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Abstract
The	South	American	Dry	Diagonal,	also	called	the	Diagonal	of	Open	Formations,	 is	a	
large region of seasonally dry vegetation extending from northeastern Brazil to north-
ern	Argentina,	comprising	the	Caatinga,	Cerrado,	and	Chaco	subregions.	A	growing	body	
of phylogeography literature has determined that a complex history of climatic changes 
coupled with more ancient geological events has produced a diverse and endemic- 
rich Dry Diagonal biota. However, the exact drivers are still under investigation, and 
their relative strengths and effects are controversial. Pleistocene climatic fluctuations 
structured lineages via vegetation shifts, refugium formation, and corridors between 
the	Amazon	and	Atlantic	forests.	In	some	taxa,	older	geological	events,	such	as	the	re-
configuration of the São Francisco River, uplift of the Central Brazilian Plateau, or the 
Miocene	inundation	of	the	Chaco	by	marine	incursions,	were	more	important.	Here,	we	
review the Dry Diagonal phylogeography literature, discussing each hypothesized driver 
of diversification and assessing degree of support. Few studies statistically test these 
hypotheses, with most support drawn from associating encountered phylogeographic 
patterns such as population structure with the timing of ancient geoclimatic events. 
Across	statistical	studies,	most	hypotheses	are	well	supported,	with	the	exception	of	the	
Pleistocene	Arc	Hypothesis.	However,	taxonomic	and	regional	biases	persist,	such	as	a	
proportional overabundance of herpetofauna studies, and the under- representation of 
Chaco studies. Overall, both Pleistocene climate change and Neogene geological events 
shaped the evolution of the Dry Diagonal biota, though the precise effects are regionally 
and taxonomically varied. We encourage further use of model- based analyses to test 
evolutionary scenarios, as well as interdisciplinary collaborations to progress the field 
beyond its current focus on the traditional set of geoclimatic hypotheses.
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1  |  INTRODUC TION

The	South	American	Dry	Diagonal	(DD),	also	known	as	the	Diagonal	
of Open Formations, encompasses the largest continuous area of sea-
sonally dry vegetation in the Neotropics, extending from northeast-
ern	Brazil	to	northern	Argentina,	and	occupying	over	3,000,000 km2 
(Prado & Gibbs, 1993; Vanzolini, 1963; Werneck, 2011). The DD 
separates	 the	 two	main	 humid	 tropical	 forests	 in	 South	America:	
the	Amazon	Rainforest	in	the	northwest	and	the	Atlantic	Forest	in	
the	east	and	southeast.	A	steep	latitudinal	gradient	and	a	complex	
history of geoclimatic events – marine incursions, tectonic uplift, 
and climatic fluctuations – have divided the DD into three tradi-
tionally recognized subregions: (i) the Cerrado, with the world's 
largest tropical savanna, in central Brazil; (ii) the Caatinga, with the 
world's largest seasonally dry tropical forest (SDTF), in northeast-
ern Brazil; and (iii) the Chaco, a semi- arid plain in Bolivia, Paraguay 
and	northern	Argentina	(Figure 1a). These regions are not uniform 
vegetation domains; rather, they are intricate mosaics of phytophys-
iognomies dispersed along gradients of other vegetation types such 
as grasslands, savannas and woodlands. The Cerrado domain is 
composed mainly of not only savannas, but also SDTFs, seasonal 
grasslands, gallery forests, campos rupestres, and other vegetation 
types (Oliveira- Filho & Ratter, 2002). Within the Caatinga, SDTFs 

dominate extensive areas while also including humid tropical for-
ests in elevated terrains alongside savannas and campos rupestres 
situated	on	plateaus	(de	Queiroz	et	al.,	2017). Similarly, the Chaco 
domain predominantly features dry forest interspersed with savan-
nas and humid forests. However, in contrast to the SDTFs of the 
Caatinga, the Chaco experiences periodic frosts and shares floristic 
affinities with temperate vegetation, resulting in a mixture of sub- 
tropical and temperate characteristics (Pennington et al., 2000). 
High floristic diversity, endemism and differentiation across the 
DD suggest that few species are widespread and shared across the 
different regions (DRYFLOR et al., 2016).	 Although	 all	 three	 DD	
subregions are characterized by xeric environments and steep dry 
seasonal periods (Neves et al., 2015), they differ in their specific 
climatic and edaphic conditions, geological histories, and associated 
biotas. For example, though all subregions have dry and wet sea-
sons, rainfall in the Caatinga is highly sporadic, and monthslong ab-
solute droughts are frequent. Climatically, the Chaco's temperatures 
are much more extreme than those of the other DD subregions, 
from	below	freezing	in	winter	and	up	to	48.9°C	(the	South	American	
record) in summer (Werneck, 2011). Because of this diversity and 
complexity, the debate over which geographic and climatic factors 
have been most important in shaping DD biodiversity is contentious 
(Jaramillo, 2023).

F I G U R E  1 The	South	American	Dry	Diagonal	(DD).	(a)	DD	subregions	and	important	geographical	features.	The	rough	extent	of	the	
Central Brazilian Plateau (CBP; black) and the spine of the Serra do Espinhaço (SE; red) are shown. The São Francisco River (SFR) is drawn in 
solid	cyan,	while	its	hypothesized	paleocourse,	partially	following	the	course	of	the	Parnaíba	after	Grabert	(1968), is drawn in dashed cyan. 
(b)	Pleistocene	Arc	Hypothesis	and	hypothesized	Amazon–Atlantic	Forest	connections	(black	arrows;	adapted	from	Ledo	&	Colli,	2017). 
Present-	day	SDTF	nuclei,	hypothesized	to	have	been	connected	as	the	Pleistocene	Arc,	are	drawn	in	green	(adapted	from	Goncalves	
et al., 2019).	CA,	Caatinga;	CH,	Chiquitanía;	MI,	Misiones;	SP,	Subandean	Piedmont.	(c)	Hypothesized	Miocene	marine	incursions,	adapted	
from Hernández et al. (2005). The first incursion (I) occurred ~15–13 mya.	The	second	incursion	(II)	occurred	~10–5 mya.	A	‘clean’	version	of	
map (a) is provided for community use in the Supplementary Data S1.

1800 km

975 mi 40°W60°W

10°S

30°S

C E R R A D O

CAATINGA

D
R

Y
 

C
H

A
C

O
H

U
M

ID
 C

H
A

C
O

B R A Z I L

B

O
L

I V I A

P
E

R U

C
H

I
L

E

A R G
E

N
T

I
N

A

PA R A G U AY

U R U G U A Y

M
a t a  A

t l
â

n
t

i
c

a

A
m

a
z

o n  R a i n f o r e s t

P a n t a n a l

P a m p a s

CBP

SFR

(a) (b)

(c)

CA

MI

SP

CH

I

II

SE

 1365294x, 2024, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17431 by Test, W
iley O

nline Library on [17/12/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



    |  3 of 25GUILLORY et al.

The modern DD subregional assemblages are thought to have devel-
oped recently relative to the surrounding rainforest biomes, alongside 
global	aridification	events	linked	to	glacial	cycles	(Azevedo	et	al.,	2020; 
Pennington et al., 2009). The modern Caatinga arose from ~10–2.5 mya,	
probably due to a combination of aridification, erosional exposure of 
nutrient- rich crystalline soils and the immigration of plant communities 
from	the	Cerrado	and	neighbouring	SDTF	isolates	in	the	Atlantic	Forest	
(Fernandes et al., 2022). The Caatinga's primary watercourse, the São 
Francisco River, was shaped by these geoclimatic changes, which in turn 
likely shaping the Caatinga biota in the Pleistocene (Rodrigues, 1986, 
2003).	Meanwhile,	the	Cerrado	vegetation	assemblage	probably	orig-
inated	with	 the	global	expansion	of	C4	grasslands	after	10 mya,	with	
most	lineages	arising	after	4 mya	(Edwards	et	al.,	2010; Jaramillo, 2023; 
Simon et al., 2009). The history of the Cerrado is further characterized 
by the uplift of the underlying Central Brazilian Plateau and its subse-
quent erosion through the Neogene and beyond. The resulting land-
scape compartmentalization potentially shaped diversification in the 
region	 (Ab'Saber,	1983; da Silva, 1997). Finally, the Chaco was most 
likely formed from a combination of Pleistocene cooling and aridifica-
tion (Ortiz- Jaureguizar & Cladera, 2006), Pleistocene fluvial deposition 
(Iriondo, 1993),	Andean	uplift	(Gregory-	Wodzicki,	2000), and vast ma-
rine incursions in the late Neogene (~10 mya).	These	marine	incursions	
are suspected to have driven diversification in the Chaco via displace-
ment and allopatry (Brusquetti et al., 2018). The entire DD was also af-
fected by the strong climatic fluctuations of the Pleistocene, which in 
turn may have driven the formation of temporary rainforest corridors 
that	 connected	Amazonia,	 the	Yungas,	 and	 the	Atlantic	Forest	while	
forming barriers to dispersal in the DD itself (Sobral- Souza et al., 2015; 
Trujillo-	Arias	et	al.,	2017). Importantly, the DD subregions are not the 
only	 arid	 or	 semi-	arid	 environments	 of	 South	 America	 –	 in	 fact	 the	
term	 ‘Arid	Diagonal’	 is	 sometimes	used	 to	describe	 another	 such	 re-
gion	stretching	from	coastal	Peru	to	Patagonia	(Abraham	et	al.,	2020). 
However, being continuous and affected by similar geoclimatic forces, 
the Caatinga, Cerrado, and Chaco form a coherent and tractable system 
of study and are the focus of this review.

