may result from correlated environmental factors such
as temperature. A concordant divergence time is only preliminary
evidence for the CBPH; other ecological hypotheses, and the preva-
lence of gene flow between sister lineages, should also be explored.

Other studies have asserted that compartmentalization of the
CBP via river incision contributed to diversification in Cerrado
taxa, with sister lineages occupying either adjacent sub-plateaus or
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Study
Oliveira-Silva

et al. (2023)

Fegies et al. (2021)

Coutinho-Abreu
et al. (2008)

Werneck
et al. (2015)

Faria et al. (2013)

do Nascimento
et al. (2013)

Bruschi et al. (2019)

Siedchlag
et al. (2010)

do Nascimento
etal. (2011)

Costa, Amorim, and
Mattos (2018)

Almeida et al. (2020)

Passoni et al. (2008)
Werneck, Gamble,

Taxon

Characidium bahiense (fish)

Cryptonanus agricolai (possum)

Lutzomyia longipalpis s.l. (fly)

Tropidurus semitaeniatus group (lizard)

Gracilinanus agilis (possum)

Thrichomys spp. (rodent)

Pithecopus nordestinus (frog)

Calyptommatus/Nothobachia spp. (lizard)

Calomys expulsus (rodent)

Hypsolebias/Cynolebias spp. (fish)

Ampbhisbaena pretrei (lizard)

Eurolophosaurus spp. (lizard)

Phyllopezus pollicaris (lizard)

etal. (2012)

TABLE 1 List of phylogeographic
studies claiming to unambiguously
corroborate the SFRH, with corresponding
taxa and divergence times.

Divergence
time
0.139mya
(0.065-0.227)
0.28mya
~0.45mya

~1mya

1.40mya
(0.63-2.36)

1.45mya
(0.35-2.39)

~1.5mya
(0.8-2.6)

~1.2-2.6mya®

~2mya

1.13-2.57 mya
(0.54-3.76)

4.9mya
(0.715-9.7)

~5.4mya

Late Miocene

Note: Letters in the first column correspond to points of interest in the timeline of Figure 3.

Multiple divergence dates across multiple taxa.

adjacent plateaus (500-1700m) and depressions (100-500m) (da
Silva, 1997). This latter scenario is called the Plateau-Depression
Hypothesis (PDH) in the literature, and specifically predicts older lin-
eages on plateaus and younger sister lineages in intervening riverine
depressions (Werneck, 2011). However, no studies have specifically
tested this prediction. To our knowledge, only a taxonomic study
of teiid lizards has identified reciprocal monophyly between plateau
and depression lineages (Giugliano et al., 2013). Instead, as with the
previously discussed role of the CBP as an allopatric barrier, most
phylogeographic studies simply claim that late Neogene divergence
times indicate that CBP compartmentalization structured their focal
taxon, which formerly occupied the CBP highlands more uniformly
(Amaral et al., 2021; Arantes et al., 2023; Domingos et al., 2014;
Guarnizo et al., 2016; Miranda et al., 2019; Mittan et al., 2022; Prado
et al., 2012). A few earlier phylogenetics studies also identified
this pattern (Machado et al., 2014; Maciel et al., 2010). Camurugi
et al. (2021) identified an analogous yet opposite pattern in which a
lowland frog distributed through the riverine depressions of the CBP
was probably structured by the higher altitude plateaus, albeit with
significant gene flow. Both that study and Lima-Rezende et al. (2019)
inferred late Pleistocene divergence times (Figure 4; letters A and B),
indicating that subsidence-induced diversification in the CBP may
still be ongoing. On the other hand, the CBP's uplift and compart-
mentalization have apparently not affected some squamate reptiles,

which show significant gene flow and/or a lack of elevational differ-
entiation (Fonseca et al., 2018; Ledo et al., 2020; Santos et al., 2014).

