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AbstractŮThe majority of streaming problems are
deĄned and analyzed in a static setting, where the
data stream is any worst-case sequence of insertions
and deletions which is Ąxed in advance. However, many
real-world applications require a more Ćexible model,
where an adaptive adversary may select future stream
elements after observing the previous outputs of the
algorithm. Over the last few years, there has been
increased interest in proving lower bounds for natural
problems in the adaptive streaming model. In this
work, we give the Ąrst known adaptive attack against
linear sketches for the well-studied ℓ0-estimation prob-
lem over turnstile, integer streams. For any linear
streaming algorithm A which uses sketching matrix
A ∈ Z

r×n, this attack makes Õ(r8) queries and succeeds
with high constant probability in breaking the sketch.
Additionally, we give an adaptive attack against linear
sketches for the ℓ0-estimation problem over Ąnite Ąelds
Fp, which requires a smaller number of Õ(r3) queries.
Finally, we provide an adaptive attack over R

n against
linear sketches A ∈ R

r×n for ℓ0-estimation, in the set-
ting where A has all nonzero subdeterminants at least

1
poly(r)

. Our results provide an exponential improvement

over the previous number of queries known to break an
ℓ0-estimation sketch.

Index TermsŮstreaming, sketching, adversarial ro-
bustness.
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I. Introduction

In the classical streaming model, updates to an un-
derlying dataset arrive sequentially and the goal is to
compute or approximate some predetermined statistic of
the dataset while using space sublinear in m, the length of
the stream and n, the dimension of the underlying dataset;
ideally, the algorithm should provide this estimate after
making only a single pass over the data. The streaming
model of computation captures key memory and resource
requirements of algorithms in many big data applications,
and has therefore emerged as a central paradigm for
applications where the size of the data is signiĄcantly
larger than the available storage, such as logs generated
from either virtual or physical traffic monitoring, stock
market transactions, scientiĄc observations, and machine
and sensor data, e.g., Internet of Things (IoT) sensors,
Ąnancial markets, and scientiĄc observations.

Observe that in many of these applications, intermediate
outputs of the algorithm may impact the distribution of
future inputs to the algorithm. For example, in database
systems, future queries to the database may be dependent
on the full history of responses by the database algorithm
to previous queries. In optimization procedures such as
stochastic gradient descent, the update at each time step
can be based on the history of previous outputs. In rec-
ommendation systems, a user may choose to remove some
suggestions based on personal preference and then query
for a new list of recommendations. Additionally, statistics
aggregated from Ąnancial markets on the current day could
result in algorithmic decisions that impact certain enter-
prises, thereby affecting their future evaluations, which
form a small but nonzero component of the information
collected by the algorithm on the next day.



Unfortunately, the classical oblivious streaming model
assumes that the input is Ąxed in advance to be the
worst possible permutation of elements. Moreover, since
the algorithm only provides an estimate once at the
end of the stream, we may assume that the input
stream is independent of the internal randomness of the
streaming algorithm. Indeed, the analyses of many ran-
domized streaming algorithms crucially utilize the in-
dependence between the internal randomness of the al-
gorithm and the data stream. However, as discussed
previously, this may not be a reasonable assumption
for the above applications and many additional set-
tings [MNS11], [BMSC17], [NY19], [AMYZ19], [CN20],
[CSW+23], [CLN+22], [CNSS23], [DSWZ23], [WZZ23],
[CA24]. This motivates the adversarially robust streaming
model, which we discuss next.

a) The adversarially robust streaming model: To ad-
dress these shortcomings of the classical oblivious stream-
ing model, the adversarially robust streaming model was
recently proposed [BJWY22] to capture settings where
the sequence of inputs to the streaming algorithm can be
adaptive or even adversarial. At each time t ∈ [m], the
streaming algorithm A receives an update ut = (at, ∆t),
where each at ∈ [n] is an index and ∆t ∈ Z denotes
an increment or decrement to index at in the underlying
frequency vector x, i.e., the ith coordinate of the frequency
vector is given by xi =

∑
t:at=i ∆t. Similarly, let x(t)

denote the state of the frequency vector restricted to the
Ąrst t updates, i.e., x

(t)
i =

∑
s≤t:as=i ∆s. We consider the

setting where m = poly(n) and ♣∆t♣ ≤ poly(n) for all
t ∈ [m]. Note that by scaling, we could have also assumed
that each ∆t is an integer multiple of 1

poly(n) . Then, A
is an adversarially robust streaming algorithm for some
estimation function g : Zn → R if A satisĄes the following
requirement.

DeĄnition I.1. [BJWY22] Let g : Z
n → R be a Ąxed

function. Then, for any ε > 0 and δ > 0, at each time
t ∈ [m] for m = poly(n), we require our algorithm A to
return an estimate zt for g(x(t)) such that

Pr
[∣∣∣zt − g(x(t))

∣∣∣ ≤ εg(x(t))
]
≥ 1− δ

The above deĄnition is also known as the strong track-
ing guarantee for adversarial robustness, as deĄned in
[BJWY22]. Moreover, we may view the adversarial setting
as a two-player game between a randomized streaming al-
gorithm A and an unbounded adversary. In particular, the
adversary aims to construct a hard sequence of adaptive1

updates ¶u∗
1, ..., u∗

m♢ such that any streaming algorithm
A that produces (ε, δ)-approximate responses ¶zt♢m

t=1 will
fail to estimate g(xt∗) with constant probability at some
step t∗ ∈ [m] during the stream. For a chosen function g,
the game proceeds as follows:

1Note that we use ŞadaptiveŤ and ŞadversarialŤ interchangeably:
both terms indicate that future updates or queries may depend on
previous updates and responses of the algorithm.

