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Abstract—The majority of streaming problems are
defined and analyzed in a static setting, where the
data stream is any worst-case sequence of insertions
and deletions which is fixed in advance. However, many
real-world applications require a more flexible model,
where an adaptive adversary may select future stream
elements after observing the previous outputs of the
algorithm. Over the last few years, there has been
increased interest in proving lower bounds for natural
problems in the adaptive streaming model. In this
work, we give the first known adaptive attack against
linear sketches for the well-studied /y-estimation prob-
lem over turnstile, integer streams. For any linear
streaming algorithm A which uses sketching matrix
A € Z™*", this attack makes O(r®) queries and succeeds
with high constant probability in breaking the sketch.
Additionally, we give an adaptive attack against linear
sketches for the /p-estimation problem over finite fields
F,, which requires a smaller number of O(r®) queries.
Finally, we provide an adaptive attack over R" against
linear sketches A € R™*" for {y-estimation, in the set-
ting where A has all nonzero subdeterminants at least
m. Our results provide an exponential improvement
over the previous number of queries known to break an
fp-estimation sketch.

Index Terms—streaming, sketching, adversarial ro-
bustness.
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I. INTRODUCTION

In the classical streaming model, updates to an un-
derlying dataset arrive sequentially and the goal is to
compute or approximate some predetermined statistic of
the dataset while using space sublinear in m, the length of
the stream and n, the dimension of the underlying dataset;
ideally, the algorithm should provide this estimate after
making only a single pass over the data. The streaming
model of computation captures key memory and resource
requirements of algorithms in many big data applications,
and has therefore emerged as a central paradigm for
applications where the size of the data is significantly
larger than the available storage, such as logs generated
from either virtual or physical traffic monitoring, stock
market transactions, scientific observations, and machine
and sensor data, e.g., Internet of Things (IoT) sensors,
financial markets, and scientific observations.

Observe that in many of these applications, intermediate
outputs of the algorithm may impact the distribution of
future inputs to the algorithm. For example, in database
systems, future queries to the database may be dependent
on the full history of responses by the database algorithm
to previous queries. In optimization procedures such as
stochastic gradient descent, the update at each time step
can be based on the history of previous outputs. In rec-
ommendation systems, a user may choose to remove some
suggestions based on personal preference and then query
for a new list of recommendations. Additionally, statistics
aggregated from financial markets on the current day could
result in algorithmic decisions that impact certain enter-
prises, thereby affecting their future evaluations, which
form a small but nonzero component of the information
collected by the algorithm on the next day.



Unfortunately, the classical oblivious streaming model
assumes that the input is fixed in advance to be the
worst possible permutation of elements. Moreover, since
the algorithm only provides an estimate once at the
end of the stream, we may assume that the input
stream is independent of the internal randomness of the
streaming algorithm. Indeed, the analyses of many ran-
domized streaming algorithms crucially utilize the in-
dependence between the internal randomness of the al-
gorithm and the data stream. However, as discussed
previously, this may not be a reasonable assumption
for the above applications and many additional set-
tings [MNS11], [BMSC17], [NY19], [AMYZ19], [CN20],
[CSWH23], [CLN*22], [CNSS23], [DSWZ23], [WZZ23],
[CA24]. This motivates the adversarially robust streaming
model, which we discuss next.

a) The adversarially robust streaming model: To ad-
dress these shortcomings of the classical oblivious stream-
ing model, the adversarially robust streaming model was
recently proposed [BJWY22] to capture settings where
the sequence of inputs to the streaming algorithm can be
adaptive or even adversarial. At each time ¢ € [m], the
streaming algorithm A receives an update u; = (ag, A¢),
where each a; € [n] is an index and A; € Z denotes
an increment or decrement to index a; in the underlying
frequency vector x, i.e., the i*® coordinate of the frequency
vector is given by x; = 3., _; A Similarly, let x®
denote the state of the frequency vector restricted to the
first t updates, i.e., xgt) = ZSQ:%:Z- A,. We consider the
setting where m = poly(n) and |A;| < poly(n) for all
t € [m]. Note that by scaling, we could have also assumed
that each A; is an integer multiple of m. Then, A
is an adversarially robust streaming algorithm for some
estimation function g : Z" — R if A satisfies the following
requirement.

Definition 1.1. [BJWY22] Let g : Z" — R be a fized
function. Then, for any € > 0 and § > 0, at each time
t € [m] for m = poly(n), we require our algorithm A to
return an estimate z; for g(x®)) such that

|
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The above definition is also known as the strong track-
ing guarantee for adversarial robustness, as defined in
[BJWY22]. Moreover, we may view the adversarial setting
as a two-player game between a randomized streaming al-
gorithm A and an unbounded adversary. In particular, the
adversary aims to construct a hard sequence of adaptive!
updates {uf,...,u’,} such that any streaming algorithm
A that produces (e, §)-approximate responses {z;}}2; will
fail to estimate g(x;+) with constant probability at some
step t* € [m] during the stream. For a chosen function g,
the game proceeds as follows:

1Note that we use “adaptive” and “adversarial” interchangeably:
both terms indicate that future updates or queries may depend on
previous updates and responses of the algorithm.

(1) In each round t € [m], the adversary selects an up-
date u; to append to the stream to implicitly define
the underlying dataset x(*) at time ¢. Importantly,
note that x(® may depend on all previous updates
U, ..., Us_1, as well as the corresponding responses
21, ..., 2zt—1 of the streaming algorithm A.

(2) A receives update u; and updates its internal state.

(3) Then, A returns an estimate z(x®) for g(x®)
based on the stream observed until time ¢, and
progresses to the next round.

Observe that this sequential game only permits a single
pass over the data stream. Alternatively, the adversary
may choose to only query the streaming algorithm at
specific times during the stream. In future sections, we will
let x(*) denote the query vector at time ¢, which may have
been formed by a sequence of O (n) insertions or deletions
to various indices of the previous query vector x(t=1).

b) Insertion-only streams: In the insertion-only
streaming model, each update u; = (a¢, A;) represents an
insertion of an element a; € [n] into the stream A; > 0
times. This corresponds to incrementing the (a;)-th coor-
dinate of the underlying frequency vector z,, = x4, + A;.
In the special case that the increments A; = 1 in each step
t € [m], the (at)-th coordinate of x is simply the number
of times that element a; appeared in the stream.

In the adversarially robust streaming model with
insertion-only updates, it is known that many cen-
tral streaming problems admit sublinear space algo-
rithms, c.f., [HKMM20], [BHM*21], [WZ21], [ABJ*22],
[BJWY22], [CGS22], [BKMT'22], [JPW22], [ACGS23],
[ACSS23]. In particular, [BHM™21] showed that by using
the popular merge-and-reduce framework, adversarial ro-
bustness is essentially built into the analysis for a wide
class of problems such as clustering, subspace embed-
dings, linear regression, and graph sparsification. In other
words, there exist adversarially robust algorithms for these
problems that use the same sampling-based approach
as classical streaming algorithms in the case where the
inputs must be insertion-only. Similarly, [WZ21] showed
that for fundamental problems such as norm and moment
estimation, distinct elements estimation, heavy-hitters,
and entropy estimation, there exist adversarially robust
algorithms that pay a small polylogarithmic overhead over
the classical insertion-only streaming algorithms that use
sublinear space.

¢) Turnstile streams.: There is significantly less
known about adversarially robust streaming algorithms
with turnstile updates. The work of [BJWY22] gives an
algorithm that uses space sublinear in the stream length
m in the case that the stream has bounded deletions.
However, in the general turnstile streaming setting, the
best known adaptive upper bounds are still much worse
than in the oblivious case. The work of [HKMM20] showed
a way to use differential privacy to protect the internal
randomness of the streaming algorithm from the adver-
sary: this framework converts an oblivious streaming al-



gorithm for estimation problem f into an adversarially
robust streaming algorithm for the same problem, with
an O (y/m) blow-up in the space complexity for turnstile
streams?. More recently, the work of [BEO22] gave an
adversarially robust streaming algorithm for F, estima-
tion by combining the differential privacy framework of
[HKMM20] with standard results from sparse recovery; for
(o estimation, this reduced the space blow-up to O (ml/ 3).
Still, when the stream length m is a sufficiently large
polynomial of the dimension n of the frequency vector,
the space complexity of the algorithm is not sublinear in
n.

A natural question is whether there is an inherent
space-complexity separation between oblivious and adap-
tive streaming. To this end, [HW13] showed that no
linear sketch can approximate the {5 norm within even a
polynomial multiplicative factor against adaptive queries
when the sketching matrix and input stream are both
real-valued. First, a natural idea is to try to adapt the
attack therein to obtain an attack against linear sketches
for ¢,-estimation in the integer setting. However, the
attack of [HW13] crucially relies on Gaussian rotational
invariance to argue that the algorithm’s observations can
be parametrized solely by the norms of the inputs. It is
not clear whether it is possible to discretize the Gaussian
queries of their attack, as the direction in the sketch
space may still reveal some information about the norm.
Secondly, we remark that [HW13] also cannot handle the
case of {y-estimation over the reals, since £y is not a norm
(since the attack requires ||Cz| = C||z|| for scalars C' > 0).
Thus, an entirely different approach is needed to handle
{y-estimation over the integers.

Additionally, in 2021, [KMNS21] showed that there ex-
ists a streaming problem for which there is an exponential
separation in the space complexity needed to solve the
problem in the oblivious and adaptive settings; specifi-
cally, this lower bound is shown for a streaming version
of the adaptive data analysis problem in the bounded-
storage model of computation. Later, the work of [CGS22]
noted an elegant quadratic separation between oblivious
and adaptive streaming for the minimum spanning forest
problem over streams with edge insertions and deletions.
Subsequently, [CGS22] showed a separation for oblivi-
ous and adaptive streams for insertion-only streams for
the problem of graph-coloring. Thus, a well-known open
problem [KMNS21], [BJWY22], [Wor21], [Wor23] is the
following:

Is there a separation between oblivious and adap-

tive turnstile streaming for any natural “statisti-

cal” streaming estimation problem?
We make progress toward answering this question in the
affirmative, as we show a lower bound against linear
sketches for ¢y estimation in the adversarial streaming
model.

2We use the notation @ (f) to represent f - polylog(f).

d) lo-estimation problem and linear sketching in the
adversarial streaming model.: In this work, we study the
classical streaming problem of estimating the number of
distinct elements in a turnstile stream, also known as the
{p-estimation problem, where ||z|lo = |{7 : z; # 0}|. Given
a stream of updates u; = (a1, A1), ..., Um = (@m, Ap), let
a; € [n] be an index and let A; € Z denote an increment
or decrement to index a; of the underlying frequency
vector x € Z", where |A;] < poly(n). The task of the
streaming algorithm A is to produce an estimate z such
that Pr{|z — [|x]lo| < el|x|lo] > 1 — 0 for any &, > 0 fixed
in advance. The fy-estimation problem has been studied
extensively in the last 40 years, beginning with the seminal
work of (Flajolet and Martin, FOCS, 1983) [FM85]. The
frequency moment estimation problem has since been
studied in many other works [BJKT02], [IW05], [KNW10],
[KNPW11], culminating in a nearly optimal algorithm
for fp-estimation in turnstile streams of [KNW10], which
succeeds with high constant probability and gives a (1+¢)-
approximation using O (e~%log(n) (log é + loglogn)) bits
of space.

Moreover, we focus on the case that A is a linear stream-
ing algorithm, meaning that 4 samples a sketching matrix
A ~ S, and for any input x € Z", A returns f(A, Ax),
where f is any function. It is important to note that
for long enough streams, all known turnstile streaming
algorithms are linear sketches, and in fact, it is known
that when the stream length is long enough, turnstile
streaming algorithms with fixed inputs x can be captured
by maintaining a linear sketch Ax over the course of
the stream [LNW14], [AHLW16], [KP20]. Motivated by
the reasons above, we focus on proving lower bounds
against linear sketches for the fp-estimation problem in
the adaptive streaming setting.

A. Our Results

We resolve the open problem posed above by giving
the first known adaptive attack against linear sketches for
the turnstile ¢p-estimation problem over the integers. Our
results are derived from the following promise problem.

Definition 1.2 (¢y gap norm problem). Let 0 < a < 8 <
1. We say that an algorithm A solves the («,)-fo gap
norm problem if, for any input x € Z"™, A outputs 0 if
lzllo < an and outputs 1 if ||z|lo > Bn. If ||z|lo satisfies
neither of these conditions, A may return either 0 or 1.

Furthermore, we focus our attention on linear streaming
algorithms, defined as follows:

Definition 1.3 (Linear streaming algorithm). Let A be a
streaming algorithm for a function g, and let A € Z™*"™
be a sketching matriz of its choice, sampled from some
distribution A ~ S over sketching matrices. We say that a
streaming algorithm A is linear if, for every update x € Z",
A observes Az and returns an estimate f(A, Ax), where f
is any function.



In all of our results, we assume that the dimensions of
the sketching matrix A satisfy r» < n.

Theorem 1.4 (Informal version of Theorem IV.1). Sup-
pose that A is a linear streaming algorithm that solves the
(a+¢,B —c)- Ly gap norm problem for some constants
«, B, c. Then there exists a randomized adversary that, with
high constant probability can generate a distribution D over
7™ such that A fails on D with constant probability. This
adaptive attack makes at most O (rs) queries and Tuns in
poly(r) time.

This result has implications beyond adversarial stream-
ing. In particular, since the existence of a so-called pseu-
dodeterministic streaming algorithm for a particular task
implies the existence of adversarially robust streaming
algorithm for the same task, our attack implies that any
linear pseudodeterministic algorithm for the turnstile ¢-
estimation over the integers can be made to fail after
poly(r) adaptive queries. This relates to open questions
raised in [GGMW20], which asked whether there can be
linear pseudodeterministic streaming algorithms for the /5
estimation problem.

Next, we give an attack against linear sketches for ¢g-
estimation where all entries of the sketching matrix A and
input x are over [F,, for some prime p. We note that known
£y sketches can also be adapted to work over such fields
with minimal changes (see, e.g., footnote 2 of [MRU11]).

Theorem 1.5 (Informal version of Theorem VI.1). Sup-
pose A is a linear streaming algorithm that solves the
(a+c,B—c)— Ly gap norm problem with some constants
a, B, and c. There exists an adaptive attack that makes
O (7‘3) queries and with high constant probability outputs
a distribution D over Z™ such that when x ~ D, A fails to
decide the £y gap norm problem with constant probability.

Finally, we give an attack against linear sketches with
real entries in the case that sketching matrix A € R™*"
has all nonzero subdeterminants at least p()%y(,) We re-
mark that this is a natural class of sketching matrices to
consider, as the known sketches have this property.