Overall, the underlying geology of the CBP and its effects on
Cerrado biodiversity remain poorly understood. Determining the
exact mechanisms of divergence and diversification in CBP-related
taxa will require direct hypothesis testing. High support for a model
of divergence with or without migration would support the CBPH,
but idiosyncratic divergence dates are perhaps unavoidable. Genetic
structure could in fact represent a climatic barrier rather than a
physical one, so divergence times may be associated not with the
barrier's appearance, but with the actual dispersal across the barrier,
conditioned by climate, vegetation and species-specific traits. Given
the diversity of divergence times seen in the literature (Figure 4), this
is currently the most likely scenario. Overall, the difficulty of disen-
tangling the influences of climate versus elevation will likely remain

a challenge to explorations of the CBPH (Table 2).

7 | MIOCENE MARINE INCURSIONS IN
THE CHACO

The inundation of much of Miocene South America by seawater has
been a frequently cited driver of biodiversity since the inception of
the idea nearly three decades ago (Hoorn, 1993). Geological evidence
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FIGURE 4 Timeline of CBPH-related divergence or diversification events (above timeline) and sequence of relevant geological events
proposed by Del'Arco and Bezerra (1989) (below timeline). Temporal uncertainty is displayed for those taxa where it was provided. Dashed
lines correspond to rough estimates provided by the authors rather than exact dates, while solid lines correspond to exact estimates
provided by the authors sans uncertainty. Letters A-N correspond to the studies listed in Table 2. Divergence events marked with an
asterisk (*) are hypothesized to have occurred because of allopatric isolation on either side of the CBP, or on versus off of it, rather than CBP
compartmentalization in accordance with the Plateau-Depression Hypothesis.

suggests marine incursions extended southward from the Caribbean
along the east Andean versant, eastward across the Amazonian basin
to the North Atlantic and southeast across the Parana basin into the
South Atlantic around 10mya (Hoorn et al., 2010; Webb, 1995). The
extent, timing, and frequency of the incursions remain uncertain
(Jaramillo et al., 2017). The incursions are thought to have isolated the
Guianan and Brazilian Shields both from the Andes and each other, pro-
moting extinction in the intervening lowlands (the Amazon and Parana
basins) and isolation/diversification on the shields. This was followed
by dispersal into the lowlands after the incursions receded (Rasanen
et al., 1995). The distributions of several South American lineages are
proposed to have been shaped by this mechanism (Aleixo, 2004; Garda
& Cannatella, 2007; Giugliano et al., 2013; Maciel et al., 2010; Noonan
& Wray, 2006; Ribas et al., 2005; Werneck et al., 2009).

Of the DD subregions, the Chaco would have been most affected
by Miocene marine incursions, which are considered a primary influ-
ence on its geoclimatic history (Hernandez et al., 2005); the Cerrado
and Caatinga are largely located on the Brazilian Shield and were
mostly spared from flooding. The Chaco likely experienced two or
three periods of marine inundation, potentially localized to southern
South America as the ephemeral ‘Paranaense Sea’, from ~13 to 10 and
~10 to 5mya (Figure 1c) (Hernandez et al., 2005; Ortiz-Jaureguizar
& Cladera, 2006; Ruskin et al, 2011). Studies of fossil rodents
(Candela et al., 2012) and phylogenetic studies of fairy armadillos
(Delsuc et al., 2012), geckos (Morando et al., 2014; Werneck, Gamble,
et al., 2012), and plants (Acosta et al., 2016; Aguilar et al., 2020; Moré
et al,, 2015) indicate a role for vicariance via the Paranaense Sea.

Phylogeographic evidence for the effects of Miocene marine
incursions on Chaco taxa is rare. However, Brusquetti et al. (2018)
determined that the three species of the frog Lepidobatrachus di-
verged through the late Miocene ~15-8mya, coinciding with mul-
tiple instances of the Paranaense Sea. Furthermore, they showed