The	DD	is	very	biodiverse,	with	many	endemic	species	(Azevedo	
et al., 2016; da Silva et al., 2017;	 Klink	 &	Machado,	 2005; Neves 
et al., 2015). The richest subregion is the Cerrado, one of 35 global 
biodiversity hotspots, boasting at least 10,000 plant species, of which 
nearly	half	are	endemic	(Mittermeier	et	al.,	2011). The Caatinga har-
bours at least 3150 species of plants, 23% of them endemic (da Silva 
et al., 2017), while the Chaco has ~3400 plant species, 11% of which 
are endemic (Baumann et al., 2016). However, the biodiversity of the 
DD and the processes generating it have only recently seen signifi-
cant attention from researchers. For example, Vanzolini (1963, 1974) 
and later Vitt (1991) regarded the fauna of the region as depauperate, 
with low endemism and overall diversity. Increased sampling and the 
advent of molecular phylogenetics in the past two decades have re-
vealed a vast underestimation of DD biodiversity. Numerous lineages 
once thought to belong to a single widespread taxon are now known to 
comprise multiple species (Bezerra et al., 2020; Collevatti et al., 2009; 
Domingos et al., 2014; Oliveira et al., 2015; Recoder et al., 2014), 
and other species new to science have also been described (Barboza 

et al., 2011; Jansen et al., 2009; José da Silva, 2014; Teixeira Jr. 
et al., 2013).

Here, we review the growing DD phylogeography literature, which 
suggests that a set of geoclimatic events drove the formation of DD 
biodiversity. These include the aforementioned (i) Pleistocene climatic 
fluctuations;	 (ii)	 historical	 corridors	between	 the	Amazon	Rainforest	
and	Atlantic	Forest;	(iii)	the	establishment	of	the	São	Francisco	River	in	
the Caatinga; (iv) the uplift of the CBP in the Cerrado and (v) marine in-
cursions in the Chaco. We identified 142 DD phylogeography studies, 
most of which address one or more of these hypotheses (Table S1 and 
Appendix	S1). In this review, we offer an overview of DD phylogeog-
raphy studies in terms of the geoclimatic hypotheses they investigate 
and discuss trends, issues and possible future directions in the field.

2  |  LITER ATURE SURVE Y

We conducted our literature survey of DD phylogeography studies 
in	multiple	sessions	between	July	2021	and	August	2023	by	search-
ing	Google	Scholar	with	 the	keyword	 ‘phylogeography’,	 in	 combina-
tion	with	‘dry	diagonal’,	‘diagonal	of	open	formations’,	‘open	diagonal’,	
‘cerrado’,	‘caatinga’,	and	‘chaco’.	Some	studies	were	additionally	identi-
fied among the references of other studies. We identified 142 studies 
fitting our criteria, which were geographic and methodological. We 
counted	a	 study	as	a	 ‘Dry	Diagonal	 study’	 if	 it	was	at	 least	partially	
conducted with samples collected from one or more of the Caatinga, 
Cerrado, and Chaco subregions. Some studies also include samples 
from	Amazonia	or	the	Atlantic	Forest	(e.g.	Fonseca	et	al.,	2021); these 
studies were still included so long as the balance of samples and dis-
cussion was at least equal between DD and non- DD regions. To qualify 
as	a	 ‘phylogeography	study’,	 a	given	manuscript	must	be	conducted	
with genetic data from many samples across a relatively large area and 
utilize	phylogeographic	methods.	As	such,	we	did	not	include	studies	
that focused on small areas (i.e. landscape genetics studies), on niche 
modelling exclusively (i.e. did not use genetic data) nor phylogeny 
and associated methods exclusively (i.e. did not use phylogeography 
methods). Support for a given hypothesis is generally stated within the 
discussion of the associated study, though it is important to note that 
most studies (70%) did not perform explicit hypothesis tests. In these 
cases, hypothetical support is based on the endorsement of the hy-
pothesis by that study's authors, given their results and knowledge of 
the DD literature. For additional details on the literature survey meth-
odology,	see	Appendix	S1.

3  |  CLIMATIC DRIVERS OF 
DIVERSIFIC ATION IN THE DRY DIAGONAL

3.1  |  Pleistocene climate fluctuations

Climatic change during the Pleistocene likely explains the most 
recent speciation events, accounting for the regional distribution 
of	 communities	 through	 to	 the	 Holocene.	 In	 South	 America,	 the	
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Pleistocene Refuge Hypothesis (Haffer, 1969) posits that repeated 
glacial cycles during the Pleistocene led to fragmentation of the 
Amazon	Rainforest	 into	 isolated	 refugia,	 facilitating	allopatric	 spe-
ciation of rainforest- adapted taxa. This hypothesis is supported 
by some studies (Garzón- Orduña et al., 2015), whereas others 
have	 shown	 that	 many	 South	 American	 lineages	 arose	 earlier,	 in	
the	Neogene,	 due	 to	 geoclimatic	 processes	 such	 as	Andean	uplift	
(Bush & de Oliveira, 2006; Hoorn et al., 2010; Rull & Carnaval, 2020; 
Turchetto- Zolet et al., 2013).	A	similar	Pleistocene	versus	Neogene	
dichotomy emerges from the DD- specific literature (Collevatti 
et al., 2020; Colli, 2005), though the exact hypothesized mechanisms 
of speciation differ.

In the Cerrado, the majority of phylogeographic studies have 
overwhelmingly demonstrated demographic or evolutionary re-
sponses to Pleistocene climate change, mostly in plants (Figure 2) 
(Buzatti et al., 2017; Collevatti et al., 2015; Fiorini et al., 2020; Leal 
et al., 2019; Ramos et al., 2007; among many others – see Fava 
et al., 2020,	for	a	contradictory	case).	A	meta-	analysis	by	Collevatti	
et al. (2020) found that the effects of Pleistocene climate fluctua-
tions in plants are reflected primarily as intra- specific diversity, with 
the actual origin of major lineages occurring during the Neogene 
due to geological events. Discordant demographic responses during 
the Pleistocene are observed among plants, with some species 

expanding (Bonatelli et al., 2014; Leal et al., 2019) and others con-
tracting (Collevatti et al., 2015; Collevatti, Ribeiro, et al., 2012; de 
Lima et al., 2014) or even remaining stable (Lima et al., 2017). Some 
Cerrado plants exhibit an east–west pattern of lineage differentia-
tion (northeast–southeast in a few cases) (Correa Ribeiro et al., 2016; 
Leal et al., 2019; Ramos et al., 2007;	Resende-	Moreira	et	al.,	2017). 
No physical barriers seem to account for this phylogeographic break, 
which has been linked to historical range shifts of Cerrado vegeta-
tion during Pleistocene climate changes.

In animals, most Cerrado phylogeography studies focus on rep-
tiles and amphibians, which also show contradictory responses. 
Frogs generally show refugial isolation in the older Pleistocene and 
population expansion in the more recent Pleistocene due to the end 
of	 the	 last	 glaciation	 (Arantes	 et	 al.,	2023; Camurugi et al., 2021; 
Miranda	et	al.,	2019; Prado et al., 2012; Vasconcellos et al., 2019). 
Similarly, Werneck, Nogueira, et al. (2012) demonstrated that squa-
mate reptiles persisted and diversified in Pleistocene refugia located 
on	 Cerrado	 plateaus	 (Ab'Saber,	 1983). However, further research 
has revealed little genetic divergence between stable and unstable 
regions (Santos et al., 2014; Werneck, Gamble, et al., 2012). Older, 
Neogene diversification events (Domingos et al., 2014; Guarnizo 
et al., 2016;	Machado	 et	 al.,	2014; Werneck et al., 2009) suggest 
that Pleistocene refugia might have had limited effects on reptile 

F I G U R E  2 Circos	plots	visualizing	the	DD	phylogeography	literature,	constructed	with	the	R	package	circlize	v0.4.15	(Gu	et	al.,	2014). 
(a) Relationships between focal taxonomic groups and focal subregions (or combinations thereof), as well as the quantity of model- based 
studies and studies using genome- scale data for each category. The outer ring of cells represents the total number of model- based and/
or genomic studies for a given category; the inner ring represents totals for the corresponding ribbon. (b) Relationships between focal 
taxonomic groups, DD biogeographic hypotheses, and the corresponding degree of support. The outer layer of the ring of cells shows the 
total number of addressed hypotheses (not	studies;	studies	may	address	≥1	or	0	hypotheses)	showing	full	support,	mixed	support,	or	no	
support	for	the	given	category,	while	the	inner	layer	pertains	to	the	corresponding	ribbon.	Am,	Amphibian;	An,	Animal;	Ca,	Caatinga;	CBPH,	
Central	Brazilian	Plateau	Hypothesis;	Ce,	Cerrado;	Ch,	Chaco;	FCH,	Forest	Connections	Hypothesis;	MMIH,	Miocene	Marine	Incursion	
Hypothesis;	PAH,	Pleistocene	Arc	Hypothesis;	PCFH,	Pleistocene	Climatic	Fluctuations	Hypothesis;	Pl,	Plant;	Re,	Reptile;	SFRH,	São	
Francisco River Hypothesis.
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population structure and diversity, despite the small number of af-
firmative studies. For Cerrado reptiles, the effects of Pleistocene 
climate change may therefore be limited to demographic changes. 
Other animal taxa studied in this context have generally shown demo-
graphic changes and/or changes in population structure in response 
to Pleistocene climatic fluctuations (mammals: Di- Nizo et al., 2022; 
González- Ittig et al., 2022; birds: Corbett et al., 2020; Lima- Rezende 
et al., 2019; Luna et al., 2017; Rocha et al., 2020; Souza et al., 2022; 
invertebrates:	Andrade-	Souza	et	al.,	2017; Barrios- Leal et al., 2019; 
Fernández Campón et al., 2021;	Franco	&	Manfrin,	2013; Françoso 
et al., 2016;	Moraes	et	al.,	2009).