Theorem 1.6 (Informal version of Theorem VIIL.1). Sup-
pose that A is a linear streaming algorithm that solves the
(a+c, B—c)-Ly gap norm problem with some constants «, 3
and ¢, where A € R™" is the sketching matriz such that
A has all nonzero subdeterminants at least p()%y(r). Then
there exists a randomized algorithm, which after making
an adaptive sequence of queries to f(A,Ax), with high
constant probability can generate a distribution D on R™
such that f(A,Ax) fails on D with constant probability.
Moreover, this adaptive attack algorithm makes at most
poly(r) queries and runs in poly(r) time.

This attack serves as a proof-of-concept and as further
motivation for our fingerprinting-based techniques. Addi-
tionally, in a recent work on adversarially-robust property-
preserving hash functions [BLV18], it was conjectured that

there is an efficient adaptive attack against linear sketches
for fp-estimation over the reals; our attack resolves this
question for the class of sketching matrices with not-too-
small subdeterminants.

B. Technical Overview

In this section, we give a description of the attack
against linear sketches for the fp-estimation problem.

As the “adaptive adversary”, the primary goal of our
attack is to gradually learn the sketching matrix A, and
design “harder” queries as more of A becomes known
to us. A sketching matrix A may preserve a “significant
amount of information” about some coordinates z; in Ax
(e.g., when there is a row of A that is nonzero only in
column i, Ax can recover z; precisely), while it only mildly
“depends on” the other coordinates (e.g., when a coordi-
nate i is always “mixed” in a sum of many coordinates).
The coordinates that A preserves a significant information
about, or the significant coordinates, can be very useful for
estimating the £y-norm when the queries are non-adaptive.
For example, one may sample A in a careful way such
that a random set of O (1) coordinates is significant, and
from Ax, one can approximately identify whether each
of them is zero. Then, just based on the fraction of non-
zeroes among these sampled coordinates, the £p-norm can
already be approximated up to an additive error of, say
0.1n, solving ¢y gap norm.

Thus, our main strategy is to gradually identify the
significant coordinates, and set them to zero in all future
queries as soon as we find any.? This makes the future
queries harder for A, since intuitively, A would be wasting
some of its budget on a coordinate that is always zero, ef-
fectively reducing its dimension. When the number of rows
r < n, A cannot simultaneously preserve a significant
amount of information for too many x;’s. After we have
learned all such coordinates, the query algorithm would
have to only rely on the other insignificant coordinates,
which Az only mildly depends on.

In order to perform such attacks, there are three main
problems to solve:

o define “significance” and show that not too many
coordinates are significant when r < n;

o show that we can learn which coordinates are signifi-
cant using polynomially many queries;

o show that the query algorithm cannot estimate the
lo-norm accurately when x is supported only on
the insignificant coordinates. In fact, we will design
distributions for x with very different ¢yp-norms, such
that the impact of the insignificant coordinates on
the sketch Ax is nearly identical regardless of the £y-
norm.

In the following, we elaborate on how we solve the above
problems.

3In fact, zeroing out these coordinates after we learn them is the
only type of adaptive move in our attack.



a) Fingerprinting codes: First let us see how we
should learn the significant coordinates. While we have
not formally defined “significant coordinates” yet, for now
let us focus on an important extreme case: the sketch Ax is
simply an (unknown) subset of r coordinates of x, i.e., each
row of A is a unit vector with one 1 in some column and
zero elsewhere. These r unknown coordinates are (very)
significant, and all other coordinates are (completely)
insignificant.

It turns out that this case is exactly what an interactive
fingerprinting code can solve. In the interactive fingerprint-
ing code problem [SU15], an algorithm P selects a set
of coordinates S C [n] with |S| = k, which is unknown
to the fingerprinting code F.* Then, the goal of F is to
discover the set S by making adaptive queries ¢t € {£1}"
at each time ¢, and enforcing the requirement that P
must return an answer atlthat is consistent with some
coordinate in ¢!, i.e., a® = ¢! for some i € [n]. Equivalently,
this is for P to distinguish between ¢! = (—1,...,—1)
and (1,...,1). Importantly, we also impose the constraint
that P can only observe the coordinates ¢! for i € S.
The attack then proceeds by assigning a score st to each
index 7 € [n] at every round t € [¢], which corresponds
to a measure of the correlation between values of the i-th
index (c}, ..., cl) and the responses (a, ..., a’) given by P
during the first ¢ rounds. It has been shown in [SU15] that
even under the weak requirement of outputting —1 when
¢t = (—1,...,—1) and outputting 1 when ¢t = (1,...,1),
there is still a nontrivial correlation between the output
and some coordinates in S. Over time, these correlation
scores will accumulate, and are used by JF to correctly
detect coordinates ¢ € S with high probability. It has been
shown [SU15] that this can be done in O (k?) queries.

In the extreme case where each row of A is a unit
vector e; with a single 1 in some column ¢ and zero
everywhere else, we note that the sketch will precisely
observe the value of x;. Furthermore, the task of ¢y gap
norm requires the algorithm to distinguish between the
number of non-zeroes < an and > fn, for some constants
0 < a < 8 < 1. This is a stronger requirement than that
of P in the fingerprinting code problem, which merely has
to distinguish between all zero queries and all non-zero
queries. Thus, the same attack strategy with the same
number of queries applies in this case.

b) Significant coordinates: Next, let us see for a ma-
trix A, which coordinates Ax can preserve a significant
amount of information about the input x. First, if there
is a unit vector e; (as in the above extreme case), then
coordinate i is clearly very significant. Also, note that since
Ax is linear, the query algorithm can recover any w'x
for w in the row span of A (i.e., 3y', s.t., w' =y A).
Thus, a relaxation of the unit vector together with the

4P is referred to as the adversary in the original fingerprinting code
problem, which would be the opposite for our application. To avoid
confusion, we renamed it according to the standpoint here.

linearity gives the following definition of “significance” of
a coordinate i:

- 1
Iy e R (yTA? 2 -y Al

for some parameter s > 1. That is, there exists a linear
combination of the rows such that the ¢-th coordinate is
£o-heavy. Equivalently, the leverage score of column i is
at least % It turns out that if the query vectors were al-
lowed to have coordinates with real numbers, this definition
captures exactly which coordinates are significant, and is
sufficient for proving that if the query vector is supported
only on the “insignificant coordinates” (in this sense), the
query algorithm cannot approximate the £y-norm.

However, when z is restricted to having integer coordi-
nates bounded by poly(n), it turns out that the leverage
scores are not sufficient. Consider the matrix A with just
one row of the form (C,C,C,...,C,1) that has C in every
coordinate except that the last coordinate is 1, for some
integer C' > 2. Every column has a leverage score of only
@) (%) On the other hand, when z can only have integer
coordinates, Az tells us the value of x,, modulo C' (when C
is large, this may even completely reveal the coordinate).
This phenomenon can be explained by considering the
vector w' = (1,171, ey 1 %), which is in the row span
of A. If we look at the fractional part of the inner product
w ' x, the first n — 1 coordinates never contribute to the
value regardless of x. In other words, in the fractional parts
of w', (0, 0,0,...,0, %), the last coordinate is in fact very
heavy.

This suggests that in general, we should focus on the
fractional parts of the vectors in the row span, which
motivates us to define the significance of a coordinate @
in the following way:

1
Iy ' € R, [FrAC((yA))* = 5 IFrac(y"A)|3, (1)

where FRAC(+) is the fractional part, and when applied on
a vector, it is applied coordinate-wise. It turns out that
this definition captures our needs, and is what we will use
for our main result over the integers.

¢) Matriz pre-processing: To facilitate the analysis
of the attack, we will first “pre-process” the sketching
matrix A to a new matrix A’ that separates the significant
coordinates and the insignificant coordinates, while not
weakening the sketch Ax.

Let us consider the following pre-processing procedure
on A: while there exists a column ¢ € [n] such that (1)
holds, we zero out the i-th column of A and add ¢ to the
set of significant coordinates S. Note that new columns
may become significant as we zero out a column, and the
procedure is applied iteratively on the remaining matrix
until no column satisfies (1). Finally, for each coordinate
i € §, we add a new row e;. Thus, the overall pre-
processing can be viewed as follows: we find the significant
coordinates; since Ax may preserve a significant amount
of their information, we might as well just strengthen the



sketch so that it actually stores them precisely; then the
rest of the sketch is made independent of them by zeroing
out the corresponding columns.

Let A’ denote the matrix after these operations. With-
out loss of generality, we can assume that the actual
sketching matrix is A’ instead of A, since A’x can recover
Ax (as we can just add the new rows e;, with the correct
weights, back to each row where column ¢ was zeroed out),
it makes the algorithm at least as powerful as it was. The
new sketching matrix A’ has the following form:

L

where we note that no column is significant in the sense
of (1) for D, and S has at most one non-zero entry 1 in
each row and column. Moreover, the non-zero columns of
D and S are disjoint. We refer to D as the dense part and
S as the sparse part, and note that the set of significant
coordinates S is precisely the set of non-zero columns in
the sparse part S.

Note that the sparse part is exactly the extreme case
that we discussed earlier, and S can be learned using the
fingerprinting code if there were no dense part. Moreover,
we show that the definition of significant coordinates and
the pre-processing procedure guarantee that the sparse
part is small, |S| < n, so that after learning S and
zeroing out these coordinates in the query, we will not
be left with a trivial problem. Roughly speaking, this is
shown by proving that under the uniform distribution
of x € {-1,0,1}", if a column ¢ satisfies (1), then
Ax must have a nontrivial mutual information with x;,
I(Ax;x;) > Q (%) Then if the pre-processing algorithm
removes T’ columns iteratively, by applying the chain rule
for mutual information, we can argue that the mutual
information between Ax and all these T corresponding
coordinates is at least 2 (%) On the other hand, it can
be at most O (rlogn), as Ax can be encoded in O (rlogn)
bits. Hence, we can add at most T'= O (rslogn) rows to
the sparse part.

d) Description of the attack: The last piece is to
show that the dense part (insignificant coordinates) cannot
be useful, by carefully picking query distributions. More
specifically, we will design a family of distributions D
over {—R,—(R—1),..., R} for some integer R = poly(n)
bounded by a small polynomial in n, with the following
properties:

(1) For D, € D where p € [o, ] for some constant 0 <
oz<6<1,wehaveXPg (X =0] =p;

(2) For any p,¢ € [, f], we have di,(Dx,, Dx,) <
1
Soly () for x, ~ Dy and x4 ~ Dy'.
We will give more details about how to construct such
a family of distributions later in this section. Given such

a family, consider query vectors x ~ Dy for different

D
p, we can express A'x = [S;j From the property of

the distribution family D, we know that the (marginal)
distribution of Dx is almost identical regardless of the
value of p. Moreover, since D and S have disjoint nonzero
columns, Dx and Sx are independent conditioned on p.
This allows us to conclude that if we sample the queries
from these distributions, then the algorithm must approx-
imate ||x||o by only looking at the sparse part Sx. It turns
out that these distributions D), can be “integrated” into
the fingerprinting code, so that the dense part cannot help
the algorithm when we attack the sparse part. This allows
us to gradually identify S, and eventually zero out all
these coordinates. When we make one more query with
all coordinates in S zeroed out, the algorithm must not
produce a correct output with high probability based only
on Dx.

e) Constructing hard distributions for the insignifi-
cant coordinates: We wish to construct a family of dis-
tributions such that the total variation distance between
Dx,; and Dx, for x, ~ D, x, ~ Dy is small. We will rely
on the following property of D: for every pair D, D, € D,
we have that

E [xF]=

k
x5, E X7

X~D,

for all k € [K], i.e. the first K = O (rlog n) moments of D,
and D, match. In fact, we will make all distributions D,, €
D symmetric, i.e., Dp(t) = D,(—t). Thus, all odd moments
are zero, and hence, equal. Then for the even moments, the
condition is equivalent to Zf;o ik - (Dp (i) — Dy(i)) = 0 for
k < K. Our construction is based on the following fact
(e.g., see Claim 1 in [LWY20]): there exists a polynomial
Q with degree at most R — Q(v/R) such that

; (f“) Qi)

and Z
The degree bound on @ further implies that

—0(1).

=0

R

> (1) @it =0

i=0

for all non-negative integers t < R — deg(Q), since
Q(7) - ¢ is a polynomial of degree strictly less than R,
and Zio(*l)i(?) - P(i) = 0 holds for any polynomial P
of degree < R.

Hence, we will set R = O(K?) for a sufficiently large
leading constant, and define the distribution family D =
{D,} such that D,(i) = D(i)+cp- (—1)i(1§) -Q(4), for some
distribution D and constants c,. The difference between
the probabilities D), (i) and D, (%) is precisely ¢, — ¢, times
(—1)’(?) - Q(i). Then we can ensure that our moment
matching condition is satisfied, since

R R
SO (Dy(X) = Dy(X)) = (e — c) Zi‘“(l)i(ﬁ)@(i)
1=0 1=



for k< K <O (\/R) Furthermore, the bounds on

Zf‘io ’(If) . Q(z)‘ and |Q(0)| ensure that the range of the
distribution family 8 — o can be made (1) by carefully
picking the base distribution D (recall that «, 8 are the
smallest and the largest probabilities at 0 over all distri-
butions in the family).

f) Bounding the total variation distance.: Let P = D,
and @) = D, be distributions from family D that match the
first K moments for some p,q € [o, 8]. Suppose P™ and
Q" are probability distributions of n-dimensional vectors,
where each entry is drawn independently from P and @,
respectively. As before, let D denote the dense matrix
such that no column satisfies (1) with parameter s. For
x ~ P" and x’ ~ Q", let Pp and Qp be the probability
distributions of Dx and Dx’. Now, we will argue that
div(Pp,Qp) < W(n) To see this, we use the following
observation from Fourier analysis:

/ ei(u,x)
[=m,m)" (QW)T
< Gy, [Pow ~@otw|an

where the last inequality follows by triangle inequality.
So, to bound the difference of Pp(x) and @Qp(x) for
a particular value x, we just need to upper bound the

‘AD( )~ Op(w)|. Let P, = Pr[X
FRrRACo,(xz) = 27 - FRAC —) € [-m 77) Then, we can
then express PD( ) (and similarly for QD( )) as follows:

PD(U) =E,~prp [e—i<u,z>} = By pn [e—z{u,Dx)}

:HZPk COS( uD()>)

j€[n] k>0

H Z Py - cos (k . FRACQﬂ—(<u7D(j)>)) .