(1) In each round t ∈ [m], the adversary selects an up-
date ut to append to the stream to implicitly deĄne
the underlying dataset x(t) at time t. Importantly,
note that x(t) may depend on all previous updates
u1, ..., ut−1, as well as the corresponding responses
z1, ..., zt−1 of the streaming algorithm A.

(2) A receives update ut and updates its internal state.
(3) Then, A returns an estimate zt(x

(t)) for g(x(t))
based on the stream observed until time t, and
progresses to the next round.

Observe that this sequential game only permits a single
pass over the data stream. Alternatively, the adversary
may choose to only query the streaming algorithm at
speciĄc times during the stream. In future sections, we will
let x(t) denote the query vector at time t, which may have
been formed by a sequence of O (n) insertions or deletions
to various indices of the previous query vector x(t−1).

b) Insertion-only streams: In the insertion-only
streaming model, each update ut = (at, ∆t) represents an
insertion of an element at ∈ [n] into the stream ∆t > 0
times. This corresponds to incrementing the (at)-th coor-
dinate of the underlying frequency vector xat

= xat
+ ∆t.

In the special case that the increments ∆t = 1 in each step
t ∈ [m], the (at)-th coordinate of x is simply the number
of times that element at appeared in the stream.

In the adversarially robust streaming model with
insertion-only updates, it is known that many cen-
tral streaming problems admit sublinear space algo-
rithms, c.f., [HKMM20], [BHM+21], [WZ21], [ABJ+22],
[BJWY22], [CGS22], [BKM+22], [JPW22], [ACGS23],
[ACSS23]. In particular, [BHM+21] showed that by using
the popular merge-and-reduce framework, adversarial ro-
bustness is essentially built into the analysis for a wide
class of problems such as clustering, subspace embed-
dings, linear regression, and graph sparsiĄcation. In other
words, there exist adversarially robust algorithms for these
problems that use the same sampling-based approach
as classical streaming algorithms in the case where the
inputs must be insertion-only. Similarly, [WZ21] showed
that for fundamental problems such as norm and moment
estimation, distinct elements estimation, heavy-hitters,
and entropy estimation, there exist adversarially robust
algorithms that pay a small polylogarithmic overhead over
the classical insertion-only streaming algorithms that use
sublinear space.

c) Turnstile streams.: There is signiĄcantly less
known about adversarially robust streaming algorithms
with turnstile updates. The work of [BJWY22] gives an
algorithm that uses space sublinear in the stream length
m in the case that the stream has bounded deletions.
However, in the general turnstile streaming setting, the
best known adaptive upper bounds are still much worse
than in the oblivious case. The work of [HKMM20] showed
a way to use differential privacy to protect the internal
randomness of the streaming algorithm from the adver-
sary: this framework converts an oblivious streaming al-



gorithm for estimation problem f into an adversarially
robust streaming algorithm for the same problem, with
an Õ (

√
m) blow-up in the space complexity for turnstile

streams2. More recently, the work of [BEO22] gave an
adversarially robust streaming algorithm for Fp estima-
tion by combining the differential privacy framework of
[HKMM20] with standard results from sparse recovery; for
ℓ0 estimation, this reduced the space blow-up to Õ

(
m1/3

)
.

Still, when the stream length m is a sufficiently large
polynomial of the dimension n of the frequency vector,
the space complexity of the algorithm is not sublinear in
n.

A natural question is whether there is an inherent
space-complexity separation between oblivious and adap-
tive streaming. To this end, [HW13] showed that no
linear sketch can approximate the ℓ2 norm within even a
polynomial multiplicative factor against adaptive queries
when the sketching matrix and input stream are both
real-valued. First, a natural idea is to try to adapt the
attack therein to obtain an attack against linear sketches
for ℓp-estimation in the integer setting. However, the
attack of [HW13] crucially relies on Gaussian rotational
invariance to argue that the algorithmŠs observations can
be parametrized solely by the norms of the inputs. It is
not clear whether it is possible to discretize the Gaussian
queries of their attack, as the direction in the sketch
space may still reveal some information about the norm.
Secondly, we remark that [HW13] also cannot handle the
case of ℓ0-estimation over the reals, since ℓ0 is not a norm
(since the attack requires ∥Cx∥ = C∥x∥ for scalars C > 0).
Thus, an entirely different approach is needed to handle
ℓ0-estimation over the integers.

Additionally, in 2021, [KMNS21] showed that there ex-
ists a streaming problem for which there is an exponential
separation in the space complexity needed to solve the
problem in the oblivious and adaptive settings; speciĄ-
cally, this lower bound is shown for a streaming version
of the adaptive data analysis problem in the bounded-
storage model of computation. Later, the work of [CGS22]
noted an elegant quadratic separation between oblivious
and adaptive streaming for the minimum spanning forest
problem over streams with edge insertions and deletions.
Subsequently, [CGS22] showed a separation for oblivi-
ous and adaptive streams for insertion-only streams for
the problem of graph-coloring. Thus, a well-known open
problem [KMNS21], [BJWY22], [Wor21], [Wor23] is the
following:

Is there a separation between oblivious and adap-
tive turnstile streaming for any natural Şstatisti-
calŤ streaming estimation problem?