The Caatinga's formation occurred during the Neogene and 
Pleistocene, with an SDTF flora assembling in the region as regional 
aridification	and	the	exhumation	of	Paleo-	Mesozoic	sediments	pro-
moted environmental heterogeneity (Fernandes et al., 2022). The 
Pleistocene Caatinga contracted during dry glacial maxima as global 
moisture was locked into ice sheets closer to the poles, expanding 
again during interglacial periods (Werneck et al., 2011). The main 
onset of diversification in the Caatinga flora probably occurred 
during or after the Pliocene, in parallel with the diversification of 
other	SDTF	isolates	in	South	America	(Colli-	Silva	et	al.,	2021), such 
as	the	Subandean	Piedmont	and	Misiones	(Figure 1b), though they 
probably developed in isolation from each other (see later section). 
Just over half (13/24) of studies on the effects of Pleistocene cli-
matic fluctuations on Caatinga taxa are focused on herpetofauna. 
As	 with	 the	 Cerrado,	 Caatinga	 amphibians	 in	 general	 demon-
strate demographic change and changes in population structure 
in response to Pleistocene climatic change (Camurugi et al., 2021; 
Gehara et al., 2017; Oliveira et al., 2021; Thomé et al., 2016; Thomé 
& Carstens, 2016;	 Thomé,	 Carstens,	 Rodrigues,	 Alexandrino,	 &	
Haddad, 2021; Thomé, Carstens, Rodrigues, Galetti Jr, et al., 2021), 
while reptiles have responded more strongly to Neogene geological 
events (Fonseca et al., 2018;	Oliveira,	Martinez,	et	al.,	2018; Passoni 
et al., 2008; Werneck et al., 2015; but see Camurugi et al., 2022). 
However, synchronous population expansions in both Caatinga 
reptiles and amphibians have been detected in the late Pleistocene 
(118–224 kya),	potentially	coinciding	with	an	expansion	in	Caatinga	
habitat (Gehara et al., 2017).	 Studies	 on	 insects	 (Andrade-	Souza	
et al., 2017; Barrios- Leal et al., 2019; Bonatti et al., 2014;	 Maia	
et al., 2022;	Miranda	et	al.,	2017) and plants (Balbino et al., 2018; 
Caetano et al., 2008) also generally show Pleistocene climate change 
effects. The exact patterns and mechanisms of Pleistocene climate 
change in the Caatinga are still unclear (Colli- Silva et al., 2021); the 
proposed	 Pleistocene	 Arc	 Hypothesis	 (Prado	 &	 Gibbs,	 1993) is a 
popular explanation but has seen only mixed support in phylogeo-
graphic studies (see later section).

Like	 other	 ecoregions	 in	 southern	 South	 America,	 the	 Chaco	
experienced pulses of expansion and retraction during Pleistocene 
glaciations that may also have influenced its biodiversity patterns 
(Ortiz- Jaureguizar & Cladera, 2006). Of the few available studies, 
consistent patterns include minimal population structure (Brusquetti 
et al., 2019; Camps et al., 2018; Delgado et al., 2021; Ferreiro 
et al., 2023; Robiatti et al., 2021) and species- specific demographic 

responses to glaciations. Some forest- associated species seem to 
have expanded during glacial maxima (Camps et al., 2018; Trujillo- 
Arias	et	al.,	2017; Vergara et al., 2017), while other species expanded 
during interglacials (Bartoleti et al., 2017; Brusquetti et al., 2019; 
González- Ittig et al., 2022; Scaldaferro et al., 2023).	Additional	phy-
logeographic studies of Chaco species are needed to assess the im-
portance of Pleistocene glaciations in the region's history. Recent 
phylogeographic studies on various taxa (Byrne et al., 2022; Ferreiro 
et al., 2023; Giudicelli et al., 2022; Gonzalez et al., 2023; González- 
Ittig et al., 2022; Sánchez- Restrepo et al., 2023; Scaldaferro 
et al., 2023) all demonstrated significant effects of Pleistocene cli-
mate fluctuations.

When testing the effects of Pleistocene climate fluctuations, one 
should expect populations in less stable areas to show larger popula-
tion size changes and less overall genetic diversity compared to pop-
ulations in more stable ones (e.g. Carnaval et al., 2009). Testing for 
Pleistocene population change in a coalescent framework, such as 
with FastSimCoal (Excoffier & Foll, 2011),	Momi	(Kamm	et	al.,	2020) 
or	 PipeMaster	 (Gehara	 et	 al.,	2020), would show support for this 
hypothesis.	Additionally,	 paleoclimatic	models	 should	 provide	par-
allel predictions of genetic diversity and genetic distances between 
samples (e.g. Camurugi et al., 2021;	Oliveira,	Martinez,	et	al.,	2018; 
Vasconcellos et al., 2019).

3.2  |  Campos rupestres, the Serra do 
Espinhaço, and Pleistocene climatic fluctuations

Campos rupestres (rupestrian grasslands) are a unique vegetational 
assemblage associated with higher elevation in Brazil. This phytoge-
ographic unit is mainly characterized by a mosaic of rocky mountain-
top	islands	from	900 m	to	more	than	2000 m	above	sea	level	(Silveira	
et al., 2016), sharing substrate, climate and floristic elements (e.g. 
grassy- shrubby vegetation and mild temperatures) that differ from 
the	 surrounding	 Cerrado,	 Caatinga	 and	 Atlantic	 Forest	 (Alves	
et al., 2014).	 Although	much	 of	 the	 campos	 rupestres	 are	 techni-
cally found within the bounds of the DD, their character is different 
with enough endemicity to merit their own detailed review; here, we 
provide only a brief overview of the effects of Pleistocene climate 
fluctuations on this system. In the DD, campos rupestres are primar-
ily found in the Serra do Espinhaço, a mountain range extending ap-
proximately	1200 km	from	northern	Bahia	to	southern	Minas	Gerais,	
parallel to the upper São Francisco River (Figure 1). Campos rupes-
tres in the Serra do Espinhaço act as a sky- island system (Oliveira 
et al., 2021; Santana et al., 2023; Vasconcelos et al., 2020), harbour-
ing a megadiverse and highly endemic biota relative to the surround-
ing areas, associated with diversification processes decoupled from 
lowland Cerrado and Caatinga assemblages (Colli- Silva et al., 2019; 
Leite et al., 2008; Rapini et al., 2008; Silveira et al., 2016). Highest 
rates of diversification in the sky islands are timed to the Pleistocene, 
though	 major	 endemic	 lineages	 mostly	 originate	 in	 the	 Miocene	
(Carvalho et al., 2021; Inglis & Cavalcanti, 2018; Ribeiro et al., 2014; 
Vasconcelos et al., 2020). Pleistocene climatic fluctuations likely 
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favoured dispersal and isolation events within and between these 
isolated patches, shaping the demographic histories of endemic 
campos rupestres species (Barres et al., 2019; Collevatti, de Castro, 
et al., 2012;	Dantas-	Queiroz	et	al.,	2021, 2023; Oliveira et al., 2021). 
In general, Pleistocene climatic fluctuations induced population ex-
pansion in campos rupestres taxa due to climatic cooling as forests 
retracted to lower altitudes. During wetter and warmer interglacial 
periods, forests expanded to higher altitudes, isolating campos ru-
pestres at higher elevations. Consequently, the effects of genetic 
drift on small and disjunctly distributed populations during periods 
of isolation would promote the diversification of many endemic 
lineages restricted to single mountaintops, as observed in frogs 
(Nascimento et al., 2018; Oliveira et al., 2021; Oswald et al., 2022) 
and	plants	(Dantas-	Queiroz	et	al.,	2023; Silva et al., 2020).	Many	DD	
taxa are descended from common ancestors that diversified within 
the	campos	rupestres	(likely	in	the	Miocene),	rendering	the	Serra	do	
Espinhaço an ancient cradle of biodiversity.

3.3  |  The Pleistocene Arc Hypothesis

The	 Pleistocene	 Arc	 Hypothesis	 (PAH)	 posits	 that	 a	 continuous	
SDTF	occupied	much	of	 the	DD	during	 the	Last	Glacial	Maximum	
(LGM)	 before	 fragmenting	 into	 the	 present-	day	 Caatinga	 and	
other	 non-	DD	 SDTF	 isolates,	 such	 as	 the	 Misiones,	 Piedmont,	
and	 Chiquitanía	 (Figure 1b) (Goncalves et al., 2019; Pennington 
et al., 2000; Prado, 2000; Prado & Gibbs, 1993). Similarly to the 
Pleistocene	 Refuge	 Hypothesis,	 the	 PAH	 supposes	 that	 climate-	
induced fragmentation of formerly continuous habitat resulted in 
allopatric diversification within refugia. Previous phylogeographic 
studies on SDTF plants by Caetano et al. (2008) and Collevatti, 
Terribile, et al. (2012), as well as a genome- scale bird study (Corbett 
et al., 2020),	supported	the	PAH.	On	the	other	hand,	paleoclimatic	
modelling by Werneck et al. (2011) suggested that SDTFs had a more 
limited	extent	during	the	LGM	and	have	since	expanded	in	area,	con-
trary	to	expectations	under	the	PAH.	Colli-	Silva	et	al.	(2021) found 
ambiguous	support	for	the	PAH	with	palaeoclimatic	modelling,	with	
disjunct SDTF plant species responding differently to Pleistocene 
climate fluctuations. Some studies have shown that divergences 
in some SDTF taxa are older than the hypothesized age of the 
Pleistocene	Arc	(Garcia	et	al.,	2011; Hernández et al., 2022; Lanna 
et al., 2018;	Magalhaes	 et	 al.,	2014), and others have shown evi-
dence	of	post-	LGM	expansion	sensu	Werneck	et	al.	(2011)	(de	Melo	
et al., 2016;	Franco	&	Manfrin,	2013; Vieira et al., 2015). Currently, 
the	majority	of	PAH-	focused	studies	do	not	support	it	(69%).	As	the	
most	historically	unstable	region	in	South	America	(Costa,	Hampe,	
et al., 2018), the Caatinga did undergo cycles of expansion and con-
traction, but this does not necessarily imply that it joined with other 
SDTFs	in	a	continuous	Pleistocene	Arc.