evidence of recent population expansion, as expected after the sea's
final recession. Long-term persistence of northern populations of
Lepidobatrachus llanensis near the Michicola Arch, a highland that
would not have been flooded during the marine incursions, offers
further evidence for vicariant effects of the Paranaense Sea. The
southern/southwestern Chaco, Asunciéon Arch and Rio de la Plata
Craton are proposed as additional refugia, though evidence for
this beyond a single Lepidobatrachus fossil from the Mio-Pliocene
(Nicoli, 2015) is lacking. Future phylogeographic studies in the
Chaco may corroborate these findings in other taxa. A promising ex-
ample is a study on the tree frog Scinax squalirostris (Abreu-Jardim
et al., 2023), which used demographic modelling and approximate
Bayesian computation to identify a phylogeographic break dated to
the late Miocene, likely corresponding to the end of a marine incur-
sion. However the substantial age of this phenomenon may limit the
amount of demographic information researchers can retrieve from
genetic data. It might therefore be necessary to resort to meth-
odologies more appropriate for exploring biogeography at deeper
timescales, such as BioGeoBEARS (Matzke, 2014), when exploring
the Miocene marine incursions. It is still expected that elevation will
predict genetic diversity, with high-elevation areas showing higher
genetic diversity relative to recently colonized lower elevation areas

that were formerly inundated (Fagundes et al., 2007).

8 | DISCUSSION
8.1 | Trends in DD phylogeography studies
Significant progress in DD phylogeography has been made in the

past two decades, with at least 142 studies published as of August
2023 (Table S1; Figure 5). One of the most noticeable trends is the
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proportional dominance of studies featuring herpetofauna: nearly
one third (41/142) of DD phylogeography studies focus on reptiles
and/or amphibians. A greater number of studies (n=50) are plant
focused (41 of those in eudicots), but with ~20,000 plant species
across the DD (Collevatti et al., 2020) versus 500-1000 reptile
and amphibian species (Alvarez et al., 2009; de Albuquerque
et al,, 2012; Nogueira et al., 2011; Valdujo et al., 2013), a propor-
tional bias is evident. The over-representation of reptiles, amphib-
ians, and plants in the DD literature may be due to the relative
ease of collecting samples across phylogeographic scales (as op-
posed to mammals or birds), and relatively complete taxonomic
knowledge bases (as opposed to invertebrates). More studies in
other groups such as birds (currently n=12) or invertebrates (cur-
rently n=20) would greatly benefit the field. The distribution of
studies among DD subregions is also biased: only 14% (20/142) of
studies focus exclusively on the Chaco (21 other studies include
Chaco samples, but are not focused on it exclusively) (Figure 2a).
Given the urgency of Chaco conservation amid ongoing deforesta-
tion (Cuyckens, 2021), phylogeographic study of this region should
be prioritized.

A conceptual divide between animal and plant researchers
pervades the DD phylogeography literature, wherein animal stud-
ies explore whether Neogene versus Pleistocene events drove
DD biodiversity patterns, while the vast majority of plant stud-
ies (82%; 41/50) focus on Pleistocene climatic fluctuations or the
related PAH (Figure 2b). Most of these plant studies were con-
ducted in the Cerrado, which hosts 80% (40/50) of DD plant phy-
logeography studies, 88% (35/40) of which were focused on the
PCFH (Figure 2a). There are some exceptions (Aguilar et al., 2020;
Menezes et al., 2016), including the meta-analysis by Collevatti
et al. (2020) that explicitly explores the relative importance of
Neogene versus Pleistocene events on Cerrado plants, but ani-
mal studies comprise the bulk of those exploring the effects of
older geoclimatic phenomena on DD biodiversity. Importantly, all
DD taxa evolved under the same environmental conditions and
geoclimatic events - only their responses to these phenomena dif-
fered. We encourage both researchers of all taxonomic specialties
to explicitly test hypotheses such as those corresponding to the
CBP and SFR.

The DD phylogeography literature has yet to broadly adopt
genome-scale data (Figure 2a), which would allow for more ro-
bust hypothesis testing and demographic inference. Sequencing
at the genomic scale offers far greater resolution than mtDNA
or microsatellite studies for inferring population characteristics
of interest like effective population size and gene flow and the
geoclimatic processes underlying them (McGaughran et al., 2022).
Inferring phylogenies from many loci further obviates concerns
over incomplete lineage sorting, to which single-locus studies
are particularly vulnerable (Liu et al., 2015). In our review, 10%
(14/142) of DD phylogeography studies have used genome-scale
datasets, primarily RADseq (Figure 2a; Table S1). The high cost
of next-generation sequencing is almost certainly the main hurdle
preventing the widespread adoption of these newer technologies

in DD phylogeography, particularly considering the decreases
in Brazilian science funding over the past decade (Oliveira
et al., 2020; Overbeck et al., 2018). Further reductions in the cost
of genome-scale or even whole-genome sequencing will hopefully
allow more DD researchers to harness their power for inferring
phylogeographic patterns.