We make progress toward answering this question in the
affirmative, as we show a lower bound against linear
sketches for ℓ0 estimation in the adversarial streaming
model.

2We use the notation Õ (f) to represent f · polylog(f).

d) ℓ0-estimation problem and linear sketching in the
adversarial streaming model.: In this work, we study the
classical streaming problem of estimating the number of
distinct elements in a turnstile stream, also known as the
ℓ0-estimation problem, where ∥x∥0 = ♣¶i : xi ̸= 0♢♣. Given
a stream of updates u1 = (a1, ∆1), ..., um = (am, ∆m), let
at ∈ [n] be an index and let ∆t ∈ Z denote an increment
or decrement to index at of the underlying frequency
vector x ∈ Z

n, where ♣∆t♣ ≤ poly(n). The task of the
streaming algorithm A is to produce an estimate z such
that Pr [♣z − ∥x∥0♣ ≤ ε∥x∥0] ≥ 1− δ for any ε, δ > 0 Ąxed
in advance. The ℓ0-estimation problem has been studied
extensively in the last 40 years, beginning with the seminal
work of (Flajolet and Martin, FOCS, 1983) [FM85]. The
frequency moment estimation problem has since been
studied in many other works [BJK+02], [IW05], [KNW10],
[KNPW11], culminating in a nearly optimal algorithm
for ℓ0-estimation in turnstile streams of [KNW10], which
succeeds with high constant probability and gives a (1±ε)-
approximation using O

(
ε−2 log(n)

(
log 1

ε + log log n
))

bits
of space.

Moreover, we focus on the case thatA is a linear stream-
ing algorithm, meaning that A samples a sketching matrix
A ∼ S, and for any input x ∈ Z

n, A returns f(A, Ax),
where f is any function. It is important to note that
for long enough streams, all known turnstile streaming
algorithms are linear sketches, and in fact, it is known
that when the stream length is long enough, turnstile
streaming algorithms with Ąxed inputs x can be captured
by maintaining a linear sketch Ax over the course of
the stream [LNW14], [AHLW16], [KP20]. Motivated by
the reasons above, we focus on proving lower bounds
against linear sketches for the ℓ0-estimation problem in
the adaptive streaming setting.

A. Our Results

We resolve the open problem posed above by giving
the Ąrst known adaptive attack against linear sketches for
the turnstile ℓ0-estimation problem over the integers. Our
results are derived from the following promise problem.

DeĄnition I.2 (ℓ0 gap norm problem). Let 0 ≤ α < β ≤
1. We say that an algorithm A solves the (α, β)-ℓ0 gap
norm problem if, for any input x ∈ Z

n, A outputs 0 if
∥x∥0 ≤ αn and outputs 1 if ∥x∥0 ≥ βn. If ∥x∥0 satisĄes
neither of these conditions, A may return either 0 or 1.

Furthermore, we focus our attention on linear streaming
algorithms, deĄned as follows:

DeĄnition I.3 (Linear streaming algorithm). Let A be a
streaming algorithm for a function g, and let A ∈ Z

r×n

be a sketching matrix of its choice, sampled from some
distribution A ∼ S over sketching matrices. We say that a
streaming algorithm A is linear if, for every update x ∈ Z

n,
A observes Ax and returns an estimate f(A, Ax), where f
is any function.



In all of our results, we assume that the dimensions of
the sketching matrix A satisfy r ≪ n.

Theorem I.4 (Informal version of Theorem IV.1). Sup-
pose that A is a linear streaming algorithm that solves the
(α + c, β − c)- ℓ0 gap norm problem for some constants
α, β, c. Then there exists a randomized adversary that, with
high constant probability can generate a distribution D over
Z

n such that A fails on D with constant probability. This
adaptive attack makes at most Õ

(
r8
)

queries and runs in
poly(r) time.

This result has implications beyond adversarial stream-
ing. In particular, since the existence of a so-called pseu-
dodeterministic streaming algorithm for a particular task
implies the existence of adversarially robust streaming
algorithm for the same task, our attack implies that any
linear pseudodeterministic algorithm for the turnstile ℓ0-
estimation over the integers can be made to fail after
poly(r) adaptive queries. This relates to open questions
raised in [GGMW20], which asked whether there can be
linear pseudodeterministic streaming algorithms for the ℓ2

estimation problem.
Next, we give an attack against linear sketches for ℓ0-

estimation where all entries of the sketching matrix A and
input x are over Fp for some prime p. We note that known
ℓ0 sketches can also be adapted to work over such Ąelds
with minimal changes (see, e.g., footnote 2 of [MRU11]).

Theorem I.5 (Informal version of Theorem VI.1). Sup-
pose A is a linear streaming algorithm that solves the
(α + c, β − c)− ℓ0 gap norm problem with some constants
α, β, and c. There exists an adaptive attack that makes
Õ
(
r3
)

queries and with high constant probability outputs
a distribution D over Z

n such that when x ∼ D, A fails to
decide the ℓ0 gap norm problem with constant probability.

Finally, we give an attack against linear sketches with
real entries in the case that sketching matrix A ∈ R

r×n

has all nonzero subdeterminants at least 1
poly(r) . We re-

mark that this is a natural class of sketching matrices to
consider, as the known sketches have this property.