Phylogeographic	 evidence	 for	 the	 PAH	 would	 constitute	
Pleistocene divergences between sister lineages in disjunct SDTF 
isolates (Figure 1b). Demographic modelling should show diver-
gence without migration and population contraction at the time of 

divergence, and genetic distances should relate to resistance in non- 
SDTF environments, which should form barriers to dispersal. Until 
more phylogeographic studies of Caatinga and SDTF taxa show such 
patterns,	the	generality	of	the	PAH	across	taxa	remains	unlikely.

3.4  |  Ecological speciation and potential hybrid 
zones in the DD

Ecological speciation occurs when selective pressures cause popu-
lations to adapt to distinct environmental conditions (Burbrink & 
Ruane, 2021; Nosil, 2012; Pyron et al., 2015). Encompassing three 
ecologically distinct subregions arranged in a NE–SW latitudinal gra-
dient, the DD is sufficiently heterogeneous that we should expect 
ecological speciation to occur there, either between DD subregions 
(Fonseca et al., 2018) or between the DD and adjacent environments 
(Rodríguez-	Cajarville	et	al.,	2022). The Caatinga–Cerrado transition 
in particular appears to induce ecological speciation in several taxa 
via environmental polarity (rather than secondary contact). This 
ecotone occurs from east (Caatinga) to west (Cerrado) along a N–S 
axis just west of the middle São Francisco River (Figure 1). Several 
herpetofaunal studies have indicated population structure delimited 
by the Caatinga–Cerrado transition (Fonseca et al., 2018; Oliveira 
et al., 2015; Teixeira Jr. et al., 2016; Thomé, Carstens, Rodrigues, 
Alexandrino,	&	Haddad,	2021; Werneck, Gamble, et al., 2012). The 
presence of admixed individuals in most of these studies implies that 
genetic divergence could be occurring in the presence of gene flow 
(Thomé,	Carstens,	Rodrigues,	Alexandrino,	&	Haddad,	2021). Some 
studies have found support for a demographic model of divergence 
with migration (Fonseca et al., 2018; Oliveira et al., 2015), which is 
the expected model in the case of adaptation across an environmen-
tal gradient. Since recent divergence relative to population size can 
also account for the presence of admixed individuals, statistical sup-
port for migration provides evidence for identifying this type of spe-
ciation; its prevalence in other DD taxa remains to be seen. Overall, 
this phenomenon is not yet sufficiently well studied in DD taxa to 
merit its inclusion as a major hypothesis in this manuscript.

Ecological divergences may also occur between the DD and 
neighbouring	environments	such	as	the	Amazon	Rainforest,	Atlantic	
Forest	 or	 Andes	 Mountains.	 For	 example,	 Rodríguez-	Cajarville	
et al. (2022) identified divergence with gene flow across the Chaco–
Andes	ecotone	in	the	bird	Phytotoma rutila. Other cases of bird sis-
ter	 lineages	 in	the	Cerrado	and	Atlantic	Forest,	with	minimal	gene	
flow, may represent divergences at more complete stages of iso-
lation	 (Bolívar-	Leguizamón	et	al.,	2024; Cabanne et al., 2011). The 
Vanishing	Refuge	Model	 (Vanzolini	&	Williams,	1981) may particu-
larly apply to these and similar cases of potential ecological specia-
tion between DD biomes and the neighbouring rainforests, as the 
relative spatial organization of these regions is known to be tem-
porally dynamic (Ledo & Colli, 2017).	The	Vanishing	Refuge	Model	
suggests that climatic instability generates diversity by exposing 
peripheral populations to new environments, subjecting them to di-
vergent selection and resulting in sister lineages occupying adjacent 
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but different environments. However, the only genetic study of the 
Vanishing	Refuge	Model,	conducted	on	a	lizard	found	in	both	coastal	
Atlantic	Forest	and	forest	isolates	within	the	Caatinga,	found	mixed	
support for this hypothesis (Damasceno et al., 2014).

Hybrid zones between diverging lineages can form due to differ-
ential fitness along an environmental gradient (Barton & Gale, 1993; 
Barton & Hewitt, 1985; Burbrink & Ruane, 2021). Some DD studies 
with widespread taxa show admixed individuals between genetic 
clusters corresponding to the Caatinga and Cerrado; however, in the 
absence of sufficient spatial sampling depth, whether these individ-
uals are isolated cases or constitute potential hybrid zones cannot 
be verified, let alone their widths, or degrees of coincidence among 
different species. Characterizing hybrid zones in this way can have 
important implications for our understanding of ecological specia-
tion or secondary contact in the DD. For example, determining the 
width of the zone (i.e. the region across which alleles are exchanged) 
relative to the actual spatial cline (i.e. the region across which the 
environmental gradient occurs), and identifying which alleles diffuse 
across it, might demonstrate which traits change across the zone, 
and consequently the role of selection in determining those changes. 
Oliveira et al. (2015) showed that genetic variation in whiptail liz-
ards was correlated with climate, but future studies with whole ge-
nomes	 can	 implement	 gene	 ontology-	based	 and	 GWAS	 methods	
to determine the actual genes affected, and identify potential ge-
nomic islands of speciation. This will further help disentangle the 
effects of environmental gradients from simple isolation by distance. 
Ultimately, comparisons across taxa may identify common mecha-
nisms of selection and hybridization, allowing for more generalized 
knowledge of ecological speciation in the DD.

4  |  HISTORIC AL CONNEC TIONS 
BET WEEN THE AMA ZONIAN AND 
ATL ANTIC FORESTS A S BARRIERS FOR 
DRY- ADAPTED TA X A

Climatic fluctuations during the Pleistocene may have contributed 
to the subsectioning of the DD subregions with the formation of 
forest	connections/corridors	between	the	Atlantic	and	Amazonian	
rainforests (Coelho, Camurugi, et al., 2022; Dal Vechio et al., 2018; 
Sobral- Souza et al., 2015). Paleontological evidence of humid cycles 
in	South	America	supports	 the	Plio-	Pleistocene	expansion	of	 rain-
forest connections crossing the DD (Figure 1b) (Cheng et al., 2013; 
Ledo & Colli, 2017;	Melo	Santos	et	al.,	2007). The subsequent dis-
connection of the rainforests corresponds to the expansion of DD 
habitats, resulting in the formation of disjunct rainforest lineages 
(Batalha- Filho et al., 2013; Costa, 2003; Dal Vechio et al., 2018; 
Gehara et al., 2014; Prates et al., 2016). For example, studies of 
disjunctly distributed birds suggest ancient forest connections be-
tween	the	Atlantic	Forest	and	central	Andean	rainforests	 (Yungas)	
through	the	Cerrado	and/or	Chaco	(Trujillo-	Arias	et	al.,	2017, 2019).

Forest connections drove the diversification of DD taxa as well 
as rainforest taxa, primarily by allopatry and niche conservatism. 

Some frogs and snakes restricted to mesic, high- altitude forest 
enclaves surrounded by dry vegetation in the Caatinga (brejos de 
altitude)	 are	 more	 closely	 related	 to	 Amazonian	 than	 DD	 species	
(Mângia	 et	 al.,	2018; Roberto & Loebmann, 2016), indicating that 
the enclaves are relics of ancient forests. The saffron- billed sparrow 
Arremon flavirostris likely colonized gallery forests in the Chaco and 
Cerrado	through	 intermittent	 rainforest	connections	 (Trujillo-	Arias	
et al., 2017).	Additionally,	 the	Caatinga	 four-	eyed	 frog	Pleurodema 
diplolister shows north–south genetic structure, the boundary possi-
bly coherent with a putative trans- Caatinga forest corridor (Thomé 
et al., 2016). The proximity of such divergent habitats to each other 
may also have promoted diversification via the Vanishing Refuge 
Model	(Vanzolini	&	Williams,	1981). However, allopatry and stabiliz-
ing selection (i.e. niche conservatism) seem to be more important for 
understanding the relationship of rainforests and the DD subregions 
in generating biodiversity.

Uncertainty in the geographic location of the hypothesized for-
est connections makes predicting and testing their spatial effects 
on DD species difficult. The forest connections may have acted as 
physical barriers within the DD, leading to populations structured on 
either side of hypothetical wet forest corridors (Pinaya et al., 2019; 
Thomé et al., 2016). In this case, it is expected that a demographic 
model of divergence without migration, plus population contraction, 
would be supported, since isolation would coincide with a reduction 
in habitat availability, followed by expansion after the connections 
disappeared. Because of the dynamic nature of this process, isola-
tion could be recurrent with opportunities for secondary contact 
after expansion, potentially forming areas of high genetic diversity. 
Thomé et al. (2016) represents the most comprehensive and exem-
plar test of whether the forest connections acted as barriers to date.

Alternatively,	the	forest	connections	may	have	been	composed	
of forest galleries, facilitating dispersal between rainforests and 
fragmenting the DD, but not necessarily acting as hard barriers 
(André	et	al.,	2022; Leal et al., 2019, 2021;	Trujillo-	Arias	et	al.,	2017). 
Despite the lack of a contemporary barrier to gene flow in the re-
gion, an east–west divergence during the Pleistocene observed in 
tree	 populations	 in	 the	 central	 Cerrado	 (54–43° W)	 underscores	
the possibility of a barrier there (Buzatti et al., 2018; Correa Ribeiro 
et al., 2016; Leal et al., 2019, 2021; Ramos et al., 2007; Resende- 
Moreira	 et	 al.,	 2017). This potential phylogeographic break could 
offer an opportunity to investigate the role of forest corridors in the 
formation of the DD biota. In this scenario, one should expect high 
genetic diversity in stable areas that were not replaced by forest 
galleries.