DD researchers should also use more advanced analytical meth-
ods to improve the power of their inferences. Less than one third
(41/142) of DD phylogeography studies have used some sort of
model-based method (Figure 2a; Table 3), most of these published
in the past 5years. This could also include performing trait-based
analyses that account for the phenotypic and ecological properties
of the organism, such as regressing ecological variables against ge-
netic distances (Paz et al., 2015; Vasconcellos et al., 2019; Zamudio
et al., 2016) or using demographic and evolutionary simulations that
can be further combined with approximate Bayesian computation
(Csilléry et al., 2010) or machine learning (Fonseca et al., 2021) to
directly test phylogeographic hypotheses (Hickerson et al., 2010).
An inherent challenge in phylogeography, given the impossibility of
designing randomized experiments across evolutionary timescales
for most taxa, is to clearly outline expectations for these hypoth-
eses. ldeally, integrated temporal and spatial expectations should
be explored. However, due to theoretical challenges and compu-
tational limitations, spatial and temporal questions have generally
been explored separately. As such, phylogeographic methods can
generally be separated into two main categories. First, explicit
time/implicit space methods are mostly based on coalescent theory
(Kingman, 1982), fitting empirical data to simulated demographic
scenarios representing expectations under proposed hypotheses
(Csilléry et al., 2010). These methods can be (and for the most part,
have been) used to test any of the geoclimatic hypotheses discussed
in this review. Second, implicit time/explicit space methods are
founded in the population genetics theory pertaining to isolation
by distance (Slatkin, 1993; Wright, 1943). These methods, including
multiple matrix regression (MMR) and generalized dissimilarity mod-
elling (GDM), usually test for the power of distance matrices derived
from the landscape (e.g. pairwise geographic distance) in predicting
the variance of a genetic distance matrix. Explicit time/implicit space
and implicit time/explicit space methods can be considered perpen-
dicular to each other and may be used in combination to integrate
spatial and temporal genetic patterns and processes. Additionally,
a ‘third class’ of forward-time genetic simulator is emerging (Currat
et al., 2019; Messer, 2013), with wide implications for the field de-
spite their (as-yet) steep learning curves.

A full review of phylogeographic methods is far beyond the
scope of this manuscript; we simply wish to emphasize the im-
portance of considering both spatial and temporal dimensions.
We previously made methodological suggestions throughout
the manuscript for testing each hypothesis considered in the
review (see also Table 4). Rather than using these model-based
approaches, most DD phylogeographic studies rely instead on
phylogenetic inference, divergence time estimation, popula-
tion structure characterization, and/or niche modelling. The
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TABLE 2 List of phylogeographic
studies claiming to corroborate the CBPH,
with corresponding taxa and divergence
times.

FIGURE 5 Timelines describing

the accumulation of Dry Diagonal
phylogeography studies as of August
2023, with respect to (a) taxonomic
group(s) and (b) study subregion(s). Black-
bordered boxes represent new studies
published in the corresponding year. After
their initial year of publication, studies are
represented as borderless boxes to show
the accumulation of studies over time.