Theorem I.6 (Informal version of Theorem VII.1). Sup-
pose that A is a linear streaming algorithm that solves the
(α+c, β−c)-ℓ0 gap norm problem with some constants α, β
and c, where A ∈ R

r×n is the sketching matrix such that
A has all nonzero subdeterminants at least 1

poly(r) . Then
there exists a randomized algorithm, which after making
an adaptive sequence of queries to f(A, Ax), with high
constant probability can generate a distribution D on R

n

such that f(A, Ax) fails on D with constant probability.
Moreover, this adaptive attack algorithm makes at most
poly(r) queries and runs in poly(r) time.

This attack serves as a proof-of-concept and as further
motivation for our Ąngerprinting-based techniques. Addi-
tionally, in a recent work on adversarially-robust property-
preserving hash functions [BLV18], it was conjectured that

there is an efficient adaptive attack against linear sketches
for ℓ0-estimation over the reals; our attack resolves this
question for the class of sketching matrices with not-too-
small subdeterminants.

B. Technical Overview

In this section, we give a description of the attack
against linear sketches for the ℓ0-estimation problem.

As the Şadaptive adversaryŤ, the primary goal of our
attack is to gradually learn the sketching matrix A, and
design ŞharderŤ queries as more of A becomes known
to us. A sketching matrix A may preserve a ŞsigniĄcant
amount of informationŤ about some coordinates xi in Ax

(e.g., when there is a row of A that is nonzero only in
column i, Ax can recover xi precisely), while it only mildly
Şdepends onŤ the other coordinates (e.g., when a coordi-
nate i is always ŞmixedŤ in a sum of many coordinates).
The coordinates that A preserves a signiĄcant information
about, or the signiĄcant coordinates, can be very useful for
estimating the ℓ0-norm when the queries are non-adaptive.
For example, one may sample A in a careful way such
that a random set of O (1) coordinates is signiĄcant, and
from Ax, one can approximately identify whether each
of them is zero. Then, just based on the fraction of non-
zeroes among these sampled coordinates, the ℓ0-norm can
already be approximated up to an additive error of, say
0.1n, solving ℓ0 gap norm.

Thus, our main strategy is to gradually identify the
signiĄcant coordinates, and set them to zero in all future
queries as soon as we Ąnd any.3 This makes the future
queries harder for A, since intuitively, A would be wasting
some of its budget on a coordinate that is always zero, ef-
fectively reducing its dimension. When the number of rows
r ≪ n, A cannot simultaneously preserve a signiĄcant
amount of information for too many xiŠs. After we have
learned all such coordinates, the query algorithm would
have to only rely on the other insigniĄcant coordinates,
which Ax only mildly depends on.

In order to perform such attacks, there are three main
problems to solve:

• deĄne ŞsigniĄcanceŤ and show that not too many
coordinates are signiĄcant when r ≪ n;

• show that we can learn which coordinates are signiĄ-
cant using polynomially many queries;

• show that the query algorithm cannot estimate the
ℓ0-norm accurately when x is supported only on
the insigniĄcant coordinates. In fact, we will design
distributions for x with very different ℓ0-norms, such
that the impact of the insigniĄcant coordinates on
the sketch Ax is nearly identical regardless of the ℓ0-
norm.

In the following, we elaborate on how we solve the above
problems.

3In fact, zeroing out these coordinates after we learn them is the
only type of adaptive move in our attack.



a) Fingerprinting codes: First let us see how we
should learn the signiĄcant coordinates. While we have
not formally deĄned ŞsigniĄcant coordinatesŤ yet, for now
let us focus on an important extreme case: the sketch Ax is
simply an (unknown) subset of r coordinates of x, i.e., each
row of A is a unit vector with one 1 in some column and
zero elsewhere. These r unknown coordinates are (very)
signiĄcant, and all other coordinates are (completely)
insigniĄcant.

It turns out that this case is exactly what an interactive
Ąngerprinting code can solve. In the interactive Ąngerprint-
ing code problem [SU15], an algorithm P selects a set
of coordinates S ⊂ [n] with ♣S♣ = k, which is unknown
to the Ąngerprinting code F .4 Then, the goal of F is to
discover the set S by making adaptive queries ct ∈ ¶±1♢n

at each time t, and enforcing the requirement that P
must return an answer at that is consistent with some
coordinate in ct, i.e., at = cj

i for some i ∈ [n]. Equivalently,
this is for P to distinguish between ct = (−1, . . . ,−1)
and (1, . . . , 1). Importantly, we also impose the constraint
that P can only observe the coordinates ct

i for i ∈ S.
The attack then proceeds by assigning a score st

i to each
index i ∈ [n] at every round t ∈ [ℓ], which corresponds
to a measure of the correlation between values of the i-th
index (c1

i , . . . , ct
i) and the responses (a1, . . . , at) given by P

during the Ąrst t rounds. It has been shown in [SU15] that
even under the weak requirement of outputting −1 when
ct = (−1, . . . ,−1) and outputting 1 when ct = (1, . . . , 1),
there is still a nontrivial correlation between the output
and some coordinates in S. Over time, these correlation
scores will accumulate, and are used by F to correctly
detect coordinates i ∈ S with high probability. It has been
shown [SU15] that this can be done in O

(
k2
)

queries.