5  |  THE SÃO FR ANCISCO RIVER A S A 
PUTATIVE BARRIER IN THE C A ATINGA

The Riverine Barrier Hypothesis is one of the oldest and most en-
during	biogeographic	hypotheses	of	South	America,	beginning	with	
Wallace's (1854)	 proposal	 that	 the	Amazon	River	 acts	 as	 a	barrier	
to species on either side. The hypothesis has been proposed for 
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rivers in the DD, including the Tocantins in the Cerrado (Werneck, 
Gamble, et al., 2012) and the Paraná- Paraguay system at the east-
ern boundary of the Chaco (Kopuchian et al., 2020). However, the 
São Francisco River (SFR) is by far the most prominent in discus-
sions of the Riverine Barrier Hypothesis as applied to the DD. The 
SFR	 is	 the	 fourth	 longest	 river	 in	 South	America	 and	 drains	most	
of the Caatinga (Figure 1a). It was originally proposed to form a 
biogeographic barrier for several reptile species pairs inhabiting 
opposite margins of the river (Rodrigues, 1986, 1993, 1996, 2003; 
Rodrigues & Juncá, 2002) and has since been extended to other 
taxa. Rodrigues (1996) proposed that the formerly endorheic SFR 
(i.e. not flowing into the ocean) became exorheic (flowing into the 
ocean) at the end of the Würm glaciation ~12 kya	(Ab'Saber,	1969; 
Tricart, 1974), traversing the Caatinga to divide formerly continuous 
habitat and promote vicariance. The São Francisco River Hypothesis 
(SFRH) has remained a popular explanation for Caatinga biodiversity 
patterns, especially in herpetological studies, which are dispropor-
tionately represented in explorations of the SFRH (Figure 2b).

The geological literature on the SFR's history is very limited, with 
considerable uncertainty around the origin of the river and the tim-
ing of events relevant to the development of the Caatinga and its 
biota	(Thomé,	Carstens,	Rodrigues,	Alexandrino,	&	Haddad,	2021). 
The	 endo-	exorheism	 theory	 (Ab'Saber,	 1969; Tricart, 1974) of 
SFR paleocourse change at the end of the most recent glaciation 
(~12 kya)	 remains	uncorroborated.	Most	other	 studies	 that	discuss	
the paleocourse change infer a much older event, wherein the 
SFR trended eastward, from an ancient south–north paleocourse 
along	 the	 present-	day	 course	 of	 the	 lower	 Parnaíba,	 to	 its	 mod-
ern course (Figure 1a). This was possibly due to erosion in the São 

Francisco basin (Grabert, 1968) and/or neighbouring uplift events 
(Mabesoone,	1994; Potter, 1997). The estimated ages of this event 
range from mid- Eocene (Karner & Driscoll, 1999)	 to	mid-	Miocene	
(Potter, 1997; Valadão, 1998) to mid- Pleistocene (~0.45 mya)	
(Mabesoone,	1994).	Mabesoone	 (1994) also inferred an endorheic 
period (Figure 3), and is most often cited in SFRH studies.

Phylogeographic support for the SFRH has generally been based 
on inferring divergence times for sister lineages separated by the 
river and associating them with one of the suggested paleocourse 
changes listed earlier. Because of the variation in ages of suggested 
paleocourse	changes,	 the	divergence	 times	 ‘supporting’	 the	SFRH	
vary	 considerably	 as	 well.	 Divergences,	 including	 Mio-	Pliocene	
(Almeida	 et	 al.,	 2020; Passoni et al., 2008; Werneck, Gamble, 
et al., 2012),	Plio-	Pleistocene	(Costa,	Amorim,	&	Mattos,	2018; do 
Nascimento et al., 2011), early Pleistocene (Bruschi et al., 2019; 
Faria et al., 2013;	 Oliveira,	 Martinez,	 et	 al.,	 2018; Siedchlag 
et al., 2010),	 and	 late	 Pleistocene	 (Coutinho-	Abreu	 et	 al.,	 2008; 
Fegies et al., 2021), either highlight the inconsistency in associating 
genetic divergence with SFR geology or indicate that the barrier is 
older, with species entering the region at different times since its 
origin (Figure 3; Table 1). Few studies used model-  or simulation- 
based tools to unambiguously identify SFR- based vicariance 
(Almeida	et	al.,	2020; Bruschi et al., 2019). However, some model- 
based studies recovered shallow structure with ongoing gene 
flow across the SFR (Coelho, Guillory, & Gehara, 2022; Oliveira, 
Martinez,	 et	 al.,	 2018;	 Thomé,	 Carstens,	 Rodrigues,	 Alexandrino,	
& Haddad, 2021) or negligible structure/high gene flow across the 
SFR	 (Miranda	et	 al.,	2016; Oliveira et al., 2015; Thomé, Carstens, 
Rodrigues, Galetti Jr, et al., 2021).

F I G U R E  3 Timeline	of	São	Francisco	River	Hypothesis	(SFRH)-	related	animal	divergence	events	(above	timeline)	and	geological	
hypotheses (below). Note that the geological hypotheses almost certainly did not all occur: the timeline shows hypothesized events, not an 
agreed- upon geological history. Only divergence events treated as unambiguously supporting the SFRH are shown. Temporal uncertainty 
is displayed for those taxa where it was provided. Dashed lines correspond to rough estimates provided by the authors rather than exact 
dates,	while	solid	lines	correspond	to	exact	estimates	provided	by	the	authors	sans	uncertainty.	Letters	A–M	correspond	to	the	studies	listed	
in Table 1.
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Just under half (13/27) of SFRH- focused studies show mixed 
or negative support for the SFRH (Figure 2b). For example, Lanna 
et al. (2020) found that the SFR's proposed north–south paleocourse 
had no effect on the population structure of the gecko Lygodactylus 
klugei, while its modern course may have led to shallow mitochondrial 
DNA	 (mtDNA)	 divergence.	 Other	 studies	 found	 genetic	 structure	
between sites along the SFR (i.e. upstream vs. downstream) rather 
than	 across	 it	 (Machado	 et	 al.,	2014), or no population structure at 
all	 (Andrade-	Souza	 et	 al.,	 2017; Balbino et al., 2018; da Conceição 
Lazarino et al., 2023). Notably, few studies have tested the SFRH on 
plant species. While the SFR was rejected as a barrier to gene flow 
in two of these plant- focused studies (Balbino et al., 2018;	Moreira	&	
Fernandes, 2013), two others did identify population structure con-
cordant	with	the	SFRH	(Menezes	et	al.,	2016; Souza et al., 2018). The 
remaining SFRH studies focus on animals, and over half of those on rep-
tiles and amphibians, which commonly show strong to mixed effects of 
the SFR (Figure 2b), especially arid- adapted or fossorial species that 
may have lower vagility than less specialized taxa. In most species, the 
SFR is likely to act as a soft barrier that permits some gene flow while 
leading to weakly structured lineages on either bank (Coelho, Guillory, 
& Gehara, 2022; Fegies et al., 2021;	Oliveira,	Martinez,	et	al.,	2018; 
Werneck et al., 2015), especially if the SFR has fluctuated in width and 
the steepness of its banks (i.e. its strength as a barrier) over time.

High support for a model of divergence (with high or low mi-
gration), temporally concordant with the SFR's paleocourse change, 
would offer the best support for the SFRH. However, divergence 
times seen in the literature fit the proposed paleocourse change 
times poorly (Figure 3). Resistance across the river should predict 
genetic distances more strongly than other factors such as climate 
change or topography. Unfortunately, without new geological stud-
ies to demystify the SFR's origin and paleocourse, it remains difficult 
to derive generally consistent theories that are temporally conguent 
regarding the effect of the river on Caatinga biodiversity.

6  |  THE ROLE OF THE CENTR AL 
BR A ZILIAN PL ATE AU IN STRUC TURING THE 
CERR ADO

The uplift of the Central Brazilian Plateau (CBP) is frequently cited as 
a driver of diversification in the Cerrado, but the geological origins of 
the plateau are poorly understood. The CBP comprises the highlands 
of central and southeastern Brazil, covering most of the Cerrado at 
altitudes ranging from ~100	 to	 1670 m	 (Figure 1a). Relevant phy-
logeography	 studies	 typically	 cite	 Del'Arco	 and	 Bezerra	 (1989) in 
support of a late Neogene to early Pleistocene plateau uplift event. 
There are several proposed mechanisms by which the CBP may have 
structured populations. Some studies find evidence of allopatry 
between sister lineages isolated to either side of the CBP (Oliveira, 
Gehara, et al., 2018) or on and adjacent to it (i.e. altitudinal segrega-
tion) (Ishihara et al., 2022). Other studies propose that a system of 
sub- plateaus and intervening riverine depressions, formed by inci-
sion after the CBP's initial uplift, contributed to diversification and 

population structure, between either related populations on differ-
ent	sub-	plateaus	(Mittan	et	al.,	2022) or related populations on the 
sub- plateaus and in the riverine depressions (Camurugi et al., 2021). 
Collectively, we refer to this group of hypotheses as the Central 
Brazilian Plateau Hypothesis (CBPH).