Boana aff. multifasciata/albopunctata

Study Taxon
A Lima-Rezende Neothraupis fasciata (songbird)

et al. (2019)
B Camurugi Boana raniceps (frog)

etal. (2021)
C Mittan et al. (2022)

(frog)

D Ishihara et al. (2022) Enyalius capetinga (lizard)
E Porto et al. (2022) Pseudopaludicola mystacalis (frog)
F Amaral et al. (2021) Cereus spp. (cactus)
G Oliveira, Gehara, Dermatonotus muelleri (frog)

et al. (2018)
H Domingos Gymnodactylus amarali (lizard)

et al. (2014)
| Arantes et al. (2023) Dendropsophus rubicundulus (frog)
J Prado et al. (2012) Boana albopunctata (frog)
K Miranda et al. (2019) Physalaemus cuvieri (frog)
L Werneck, Gamble, Phyllopezus pollicaris (lizard)

etal. (2012)
M Costa et al. (2017)
N Guarnizo et al. (2016)

Cynolebias/Simpsonichthys (fish)

Anolis meridionalis (lizard)
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Divergence/
diversification time

Last Interglacial

0.340mya
(0.257-0.522)

1.9 mya

2.43mya (1.49-3.43)
3.3mya (2.1-4.9)
3.67 mya (3.31-5.8)
3.79mya (1.85-7.22)

~5mya

5.45mya (4.38-6.65)
5.8mya (3.6-5.9)
8.32+2.93mya
~11.5mya

14 mya (10-19)
18.01 mya

Note: Letters in the first column correspond to points of interest in the timeline of Figure 4.
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evidence these methods provide in relating phylogeographic to
geoclimatic patterns is circumstantial - they are agnostic to one
or the other. On the other hand, explicit time/implicit space and
implicit time/explicit space methods allow direct hypothesis test-
ing. For example, Gehara et al. (2017) compared the efficacy of
four demographic models with various degrees of synchrony in
population expansion in Caatinga herpetofauna, demonstrating a
community-wide response to potential landscape reorganization

in the Caatinga during the late Pleistocene. A similar model-based

TABLE 3 Support for DD biogeographic hypotheses from
model-based studies.

# model-based

# model-based studies that are

# studies studies supportive
PCFH 89 29/89 (33%) 25/29 (86%)
PAH 13 3/13 (23%) 1/3 (33%)
FCH 3 2/3(67%) 2/2 (100%)
SFRH 27 9/27 (33%) 7/9 (78%)
CBPH 17 7/17 (41%) 5/7 (71%)
MMIH 6 2/6 (33%) 2/2 (100%)

Note: Note that some studies may have more than one hypothesis test;
as such the table is better interpreted as counting the number of times
a hypothesis was tested rather than an absolute number of studies.
Abbreviations: CBPH, Central Brazilian Plateau Hypothesis; FCH,
Forest Connections Hypothesis; MMIH, Miocene Marine Incursion
Hypothesis; PAH, Pleistocene Arc Hypothesis; PCFH, Pleistocene
Climatic Fluctuations Hypothesis; SFRH, Sao Francisco River
Hypothesis.

approach was performed by Bonatelli et al. (2022), testing the
effects of Pleistocene climate changes in different species of
plants, lizards, frogs, spiders, and insects distributed within the
DD. Results demonstrated discordant demographic patterns even
within taxonomic groups. Some temporally concordant expansion
and contraction events were detected during the middle-to-late
Pleistocene, supporting the role of climatic change in shaping ge-
netic diversity.

A potential issue for the DD phylogeography literature is the fix-
ation on testing the same set of geoclimatic hypotheses. The field
risks becoming a self-perpetuating isolate where old ideas are tested
and debated for decades with no real resolution in sight. For exam-
ple, the PAH, proposed three decades ago (Prado & Gibbs, 1993),
is still investigated despite fewer than half of relevant studies sup-
porting it (Figure 2b), including only one of three model-based stud-
ies (Table 3). On the other hand, the other geoclimatic hypotheses
have seen much higher support. It may no longer be necessary to
frame studies as ‘tests’ of the SFRH (for example) in general; rather
they can be presented as determining whether a well-studied barrier
affects the study taxon, as it has been previously found to affect
many others. In general, the prevailing hypothesis-centred practice
may encourage the shoehorning of tests for geoclimatic phenomena
into studies to which they may only appear at first to apply, rather
than encouraging the development of more creative explanatory
hypotheses for DD biodiversity patterns. Some possible diversifica-
tion drivers briefly discussed earlier, such as the role of rainforest
corridors between the Amazon and Atlantic Forest, or the influence
of ecological transition zones, are poorly explored in DD taxa, com-
prising rich avenues for future research. Additionally, it is key to
also investigate the underlying geology and paleoclimate of the DD

TABLE 4 Genetic expectations under the primary DD phylogeography hypotheses.