In the extreme case where each row of A is a unit
vector ei with a single 1 in some column i and zero
everywhere else, we note that the sketch will precisely
observe the value of xi. Furthermore, the task of ℓ0 gap
norm requires the algorithm to distinguish between the
number of non-zeroes ≤ αn and ≥ βn, for some constants
0 < α < β < 1. This is a stronger requirement than that
of P in the Ąngerprinting code problem, which merely has
to distinguish between all zero queries and all non-zero
queries. Thus, the same attack strategy with the same
number of queries applies in this case.

b) SigniĄcant coordinates: Next, let us see for a ma-
trix A, which coordinates Ax can preserve a signiĄcant
amount of information about the input x. First, if there
is a unit vector ei (as in the above extreme case), then
coordinate i is clearly very signiĄcant. Also, note that since
Ax is linear, the query algorithm can recover any w⊤x

for w in the row span of A (i.e., ∃y⊤, s.t., w⊤ = y⊤A).
Thus, a relaxation of the unit vector together with the

4P is referred to as the adversary in the original Ąngerprinting code
problem, which would be the opposite for our application. To avoid
confusion, we renamed it according to the standpoint here.

linearity gives the following deĄnition of ŞsigniĄcanceŤ of
a coordinate i:

∃y⊤ ∈ R
r, (y⊤A)2

i ≥
1

s
· ∥y⊤A∥2

2,

for some parameter s ≥ 1. That is, there exists a linear
combination of the rows such that the i-th coordinate is
ℓ2-heavy. Equivalently, the leverage score of column i is
at least 1

s . It turns out that if the query vectors were al-
lowed to have coordinates with real numbers, this deĄnition
captures exactly which coordinates are signiĄcant, and is
sufficient for proving that if the query vector is supported
only on the ŞinsigniĄcant coordinatesŤ (in this sense), the
query algorithm cannot approximate the ℓ0-norm.

However, when x is restricted to having integer coordi-
nates bounded by poly(n), it turns out that the leverage
scores are not sufficient. Consider the matrix A with just
one row of the form (C, C, C, . . . , C, 1) that has C in every
coordinate except that the last coordinate is 1, for some
integer C ≥ 2. Every column has a leverage score of only
O
(

1
n

)
. On the other hand, when x can only have integer

coordinates, Ax tells us the value of xn modulo C (when C
is large, this may even completely reveal the coordinate).
This phenomenon can be explained by considering the
vector w⊤ =

(
1, 1, 1, . . . , 1, 1

C

)
, which is in the row span

of A. If we look at the fractional part of the inner product
w⊤x, the Ąrst n − 1 coordinates never contribute to the
value regardless of x. In other words, in the fractional parts
of w⊤,

(
0, 0, 0, . . . , 0, 1

C

)
, the last coordinate is in fact very

heavy.
This suggests that in general, we should focus on the

fractional parts of the vectors in the row span, which
motivates us to deĄne the signiĄcance of a coordinate i
in the following way:

∃y⊤ ∈ R
r, ♣Frac((y⊤A)i)♣2 ≥

1

s
· ∥Frac(y⊤A)∥2

2, (1)

where Frac(·) is the fractional part, and when applied on
a vector, it is applied coordinate-wise. It turns out that
this deĄnition captures our needs, and is what we will use
for our main result over the integers.

c) Matrix pre-processing: To facilitate the analysis
of the attack, we will Ąrst Şpre-processŤ the sketching
matrix A to a new matrix A′ that separates the signiĄcant
coordinates and the insigniĄcant coordinates, while not
weakening the sketch Ax.

Let us consider the following pre-processing procedure
on A: while there exists a column i ∈ [n] such that (1)
holds, we zero out the i-th column of A and add i to the
set of signiĄcant coordinates S. Note that new columns
may become signiĄcant as we zero out a column, and the
procedure is applied iteratively on the remaining matrix
until no column satisĄes (1). Finally, for each coordinate
i ∈ S, we add a new row ei. Thus, the overall pre-
processing can be viewed as follows: we Ąnd the signiĄcant
coordinates; since Ax may preserve a signiĄcant amount
of their information, we might as well just strengthen the



sketch so that it actually stores them precisely; then the
rest of the sketch is made independent of them by zeroing
out the corresponding columns.

Let A′ denote the matrix after these operations. With-
out loss of generality, we can assume that the actual
sketching matrix is A′ instead of A, since A′x can recover
Ax (as we can just add the new rows ei, with the correct
weights, back to each row where column i was zeroed out),
it makes the algorithm at least as powerful as it was. The
new sketching matrix A′ has the following form:

A′ =

[
D

S

]
,

where we note that no column is signiĄcant in the sense
of (1) for D, and S has at most one non-zero entry 1 in
each row and column. Moreover, the non-zero columns of
D and S are disjoint. We refer to D as the dense part and
S as the sparse part, and note that the set of signiĄcant
coordinates S is precisely the set of non-zero columns in
the sparse part S.