The principal uplift of the CBP is thought to have occurred 
through the Neogene, followed by peripheral subsidence and sub- 
plateau formation in the Plio- Pleistocene. The most frequently cited 
sources in support of these events are da Silva (1997) and Colli (2005), 
who themselves cite older geological literature, the most important 
being	 Del'Arco	 and	 Bezerra	 (1989)	 (but	 see	 also	 Ab'Saber,	 1983; 
Brasil	&	Alvarenga,	1989; Cole, 1986). The authors of modern phy-
logenetics and phylogeography studies pertaining to the CBP have 
generally asserted that late Neogene to early Pleistocene divergence 
dates (~18–2 mya)	 demonstrate	 the	 CBP's	 effect	 on	 population	
structure (Figure 4) (e.g. Costa et al., 2017; Domingos et al., 2014; 
Santos et al., 2014).	However,	Del'Arco	and	Bezerra	(1989) propose 
a more protracted scenario than these studies suggest, consisting 
of Paleogene wet/dry cycles that first promoted valley and plateau 
formation in the central Brazilian highlands via intense erosion, in-
cluding Eocene pediplanation (i.e. plain formation from erosional 
scarp retreat) and Oligocene fault reactivations and uplifts, form-
ing the essential definition of the Cerrado landscape. Late Neogene 
(Mio-	Pliocene)	and	Pleistocene	wet/dry	cycles	 further	defined	the	
modern	system	of	plateaus	and	depressions.	As	such,	the	uplift	of	
the CBP being a specifically late- Neogene phenomenon may be 
overstated, with the landscape instead having formed throughout 
the Cenozoic.

Despite uncertainty around the timing of the CBP uplift and 
associated events, many CBP phylogeography studies have undeni-
ably recovered late Neogene divergences between pertinent taxa 
(Figure 4).	As	with	the	SFRH,	there	is	a	strong	herpetological	bias	in	
CBPH studies (Figure 2b). Two studies of frogs revealed highly con-
cordant divergences ~3.5 mya	between	lowland	lineages	separated	
by the CBP to its northeastern and southwestern margins (Oliveira, 
Gehara, et al., 2018; Porto et al., 2022; G and E in Figure 4). Thus, 
the CBP may itself form an allopatric barrier, as suggested in earlier 
studies (Lanna et al., 2018; Recoder et al., 2014; Werneck, Gamble, 
et al., 2012). The elevational difference between the plateau and the 
surrounding lowlands may also have segregated sister lineages on 
and off the plateau. Ishihara et al. (2022) and Costa et al. (2017) both 
identified this pattern, though at very different time periods – the 
former among populations of a lizard in the Plio- Pleistocene, the lat-
ter	between	killifish	genera	well	within	the	Miocene.	The	CBP	has	
seemingly structured Cerrado diversity at multiple taxonomic scales 
throughout the Neogene. However, it should be noted that this vi-
cariant effect may result from correlated environmental factors such 
as	 temperature.	A	 concordant	 divergence	 time	 is	 only	 preliminary	
evidence for the CBPH; other ecological hypotheses, and the preva-
lence of gene flow between sister lineages, should also be explored.

Other studies have asserted that compartmentalization of the 
CBP via river incision contributed to diversification in Cerrado 
taxa, with sister lineages occupying either adjacent sub- plateaus or 
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10 of 25  |     GUILLORY et al.

adjacent	 plateaus	 (500–1700 m)	 and	 depressions	 (100–500 m)	 (da	
Silva, 1997). This latter scenario is called the Plateau–Depression 
Hypothesis (PDH) in the literature, and specifically predicts older lin-
eages on plateaus and younger sister lineages in intervening riverine 
depressions (Werneck, 2011). However, no studies have specifically 
tested this prediction. To our knowledge, only a taxonomic study 
of teiid lizards has identified reciprocal monophyly between plateau 
and depression lineages (Giugliano et al., 2013). Instead, as with the 
previously discussed role of the CBP as an allopatric barrier, most 
phylogeographic studies simply claim that late Neogene divergence 
times indicate that CBP compartmentalization structured their focal 
taxon, which formerly occupied the CBP highlands more uniformly 
(Amaral	 et	 al.,	2021;	 Arantes	 et	 al.,	2023; Domingos et al., 2014; 
Guarnizo et al., 2016;	Miranda	et	al.,	2019;	Mittan	et	al.,	2022; Prado 
et al., 2012).	 A	 few	 earlier	 phylogenetics	 studies	 also	 identified	
this	 pattern	 (Machado	et	 al.,	2014;	Maciel	 et	 al.,	2010). Camurugi 
et al. (2021) identified an analogous yet opposite pattern in which a 
lowland frog distributed through the riverine depressions of the CBP 
was probably structured by the higher altitude plateaus, albeit with 
significant gene flow. Both that study and Lima- Rezende et al. (2019) 
inferred late Pleistocene divergence times (Figure 4;	letters	A	and	B),	
indicating that subsidence- induced diversification in the CBP may 
still be ongoing. On the other hand, the CBP's uplift and compart-
mentalization have apparently not affected some squamate reptiles, 

which show significant gene flow and/or a lack of elevational differ-
entiation (Fonseca et al., 2018; Ledo et al., 2020; Santos et al., 2014).

Overall, the underlying geology of the CBP and its effects on 
Cerrado biodiversity remain poorly understood. Determining the 
exact mechanisms of divergence and diversification in CBP- related 
taxa will require direct hypothesis testing. High support for a model 
of divergence with or without migration would support the CBPH, 
but idiosyncratic divergence dates are perhaps unavoidable. Genetic 
structure could in fact represent a climatic barrier rather than a 
physical one, so divergence times may be associated not with the 
barrier's appearance, but with the actual dispersal across the barrier, 
conditioned by climate, vegetation and species- specific traits. Given 
the diversity of divergence times seen in the literature (Figure 4), this 
is currently the most likely scenario. Overall, the difficulty of disen-
tangling the influences of climate versus elevation will likely remain 
a challenge to explorations of the CBPH (Table 2).

7  |  MIOCENE MARINE INCURSIONS IN 
THE CHACO

The	inundation	of	much	of	Miocene	South	America	by	seawater	has	
been a frequently cited driver of biodiversity since the inception of 
the idea nearly three decades ago (Hoorn, 1993). Geological evidence 

Study Taxon
Divergence 
time

A Oliveira- Silva 
et al. (2023)

Characidium bahiense (fish) 0.139 mya	
(0.065–0.227)

B Fegies et al. (2021) Cryptonanus agricolai (possum) 0.28 mya

C Coutinho-	Abreu	
et al. (2008)

Lutzomyia longipalpis s.l. (fly) ~0.45 mya

D Werneck 
et al. (2015)

Tropidurus semitaeniatus group (lizard) ~1 mya

E Faria et al. (2013) Gracilinanus agilis (possum) 1.40 mya	
(0.63–2.36)

F do Nascimento 
et al. (2013)

Thrichomys spp. (rodent) 1.45 mya	
(0.35–2.39)

G Bruschi et al. (2019) Pithecopus nordestinus (frog) ~1.5 mya	
(0.8–2.6)

H Siedchlag 
et al. (2010)

Calyptommatus/Nothobachia spp. (lizard) ~1.2–2.6 myaa

I do Nascimento 
et al. (2011)

Calomys expulsus (rodent) ~2 mya

J Costa,	Amorim,	and	
Mattos	(2018)

Hypsolebias/Cynolebias spp. (fish) 1.13–2.57 mya	
(0.54–3.76)a

K Almeida	et	al.	(2020) Amphisbaena pretrei (lizard) 4.9 mya	
(0.715–9.7)

L Passoni et al. (2008) Eurolophosaurus spp. (lizard) ~5.4 mya
M Werneck, Gamble, 

et al. (2012)
Phyllopezus pollicaris (lizard) Late	Miocene

Note: Letters in the first column correspond to points of interest in the timeline of Figure 3.
aMultiple	divergence	dates	across	multiple	taxa.

TA B L E  1 List	of	phylogeographic	
studies claiming to unambiguously 
corroborate the SFRH, with corresponding 
taxa and divergence times.
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suggests marine incursions extended southward from the Caribbean 
along	the	east	Andean	versant,	eastward	across	the	Amazonian	basin	
to	the	North	Atlantic	and	southeast	across	the	Paraná	basin	into	the	
South	Atlantic	around	10 mya	(Hoorn	et	al.,	2010; Webb, 1995). The 
extent, timing, and frequency of the incursions remain uncertain 
(Jaramillo et al., 2017). The incursions are thought to have isolated the 
Guianan	and	Brazilian	Shields	both	from	the	Andes	and	each	other,	pro-
moting	extinction	in	the	intervening	lowlands	(the	Amazon	and	Paraná	
basins) and isolation/diversification on the shields. This was followed 
by dispersal into the lowlands after the incursions receded (Räsänen 
et al., 1995).	The	distributions	of	several	South	American	lineages	are	
proposed	to	have	been	shaped	by	this	mechanism	(Aleixo,	2004; Garda 
& Cannatella, 2007; Giugliano et al., 2013;	Maciel	et	al.,	2010; Noonan 
& Wray, 2006; Ribas et al., 2005; Werneck et al., 2009).

Of the DD subregions, the Chaco would have been most affected 
by	Miocene	marine	incursions,	which	are	considered	a	primary	influ-
ence on its geoclimatic history (Hernández et al., 2005); the Cerrado 
and Caatinga are largely located on the Brazilian Shield and were 
mostly spared from flooding. The Chaco likely experienced two or 
three periods of marine inundation, potentially localized to southern 
South	America	as	the	ephemeral	‘Paranaense	Sea’,	from	~13 to 10 and 
~10	 to	 5 mya	 (Figure 1c) (Hernández et al., 2005; Ortiz- Jaureguizar 
& Cladera, 2006; Ruskin et al., 2011). Studies of fossil rodents 
(Candela et al., 2012) and phylogenetic studies of fairy armadillos 
(Delsuc et al., 2012),	geckos	(Morando	et	al.,	2014; Werneck, Gamble, 
et al., 2012),	and	plants	(Acosta	et	al.,	2016;	Aguilar	et	al.,	2020;	Moré	
et al., 2015) indicate a role for vicariance via the Paranaense Sea.