J€[n] k=0

|Pp(z) — Qp(z)| =

(Po(w) ~Qo(w)) du

quantity =1] and

where the second equality follows since our chosen dis-
tribution D, is symmetric and we draw each coordinate
i ~ Dp mdependently Now, by the Taylor expansion

2 6
cos( )=1—% 4+ % — & +..., we can write
ST Y (S
jEM] k>0 \m>0
. (FRaCo ({0, D)™ (—1)*
(2k)! ’
=112 | 2 Qum®
j€[n] k>0 \m>0
(FRACo ({1, DW))))™ (=1)%
(2k)!

Let Mp(2k) = (Emzo Py - m%) and Mq(2k) =
(ZmZO Qm - m2k> denote the 2k-th moment of P and Q,

respectively. At this point, our proof makes use of two key

- Qo(w:

(1) Bounded fractional parts. First, we recall that D
satisfies |[FrRAC(y 'D);[? < 1. |[Frac(y "D)|3 for all
y € R" and j € [n]. Then, if there exists some index
j € [n] such that [FRAC2,((u,DW))| > L (for some
chosen threshold ¢), we can use the above property
of |Frac ((,D >)||§ to upper bound Pp(u) and
QD(U).

(2) Moment matching. Alternatively, suppose there
is no such index j; then we can use the fact that
Mp(2k) = Mg(2k) for k < K/2, so we have that
the first K/2 terms of

properties to upper bound 1/3]\3(u)

> Mp(2k) - (FRAC%((;“)D(])») —1)F
k>0
(FRAC2,((u, D(J)>))

are exactly the same. By combining this fact with
our assumption that |[FRACy,((u,DW))| < % for
every j € [n], we obtain the desired upper bound for
this case as well.

For the full argument, we refer the readers to Section V.
Finally, since D is a matrix in Z"*™ with entries bounded
in poly(n), we know that the total support size of Pp and
Qp is n°(). So, after we compute an upper bound for
Pp(u) -
union-bounding over the total size of the support of Dx
to obtain the upper bound of di, (Pp(x), @p(x)) <
for some choice of parameters K and s.

Qb (u)‘, we can finish the argument by simply
= poly( )

C. Overview of Attack over Finite Fields

When the sketching matrix A € F*" for a fixed prime
p, our attack is based on the following crucial observation:
suppose that U and R are the two subsets of indices
of columns of A such that AV and AP have the same
column span. Then, if x ~ JFLU‘ and x’ ~ ]F‘,,R‘ are sampled
uniformly at random, we can show that AYVx and ARx’
are identically distributed. With this in mind, note that
if we can find an independent set of columns T with
|T'| = r, then the streaming algorithm .4 will not be able
to distinguish ATx" where x’ ~ F} and Ax where x ~ F7.
Hence, A must fail on one of the input distributions (we
assume n > 2r). Therefore, our goal now is to find such a
column-independent set.

The way we search for this column independent set
is as follows: suppose that the set T is what we have
maintained up to now. Then let R be a random sample
of 2r columns outside 7" and R’ is the first i column of R.
Let 1; denote the distribution of f(Ax®), where x(*) € Fp
is the random vector that on the support of T U R’
From the correctness guarantee we must have the total



variation distance diy (10, ttar—1) = (1) (otherwise we
find a distribution that A fails with constant probability
immediately). Then from triangle inequality we have

Zdtv(ﬂi,MiJrl) > dtv(MOaﬂr) = Q(l)

From this we get there must exist one j such that
dev(pj—1, 115) = (1), which means that the j-th column
in R must be linear independent in 7. Note that from
the result in statistical testing we can distinguish this
case using O(r?) samples with error probability at most
1/ poly(r). Hence, we can enumerate the index ¢ and do
the testing between p; and p;41 to find such column index
j.

The above procedure requires O (7“4) total number of
queries, as we need to find r columns and in each step,
we make 2r - O (r?) = O (r®) queries. However, the
dependence of r can be further improved. Note that in the
worst case max;{dey(ti—1, i)} = O (%), we can randomly
sample O (1) indices to find such index j, which suggests a
better dependence of r. Indeed, we show that there must
exist ¢ for which there exist at least 2~ ! indices i such that
div (Wi, hiv1) € L ) Hence, we can make

2[+3110g7" 2t+2Jogr

a guess of such £ and note that for each different guess,
since the range of the total variation distance changes, we
can use a different number of the samples in the testing
procedure, which results in an overall O (r®) number of
queries.

II. PRELIMINARIES

For a positive integer n > 0, we write [n] to denote
the set {1,2,...,n}. We use the notation poly(n) to
denote a fixed polynomial in n and polylog(n) to represent
poly(logn). We say an event £ occurs with high probabil-
ity if Pr[€] >1— m, when the dependent variable n
is clear from context.

A. Interactive Fingerprinting Codes

An interactive fingerprinting code F is an efficient
adaptive algorithm that defeats any adversary P in the
following two-player game. The adversary P first selects a
secret subset of indices & C [N], where |S| = n. Then,
the goal of F is to construct an adaptive sequence of
queries {c¢'}icpg to learn (or “accuse”) all of the indices
1 € S, while making few false accusations (i.e., incorrectly
accusing some i € S) in the process. Specifically, in each
round ¢ € [¢], the interactive fingerprinting code F selects
a query vector ¢! € {£1}"V, and the adversary P observes
only the coordinates ¢! for those i € &, and has no
knowledge of ¢} for i@ ¢ S. Then, the adversary must
respond with an answer a® that is consistent with some
coordinate of ¢' such that a* = ¢! for some i € S. More
concretely, if all of the coordinates of ¢! = 1V then a’ must
be 1, or if ¢! = (—=1)V, then a' must return —1.

Informally, the interactive fingerprinting attack of
[SU15] proceeds by assigning a score s! to each index i €

[N] at every round t € [¢], which corresponds to a measure
of the correlation between values of the it" index (¢}, ..., ct)
and the responses (a', ..., at) given by the adversary during
the first ¢t rounds. The interactive fingerprinting code F
accuses coordinates ¢ € [N] whose score s! exceeds a
threshold ¢ at some point during the sequence of queries.
Using this approach, combined with an appropriate hard
distribution for inputs ¢! € {£1}¥, [SU15] shows that for
every N € N, there exists an interactive fingerprinting
code that makes £ = O (n2 log %) queries and, except with
negligible probability, identifies all of S and makes at most
%(fo false accusations. Moreover, their attack satisfies a
robustness property: the result above holds even when the
fingerprinting adversary P only provides a response a
which is consistent with some coordinate ¢! in at least
(1 — B)¢ of the rounds, for any 8 < 1/2.

We provide a brief overview of the game, as well as the
attack of [SU15] here, as a reference.

Definition I1.1 (Interactive Fingerprinting Code Game).
The Interactive Fingerprinting Code problem is defined via
the following game.

(1) First, the adversary P selects a subset of users S* C
[N], |St| = n, which is unknown to the fingerprinting
code F.

(2) In each round j =1,...,4:

o F outputs a column vector ¢/ € {£1}V.

o Let ci; € {1} be the restriction of ¢/ to
coordinates in S7: only this restricted copy cij
is given to the adversary P in each round.

o Then, P outputs a/ € {£1}, which is observed
by F.

e Finally, F accuses a set of users I’ C [N], and
sets ST+ = SI\ 17 as the current “undiscovered”
set of coordinates/users.

a) Construction of attack, c.f., [SU15]: For 0 < a <
b <1, let P,; be the distribution with support (a,b) and

probability density function u(p) = % For a,( €
p(1—p

(0, %), let P, be the distribution on [0, 1] such that it
returns a sample from D, 1_, with probability 1 — 2,
and returns 0/1 each with probability ¢. Furthermore, let
¢ : {—1,1} — R be defined by ¢°(c) = ¢'(c) = 0 and for

p € (0,1), we have ¢P(1) = ,/1_71’ and ¢P(0) = —, /72

Tp-
We consider the following parameter regime:



(1) Let s =0 for every i € [N].
(2) For j=1,...,¢

e Draw p/ ~ P, ¢ and C{N ~pl.

o Issue ¢/ € {£1}¥ asa challenge and get response
al € {£1}. ‘ ‘

o For every i € [N], update score s{ = s 4 ad -
¢ (c})

Importantly, the attack enforces the following complete-
ness and soundness properties:

o Completeness: If i € S!, the score of user i will
exceed some chosen threshold at some step j € [£], i.e.
with high probability, there exists j such that s >o0.

« Soundness: Alternatively, if i ¢ S*, the score s! will
not exceed o with high probability. The argument
uses the fact that the responses of P cannot have
high correlation with (c},...,c!) if P never sees this
information.

B. Preliminaries from Information Theory

We recall the following preliminaries from information
theory.

Definition I1.2 (Entropy and conditional entropy). The
entropy of a random variable X taking on possible values
in a finite space Q) is defined as

=Y p(z)

€N

log

where p(x) = Pr[X = x| is the probability mass function of
X. The conditional entropy of X with respect to a random
variable Y is defined as

H(XY) =E,H(X]Y =vy),
where H(X|Y = y) = >, cqp(zly)log m, for the
conditional probability mass function p(z|y).

Definition II.3 (Mutual information and conditional
mutual information). We define the mutual information
between random variables X andY by

I(X;Y)=HX)-H(X|Y)=HY)-HY|X)=I1(Y; X).
We define the conditional mutual information between X

and Y conditioned on a random variable Z by

I(X;Y|Z)=H(X|Z) - HX|Y,Z).

Theorem II.4 (Data-processing inequality). Let X,Y,Z
be random wvariables such that X — Y — Z forms a
Markov Chain, i.e., X and Z are conditionally independent

given Y. Then, we have I(X;Y) > I(X; Z).

Theorem II1.5 (Chain rule for mutual information). For
random variables X1,...,X,,Z, we have

(X1, X 2) = > (X3 2| X1, .., Xi1).
=1

III. PRE-PROCESSING THE SKETCHING MATRIX

Our attack will rely on pre-processing and decomposing
the sketching matrix A into sparse part and a dense
part, which will consist of disjoint sets of non-zero indices.
This pre-processing procedure will have the property that
it can only make the streaming algorithm stronger, by
potentially allowing the algorithm to observe more entries
of the input vector x®. More formally, our new matrix
A’ will satisfy several key properties, as stated in the next
lemma.

Lemma IT1.1. For any algorithm A with sketching matriz
A € Z™*"™, there is a pre-processing procedure that produces
a new matriz A’ € Z"*" for ' = O (rslogn) satisfying
the following properties:

(1) The A’ has the form []é)] where the D and S are

column-disjoint.

We have |FrRAC(y'D);|? <
ally € R" and j € [n]

Each row and column of S has at most one non-zero
entry.

(2)
(3)

5 |IFrac(y"D)|3 for

Moreover, without loss of generality, we can assume the
algorithm A uses sketching matriz A’ instead of A.

Proof. We consider the following procedure: we start
with the original sketching matrix A, and for each
time ¢, we identify a columns j; € [n] such that
[Frac(y "DED); 2 > 1| Frac(y "D¢=Y)[|3 where
D* ! is the first r rows of A=Y we zero the j,-th column
of A'"! and add a new row e, to the matrix A=Y, We
then denote the new resulting matrix as A(*). Suppose
that the above procedure ends in the iteration 7. From
Lemma II1.3 we have T'= O (rslogn).

Let D = D™ and S be the remaining rows of A7),

Then we have A’ = []S)

columns. Then from the procedure it is easy to see that
the D and S are column-disjoint and each row and column
of S has at most one non-zero entry.

At this point, it remains for us to show why we can
assume that the sketching matrix used by A is A’ instead
of A. Suppose that the algorithm A uses the sketching
matrix A and estimator f on Ax, then we consider
the following equivalent form of the algorithm A, where
it uses the sketching matrix A’ and another estimator
g. Given an A’x, estimator g will first invert the row
operations that transfer A’x to Ax (recall that all of the
operations we apply on A are invertible) and output the
value f(Ax). From the definition of g, we immediately
get that g(A’x) = f(Ax) for every input x, which means
we can assume A has the form g(A’x) without loss of
generality. O

has at most r+T = O (rslogn)

A. Bounding the Number of Added Rows

Let FRAC(z) = & — int(z) € (=3, 5] where int(z) is the
closest integer number to x and for a vector x € R", let



Frac(x) € R™ be the coordinate-wise fractional parts of
x, i.e.,, FRAC(x); = FRAC(x;).

Lemma III.2. Let A € Z"™*™ be a fized matriz and
let x € {—1,0,1}™ such that each coordinate is chosen
independently and with probability 1 — %, z; = 0, and
with probability %, x; = 1 or —1 with equal probability,
where ¢ is a sufficiently small constant. Suppose there exists
y € R" and j € [n] such that for |[FrRAC((y"A);)]? >

L ||FrRac(y " A)||3. Then we have I(Ax;z;) = Q (1),

S
Proof. Observe that since by the data-processing inequal-
ity,

I(Ax;z;) > I(y " Ax;z;) > I(FrAC(y T Ax); 2;),

then it suffices to show I(FRAaC(y " Ax);z;) = Q (). Let
a=y' A e R" We sample column vectors x(1), ... x®)
such that all coordinates are selected randomly from
{-1,0,1} from the distribution in the lemma statement
but the j-th coordinate is the same in all ¢ vectors. Since
the marginal distributions are the same for each x(*), we
have that I(FrAC((a,x));z;) = [(FrAC((a,x¥));z;).

We next claim that, by looking at ¢ = O (log s) samples
Frac((a,x®)) from k = 1,2,---t, we can determine the
value of z; with probability at least 1 — 1/ poly(s), which
means that

I(Frac((a,xV) ... Frac({a,xV)); z;) = Q(log s/s).

a) Mutual information from independent instances.:
Firstly, note that if [|Frac(a)|3 > s, then 1 .
|[Frac(a)||? > 1 and so there cannot exist y such that
|[FRAC(a;)|? > 1.||[FrAC(a)||3. Thus it suffices to consider
[Frac(a)|3 < s.

We next consider one of the instances x, let S be the
set of indices such that z; # 0 and 7 # j. Then we have
E [|[FrRAC(as)||3] < 2¢|Frac(a)|3, by Markov’s inequal-
ity we have with probability at least 0.99, [|[FrRAC(ag)||3 <
o5z IFRAC(a)||3. Condition on this event, by Markov’s
inequality again we can have with probability at least 0.9,

S (Frac(a:) - 2:)? < —— [Frac()]2 < .
= 10s 10
which means that Frac((a, x)) = FRAC(FRAC(a;) - z; +
(iz) where a = > ;g FRAC(a;) - 7; < 3%/EHFRAC(::\)HQ <
5 |FRAC(ay)|.