Note that the sparse part is exactly the extreme case
that we discussed earlier, and S can be learned using the
Ąngerprinting code if there were no dense part. Moreover,
we show that the deĄnition of signiĄcant coordinates and
the pre-processing procedure guarantee that the sparse
part is small, ♣S♣ ≪ n, so that after learning S and
zeroing out these coordinates in the query, we will not
be left with a trivial problem. Roughly speaking, this is
shown by proving that under the uniform distribution
of x ∈ ¶−1, 0, 1♢n, if a column i satisĄes (1), then
Ax must have a nontrivial mutual information with xi,
I(Ax; xi) ≥ Ω

(
1
s

)
. Then if the pre-processing algorithm

removes T columns iteratively, by applying the chain rule
for mutual information, we can argue that the mutual
information between Ax and all these T corresponding
coordinates is at least Ω

(
T
s

)
. On the other hand, it can

be at most O (r log n), as Ax can be encoded in O (r log n)
bits. Hence, we can add at most T = O (rs log n) rows to
the sparse part.

d) Description of the attack: The last piece is to
show that the dense part (insigniĄcant coordinates) cannot
be useful, by carefully picking query distributions. More
speciĄcally, we will design a family of distributions D
over ¶−R,−(R− 1), . . . , R♢ for some integer R = poly(n)
bounded by a small polynomial in n, with the following
properties:

(1) For Dp ∈ D where p ∈ [α, β] for some constant 0 <
α < β < 1, we have Pr

X∼Dp

[X = 0] = p;

(2) For any p, q ∈ [α, β], we have dtv(Dxp, Dxq) ≤
1

poly(n) for xp ∼ Dn
p and xq ∼ Dn

q .

We will give more details about how to construct such
a family of distributions later in this section. Given such
a family, consider query vectors x ∼ Dn

p for different

p, we can express A′x =

[
Dx

Sx

]
. From the property of

the distribution family D, we know that the (marginal)
distribution of Dx is almost identical regardless of the
value of p. Moreover, since D and S have disjoint nonzero
columns, Dx and Sx are independent conditioned on p.
This allows us to conclude that if we sample the queries
from these distributions, then the algorithm must approx-
imate ∥x∥0 by only looking at the sparse part Sx. It turns
out that these distributions Dp can be ŞintegratedŤ into
the Ąngerprinting code, so that the dense part cannot help
the algorithm when we attack the sparse part. This allows
us to gradually identify S, and eventually zero out all
these coordinates. When we make one more query with
all coordinates in S zeroed out, the algorithm must not
produce a correct output with high probability based only
on Dx.

e) Constructing hard distributions for the insigniĄ-
cant coordinates: We wish to construct a family of dis-
tributions such that the total variation distance between
Dxp and Dxq for xp ∼ Dn

p , xq ∼ Dn
q is small. We will rely

on the following property of D: for every pair Dp, Dq ∈ D,
we have that

E
X∼Dp

[
Xk
]

= E
X∼Dq

[
Xk
]

for all k ∈ [K], i.e. the Ąrst K = O (r log n) moments of Dp

and Dq match. In fact, we will make all distributions Dp ∈
D symmetric, i.e., Dp(t) = Dp(−t). Thus, all odd moments
are zero, and hence, equal. Then for the even moments, the
condition is equivalent to

∑R
i=0 ik · (Dp(i)−Dq(i)) = 0 for

k ≤ K. Our construction is based on the following fact
(e.g., see Claim 1 in [LWY20]): there exists a polynomial
Q with degree at most R− Ω(

√
R) such that

♣Q(0)♣ = Ω(1) and

R∑

i=0

∣∣∣∣
(

R

i

)
·Q(i)

∣∣∣∣ = O (1) .

The degree bound on Q further implies that

R∑

i=0

(−1)i

(
R

i

)
·Q(i) · it = 0

for all non-negative integers t < R − deg(Q), since
Q(i) · it is a polynomial of degree strictly less than R,
and

∑R
i=0(−1)i

(
R
i

)
· P (i) = 0 holds for any polynomial P

of degree < R.
Hence, we will set R = Θ(K2) for a sufficiently large

leading constant, and deĄne the distribution family D =
¶Dp♢ such that Dp(i) = D(i)+cp ·(−1)i

(
R
i

)
·Q(i), for some

distribution D and constants cp. The difference between
the probabilities Dp(i) and Dq(i) is precisely cp− cq times
(−1)i

(
R
i

)
· Q(i). Then we can ensure that our moment

matching condition is satisĄed, since

R∑

i=0

ik(Dp(X)−Dq(X)) = (cp − cq)

R∑

i=0

ik(−1)i

(
R

i

)
Q(i)

= 0



for k ≤ K ≤ O
(√

R
)

. Furthermore, the bounds on
∑R

i=0

∣∣∣
(

R
i

)
·Q(i)

∣∣∣ and ♣Q(0)♣ ensure that the range of the

distribution family β − α can be made Ω(1) by carefully
picking the base distribution D (recall that α, β are the
smallest and the largest probabilities at 0 over all distri-
butions in the family).

f) Bounding the total variation distance.: Let P = Dp

and Q = Dq be distributions from family D that match the
Ąrst K moments for some p, q ∈ [α, β]. Suppose P n and
Qn are probability distributions of n-dimensional vectors,
where each entry is drawn independently from P and Q,
respectively. As before, let D denote the dense matrix
such that no column satisĄes (1) with parameter s. For
x ∼ P n and x′ ∼ Qn, let PD and QD be the probability
distributions of Dx and Dx′. Now, we will argue that
dtv(PD, QD) ≤ 1

poly(n) . To see this, we use the following
observation from Fourier analysis:

♣PD(x)−QD(x)♣ =
∣∣∣∣∣

∫

[−π,π)r

ei⟨u,x⟩

(2π)r

(
P̂D(u)− Q̂D(u)