Phylogeographic	 evidence	 for	 the	 effects	 of	 Miocene	 marine	
incursions on Chaco taxa is rare. However, Brusquetti et al. (2018) 
determined that the three species of the frog Lepidobatrachus di-
verged	 through	 the	 late	Miocene	~15–8 mya,	 coinciding	with	mul-
tiple instances of the Paranaense Sea. Furthermore, they showed 

evidence of recent population expansion, as expected after the sea's 
final recession. Long- term persistence of northern populations of 
Lepidobatrachus llanensis	 near	 the	Michicola	 Arch,	 a	 highland	 that	
would not have been flooded during the marine incursions, offers 
further evidence for vicariant effects of the Paranaense Sea. The 
southern/southwestern	Chaco,	Asunción	Arch	 and	Rio	de	 la	Plata	
Craton are proposed as additional refugia, though evidence for 
this beyond a single Lepidobatrachus	 fossil	 from	 the	Mio-	Pliocene	
(Nicoli, 2015) is lacking. Future phylogeographic studies in the 
Chaco	may	corroborate	these	findings	in	other	taxa.	A	promising	ex-
ample is a study on the tree frog Scinax squalirostris	 (Abreu-	Jardim	
et al., 2023), which used demographic modelling and approximate 
Bayesian computation to identify a phylogeographic break dated to 
the	late	Miocene,	likely	corresponding	to	the	end	of	a	marine	incur-
sion. However the substantial age of this phenomenon may limit the 
amount of demographic information researchers can retrieve from 
genetic data. It might therefore be necessary to resort to meth-
odologies more appropriate for exploring biogeography at deeper 
timescales,	such	as	BioGeoBEARS	 (Matzke,	2014), when exploring 
the	Miocene	marine	incursions.	It	is	still	expected	that	elevation	will	
predict genetic diversity, with high- elevation areas showing higher 
genetic diversity relative to recently colonized lower elevation areas 
that were formerly inundated (Fagundes et al., 2007).

8  |  DISCUSSION

8.1  |  Trends in DD phylogeography studies

Significant progress in DD phylogeography has been made in the 
past	two	decades,	with	at	least	142	studies	published	as	of	August	
2023 (Table S1; Figure 5). One of the most noticeable trends is the 

F I G U R E  4 Timeline	of	CBPH-	related	divergence	or	diversification	events	(above	timeline)	and	sequence	of	relevant	geological	events	
proposed	by	Del'Arco	and	Bezerra	(1989) (below timeline). Temporal uncertainty is displayed for those taxa where it was provided. Dashed 
lines correspond to rough estimates provided by the authors rather than exact dates, while solid lines correspond to exact estimates 
provided	by	the	authors	sans	uncertainty.	Letters	A–N	correspond	to	the	studies	listed	in	Table 2. Divergence events marked with an 
asterisk (*) are hypothesized to have occurred because of allopatric isolation on either side of the CBP, or on versus off of it, rather than CBP 
compartmentalization in accordance with the Plateau–Depression Hypothesis.
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proportional dominance of studies featuring herpetofauna: nearly 
one third (41/142) of DD phylogeography studies focus on reptiles 
and/or	amphibians.	A	greater	number	of	studies	(n = 50)	are	plant	
focused (41 of those in eudicots), but with ~20,000 plant species 
across the DD (Collevatti et al., 2020) versus 500–1000 reptile 
and amphibian species (Álvarez et al., 2009;	 de	 Albuquerque	
et al., 2012; Nogueira et al., 2011; Valdujo et al., 2013), a propor-
tional bias is evident. The over- representation of reptiles, amphib-
ians, and plants in the DD literature may be due to the relative 
ease of collecting samples across phylogeographic scales (as op-
posed to mammals or birds), and relatively complete taxonomic 
knowledge	 bases	 (as	 opposed	 to	 invertebrates).	More	 studies	 in	
other groups such as birds (currently n = 12)	or	invertebrates	(cur-
rently n = 20)	would	greatly	benefit	 the	 field.	The	distribution	of	
studies among DD subregions is also biased: only 14% (20/142) of 
studies focus exclusively on the Chaco (21 other studies include 
Chaco samples, but are not focused on it exclusively) (Figure 2a). 
Given the urgency of Chaco conservation amid ongoing deforesta-
tion (Cuyckens, 2021), phylogeographic study of this region should 
be prioritized.

A	 conceptual	 divide	 between	 animal	 and	 plant	 researchers	
pervades the DD phylogeography literature, wherein animal stud-
ies explore whether Neogene versus Pleistocene events drove 
DD biodiversity patterns, while the vast majority of plant stud-
ies (82%; 41/50) focus on Pleistocene climatic fluctuations or the 
related	 PAH	 (Figure 2b).	Most	 of	 these	 plant	 studies	were	 con-
ducted in the Cerrado, which hosts 80% (40/50) of DD plant phy-
logeography studies, 88% (35/40) of which were focused on the 
PCFH (Figure 2a).	There	are	some	exceptions	(Aguilar	et	al.,	2020; 
Menezes	 et	 al.,	 2016), including the meta- analysis by Collevatti 
et al. (2020) that explicitly explores the relative importance of 
Neogene versus Pleistocene events on Cerrado plants, but ani-
mal studies comprise the bulk of those exploring the effects of 
older geoclimatic phenomena on DD biodiversity. Importantly, all 
DD taxa evolved under the same environmental conditions and 
geoclimatic events – only their responses to these phenomena dif-
fered. We encourage both researchers of all taxonomic specialties 
to explicitly test hypotheses such as those corresponding to the 
CBP and SFR.

The DD phylogeography literature has yet to broadly adopt 
genome- scale data (Figure 2a), which would allow for more ro-
bust hypothesis testing and demographic inference. Sequencing 
at	 the	 genomic	 scale	 offers	 far	 greater	 resolution	 than	 mtDNA	
or microsatellite studies for inferring population characteristics 
of interest like effective population size and gene flow and the 
geoclimatic	processes	underlying	them	(McGaughran	et	al.,	2022). 
Inferring phylogenies from many loci further obviates concerns 
over incomplete lineage sorting, to which single- locus studies 
are particularly vulnerable (Liu et al., 2015). In our review, 10% 
(14/142) of DD phylogeography studies have used genome- scale 
datasets,	 primarily	 RADseq	 (Figure 2a; Table S1). The high cost 
of next- generation sequencing is almost certainly the main hurdle 
preventing the widespread adoption of these newer technologies 

in DD phylogeography, particularly considering the decreases 
in Brazilian science funding over the past decade (Oliveira 
et al., 2020; Overbeck et al., 2018). Further reductions in the cost 
of genome- scale or even whole- genome sequencing will hopefully 
allow more DD researchers to harness their power for inferring 
phylogeographic patterns.

DD researchers should also use more advanced analytical meth-
ods to improve the power of their inferences. Less than one third 
(41/142) of DD phylogeography studies have used some sort of 
model- based method (Figure 2a; Table 3), most of these published 
in	 the	 past	 5 years.	 This	 could	 also	 include	 performing	 trait-	based	
analyses that account for the phenotypic and ecological properties 
of the organism, such as regressing ecological variables against ge-
netic distances (Paz et al., 2015; Vasconcellos et al., 2019; Zamudio 
et al., 2016) or using demographic and evolutionary simulations that 
can be further combined with approximate Bayesian computation 
(Csilléry et al., 2010) or machine learning (Fonseca et al., 2021) to 
directly test phylogeographic hypotheses (Hickerson et al., 2010). 
An	inherent	challenge	in	phylogeography,	given	the	impossibility	of	
designing randomized experiments across evolutionary timescales 
for most taxa, is to clearly outline expectations for these hypoth-
eses. Ideally, integrated temporal and spatial expectations should 
be explored. However, due to theoretical challenges and compu-
tational limitations, spatial and temporal questions have generally 
been	 explored	 separately.	 As	 such,	 phylogeographic	methods	 can	
generally be separated into two main categories. First, explicit 
time/implicit space methods are mostly based on coalescent theory 
(Kingman, 1982), fitting empirical data to simulated demographic 
scenarios representing expectations under proposed hypotheses 
(Csilléry et al., 2010). These methods can be (and for the most part, 
have been) used to test any of the geoclimatic hypotheses discussed 
in this review. Second, implicit time/explicit space methods are 
founded in the population genetics theory pertaining to isolation 
by distance (Slatkin, 1993; Wright, 1943). These methods, including 
multiple	matrix	regression	(MMR)	and	generalized	dissimilarity	mod-
elling	(GDM),	usually	test	for	the	power	of	distance	matrices	derived	
from the landscape (e.g. pairwise geographic distance) in predicting 
the variance of a genetic distance matrix. Explicit time/implicit space 
and implicit time/explicit space methods can be considered perpen-
dicular to each other and may be used in combination to integrate 
spatial	 and	 temporal	 genetic	 patterns	 and	processes.	Additionally,	
a	‘third	class’	of	forward-	time	genetic	simulator	is	emerging	(Currat	
et al., 2019;	Messer,	2013), with wide implications for the field de-
spite their (as- yet) steep learning curves.