Condition on the above events happen, consider the case
where z; = 0. In this case, we have |[FrAC((a,x))| <
+ |[FRAC(a;)|. On the other hand, if z; # 0, we will
have |FrAC((a,x))] > 2|FRrRAC(a;)| and the sign of
|[FrRAC((a,x))| is the same as xj, which means that we
can determine the value of x; by looking at the value of
Frac((a,x)).

The above procedure succeeds with high constant proba-
bility, to boost the success probability, we can instead look

at the majority of the outputs by O (logs) independent
instances

(Frac((a,xM) ... Frac((a,x"))

1

at most. This
poly(s)

which makes the error probability
means that we have

1(Frac((a, xV), ..., Frac((a, xV)); 2;) = (105 )

b) Mutual information from a single instance.: On
the other hand, by the chain rule for mutual information,
i.e., Theorem IL.5, we have

I(Frac((a,xM)), ..., Frac((a,x™)); z;)

=Y I(Frac((a,x*);z; | Frac((a,xM)), ..., Frac((a,x""))).

Since Frac({a,x())) is independent of
Frac((a,xM), ... (a,x*=Y)) conditioned on wz;, we
have

Q(1) = I(Frac((a,xM)), ..., Frac((a,x)); z;)

< iI(FRAC«a,X(k)»?xj)
k=1

=Y I(Frac((a,x));z;).

k=1

Thus we have

I(FrAC(y " Ax; ;) = I(FRAC((a,%)); 7;) = © <1023)
a(t)

Lemma II1.3. Let A € Z™*™ be a fired matriz. There ex-
ists a pre-processing procedure to A and produces a matriz
A’ € Z*™ such that A’ zero out at most O (rslognlog s)
columns of A. Moreover, we have |FRAC(y"A’);|> <
L. ||[Frac(y "A")|3 for ally € R" and j € [n].

Proof. Let A©® = A and let x € {-1,0,1}" drawn
from the same distribution in Lemma III.2, so that Ax
has O (rlogn) bits. Suppose that the above procedure
ends in T rounds where T < n. Specifically, for each
t € [T], we identify a columns j; € [n] such that
[Frac(y "TAC=D);12 > Lo Frac(y"ACD)|12 and let
A® be the matrix A¢—D after zeroing out the identified
column. We next apply the chain rule for mutual informa-
tion, i.e., Theorem II.5. we have

O

T
I(A(T)X;lea ce 71'jT) = ZI(A(T)Xv L3, | Ljypay® "‘TjT) .

t=1
Note that given the matrix A and xj, ,,Zj, o, " Tjr,
we can recover A®.  Hence, by a similar
approach to that in Lemma III.2, we have



I(A(T)X; Ljy | Ljryrr Ljrgnr ij) > 0 (slolgs
[Frac(y TA(=D);12 > 1. Frac(y "A¢=1)||3. Since Ax
can be represented using O (rlogn) bits, then it follows
that I(AMx; 2,25, -+ ,2j,) < O(rlogn). Putting
these two things together, we have that Crlogn > Slggs
for some constant C, which means that we have

T = O (rslognlogs).

) from

O

IV. ATTACK AGAINST LINEAR SKETCHES

In this section, we give a full description of our attack
against linear sketches for fp-estimation. In particular, we
prove the following theorem.

Theorem IV.1. Suppose that A is a linear streaming
algorithm that solves the (a+c¢, 8—c)-£y gap norm problem
with some constant o, B and ¢, where A € Z"™*™ is the
sketching matriz with r << n, f : Z™" — {=1,4+1} is
any estimator used by A, and A returns f(A, Ax) for each
query X.

Then, there exists a randomized algorithm, which after
making an adaptive sequence of queries to A, with high
constant probability can generate a distribution D on Z™
such that A fails on D with constant probability. Moreover,
this adaptive attack algorithm makes at most (’j(rs) queries
and runs in poly(r) time.

A. Construction and Analysis Overview

The full description of the attack is given in Figure 1. We
first define the probability distribution P, ; with support

b to h bability density functi = Lab
[a, b] to have probability density function u(p) Ty
where Cy 3 is a normalizing constant.

For p € [0,1], we define ¢? : {+1} — R by ¢%c) =

¢'(c) = 0, and for p € (0,1), ¢?(1) = —, /ﬁ and
PP(—1) = ,/1% so that by construction, ¢”(c) has mean
0 and variance 1 when Pr{c=—1] = p and Pric=1] =
1—p.

In this section, we give a high-level description of our
algorithm. First, recall that by Lemma III.1 with parame-
ter s =0 (r3 log® n), we can assume the sketching matrix
A has the form b

A= [3]

without loss of generality in our attack. Importantly, we
recall that A has the following properties:
(1) The D and S are column-disjoint.
(2) We have that [FrRAC(y 'D);|? < 1. ||[Frac(y D)3
for all y € R" and j € [n]
(3) S contains at most h = O (rslogn) = O (r*log” n)
non-zero columns.
Suppose that D is the distribution family in Lemma V.2
with K = O (rlogn). Then, for x ~ D, and x’ ~ Dg,
by Lemma V.4, we know that di,(Dx,Dx’) < m. Let
S denote the set of non-zero column indices of S. Then,
if we set x; = 0 and x} = 0 for all i € S, the streaming

algorithm A must fail to solve the £y gap norm problem
in one of these two cases, with constant probability. With
this motivation in mind, the main task of the adaptive
adversary is to design an adaptive sequence of queries to
learn the set of indices in S.

In each iteration, we query a random vector x! ~ Dy
where p is sampled in P, g. We maintain a score s! for each
coordinate ¢ € [n], which represents some measure of the
correlation between the i-th coordinate of the inputs and
the outputs of the algorithm A up until step ¢. In particu-
lar, at the ¢-th iteration and for each coordinate, let ¢} = 1
if zt # 0 and ¢} = —1 if 2! = 0. Suppose that the output
of the algorithm is a’, then we update each coordinate’s
current store st = s!7 + a' - ¢P(ct), where ¢P(-) is some
specially-chosen function which depends on the choice of p.
If for coordinates i, the score s! exceeds a pre-determined
threshold o, then we accuse this coordinate and treat it
as a coordinate in the secret set S. Furthermore, we set
this coordinate to 0 in all future queries, so the algorithm
cannot get any information about this coordinate in future
iterations.

From the guarantee of the algorithm A, we get that
when p is close to «, with high probability it should output
—1 and when p is close to 3, it should output 1. However,
from Lemma V.4 we know that the algorithm .4 can almost
get nothing about the value of p from the part of the
sketch Dxp, which means its output should have a higher
correlation with the coordinates in S. With this ind mind,
the proof is comprised of the following two parts:

e Soundness: For any coordinate i ¢ S, the score
s; will never exceed o with high probability, which
means that coordinate ¢ will never be falsely accused.

« Completeness: Let S/ be the remaining (undiscov-
ered) coordinates in S in the j-th round. We will
show that if the algorithm still has the correctness
guarantee on Dy, and Dj after we zero out the accused
coordinates, then the sum ), ¢ s; will increase faster
than the scores of other coordinates. This means
that as we accuse more and more coordinates in S,
we either find a distribution that A or find more
coordinates in S (note that if find the whole set S,
the algorithm A must fail in the next iteration).

To simplify our argument in Sections IV-B and IV-C,
we will first prove that soundness and completeness hold
in the case that the streaming algorithm A only uses xg to
estimate the ¢y norm at each step. Then, in Section IV-D,
we show that the soundness and completeness guarantees
hold for an arbitrary algorithm .4 which uses both the
sparse part xg and the dense part Dxzp to compute its
responses to each query.

B. Soundness
Lemma IV.2. Forp € [a, ], let 7 = min(a, 1 — 3) and
te [—g, g} Then

E [ewp(c)] <et,

v~Dy



Let o and S be defined as in Lemma V.2
h <+ O(rslogn) =

A < An instantiation of the ¢y gap-norm algorithm.

Initialize s? = 0 for all i € [n].

For j € [{]:
Sample u?,

,u¢ ~ D" and v, ,’UCNDE.

Sample p/ ~ P, 5 and v7 ~ Dy;.

For i € [n], update s/ sg_ll +al - ¢P (c)).
Set I' =I""'u{ie[n] | s] >0} and ST

Let D be the distribution family in Lemma V.2 with K = O (rlogn)
O (rt log3n), o+ O (hlog(n)), £+ O(h) -0, c+ O(1)

Let z;(v) denote the vector where we make v; to 0 for all i € J.

If A fails with constant probability on one of zp-1(u

For each i € [n], set ¢/ = 1 if v/ # 0 and ¢! = —1 otherwise if v} = 0.
Query z;-1(v?) € Z™ and receive a? = A(z7;-1(v7)) € {1} as the output.

=S\ IV

) or zp;-1(v?): Output this distribution as the attack.

Fig. 1. Construction of Our Attack

where ¢ = 1 if v is nonzero and ¢ = —1 if v is zero.

Proof. Although the statement is slightly different from
Lemma 2.4 in [SU15] due to drawing v ~ D,,, the proof is
almost verbatim; we include it for completeness.

Observe that & [07(c)] =p+ ¢#(~1) + (1 —p) - (1),
since 135 [v=0] = p. Then we have iED [@P(c)] = 0

and E [(¢p(c))2] = 1. Moreover, for ¢ € {£1}, we have
|pP (¢ )\ < f Thus, we have [¢P(c) - t| < 1.

Since e” <1+ x4 z? for z € [—3, 1], then
w"(c)} <1 p 2, 2
E @9 <1ets B @@+ E (070
=1+ < e .
O]
Lemma IV.3. Letp',...,p™ € [, 8] and v; ~ D,;. Let

at,...,a™ € [-1,1] be fized and T = min(a, 1 — 3). Then
for all A >0,

— 2 —
A /4m+e ﬁ)\/4’

Pr Zajgbp( N>A <e

J€[m]

where for all i € [n], we have ¢; =1 zfvf #0 and cf = -
otherwise if v] = 0.

Proof. The proof follows exactly along the lines of Lemma
2.5 in [SU15], using 7 = min(a, 1 — 3) instead due to the
range of p € [«, ] as the probability of D,, drawing a zero.
We include the proof for completeness. By Lemma IV.2,
for all ¢ € { Na f},

g[S D) < [ B[] <o
v o v~D._ o
jelm) Vi ~Pr

By Markov’s inequality, we have

Pr| Y w2 s b

1€[m]

< etszt)\

We set t = min (‘Zf %) Then for A € [0,m+/7], we
A

have t = 5>~ and so
m

Pr Z a]¢p (! )2 A < e—/\2/4’m7
i€[m]
and for A > m\/7,
Pr| Y al¢” () 2 A| < AV <o

1€[m)]

O

Theorem IV.4 (Etemadi’s inequality). [Ete85] Let
X1,..., X, be independent random wvariables and for all
k € [n], let Sk = Zle X, be the k-th partial sum of the
sequence X1, ...,Xy,. Then for all A > 0,

Pr {max |Sk| > 4)\} <4 -maxPr[|Sk| > A].
keln] keln]

Lemma IV.5 (Individual soundness). For alli € [n]\ S,

we have )
Prliel’] < —

n

Proof. The proof follows similarly from Proposition 2.7 in
[SU15]. Consider a fixed i € [n] \ S. Since the adversary
does not see ¢/, without the loss of generahty we can

assume that the outputs a’ are fixed and v} and then c7



are subsequently drawn since ¢ ¢ S. By Lemma IV.3, we
have for every j € [{],

Pr [sz > %} =Pr Z ak¢Pr (k) > %

kels]

2
< e—h _'_e—a'ﬁ/lﬁ

Similarly, by Lemma IV.3, for every j € [{],

Pr|s] < “Il=pr Z ak P (k) < 2
freil=rr 2 i

< o~ + e"VT/16
Thus by Theorem IV .4,
Pr[ie ] <Pr [ma{txsﬂ > O':|
tely

< 4maxPr “sz\ > }
telj]

< 8(67W +e*"ﬁ/16) < i

3
N

Lemma IV.6 (Soundness).
1
Pr[|I°\ S| >1] < -
ARSI

Proof. The proof follows similarly from Theorem 2.8 in
[SU15], as follows. For ¢ € [n] \ S, we use Y; to denote
the indicator random variable for the event i € I*\ S. By
Lemma IV.5, we have that E[Y;] < % for all i € [n]\ S.
By Markov’s inequality,

1 1
r[\[f\8|21] <E Z Y: Sﬁ(nfr)gﬁ O
i€n]\S
Lemma IV.7. For each i € [n], let j; € [¢ + 1] be the
first j such that i € I, where we set I = [n]. Then for

7 = min(a, 3) and for any J C [n],

i 2
Z(Sf - sgifl) > )\‘| <e” 4\/\J\Z + e—ﬁ/\/zi.
ieJ

Pr

Proof. The proof is nearly identical to that of Lemma 2.10
in [SU15], as follows. Observe that

i—1 . SN G ope g
D (si =T =20 16 = Gi)al ¢ (),
icJ 1€J jell]
where I denotes the standard indicator function. Again,
since we zero out the i-th coordinate after time j; — 1, we
can take the view that the outputs a’ are fixed and then

the terms ¢ (¢]) are subsequently drawn for j > j;. Then
by Lemma IV. 3 we have

St s

ieJ
as desired. O

Pr 4&2 +€_ﬁ)‘/47

)>)\]§e

C. Completeness

Recall that we use h to denote the size of S, where S
corresponds to the non-zero indices of columns in S.
1) Fourier Analysis:

Lemma IV.8. Let f : R" — R and let g : [0,1] — R
be defined so that g(p) = E [f(v)], where for all

1.,V ~Dyp
i € [h], ¢; =1 if v; is nonzero and ¢; = —1 if v; is zero.
Then for any p € |a, 8],

Zd)pcz :gl )

1€[h]

p(1—p)

V1,5 VUh ND

Proof. The analysis is similar to Lemma 2.11 of [SU15],
but with differing probability distributions and thus corre-
spondingly slightly differing score functions ¢. We include
the full proof for completeness.