)
du

∣∣∣∣∣

≤ 1

(2π)r

∫

[−π,π)r

∣∣∣P̂D(u)− Q̂D(u)
∣∣∣ du

where the last inequality follows by triangle inequality.
So, to bound the difference of PD(x) and QD(x) for
a particular value x, we just need to upper bound the

quantity
∣∣∣P̂D(u)− Q̂D(u)

∣∣∣. Let Pi = Pr [X = i] and

Frac2π(x) = 2π · Frac
(

x
2π

)
∈ [−π, π). Then, we can

then express P̂D(u) (and similarly for Q̂D(u)) as follows:

P̂D(u) = Ez∼PD

[
e−i⟨u,z⟩

]
= Ex∼P n

[
e−i⟨u,Dx⟩

]

=
∏

j∈[n]

∑

k≥0

Pk · cos
(

k · ⟨u, D(j)⟩
)

=
∏

j∈[n]

∑

k≥0

Pk · cos
(

k · Frac2π(⟨u, D(j)⟩)
)

.

where the second equality follows since our chosen dis-
tribution Dp is symmetric and we draw each coordinate
xj ∼ Dp independently. Now, by the Taylor expansion

cos(x) = 1− x2

2! + x4

4! − x6

6! + . . ., we can write

P̂D(u) =
∏

j∈[n]

∑

k≥0


∑

m≥0

Pmm2k




×
(
Frac2π(⟨u, D(j)⟩)

)2k
(−1)k

(2k)!
,

Q̂D(u) =
∏

j∈[n]

∑

k≥0


∑

m≥0

Qmm2k




×
(
Frac2π(⟨u, D(j)⟩)

)2k
(−1)k

(2k)!

Let MP (2k) =
(∑

m≥0 Pm ·m2k
)

and MQ(2k) =(∑
m≥0 Qm ·m2k

)
denote the 2k-th moment of P and Q,

respectively. At this point, our proof makes use of two key

properties to upper bound
∣∣∣P̂D(u)− Q̂D(u)

∣∣∣:
(1) Bounded fractional parts. First, we recall that D

satisĄes ♣Frac(y⊤D)j ♣2 ≤ 1
s ·∥Frac(y⊤D)∥2

2 for all
y ∈ R

r and j ∈ [n]. Then, if there exists some index
j ∈ [n] such that ♣Frac2π(⟨u, D(j)⟩)♣ ≥ 1

K (for some
chosen threshold t), we can use the above property

of
∥∥Frac

(〈
u

2π , D
〉)∥∥2

2
to upper bound P̂D(u) and

Q̂D(u).
(2) Moment matching. Alternatively, suppose there

is no such index j; then we can use the fact that
MP (2k) = MQ(2k) for k ≤ K/2, so we have that
the Ąrst K/2 terms of

∑

k≥0

MP (2k) ·
(
Frac2π(⟨u, D(j)⟩)

)2k

(2k)!
· (−1)k

∑

k≥0

MQ(2k) ·
(
Frac2π(⟨u, D(j)⟩)

)2k

(2k)!
· (−1)k

are exactly the same. By combining this fact with
our assumption that ♣Frac2π(⟨u, D(j)⟩)♣ < 1

K for
every j ∈ [n], we obtain the desired upper bound for
this case as well.

For the full argument, we refer the readers to Section V.
Finally, since D is a matrix in Z

r×n with entries bounded
in poly(n), we know that the total support size of PD and
QD is nO(r). So, after we compute an upper bound for∣∣∣P̂D(u)− Q̂D(u)

∣∣∣, we can Ąnish the argument by simply

union-bounding over the total size of the support of Dx

to obtain the upper bound of dtv(PD(x), QD(x)) ≤ 1
poly(n)

for some choice of parameters K and s.

C. Overview of Attack over Finite Fields

When the sketching matrix A ∈ F
r×n
p for a Ąxed prime

p, our attack is based on the following crucial observation:
suppose that U and R are the two subsets of indices
of columns of A such that AU and AR have the same
column span. Then, if x ∼ F

♣U ♣
p and x′ ∼ F

♣R♣
p are sampled

uniformly at random, we can show that AU x and ARx′

are identically distributed. With this in mind, note that
if we can Ąnd an independent set of columns T with
♣T ♣ = r, then the streaming algorithm A will not be able
to distinguish AT x′ where x′ ∼ F

r
p and Ax where x ∼ F

n
p .

Hence, A must fail on one of the input distributions (we
assume n ≥ 2r). Therefore, our goal now is to Ąnd such a
column-independent set.

The way we search for this column independent set
is as follows: suppose that the set T is what we have
maintained up to now. Then let R be a random sample
of 2r columns outside T and Ri is the Ąrst i column of R.
Let µi denote the distribution of f(Ax(i)), where x(i) ∈ F

n
p

is the random vector that on the support of T ∪ Ri.
From the correctness guarantee we must have the total



variation distance dtv(µ0, µ2r−1) = Ω(1) (otherwise we
Ąnd a distribution that A fails with constant probability
immediately). Then from triangle inequality we have

∑

i

dtv(µi, µi+1) ≥ dtv(µ0, µr) = Ω(1).

From this we get there must exist one j such that
dtv(µj−1, µj) ≥ Ω

(
1
r

)
, which means that the j-th column

in R must be linear independent in T . Note that from
the result in statistical testing we can distinguish this
case using Õ(r2) samples with error probability at most
1/ poly(r). Hence, we can enumerate the index i and do
the testing between µi and µi+1 to Ąnd such column index
j.