A	 full	 review	 of	 phylogeographic	methods	 is	 far	 beyond	 the	
scope of this manuscript; we simply wish to emphasize the im-
portance of considering both spatial and temporal dimensions. 
We previously made methodological suggestions throughout 
the manuscript for testing each hypothesis considered in the 
review (see also Table 4). Rather than using these model- based 
approaches, most DD phylogeographic studies rely instead on 
phylogenetic inference, divergence time estimation, popula-
tion structure characterization, and/or niche modelling. The 
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Study Taxon
Divergence/
diversification time

A Lima- Rezende 
et al. (2019)

Neothraupis fasciata (songbird) Last Interglacial

B Camurugi 
et al. (2021)

Boana raniceps (frog) 0.340 mya	
(0.257–0.522)

C Mittan	et	al.	(2022) Boana aff. multifasciata/albopunctata 
(frog)

1.9 mya

D Ishihara et al. (2022) Enyalius capetinga (lizard) 2.43 mya	(1.49–3.43)

E Porto et al. (2022) Pseudopaludicola mystacalis (frog) 3.3 mya	(2.1–4.9)

F Amaral	et	al.	(2021) Cereus spp. (cactus) 3.67 mya	(3.31–5.8)

G Oliveira, Gehara, 
et al. (2018)

Dermatonotus muelleri (frog) 3.79 mya	(1.85–7.22)

H Domingos 
et al. (2014)

Gymnodactylus amarali (lizard) ~5 mya

I Arantes	et	al.	(2023) Dendropsophus rubicundulus (frog) 5.45 mya	(4.38–6.65)

J Prado et al. (2012) Boana albopunctata (frog) 5.8 mya	(3.6–5.9)

K Miranda	et	al.	(2019) Physalaemus cuvieri (frog) 8.32 ± 2.93 mya
L Werneck, Gamble, 

et al. (2012)
Phyllopezus pollicaris (lizard) ~11.5 mya

M Costa et al. (2017) Cynolebias/Simpsonichthys (fish) 14 mya	(10–19)

N Guarnizo et al. (2016) Anolis meridionalis (lizard) 18.01 mya

Note: Letters in the first column correspond to points of interest in the timeline of Figure 4.

TA B L E  2 List	of	phylogeographic	
studies claiming to corroborate the CBPH, 
with corresponding taxa and divergence 
times.

F I G U R E  5 Timelines	describing	
the accumulation of Dry Diagonal 
phylogeography	studies	as	of	August	
2023, with respect to (a) taxonomic 
group(s) and (b) study subregion(s). Black- 
bordered boxes represent new studies 
published	in	the	corresponding	year.	After	
their initial year of publication, studies are 
represented as borderless boxes to show 
the accumulation of studies over time.
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evidence these methods provide in relating phylogeographic to 
geoclimatic patterns is circumstantial – they are agnostic to one 
or the other. On the other hand, explicit time/implicit space and 
implicit time/explicit space methods allow direct hypothesis test-
ing. For example, Gehara et al. (2017) compared the efficacy of 
four demographic models with various degrees of synchrony in 
population expansion in Caatinga herpetofauna, demonstrating a 
community- wide response to potential landscape reorganization 
in	the	Caatinga	during	the	late	Pleistocene.	A	similar	model-	based	

approach was performed by Bonatelli et al. (2022), testing the 
effects of Pleistocene climate changes in different species of 
plants, lizards, frogs, spiders, and insects distributed within the 
DD. Results demonstrated discordant demographic patterns even 
within taxonomic groups. Some temporally concordant expansion 
and contraction events were detected during the middle- to- late 
Pleistocene, supporting the role of climatic change in shaping ge-
netic diversity.

A	potential	issue	for	the	DD	phylogeography	literature	is	the	fix-
ation on testing the same set of geoclimatic hypotheses. The field 
risks becoming a self- perpetuating isolate where old ideas are tested 
and debated for decades with no real resolution in sight. For exam-
ple,	 the	PAH,	proposed	 three	decades	ago	 (Prado	&	Gibbs,	1993), 
is still investigated despite fewer than half of relevant studies sup-
porting it (Figure 2b), including only one of three model- based stud-
ies (Table 3). On the other hand, the other geoclimatic hypotheses 
have seen much higher support. It may no longer be necessary to 
frame	studies	as	‘tests’	of	the	SFRH	(for	example)	in	general;	rather	
they can be presented as determining whether a well- studied barrier 
affects the study taxon, as it has been previously found to affect 
many others. In general, the prevailing hypothesis- centred practice 
may encourage the shoehorning of tests for geoclimatic phenomena 
into studies to which they may only appear at first to apply, rather 
than encouraging the development of more creative explanatory 
hypotheses for DD biodiversity patterns. Some possible diversifica-
tion drivers briefly discussed earlier, such as the role of rainforest 
corridors	between	the	Amazon	and	Atlantic	Forest,	or	the	influence	
of ecological transition zones, are poorly explored in DD taxa, com-
prising	 rich	 avenues	 for	 future	 research.	 Additionally,	 it	 is	 key	 to	
also investigate the underlying geology and paleoclimate of the DD 

TA B L E  3 Support	for	DD	biogeographic	hypotheses	from	
model- based studies.

# studies
# model- based 
studies

# model- based 
studies that are 
supportive

PCFH 89 29/89 (33%) 25/29 (86%)

PAH 13 3/13 (23%) 1/3 (33%)

FCH 3 2/3 (67%) 2/2 (100%)

SFRH 27 9/27 (33%) 7/9 (78%)

CBPH 17 7/17 (41%) 5/7 (71%)

MMIH 6 2/6 (33%) 2/2 (100%)

Note: Note that some studies may have more than one hypothesis test; 
as such the table is better interpreted as counting the number of times 
a hypothesis was tested rather than an absolute number of studies.
Abbreviations:	CBPH,	Central	Brazilian	Plateau	Hypothesis;	FCH,	
Forest	Connections	Hypothesis;	MMIH,	Miocene	Marine	Incursion	
Hypothesis;	PAH,	Pleistocene	Arc	Hypothesis;	PCFH,	Pleistocene	
Climatic Fluctuations Hypothesis; SFRH, São Francisco River 
Hypothesis.

TA B L E  4 Genetic	expectations	under	the	primary	DD	phylogeography	hypotheses.

Hypothesis Expectations

PCFH • Support for out- of- refuge models where ↓ stability predicts ↑ ΔNe and ↓ genetic diversity (Carnaval et al., 2009)
• Support for demographic models with Pleistocene ΔNe
• Paleoclimatic models predict genetic diversity across space (see Vasconcellos et al., 2019)
• Synchronicity in expansion times of co- distributed species (see Gehara et al., 2017)

PAH • Sister relationships between disjunct species in isolated SDTF nuclei
• Pleistocene divergence times
•	 Model	support	for	divergence	w/o	migration,	with	↓ Ne at time of divergence
• Resistance across intervening non- SDTF habitats predicts genetic distance
• Pleistocene ↓ Ne	in	non-	SDTF	populations	(see	Thomé,	Carstens,	Rodrigues,	Alexandrino,	&	Haddad,	2021)

FCH •	 Model	support	for	divergence	w/o	migration,	and	with	↓ Ne at the time of divergence, then recent ↑ Ne (see Thomé et al., 2016)
• Potential admixture/hybridization after population expansion

SFRH •	 Model	support	for	divergence	(migration	determines	‘hardness’	of	barrier)	(see	Coelho,	Camurugi,	et	al.,	2022; Coelho, Guillory, 
& Gehara, 2022)

• Divergence times concordant with paleocourse change
• Temporal concordance in divergence times of co- distributed species
• Resistance across SFR predicts genetic distance

CBPH •	 Model	support	for	divergence	(migration	determines	‘hardness’	of	barrier)	(see	Oliveira,	Gehara,	et	al.,	2018)
• Elevational resistance predicts genetic distance

MMIH • ↑ elevation areas predict ↑ genetic diversity (see Brusquetti et al., 2018)
•	 Miocene	divergence	times
• Support for out- of- refuge models with range expansion to ↓ elevation areas
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for a richer understanding of their effect on genetic diversity. The 
most recently published phylogeography article on the SFRH, for 
instance,	still	cites	geological	literature	from	25 years	ago	(Oliveira-	
Silva et al., 2023). In this case, essentially nothing has been published 
about the SFR's hypothesized paleocourse changes since then, but 
that may not be true for the other geoclimatic events often cited as 
biodiversity drivers in the DD. To better understand the historical 
biogeography of the DD, biologists should work with climatologists 
and geologists to encourage and develop new integrated avenues 
of study.

9  |  CONCLUSION

The DD biota was shaped by a combination of Neogene and 
Pleistocene factors, but the responses of individual taxa are largely 
idiosyncratic, determined by both local geoclimatic events and 
organismal traits. The origins of many deep divergences – mostly 
known from herpetofauna – are related to Neogene events such as 
the uplift of the Central Brazilian Plateau and multiple marine in-
cursions in the southern DD. The paleocourse change of the São 
Francisco River also isolated lineages in many Caatinga species. 
Pleistocene climatic fluctuations shaped phylogeographic histories 
as well through vegetation shifts, refugium formation, and rainforest 
connections through the DD, though the evidence for some specific 
theories	such	as	the	PAH	is	currently	weak.

Many	phylogeographic	studies	on	the	DD	have	been	published,	
especially in the last decade, though the region is still understud-
ied	compared	to	the	South	American	rainforests.	One	significant	
avenue for advancing DD phylogeography lies in using genome- 
scale and whole genome data, which has thus far seen limited use 
(though a recent increase in studies using these types of data is en-
couraging). We also advocate using model-  and simulation- based 
techniques to directly test phylogeographical hypotheses. We 
advise testing the established DD phylogeographic hypotheses 
using comparative phylogeography methods with a broader range 
of taxa (Beaumont et al., 2010) – most explorations of Pleistocene 
climatic fluctuations, for instance, focus on plants, while tests of 
vicariant events disproportionately feature herpetofauna. On the 
other hand, we note that disrupting an endless cycle of testing 
decades-  old geoclimatic hypotheses based on outdated and crit-
ically unexamined literature is necessary to progress our under-
standing of the formation of biodiversity in this region. The DD is 
not only scientifically overlooked, but conservationally as well; as 
the evolutionary histories of DD taxa become clearer, researchers 
will not only better understand this unique region, but better en-
able its protection.
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