For p € (0,1) and T C [h], we define ¢} : {£1}* — R
by ¢%(c) = [1,er 9" (c:), so that the functions ¢, form an
orthonormal basis with respect to the product distribution
with bias p. Specifically, we have that for all T, U C [h],

1 T=U
0 T#U,

V1.V~ Dy

E [¢7(c) - ¢p(c)] = {

where for all ¢ € [h], ¢; = 1 if v; is nonzero and ¢; = —1 if
v; is zero. We use ¢(v) to denote this mapping from v to
c. Therefore, we can decompose f by

v)= Y 2(s) - dh(c(v)),
TC[h]

where we have the Fourier coefficients

Ty = E _[f)-éhcw),

’Ul,...ﬂ)hNDp

where all T' C [h]. Then for p,q € (0,1), we can expand
9(q) by

9(a) = ]EWD [f ()]

= Z Ty [8(e()

TC[h] ot
=> oIl E, lor(ei(v))]

TClh] ier "

17|

_ 1-p —q) -2
—T%:hf ( (-9 1/1_p>

since for v; ~ Dy, the probability that v; is zero (and thus
¢; is —1) is q. Thus, for T # ), we have

T;Z] fp |T‘ ( \/7—1_ (1 - q)m> .
(/5



and
=3 P (50 7).
Since f7({i}) = E [f(v) - #P(ci(vi))], then

Vlgeeny Vh NDp

E_ |-

Lemma IV.9. Let f : R" — R and let g : [0,1] — R
be defined so that g(p) = E [f(v)], where for all

V1., Up
i € [h], ¢; =1 if v; is nonzero and ¢; = —1 if v; is zero.
Then there exists a constant ¢ > 0 such that

E v)- Y o)

i€[h]

> ¢ (9(8)—g(a)).

Proof. The proof follows similarly from Proposition 2.12 in
[SU15], as follows. Recall that P, s has probability density

function u(p) = \/% entirely on the interval [«, 5]. By

Lemma IV.8,
E P(c;)
p~FPa,p [v1,.. ,U;LND 1ez[h ¢
= E [g'(p) p(1— p)}
p~Po g

8
=/ g (p)vVp(1 —p) - p(p) dp

8
:Ca,,@'/ g (p)dp

=Cas-(9(8) —g(a)).
The proof then follows from setting C, g = ¢. O
2) Concentration:

Lemma IV.10. Suppose that at the j-th round, the al-
gorithm A has error probability 5&,5?3 < ¢ over the input
distribution zpi-1(u) and zpi-1(v) where u € Dj,v € Dy
for some small constant c, then we have there exists a
function f7 : R" — R that only depends on the interaction
up to round j — 1 and satisfies the value of f7(v) is decided
by the coordinates of v in S’ and fI(v};) = o’ where
87 = S\ P71, Moreover, we have and ¢’ (3) — ¢’ (o) > 2—n
for somen =0 (1).

Proof. From the assumption we have
E b [A(zpi-1(v))] < —(1 — 2 and
V1,0~ Do,

[A(zp-1(v))] > 1 — 2¢. From the fact that

V1,..,Un~Dg
we have zeroed out the coordinates of v in 77!, we can

without loss of generality get that the output a’ can be
represented by the value of a function f’ that is only
decided by the coordinates on &’. From this and the
assumption that 47,3 < ¢ we have that

7 B)-g' (@)= E

Ul yeery ’U},,ND[-g

[f()]- E

V1,ee U~ Do

[f(v)] =z 2-n
for some n = O (1). O

For p ~ P, and v1,...,v ~ D,, we set &, g(f) =
f(v) - Xiep #7(ci), where for all i € [h], ¢; = 1 if v; is

nonzero and ¢; = —1 if v; is zero.

Lemma IV.11. Let f : R* — {£1}, 7 = min(a, 1 — 3)
andt € [f%, g} Then for C = 32" 7/o!

)

we have

E [ete s (D Eles] < €

Proof. Let Y = 3, #¥(c;). By Lemma IV.2 and inde-
pendence, we have that

E[eY] =E [etzianl ‘bp(ci)] — < E

v~ Dy,

h
[et¢”(c)D < et’h

for t € [—%, g} Pick t € {:l:g} such that

t2k+1
(2k + 1)

NE

E [Y2k+1] 2 0.

>
Il

0

Then by dropping the positive terms, for all j > 1, we
have

a2t (24)
0<mlyy] < s L = Clg o
k=0
(29)! 2y 87(24)! Th/64

This means that we have bounded the even moment of Y.
For k =25 + 1 > 3, by Cauchy-Schwartz,

E[|Y]*] < VEY¥] E[y?+2]
1 8125 +2)!

o ‘

<\/8](2.‘7)'e T :

- TI i+l

_ 82k ohr/ea, [EEL
Tk/2 k

Since |f(c)] < 1, we have E [|f(c)
2'8k/2k!€h7/64/7k/2.

eht/64

Y[F] < E[Y[F] <



For t € [—TT, g}, we have

+Z' E [[éa,5()I*]

9. 8k/2k|eh7/64
Tk/2
iy
\/,7_

T/64 S \/gt ’ —(k—2
< 1 4+4E [€a 5(f)] + 26"/ ,§<ﬁ) (VB)~(~2)

E[tﬁaﬁ(f)] <1 4tE [€ap(f
e
ZH

B[ ()] + 2070 <
k=2

<14 1E [as(f

t2
<14 E [€q.5(f)] + 32eM7/64 =
-

< Eléas(NI+CE

O

Theorem IV.12 (Azuma-Doob Inequality, Theorem 2.16
n [SU15)). Let X1,...,X;m € R, p1,..., b € R, and
Uy, - . Up € Q be random variables such that for all i €
[m]:

o X; and U;—1 are fized by U;

o [l 8 ﬁxed by Z/{i—l'
Suppose that for all i € [m], u € Q, and t € [—c, |, we

have
E [et(X"_’”) |Ui—1 = u| < e

Then for X € [0,2Cmc], we have

2
Z (Xi—p)| > A < 26_4ém7
L|i€[m]

and for A > 2C'mc, we have

Pr

Pr X, — )| > A <277,
o

L|i€[m]

3) Lower Bounding the Correlation:

Lemma IV.13. Let 7 = min(a, 1 — ) and let ¢ be the
constant from Lemma IV.9. Suppose that for every j € [{]-
th round, the algorithm A has error probability 6&,6% <c
over the distribution z1i-1(Dy), z1i-1(D}g) for some small
constant ¢, where zrj-1 means we zero out the coordinates

in I7=Y. Then for any \ € {O, 1;’4 ,

Pr

z:stf <2001 —mn) — /\] < 26~ 37
K3
€S

Proof. For each j € [{], from the discussion of
Lemma IV.10 we can have a function f7 : R" — {+1}
that only depends on the interaction up to round j — 1
and satisfies f7(v%,) = a/. Define

f] Usa Z oP(c]

1€[h]

a8(f7)

where ~ denotes that has the same distribution. We than

have
Zs = ZX

i€S JjEld]
From Lemma IV.9 and Lemma IV.10. We have that

i =E[X;] >2¢(1 —n)
for all f7. Then, from Lemma IV.11 we have,

E [et(xj—w)} ) [etﬁa,ﬁ(fj)*E[tia,ﬁ(fj)q < O

Define uj = (flaplav17 : 7fjapj7vj7fj+1)' Now
X1,y Xe, 1, ..., pe, and Uy, ...,U, satisfies the condition
in Lemma IV.11. For A € [0,2Cmc] = [0,15¢/\/7], we
have that
Pr|> si <20((1-n) -\ <Pr inm}
= i

< 9e~ N’ /4Cm 2675\027072.
O
Lemma IV.14. Let T = min(«o,1—08). Then for all A > 0,

h 2
Zsf>)\+ha+f Se‘ﬁ + e VTA/4,

= VT
Proof. For each i € [n], let j; be as in Lemma IV.7. That
is, i ¢ 87 and i € S¥i-1, where we define S“*! = () and
8% = [n]. By the definition of j;, we have that s/ > < ¢
for all i € §. Hence we have
g

€S =

<D (o+

i€S

By Lemma IV.7 we have

Z(se — sl > )\] < o~ + e VT4

€S

Pr

S Gl
ho + o
N

Pr

which completes the proof. O

Lemma IV.15 (Completeness). With high constant prob-
ability, at the end of £ rounds of the attack, we can find
a distribution on Z™ such that the algorithm A fails with
constant probability when the input is sampled from this
distribution.

Proof. Suppose that at some round j € [/] we have
max {4}, %} = Q(1), then from Chernoff’s bound we have
with probability at least 0.99, we can find this distribution
zri-1(Dgy) or zri-1(Dg) that the algorithm A fails from a
constant number of samples. _

We next consider the other case where 47, 5% < c
over the distribution D7, Dj for all j € [¢]. Then from
Lemma IV.13 we have

D st =20¢(1—n) = A =9(0)

i€S



with probability at least 1 — 2exp(—Q(¢)) by setting A =
O (£). On the other hand, from Lemma IV.14 we have

h

¢

> st <A+ho+—= < 3ho
ies VT

with probability at least 1 — 2exp(—Q(c)) by setting A =

ho. This is a contradiction when ¢ > C' - ho for a sufficient

large constant C. O

D. Proof of Our Main Theorem

We are now ready to prove Theorem IV.1.

Proof of Theorem IV.1. First, without loss of generality,
we can assume that n = poly(r). This follows since we can
always query on the first poly(r) coordinates and make the
remaining poly(r) coordinates of the query vector x to 0
(in this case, we are attacking the first poly(r) columns of
the sketching matrix A).

We now prove the correctness of our attack. Suppose
that the algorithm A which we attack uses the estimator
f, and suppose we sample x ~ D, at time ¢. Next,

we consider A’ which uses the same estimator f, but
!/

{Dx
SXS
a fixed v € [a, 8], which is independent of input x.
Since Dx and Sx are independent conditioned on p!, by
Lemma V.4, we know that for each iteration ¢, the total

instead takes the input where x' ~ DJYDl for

(t) /
variation distance between *D | and (t)| is at most
(0 Sx
S S
1/ poly(n). Therefore, we have that
1
dv( OV ey g A (KDY o )<g.
v (LAY be=12, 0 {A (XY ) hi=12,0 0 ) < poly(n)
B 1
poly(n)

Hence, it suffices for us to show that by interacting
with A’, we can find the attack distribution on which
A’ fails with high constant probability. Note that A" has
the property that it only uses zs in the computation.
From Lemma IV.6, we see that with probability at least
1 — 1/n, we never falsely accuse any index i ¢ S;
Additionally, by Lemma IV.15, we know that with high
constant probability, our attack correctly identifies (some,
or all) coordinates ¢ € S and outputs a distribution on
which A’ fails. From the above discussion we can see that
the algorithm .4 must also fail on this distribution with
constant probability. By conditioning on these two events
and taking a union bound, it follows that our attack finds
some hard query distribution q on which A fails with
constant probability.

Next, we analyze the query complexity and time com-
plexity of our attack. In each of the ¢ iterations, we
make O (1) queries. Thus, the total number of queries is
oW =0(r® log” n) = o (r®). Since we only maintain
the accumulated score s! in each iteration ¢ € [¢], the total
runtime of the attack is O (¢n) = poly(r), since it suffices
to consider n = poly(r). O

V. CONSTRUCTING THE HARD INPUT DISTRIBUTION

In this section, we give the construction of the hard
distribution family that is used in Section IV. We will
make use of the following lemma.

Lemma V.1 (Claim 1 of [LWY20]). For every ¢ >
2-OWR) there exists a univariate polynomial Q of degree

at most R — Q) (\/Rlog %) such that
R
R .
(7) e

QO ><- —c.
Furthermore, this polynomial Q has the property that

=0

=0

for all non-negative integers t < O (\/ﬁgi)

Lemma V.2. For any K, there exist constants 0 < a <
B < 1 such that there exists a family D = {D,} of
probability distributions parameterized by p € |a, 5] with
support on {—R, ..., R} where R =0 (Kz) such that:
(1) For D, € D, we have D,(0) = p and D,(1) = Q(1).
(2) For all p € [a,B] and for all X € [R], we have
D,(X) = D,(—X), so that D, is a symmetric
distribution.
(3) For all p,q € |a,8], we have XE
k
XiEDq [X*] for all k € [K].
Proof. By Lemma V.1 with R = O(K?) and ¢ = 1/4,
there exists a univariate polynomial @) of degree at most
R—-Q (\/E) such that

(X' =

P

R
QOI> -3 |- (7) @)
=0

Moreover, for every non-negative integer t < K, we have

ZR:(—U" (?) -Q(i) it = 0.

Let u(i) = (—1)i(1§) - Qi) for all ¢ € [R] and let U =
> ie(r) [u(@)]. Without loss of generality, suppose Q(0) >
0, so that u(0) > 0 and u(0) > % - U. Moreover, since

ZiE[R] u(i) = 0, then u(0) < % .U.

We set a = %3) and =2 uz(—g)‘.We first define:
u(0 .
Bi) =143 (4+|49]) i==1
S92, llefz....R}

Then for a fixed p € [«, 8], we define

Dy(0) = B(0) + (g 1) “2(73)



and ()
u(i
D,(i) = B(i (f - 1)
o) = B+ (£ 1) 22,
for all ¢ with |i| € {1,..., R}.
We first prove that D, (i) is a probablhty distribution.

Since Y7 |u(i)| = U, then Y"1 |1;(U)‘ , and thus

1 - u
Z :7+Z|2([]]):

i:lil€{0,1,...,R} j=0
Moreover, since |u(i)] < Y, then B(i) € [0,1] for all i
and thus B is a probability distribution. We also have

SR, ut(j) = 0. Thus we have

Z Dp(i) =

i:|il€{0,1,...,R}

- : P_q)ud)
=l X oso)el X (515
i:|i|€{0,1,...,R} :1€{0,1,...,R}
= > B@l)=1
i:|i|€{0,1,..., R}

We also have ZZ 2U = 1 and thus ";(1 L < 1. Moreover,
note that for p € [«, ] Wltha— U)r ndﬂfQ 0) ,
then (£ —1) € [0,1]. Thus D,(i) € [0,1] for all i and S0

D, is a valid probability distributlon
By construction, we have

el ()

=D,

Dp(o) =

since u(0) > 0 by assumption. Hence, the first part of the
claim follows.
By construction, we have D, is symmetric distribution
for all p € [a, B8], which gives the second part of the claim.
It thus remains to prove the third part of the claim.
Let p < ¢ be fixed, for p,q € |«, 5]. To that end, observe
that XED [(X7] = XED [XJ] if and only if > Xe[R] X7

~ ~

(Dp(X) — Dg(X)) = 0. Now, for each X € [R], we have
Dy(X) = Dy(X) = 132+ 2557 Since u(X) = (~1)* () -
Q(X), then it suffices to show that 3 vz X7 (-1)% (%)
Q(X) = 0, which is true by Lemma V.1. Thus, the third
part of the claim follows.