Hypothesis Expectations

PCFH e Support for out-of-refuge models where | stability predicts 1 AN, and | genetic diversity (Carnaval et al., 2009)

e Support for demographic models with Pleistocene AN,

e Paleoclimatic models predict genetic diversity across space (see Vasconcellos et al., 2019)
e Synchronicity in expansion times of co-distributed species (see Gehara et al., 2017)

PAH o Sister relationships between disjunct species in isolated SDTF nuclei

e Pleistocene divergence times

e Model support for divergence w/o migration, with | N, at time of divergence
e Resistance across intervening non-SDTF habitats predicts genetic distance
o Pleistocene | N, in non-SDTF populations (see Thomé, Carstens, Rodrigues, Alexandrino, & Haddad, 2021)

FCH e Model support for divergence w/o migration, and with | N, at the time of divergence, then recent 1 N (see Thomé et al., 2016)
e Potential admixture/hybridization after population expansion

SFRH e Model support for divergence (migration determines ‘hardness’ of barrier) (see Coelho, Camurugi, et al., 2022; Coelho, Guillory,

& Gehara, 2022)

e Divergence times concordant with paleocourse change

e Temporal concordance in divergence times of co-distributed species

e Resistance across SFR predicts genetic distance

CBPH e Model support for divergence (migration determines ‘hardness’ of barrier) (see Oliveira, Gehara, et al., 2018)

e Elevational resistance predicts genetic distance

MMIH e 1 elevation areas predict 1 genetic diversity (see Brusquetti et al., 2018)

e Miocene divergence times

e Support for out-of-refuge models with range expansion to | elevation areas
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for a richer understanding of their effect on genetic diversity. The
most recently published phylogeography article on the SFRH, for
instance, still cites geological literature from 25years ago (Oliveira-
Silva et al., 2023). In this case, essentially nothing has been published
about the SFR's hypothesized paleocourse changes since then, but
that may not be true for the other geoclimatic events often cited as
biodiversity drivers in the DD. To better understand the historical
biogeography of the DD, biologists should work with climatologists
and geologists to encourage and develop new integrated avenues

of study.

9 | CONCLUSION

The DD biota was shaped by a combination of Neogene and
Pleistocene factors, but the responses of individual taxa are largely
idiosyncratic, determined by both local geoclimatic events and
organismal traits. The origins of many deep divergences - mostly
known from herpetofauna - are related to Neogene events such as
the uplift of the Central Brazilian Plateau and multiple marine in-
cursions in the southern DD. The paleocourse change of the Sao
Francisco River also isolated lineages in many Caatinga species.
Pleistocene climatic fluctuations shaped phylogeographic histories
as well through vegetation shifts, refugium formation, and rainforest
connections through the DD, though the evidence for some specific
theories such as the PAH is currently weak.

Many phylogeographic studies on the DD have been published,
especially in the last decade, though the region is still understud-
ied compared to the South American rainforests. One significant
avenue for advancing DD phylogeography lies in using genome-
scale and whole genome data, which has thus far seen limited use
(though arecent increase in studies using these types of data is en-
couraging). We also advocate using model- and simulation-based
techniques to directly test phylogeographical hypotheses. We
advise testing the established DD phylogeographic hypotheses
using comparative phylogeography methods with a broader range
of taxa (Beaumont et al., 2010) - most explorations of Pleistocene
climatic fluctuations, for instance, focus on plants, while tests of
vicariant events disproportionately feature herpetofauna. On the
other hand, we note that disrupting an endless cycle of testing
decades- old geoclimatic hypotheses based on outdated and crit-
ically unexamined literature is necessary to progress our under-
standing of the formation of biodiversity in this region. The DD is
not only scientifically overlooked, but conservationally as well; as
the evolutionary histories of DD taxa become clearer, researchers
will not only better understand this unique region, but better en-
able its protection.
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