As an alternative view, we can first observe that since
D, and D, are symmetric distributions, then their odd
moments are all 0. To match their even moments, we can
define M € REXE be the following transposition of a
Vandermonde matrix:

11 1 .1
1 4 9 ... R
M_ |l 16 8 .. R*

then E

~

[ng} is the j-th row of the matrix-vector

[X*]
is the j-th row of the matrix-vector product Mv’, where
v} =2 Dy(i) and thus X]ED (X% = E [X%]if and

X~D,
only if Mv — Mv’ = 0K i.e., the all zeros vector of length
K, so that v—v’ is in the kernel of M. Now, the j-th entry
of Mv—MV' is precisely 2}y g XI(Dp(X)—Dy(X)) =

O

0 and we proceed as before.

product Mv, where v; = 2 - Dy (). Similarly, XED

A. Bounding the Total Variation Distance

Let D denote the dense part of sketching matrix A,
and let x ~ DJ} and x’ ~ Dy, respectively. Before we
proceed to prove that di, (Dx,Dx’) < m, we state
the following useful lemma.

Lemma V.3. |, (ai +6i) = TLip @il < 2 iep 104l -
esz["l 193] if la; + ;] <1 for alli € [n].
Proof. We have

I+ Tai— I (@5 +6) I @

7<t j>t Jj<i+1 j>i+1
=16 - [T la; + 1 TT lasl-
j>i j>it1

Since |a; + 0;] < 1, then we have |a;| < 1+ |,| by
triangle inequality. Thus,

I +6)]]a -

j<i §>i
<ol TT a+18D

j>i+1
< (0] T €' < 1i] - e2 %,

J€[n]

II @i+6) ] @

j<i+l G>it1

Now, note that we can write

IT i +6:) = I @

i€[n] i€[n]
:Z H(aj—i-éj)Haj— H (a; +9;) H aj;|.
i=1|j<i §>i j<it+1 J>it1

Therefore, we have that

[Itai+6)— ] a| <> 16il-e

i€[n] i€[n] i€[n]
O

Lemma V.4. For fized p and p' € [o,f)], let P = D,
and Q) = Dy be the pair of probability distributions defined
in Lemma V.2. Let P"™ and Q" be the probability distri-
butions of vectors of dimension n, with each entry drawn



independently from P and Q, respectively. Let D € Z"*"
with entries bounded in [— poly(n), poly(n)] and

1
|Frac(y 'D);|* < < |Frac(y 'D)||3 .

for all y € R” and j € [n]. Let Pp and Qp be the
probability distributions of Dx and Dx’' for x ~ P™ and
x' ~ Q™ respectively. Let K and R be the parameter from
Lemma V.2 and s be the parameter from Lemma II1.3 with
s = Q(R®/?). Then the total variation distance between Pp
and Qp is at most n®() (n e UK) e*Q(K)).

Proof. For u € [—m, 7]” and z = Dx, we have

[e_<“’z>’} = E [e_(uTDx)z}.

ZNPD

Fo(u)= E

ZNPD

We have Dx = } . n]D(j)xj, where DU) is the j-th
column of D. For all i € [R], let P; be the probability
that Pr [X =i]. Since each coordinate of x is drawn

1ndependently from P, then we have

Fotw) = [ B[]

J€n]

H Z P, - (cos (u,DUym )+i~sin(<u,D(j)>m)>.

n] m>0
Since Pi = P_;, then we have
= H Z P, - cos((u,DYWym).
j€[n] m>0

As before, we define FRAC(:Z:) =z — |nt( )€ [-4,4) and
FRACa,(z) = 2m-FRAC (£) € , so that cos(m#é) =
cos (m - FRACo,(6)). Then

H Z P, - cos (m FRACy,((u, D(J)>))

j€ln) m>0

PD

4 6

Rewriting cos(z) = 1 — % + 4 — & + .- in its Taylor

expansion, we have

(u, D(j)>))2’C
20!

G

__ ) = H Z sz (mMFRAC2A(

j€[n] m>0 k>0

Since cos(x) is well-defined, the summation is absolutely
convergent, and so

o= I3 (3

k>0 \m2>0
.(FRACQW«U,D(J)») (—1)*

(2k)!

Let Mp(2k) = (ngo P, - m%) be the 2k-th moment
of P and Mq(2k) = (ZmZO Qm - mzk), so that

Po(u) = [] 3 Mp(2k)-

j€[n] k=0

(FRACa,((u, DW)))*
(2k)!

(1"

and similarly

=11 D Me2k)-

J€[n] k=0

(FRAC2,((u, D(j)>))21€

(2Kk)! (=D~

We claim |1/31\3(u) - @B(uﬂ < n e UE) e UK) for all
u € [—m, 7]". Now, for a fixed u, either there exists j € [n]
such that [FRAC2,((u,DW))| > - or for all j € [n], we
have |[FRACa,((u,D))| < . We analyze these cases
separately.

Suppose there exists j € [n] such that
[FRAC2,((u, DU))| > . We write L(Q‘;T) =
FRACy,(u, DW). Then |¢ (i) 1z and the deﬁmtlon
FRACy;(z) = 2m - FRAC (£) € [-m, 7 1mphes

(57, = e (<;vD<j>>)2! > R

Since we have |[FRAC(y 'D);|? < % - |Frac(y"D)|3 for

S

all vectors y € R”, then it follows that

|-G, = woremys = 53m
“\or/lls = (16K2)27 ~ 321

by setting s = O (K3). From before, we have

\ﬁl\D(uﬂ = H Z P, - cos (m . FRACgTr(<u,D(j)>)>
J€[n] m20
- H ZPm'COS(m'L<2l:T)j~27T> .
j€[n] Im>0

Since we have P, = Q(1), then

= T (1mon e (), -20))|

j€[n]

<He ( %])2)

|Pp(u

)

where the last ine%ualit holds by the Taylor expansion

cos(zx) = lf%TqL%f%Jr... and the inequality 1 —z <
e~ *. We thus have
Po ()] < e 2H)I)
< e SK),

and similarly |QD( )| < e @) Thus in this case,

|PD u) — QD( )| < e M) by triangle inequality.
In the other case, we have that for all j € [n],
IFRACo,((u, DW))| < . From before, we have
FRACo,((u, D)
:HZ%%( 2rl(@ DO

jE[N] k>0 (Qk)'

At this point, we recall that R = O (K?) by Lemma V.2.
So, using R = O (K?) and the fact that for all j € [n],



[FRAC2,((u, DW))| < A (as well as Stirling’s approxima-
tion), we can upper bound the higher moments as follows:

o (0, DOV
k;mMp(%). (FRrAC ”gk)'D )) (=1
1 1 \*

= k;K:/Z R (2k)! (16K2>
KK 1

—Q(K)

< . <e
> (2K>2K/62K\/47T7(16)K K2K —

We now apply Lemma V.3 with a; =, _ /o Mp(2k) and
0j = k12 Mp(2k) so that -

Po(w) - [ > MP<2k>(

jE[n] k<K /2
—Q(K)
e .

FRACQW(<u,D(j)>))2k (—1)F
@h)!

<n-

Similarly, we have

FRACs« ((u, D)) ** (—1)*
20!

Qo - [ > MQ<2k><
jE[N] kLK/2
—Q(K)

<n-e

Moreover, we have Mg (2k) = Mg (2k) for k < K/2 and

thus by triangle inequality, we have |Pp(u) — Qp(u)| <
n - e UK,

Thus, combining both cases, we have | Pp (u)—Qp (u)| <
n - e~ M) 4 =) for all u € [—x, 7)™, as desired. Now,
we have

|Pp(x) — Qp(x)]
1 i(u,x Do a
W /[_mﬂ)r et fwx) (PD(U) - QD(“)) du

<. e M) 4 o= UK)

Finally, we observe that since D € Z"™ "™ with entries
bounded in [— poly(n), poly(n)], then Pp(x) and Qp(x)
only have support on a set of size n®("). Thus, we have
that

div(Pp (%), @p(x)) < n°) (n e ) 4 e_Q(K))
O

At this point, we note that s = O (K?’) in the proof
of Lemma V.4. So, by setting K = rlogn, we see that
s=0 ((r log n)3) For this choice of parameters s, K, we

get that diy(Pp (%), @p (%)) < ﬁ(n)? as desired.

VI. ATTACK AGAINST LINEAR SKETCHES OVER FINITE
Fi1ELDS

In this section, we present our attack against linear
sketches for fyp-estimation in the case that the sketching
matrix A € F*" and inputs x € F} come from a finite

field for some prime p. Formally, we have the following
theorem.

Theorem VI.1. There exists an adaptive attack that
makes O (r?’) queries and with high constant probability
outputs a distribution D over Z™ such that when x ~ D,
A fails to distinguish between ||x||o < 1.1n and ||z|jo > 1.9n
with constant probability.

Algorithm 1 Attack on L¢ algorithms that use a sketch-
ing matrix over F}*"

Input: Algorithm A that decides whether input vector x
satisfies ||x||o < 1.1r or ||x||p > 1.97, using a sketching
matrix A € F*"

Output: A query distribution on which A does not suc-
ceed with constant probability.

T+ 0
while |T| < r do
Randomly choose R C ([n] \ T') of size 2r
Let x(M) [, be a random vector with support only
onT.
Let x(?) 7 be a random vector with support only
on T"UR.
if A fails on x(!) or x(?) then
Return this distribution x(®.
for /=1 to ¢ =5+1loglogr +logr do 2° indices
of TVD O (1)
if FiNDCoLuMmN(T, R,¢) outputs a column j
then
T+ TU{j}
Let x(M) € [, be a random vector with support only on
T.
Let x(®) be a random vector from Fy.
Return one of x(*) and x(?)

Algorithm 2 FINDCOLUMN(T, R, ¢)

Input: Set T, Set R,{ € [5+ loglogr + log ]
Output: A column j that is linear independent to T'
1: Let R' denote the first columns of R
2: for mg =0 (2% log 7") times do

3: Randomly choose i € [2r]

4: for my =0 (225 log r) times do

5: Randomly generate v(® e F} with support only
on REUT.

6: Randomly generate v(%) e F, with support only
on RFLUT.

7 Query A on v(® and v(#

8: Let D3 and Dy be the output distributions of {v(*)}

and {v(d}.
9:  if diy(D3,Dy) > Wﬂogr then
10: return j

11: return FAIL

The full description of our algorithm is given in Algo-



rithm 1. The basic idea of our attack is due to the following
observation: let T and R be two subsets of columns in
A such that T and R have the same column span. Then
diy(Ax), Ax@) = 0, where x(") € Fp and x? € F2
are uniformly random vectors with support on 7" and
R, respectively (Corollary VI.3). Thus, if we can find a
column-independent set 7" with r columns, the algorithm
A must fail on one of the following two cases where x is a
random vector that is on the support 7" or a random vector
over F}, as they correspond to the different outputs of A.
Therefore, the remaining task is to devise a strategy to
find the column independent set T.

Lemma VI1.2. Let T be a subset of columns in A and
suppose column j is linearly dependent with the columns
inT. Then dw(AV(l)7 AV(Q)) =0, i.e., the distributions of
the sketch on vV and v(?) are identical. Here xV) e Fy
is random vector with support on T and x? € Fy be a
random vector with support on T U {j}.

Proof. From the condition, we have that there exist
ai,...,app| € Fp, such that

alA(TI) +...+ a|T‘A(T|T‘) =AW,

Thus there exists a one-to-one correspondence for the
setting where the coordinate of v(1) corresponding to the
i-th index of T'is 8; € IF,, and the setting where the coordi-
nate of v(?) corresponding to the i-th index of T is 3;, i.e.,
the coordinate of v(1) corresponding to the i-th index of T
is B; — ;. Thus, the output distributions of the sketch on
v and v(? are identical, i.e., di,(Av(D, Av?) =0. O

Corollary VI1.3. Let T and R be two subsets of columns
in A and suppose that they have the same column span.
Then dy,(AxM, Ax®) = 0, where x(V) € [ is random
vector with support on T and x(2) F} be a random vector
with support on R.

We next give some high-level intuition of our procedure
that searches for this column-independent set: suppose T is
the current set of linear columns found, then we randomly
sample 2r columns in [n] \ 7', and let R denote the set of
these new columns. Then from the correctness guarantee of
the algorithm A we have that d, (A(x™M), A(x)) > 1/3
(as otherwise we find the distribution on which A fails
immediately), where x() is a random vector with support
on T and x(® is a random vector with support on T+ R.
Next let R denote the first ¢ columns in R and p; denote
the distribution of A(x() where x(*) is the random vector
in the support of T U R’. From the triangle inequality we
have

(2)

OJ\»—A

D du iy i) = di (0, pi2r) >

7
One natural way at this point is from the above, we have
there must exist j such that dey(pj—1, ;) > Q(1/r), and
then such j should be a column that is linearly indepen-
dent to the columns in T, as otherwise the total variation

distance should be 0. Hence, we can enumerate all i € [27]
to find such column j (from the results in statistical test-
ing, we can distinguish whether two binary distributions
have 0 distance or have total variation distance larger
than 1/r using O(r?) samples with error probability at
most 1/poly(r) (Lemma VI.5)). However, such a way
might not be optimal, as in the worst case we need to
search every i € [2r]. To get a better r dependence, we
consider the following level-set argument: define the level
set IO [logr’ ) and Ig 2€+3110gr’ 2[+2110gr
D dov (piy prigr) > 3, there exists £ € [5+ loglogr + log ]
for which there exist at least 27! indices i such that
diy (s ttiv1) € Ip—1 (Lemma VI.4). Hence, we can guess
the value of ¢, and for each value of ¢, we use a proper
sampling rate to sample the indices in [2r]. Note that since
the range of the total variation distance is different for each
¢, we can use different number of samples (which depends
on /) to do the distribution testing. This results in a better
r3 dependence.

then since

Lemma VI1.4. Suppose that

2r—1

1
Z dtv ,uz),uz-l-l) Z g
=0
Define the level set I, = [IOéT,l) and I, =

|:2’5+3110gr’ 2/f+2llog7“)' There exists £ € [5 4 loglogr + log ]
for which there exist at least 2= indices i such that
div (1is prit1) € Lo—1.

Proof. Suppose by way of contradiction that for all £ €
[5 + loglog  + log 7], there exists fewer than 27! indices

i such that diy (s, pit1) € Ip—1. Let Ny be the number of
indices 4 such that dy, (1, tti+1) € Ie—1. Then we have

2r—1

> div iy piga) <
i=0

5+loglog r+logr
D L 1
—~ 20+ Jogr 32r

O

Before proving our main theorem. We need the following
result in the discrete distribution testing.

Lemma VI.5 ( [CDVV14]). Suppose that p and ¢
are two distributions on [n] There is an algorithm that
uses O (max{n?/3/e*/3 nl/2/e2}) samples to distinguish
whether p = q or diy(p, q) > € with probability at least 2/3.

Note that the distributions we test is binary as the
algorithm A4 only output 0 or 1. And to boost the error
probability to d, we can run log(1/d) independent copies
and then take the majority.

We are now ready to prove our Theorem VI.1.

Proof of Theorem VI.1: Consider Algorithm 1. With
probability at least 1 — 1/ poly(r), all of the distribution
testing subroutines succeeded, this is because we make an
extra of O (logr) factor in the number of samples for each
testing procedure and take a union bound. Condition on



this event, we only need to show in each iteration, with
probability at least 1—1/ poly(r) we can find a new column
j that is linearly independent to 7.

Consider a fixed iteration and let x() is a random
vector with support on 7' and x® is a random vector
with support on T+ R. We first consider the case where
diy (A(xM), A(x?))) < 1/3, then from the guarantee of
the algorithm A, A must fail on one of the distributions.

We next consider the other case di, (A(x™M), A(x))) >
1/3. First, if during the process, FINDCOLUMN successfully
finds a column j, since we assume the correctness of the
property testing subroutines, this means column j must be
linearly independent to T" (as otherwise the total variation
distance is 0). One the other hand, from Lemma VI.4, we
know that there exists there exists ¢ € [5 + loglogr +
log r] for which there exist at least 2¢~" indices i such that
div (Wi, hiv1) € Ip—1. Since we sample O (2’7 log r) index i
in this range, with probability at least 1 — 1/ poly(r), we
can find such a j that de(pj, pj41) € Ip—1.

Now, assume that we have found such a column-
independent set 7' with r columns. Let x) € F? is random
vector with support on 7" and x(?) e F, be a random
vector on [} . Recall that A € IF;X”, this means that
we have di,(Ax™), Ax(®?)) = 0, which means that the
algorithm A must fail on one of the distributions.

Finally, we analyze the query complexity. in each step
of the finding of the r columns in 7', we make logr +
loglogr + 5 guess about the value of ¢ and in each guess
we sample O (2% log r) column j and in each sample we
make O (225 log r) samples of the two distributions, then
it follows that the overall query complexity is

(log r+loglog r+5)

- 3

(=1

% logr-2%logr | =+3- polylog(r) .

]

VII. ATTACK AGAINST REAL-VALUED LINEAR
SKETCHES

In this section, we consider the case where the sketching
matrix A € R™*" has all subdeterminants at least ﬁ(r)
(note that the known sketches have this property). For-
mally, we prove the following theorem.

Theorem VII.1. Suppose that A with the estimator f
solves the (o + ¢, 8 — ¢)- Lo gap norm problem with some
constants a, 8, and c, where A € R"™"™ is the sketching
matriz and has all nonzero subdeterminants at least ﬁ(r)’
and f : R™"™ — {=1,+1} is any estimator used by A, and
A returns f(A, Ax) for each query x.

Then, there exists a randomized algorithm, which after
making an adaptive sequence of queries to A, with high con-
stant probability can generate a distribution D on R™ such
that A fails on D with constant probability. Moreover, this
adaptive attack algorithm makes at most poly(r) queries
and runs in poly(r) time.

We follow a similar procedure as we did for x € Z",
where the strategy is to design queries to learn the signif-
icant columns of the sketching matrix A. However, since
the sketching matrix A is real-valued, we may need to
redefine the significance of columns and re-design the hard
input distribution family for the insignificant coordinates.
Specifically, we consider the following condition for the
significance of column i:

. 1
Jy' eR, (yTA); > . ly Al .

Next, we argue that we can iteratively remove a (small)
number of columns of a matrix A € R"™" such that the
resulting matrix A’ has leverage scores at most 1 (note
that since A and x are real-valued matrix and vector now,
the previous information theoretic argument in Section III
no longer works). Since the sum of the leverage scores
is at most r, we would like to argue that we can just
remove rs columns. However, this may not be true, since
the leverage scores of some columns may increase when we
zero-out other columns during the pre-processing. Thus,
we require a more involved volume argument to bound the
total number of added rows e;, which has previously been
used to bound the sum of online leverage scores [CMP20],
[BDM*20].

Lemma VIIL.2 (Matrix determinant lemma). For any
vector u € R and matrizc M € R4*? we have

det(M +uu') = det(M) - (1 + uM'u).

Now, we show that for matrices with bounded en-
tries and bounded subdeterminants, we can only zero-out
columns with high leverage scores for a fixed number of
times before the remaining columns have bounded leverage
score. Among this class of matrices is the class of integer
matrices with bounded entries. We remark that if each
entry in a general matrix is represented using b bits, then
by rescaling, this translates to an integer matrix whose
entries are bounded by at most 2% in magnitude.

We further remark that although the following state-
ment for matrices with subdeterminant at least m,
the statement easily extends to matrices with subdeter-
minants at least x by removing O (rslog(knr)) columns,
e.g., matrices with subdeterminants at least — y would

oy (r
require poly(r) - logn columns to be removed.

Lemma VII.3. Let A € R™" be a matriz with nonzero
entries bounded by poly(r) and all subdeterminants either
zero or at least m Let s > 1 be a given parameter.
Then there exists a pre-processing procedure to A that
produces a matriz A’ € Z"™*™ that zeros out at most
o (rzslog(m")) columns of A such that the leverage score

of all columns of A’ is at most %

Proof. Let S = AAT € R"™*". By the matrix determinant
lemma, c.f., Lemma VII.2, we have for any vector u € R",
det(S+uu’) = det(S) - (1+u’S~'u). Suppose a column
A, is removed from the sketching matrix A, so that S



decreases by A;A. By the matrix determinant lemma,
c.f., Lemma VIL.2, we have det(S — A;A;) = det(S)(1 —
(A/S7!A;)). Note by the definition of leverage score,
AiTS’lAi is the ¢-th leverage score ¢; of the current S.
Hence, we have det(S — A;A;") = det(S)(1 — ;). Observe
that if ¢; = 1, then the rank of S decreases, and the
analysis can be restarted with a new linearly independent
subset of columns of the matrix A at that time. Thus we
can have ¢; = 1 at most r times and for the remainder of
the analysis, we shall consider the number of columns that
must be removed while not decreasing the rank of A.
Now in the case that no columns have leverage score 1,
we seek to remove columns with leverage score ¢; > % In
this case, we have |det(S — A;A)| < [det(S)|- (1 — 7)
On the other hand, we have that |det(S)| < |IS|} <
(n - poly(r))", since S = AT A so that ||S||r < [[A|% <
n - poly(r) since each of the entries of A have magni-
tude at most poly(r). Hence after O (rslog(nr)) itera-
tions of removing columns with leverage score at least
we have | det(S — A A < which contradicts
|det(S AA) > poly(7
subdeterminant of A has value at least

polv(r)’
j» given the assumptlon that any
———. Thus, we
" poly(r)
remove O (rslog(nr)) columns for a given rank, and have
at most r changes to the rank of the matrix. Therefore, at
most O (r?slog(nr)) columns are removed in total before

no remaining columns have leverage score at last % O

We next consider the construction of the hard distribu-
tion for the insignificant coordinates. Let D = N(0,1) and
let D, for a constant p € (0,1) be the distribution such
that for z ~ D, satisfies Pr [z = 0] = 1 — p. Otherwise,

with probability p, z ~ N (0,%
write z ~ D,, by & = ip -Bern (p)-N(0,1), where Bern (p)
denotes a Bernoulli random variable with parameter p, i.e.,

1 with probability p and 0 with probability 1 — p, Thus,
we have

E [z]= E [z]=0,

$ND1 wNDQ

. Note that we can also

E [xﬂ: E [xﬂ:l.

x~D1 x~Dy

We next turn to bound the total variation distance
diy (AxM | Ax?)) where x) ~ D, and x?) ~ D, for p
and ¢ randomly sampled in («, 1) for some small constant
a. We first recall the following statement of Azuma’s
inequality:

Theorem VIL.4 (Azuma’s inequality). Let Zi,...,Z,
be mean-zero random variables and [1,...,03, be upper
bounds such that for alli € [n], |Z;| < B;. Then

. < .
Z % = 9P 2 icin] B?

i=1
We next show that a random matrix B formed by
rescaling columns sampled from a matrix A is a good
subspace embedding of A.

Lemma VIL.5. Let v > 1 be a fized constant. Let A €
2
R™™ and s = © (;—2 :

>

r*log 7") be fized so that no column

of A has leverage score more than % Let B € R™™ be a
random matriz formed by sampling and scaling by }% each
column of A with probability p, otherwise zeroing out the
column entirely. Then with high probability, we have that
simultaneously for all x € R"

1 1
1—— ) xBI2<|x"TAIZ< [1+— ) - |x B2
< W>IIX 2 < [lx Al < +7T [x Bl

Proof. Let x € R" be any fixed vector and let y = ATx €
R™. If y is the all zeros vector, then all columns of A have
dot product 0 with x and so y = x" B. Thus it suffices to
consider the case where y is nonzero, in which case we can
suppose y has unit Lo norm without loss of generality. Now
for i € [n], let Z; = % ~y2 - X; — y?, where X; ~ Bern (p).

Hence, we have E[Z;] = 0 and |Z;| < (%71) 2 <

(% — 1) £;, where ¢; is the leverage score of column 7, since

f; = maxXyerr |\<ATv>||2 Thus for all i € [n], we can set
B; = %, so that Zle[n] B < Zie[n] % < 5. Moreover, we

have that for all i € [r], £; <
and thus §; <

Hence for s = ©

% by our pre-processing,
%. We also have >0 y? = |yl3 =1

, Azuma’s inequality, c.f.,

N
V2.2 L

= exp(fG)('yzrlog r))

ﬁ -r*logr
Theorem VII.4, implies

1
Pr 1—22~yi2-Xi>% <ex
1€[n]

for s=0 (;—2 .

Now we take a %—net N of the unit vectors y in the row-
span of A. We have || < (y7)°( and thus by a union
bound over all N, we have that all net points y’ € N have
their length preserved up to 1 :I: . Finally to show that
correctness over the net A/ 1mphes correctness everywhere,
we can view our estimation procedure as generating a
diagonal sampling matrix D with \/% on the diagonal
entries corresponding to the columns sampled into B, and
0 otherwise. Thus for an arbitrary unit vector y in the row-
span of A, let y’ be the vector of N closest to y. Then by
triangle inequality, we have

[Dyll2 < [[Dy'[l2 + ID(y — ¥')ll2
1 1
§1++¢2Hy—ﬂb£1+0<),
yr yr
|Dyll2 > [[Dy'|l2 — ID(y — ¥')ll2

1 1
21— 2oV fy-ylez1-0(4 ).
r r

Since Dy = x ' B, then the desired claim follows. O

r*log 1") .

Recall the following definition of KL divergence:

Definition VIIL.6 (Kullback-Leibler Divergence). For
continuous distributions P and Q of a random variable



with probability densities p and q on support ), the KL
divergence is

pa)
q(x)
The following statement about the KL divergence of a

multivariate Gaussian distribution from another multivari-
ate Gaussian distribution is well-known, e.g., [Duc20].

VIL.7. For P = N(p1,21)  and
N(p2,%2), we have dxu(P||Q) =
=7 Te(25150) + (2 — 1) "85 (p2 — ) ).

X.

dKL(PHQ):/GQ (z )log

Lemma
Q p—

1 det (X
2 (10g det(22)

Recall the following relationship between total variation
distance and KL divergence:

Theorem VII.8 (Pinsker’s inequality). For probability

distributions P and Q, we have

A (P.Q) < 1 g (PIIQ).

We now upper bound the total variation distance of the
image of A after right-multiplying with two vectors x(!)
and x(®) whose entries are drawn from a normal distribu-
tion and a sparse scaled normal distribution, respectively.

Lemgna VIIL.9. Let~y > 1 be any fixed constant and let s =
e) (Z—z . . Let D = N(0,1) and let D,, = Bern (p) -
N (O, }%) for a constant p € (0,1). Letx) ~ D andx? ~
D,. Let A € R™™ be a matriz with leverage score at most
L. Then dy (AxD, Ax?) < O (%)

r*log 7")

Proof. Since x1) is a multivariate Gaussian with identity
covariance matrix and mean 0", then Ax(?) is a multivari-
ate Gaussian with mean 0" and covariance matrix AAT.
Let x ~ D, and let S be the support of x(2). Note that
each coordinate of x(®) in the support of S is drawn from
the Gaussian distribution N(0, %) Therefore, Ax(? is a
multivariate Gaussian with mean 0" and covariance matrix
BB for some matrix B. By Lemma VIIL.7, we have that

dxr(AxW, Ax®)
1 det(BTB
=3 (log el )

YN\ ) T —1 T
T ATA) r+Tr(BTB) 1 (A A))
2
Let € be the event that (1 - #) BB < ATA <
2
(1 + #) BB, so that by Lemma VIL5, Pr[£]

%. Then we have conditioned on &
poly(r) ’

dxr,(Ax), Ax®) | &)

o1 2) e (1))

Let a and 8 be two constants such that a is close
to 0 and S is close to 1.

Let D be the distribution family where D, =
Bern (p) - N'(0, 1)

h <~ O (rzslogr) = 0 (r12logr), o
O (hlog(n)), £+ O (h) -0, c+ O(1)

Let z7(v) denote the vector where we make v; to 0

for all i € J.
A + An instantiation of the ¢y gap-norm algo-
rithm.
Initialize s? = 0 for all i € [n]
For j € [¢]:
Sample u!, ,u¢ ~ D7 and v!, ,v¢ ~ Dj.

If A fails with constant probability on one of
zri—1(u?) or zp—1(v?): Output this distribution
as the attack.

Sample p/ ~ P, 5 and v/ ~ D7;.
FOI‘&H’LE[]SetCJ—llf’U 7£Oandc7 -1
otherwise if v] = 0.

Query zpj- 1(1}3) € R" and receive @/ =
A(zpi-1(v7)) € {£1} as the output.

For i € [n], update 57 < s/~ +a’ - ¢’ (c]).

Set IV = [~ 1U{z€[ ]| s >o}and$ﬂ+1:
S\ I.

Fig. 2. Construction of Our Attack over the Reals

since log(1 +z) = O () for = € (0, ), e.g., by the Taylor
series expansion of log(1+ x). By Theorem VII.8, we thus
have

div(AxM Ax? | £) <O <1> :
gl

Since Pr&] > 1 — then it follows that

1
poly(r)”’
1
div(AxM Ax?) < O () )
o
O

Combining Lemma VII.9 and the triangle inequality, we
have the following lemma immediately.

Lemma VII.10. Let v > 1 be any fized constant and let
s =0O(y?rtlogr). Let D, = Bern (p) - N (O, %) and D, =
Bern (p)- N (O, %) for constant p,q € (0,1). Let x) ~ D,
and x? ~ D,. Let A € R™™ be a matriz with leverage
score at most +. Then dy,(AxM), Ax®) < O (%)

We are now ready to present our attack over real-valued
inputs, which is shown in Figure 2. Note that this is
analogous to the attack for Z"*™, and the only difference
is that we use a different input distribution and a different
setting of parameters h,o.

We now prove Theorem VII.1.



Theorem VII.1. Suppose that A with the estimator f
solves the (o + ¢, 8 — ¢)- £y gap norm problem with some
constants a, 8, and c, where A € R"™*"™ js the sketching
matriz and has all nonzero subdeterminants at least m,
and f : R™*™ — {—1,+1} is any estimator used by A, and
A returns f(A, Ax) for each query x.

Then, there exists a randomized algorithm, which after
making an adaptive sequence of queries to A, with high con-
stant probability can generate a distribution D on R™ such
that A fails on D with constant probability. Moreover, this
adaptive attack algorithm makes at most poly(r) queries
and runs in poly(r) time.

Proof. Our argument is similar to that of Section IV.
Recall that we set v = r3 in Lemma VIIL.10, which means
that s = O (r'%logr) and r%s = O (r'?logr) and hence,
we can assume the sketching matrix A has the form

HE

where S has at most r2s non-zero columns and D satisfies
1
vy eR",(y' D)} < 5 ly D3 . (3)

Let S denote the indices of the at most r2s non-zero
columns.

a) Soundness.: Consider the coordinates i € I\ S.
From the choice of the parameters we have the total
variation distance of Dx? for different p € [, ] is O (%3)
where x ~ D,. Then, from this we can get that there
are at most O (r?) coordinates i € I\ S such that the
expectation of st—s! ™1 is (-12) given Dx”, which means
that with high probability there are at most O (rg) = o(s)
coordinates in I\ S will be accused in the procedure (as
there are total O (r?s*) number of queries).

Suppose that D is the matrix that satisfies (3) and D’
is the matrix where we zero out o(s) columns of D. Then
for any y ' € R", since for each remaining index i satisfies
(y'D)? < L[y D3, then

vy eR(y D2 < Ly T
Hence, in the rest of the argument, we can assume the
total variation bound for D’x” for different p still holds.
b) Completeness.: Suppose that the algorithm A we
attack uses the estimator f. We consider A’ to be an
algorithm that uses the same estimator f, but rather than
f takes the sketch Ax as the input, it takes the input
D'x’
SXS
is sampled by the algorithm A and is independent of

the input x. From Lemma V.4, we know that for each

where x/ ~ D‘VD‘ for a fixed v € [a, 5], which

14, (t)
iteration ¢, the total variation distance between [ S (g 1
X
S
-

X
(t)| is at most O (%3) for some small constant ~.

Sxg

If A succeeds with probability at least 1 — § over some

and

input distribution D, then over this distribution A will
also succeed with probability at least 1 —§ — O (T%)

Let us now first assume the algorithm we attack is A’
Note that A’ has the property that it only uses zgs in
the computation. From Lemma IV.6, we see that with
probability at least 1 — %, we never falsely accuse any
index 7 ¢ S. Additionally, by Lemma IV.15, we know
that with high constant probability, our attack correctly
identifies (some, or all) coordinates i € S and outputs a
distribution on which A’ fails (note that the increase of the
@) (T%) in the error probability will make the g(8) — g(a)
in Lemma IV.10 decrease by at most O (T%), which is still
Q(1)). Tt follows that with high constant probability, our
attack finds some hard query distribution q on which A’
fails with constant probability. Now, let us now consider
the original algorithm A. For the property of the total
variation distance we know that with probability at least
1 - T%, the output of A can be seen as sampled from
the same distribution from the output of A’, and the
probability is only over the random choice over input

vector x. Hence, without loss of generality it can be seen

as the algorithm A’ but with a O (r%) more inconsistency,

and the probability here is only over the choice of the
random input vector x (note that the algorithm is based on
a linear sketch and the output of the algorithm is binary).
Therefore, the same argument still applies.

O

REFERENCES

[ABJ*t22] Miklés Ajtai, Vladimir Braverman, T. S. Jayram,
Sandeep Silwal, Alec Sun, David P. Woodruff, and
Samson Zhou. The white-box adversarial data stream
model. In PODS ’22: International Conference on
Management of Data, pages 15-27, 2022. 2

Sepehr Assadi, Amit Chakrabarti, Prantar Ghosh, and
Manuel Stoeckl. Coloring in graph streams via deter-
ministic and adversarially robust algorithms. In Pro-
ceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS,
pages 141-153, 2023. 2

Idan Attias, Eden Cohen, Moshe Shechner, and Uri
Stemmer. A framework for adversarial streaming via
differential privacy and difference estimators. In 14th
Innovations in Theoretical Computer Science, pages 8:1
- 8:19, 2023. 2

Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff.
New characterizations in turnstile streams with appli-
cations. In 31st Conference on Computational Com-
plexity, CCC, pages 20:1-20:22, 2016. 3

Dmitrii ~ Avdiukhin, Slobodan Mitrovic, Grigory
Yaroslavtsev, and Samson Zhou. Adversarially robust
submodular maximization under knapsack constraints.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery € Data Mining,
KDD, pages 148-156. ACM, 2019. 2

Vladimir Braverman, Petros Drineas, Cameron
Musco, Christopher Musco, Jalaj Upadhyay, David P.
Woodruff, and Samson Zhou. Near optimal linear
algebra in the online and sliding window models. In
61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS, pages 517-528, 2020. 21
Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak.
Adversarially robust streaming via dense-sparse trade-
offs. In 5th Symposium on Simplicity in Algorithms,
SOSA@SODA, pages 214-227, 2022. 3

[ACGS23]

[ACSS23]

[AHLW16)

[AMYZ19]

[BDM20]

[BEO22]



[BHM*+21]

[BJK+02]

[BIWY22)

[BKMt22]

[BLV18]

[BMSC17]

[CA24)

[CDVV14]

[CGS22]

[CLN*22]

[CMP20]

[CN20]

[CNSS23)

[CSWt23]

[DSWZ23)

Vladimir Braverman, Avinatan Hassidim, Yossi Matias,
Mariano Schain, Sandeep Silwal, and Samson Zhou.
Adversarial robustness of streaming algorithms through
importance sampling. In Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems, NeurIPS, pages
3544-3557, 2021. 2

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivaku-
mar, and Luca Trevisan. Counting distinct elements in
a data stream. In Randomization and Approximation
Techniques, 6th International Workshop, RANDOM,
Proceedings, volume 2483, pages 1-10, 2002. 3

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff,
and Eylon Yogev. A framework for adversarially robust
streaming algorithms. J. ACM, 69(2):17:1-17:33, 2022.
2,3

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi
Nissim, Thatchaphol Saranurak, and Uri Stemmer. Dy-
namic algorithms against an adaptive adversary: generic
constructions and lower bounds. In STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 1671-1684, 2022. 2

Elette Boyle, Rio Lavigne, and Vinod Vaikuntanathan.
Adversarially robust property-preserving hash func-
tions. Cryptology ePrint Archive, Paper 2018/1158,
2018. https://eprint.iacr.org/2018/1158. 4

Ilija Bogunovic, Slobodan Mitrovic, Jonathan Scarlett,
and Volkan Cevher. Robust submodular maximization:
A non-uniform partitioning approach. In Proceedings of
the 84th International Conference on Machine Learn-
ing, ICML, pages 508-516, 2017. 2

Eden Cohen and Sara Ahmadian. Unmasking vulnera-
bilities: Cardinality sketches under adaptive inputs. In
Forty-first International Conference on Machine Learn-
ing, 2024. 2

Siu On Chan, Ilias Diakonikolas, Paul Valiant, and
Gregory Valiant. Optimal algorithms for testing close-
ness of discrete distributions. In Chandra Chekuri,
editor, Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 1193~
1203. SIAM, 2014. 20

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl.
Adversarially robust coloring for graph streams. In 13th
Innovations in Theoretical Computer Science Confer-
ence, ITCS, pages 37:1-37:23, 2022. 2, 3

Edith Cohen, Xin Lyu, Jelani Nelson, Tamas Sarlds,
Moshe Shechner, and Uri Stemmer. On the robustness
of countsketch to adaptive inputs. In International
Conference on Machine Learning, ICML, pages 4112—
4140, 2022. 2

Michael B. Cohen, Cameron Musco, and Jakub Pa-
chocki. Online row sampling. Theory Comput., 16:1-25,
2020. 21

Yeshwanth Cherapanamjeri and Jelani Nelson. On
adaptive distance estimation. In Adwvances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS, 2020. 2

Edith Cohen, Jelani Nelson, Tamas Sarldés, and Uri
Stemmer. Tricking the hashing trick: A tight lower
bound on the robustness of countsketch to adaptive
inputs. In Thirty-Seventh Conference on Artificial
Intelligence, AAAI pages 7235-7243, 2023. 2
Yeshwanth Cherapanamjeri, Sandeep Silwal, David P.
Woodruff, Fred Zhang, Qiuyi Zhang, and Samson Zhou.
Robust algorithms on adaptive inputs from bounded
adversaries. In The Eleventh International Conference
on Learning Representations, ICLR, 2023. 2

Itai Dinur, Uri Stemmer, David P. Woodruff, and Sam-
son Zhou. On differential privacy and adaptive data
analysis with bounded space. In Advances in Cryptology
- EUROCRYPT 2023 - 42nd Annual International Con-

[Duc20]

[Ete85]

[FM85]

[GGMW20)

[HKMM20]

[HW13]

[TW05)

[JPW22]

[KMNS21]

[KNPW11]

[KNW10]

[KP20]

[LNW14]

[LWY20]

[MNS11]

[MRU11]

[NY19]

[SU15)

ference on the Theory and Applications of Cryptographic
Techniques, Proceedings, Part III, pages 35-65, 2023. 2
John Duchi. Derivations for linear algebra and op-
timization. 2007. URL: http://web. stanford. edu/~
jduchi/projects/general_notes. pdf, 2020. 23
Nasrollah Etemadi. On some classical results in proba-
bility theory. Sankhya: The Indian Journal of Statistics,
Series A, pages 215-221, 1985. 12

Philippe Flajolet and G Nigel Martin. Probabitistic
counting algorithms for data base applications. Journal
of Computer and Systems Sciences, 31:182—209, 1985.
3

Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty,
and David P. Woodruff. Pseudo-deterministic stream-
ing. In 11th Innovations in Theoretical Computer
Science Conference, ITCS, pages 79:1-79:25, 2020. 4
Avinatan Hassidim, Haim Kaplan, Yishay Mansour, and
Yossi Matias. Adversarially robust streaming algo-
rithms via differential privacy. In Conference on Neural
Information Processing Systems, 2020. 2, 3

Moritz Hardt and David P. Woodruff. How robust are
linear sketches to adaptive inputs? In Symposium on
Theory of Computing Conference, STOC, pages 121—
130, 2013. 3

Piotr Indyk and David Woodruff. Optimal approxima-
tions of the frequency moments of data streams. In Pro-
ceedings of the thirty-seventh annual ACM symposium
on Theory of computing, pages 202-208, 2005. 3
Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dy-
namic least-squares regression. CoRR, abs/2201.00228,
2022. 2

Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri
Stemmer. Separating adaptive streaming from oblivious
streaming. In CRYPTO, 2021. 3

Daniel Kane, Jelani Nelson, Ely Porat, and P. David
Woodruff. Fast moment estimation in data streams in
optimal space. In Proceedings of the forty-third annual
ACM symposium on Theory of computing, pages 745—
754, 2011. 3

Daniel Kane, Jelani Nelson, and David Woodruff.
An optimal algorithm for the distinct elements prob-
lem. In Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 41-52, 2010. 3

John Kallaugher and Eric Price. Separations and equiv-
alences between turnstile streaming and linear sketch-
ing. In Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy,
editors, Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020, pages 1223-1236.
ACM, 2020. 3

Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile
streaming algorithms might as well be linear sketches.
In Symposium on Theory of Computing, STOC, pages
174-183, 2014. 3

Kasper Green Larsen, Omri Weinstein, and Huacheng
Yu. Crossing the logarithmic barrier for dynamic
boolean data structure lower bounds. SIAM J. Com-
put., 49(5), 2020. 6, 16

Ilya Mironov, Moni Naor, and Gil Segev. Sketch-
ing in adversarial environments. SIAM J. Comput.,
40(6):1845-1870, 2011. 2

Andrew McGregor, Atri Rudra, and Steve Uurtamo.
Polynomial fitting of data streams with applications to
codeword testing. In Symposium on Theoretical Aspects
of Computer Science (STACS2011), volume 9, pages
428-439, 2011. 4

Moni Naor and Eylon Yogev. Bloom filters in adversar-
ial environments. ACM Trans. Algorithms, 15(3):35:1-
35:30, 2019. 2

Thomas Steinke and Jonathan R. Ullman. Interactive
fingerprinting codes and the hardness of preventing false
discovery. In Proceedings of The 28th Conference on



[Wor21]

[Wor23]

[WZ21]

[WZZ23]

Learning Theory, COLT, pages 1588-1628, 2015. 5, 8,
12, 13, 14, 15

STOC 2021 Workshop. Robust streaming, sketching,
and sampling, June 2021. https://rajeshjayaram.com/
stoc-2021-robust-streaming-workshop.html. 3

FOCS 2023 Workshop. Exploring the frontiers of adap-
tive robustness, November 2023. https://samsonzhou.
github.io/focs-2023-workshop-adaptive-robustness. 3
David P. Woodruff and Samson Zhou. Tight bounds
for adversarially robust streams and sliding windows via
difference estimators. In 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pages
1183-1196, 2021. 2

David P. Woodruff, Fred Zhang, and Samson Zhou. On
robust streaming for learning with experts: Algorithms
and lower bounds. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural
Information Processing Systems, NeurIPS, 2023. 2



	Introduction
	Our Results
	Technical Overview
	Overview of Attack over Finite Fields

	Preliminaries
	Interactive Fingerprinting Codes
	Preliminaries from Information Theory

	Pre-processing the Sketching Matrix
	Bounding the Number of Added Rows

	Attack Against Linear Sketches
	Construction and Analysis Overview
	Soundness
	Completeness
	Fourier Analysis
	Concentration
	Lower Bounding the Correlation

	Proof of Our Main Theorem

	Constructing the Hard Input Distribution
	Bounding the Total Variation Distance

	Attack against Linear Sketches over Finite Fields
	Attack against Real-Valued Linear Sketches
	References