The above procedure requires Õ
(
r4
)

total number of
queries, as we need to Ąnd r columns and in each step,
we make 2r · Õ

(
r2
)

= Õ
(
r3
)

queries. However, the
dependence of r can be further improved. Note that in the
worst case maxi¶dtv(µi−1, µi)♢ = Θ

(
1
r

)
, we can randomly

sample O (1) indices to Ąnd such index j, which suggests a
better dependence of r. Indeed, we show that there must
exist ℓ for which there exist at least 2ℓ−1 indices i such that
dtv(µi, µi+1) ∈

[
1

2ℓ+3 log r
, 1

2ℓ+2 log r

)
. Hence, we can make

a guess of such ℓ and note that for each different guess,
since the range of the total variation distance changes, we
can use a different number of the samples in the testing
procedure, which results in an overall Õ

(
r3
)

number of
queries.

II. Preliminaries

For a positive integer n > 0, we write [n] to denote
the set ¶1, 2, . . . , n♢. We use the notation poly(n) to
denote a Ąxed polynomial in n and polylog(n) to represent
poly(log n). We say an event E occurs with high probabil-
ity if Pr [E ] ≥ 1− 1

poly(n) , when the dependent variable n
is clear from context.

A. Interactive Fingerprinting Codes

An interactive Ąngerprinting code F is an efficient
adaptive algorithm that defeats any adversary P in the
following two-player game. The adversary P Ąrst selects a
secret subset of indices S ⊂ [N ], where ♣S♣ = n. Then,
the goal of F is to construct an adaptive sequence of
queries ¶ct♢t∈[ℓ] to learn (or ŞaccuseŤ) all of the indices
i ∈ S, while making few false accusations (i.e., incorrectly
accusing some i ̸∈ S) in the process. SpeciĄcally, in each
round t ∈ [ℓ], the interactive Ąngerprinting code F selects
a query vector ct ∈ ¶±1♢N , and the adversary P observes
only the coordinates ct

i for those i ∈ S, and has no
knowledge of ct

i for i ̸∈ S. Then, the adversary must
respond with an answer at that is consistent with some
coordinate of ct such that at = ct

i for some i ∈ S. More
concretely, if all of the coordinates of ct = 1N then at must
be 1, or if ct = (−1)N , then at must return −1.

Informally, the interactive Ąngerprinting attack of
[SU15] proceeds by assigning a score st

i to each index i ∈

[N ] at every round t ∈ [ℓ], which corresponds to a measure
of the correlation between values of the ith index (c1

i , ..., ct
i)

and the responses (a1, ..., at) given by the adversary during
the Ąrst t rounds. The interactive Ąngerprinting code F
accuses coordinates i ∈ [N ] whose score st

i exceeds a
threshold σ at some point during the sequence of queries.
Using this approach, combined with an appropriate hard
distribution for inputs ct ∈ ¶±1♢N , [SU15] shows that for
every N ∈ N, there exists an interactive Ąngerprinting
code that makes ℓ = O

(
n2 log 1

δ

)
queries and, except with

negligible probability, identiĄes all of S and makes at most
Nδ

1000 false accusations. Moreover, their attack satisĄes a
robustness property: the result above holds even when the
Ąngerprinting adversary P only provides a response at

which is consistent with some coordinate ct
i in at least

(1− β)ℓ of the rounds, for any β < 1/2.
We provide a brief overview of the game, as well as the

attack of [SU15] here, as a reference.

DeĄnition II.1 (Interactive Fingerprinting Code Game).
The Interactive Fingerprinting Code problem is deĄned via
the following game.

(1) First, the adversary P selects a subset of users S1 ⊆
[N ], ♣S1♣ = n, which is unknown to the Ąngerprinting
code F .

(2) In each round j = 1, ..., ℓ:

• F outputs a column vector cj ∈ ¶±1♢N .
• Let cj

Sj ∈ ¶±1♢♣Sj ♣ be the restriction of cj to

coordinates in Sj: only this restricted copy cj
Sj

is given to the adversary P in each round.
• Then, P outputs aj ∈ ¶±1♢, which is observed

by F .
• Finally, F accuses a set of users Ij ⊆ [N ], and

sets Sj+1 = Sj \Ij as the current ŞundiscoveredŤ
set of coordinates/users.

a) Construction of attack, c.f., [SU15]: For 0 ≤ a <
b ≤ 1, let Pa,b be the distribution with support (a, b) and

probability density function µ(p) =
Ca,b√
p(1−p)

. For α, ζ ∈
(0, 1

2 ), let Pα,ζ be the distribution on [0, 1] such that it
returns a sample from Dα,1−α with probability 1 − 2ζ,
and returns 0/1 each with probability ζ. Furthermore, let
ϕ : ¶−1, 1♢ → R be deĄned by ϕ0(c) = ϕ1(c) = 0 and for

p ∈ (0, 1), we have ϕp(1) =
√

1−p
p and ϕp(0) = −

√
p

1−p .

We consider the following parameter regime:

α =
( 1

2 − β)

n

ζ =
3

8
+

β

4

σ = O
(

n

( 1
2 − β)2

log

(
1

δ

))

ℓ = O
(

n2

( 1
2 − β)4

log

(
1

δ

))



(1) Let s0
i = 0 for every i ∈ [N ].

(2) For j = 1, ..., ℓ:

• Draw pj ∼ Pα,ζ and cj
1···N ∼ pj .

• Issue cj ∈ ¶±1♢N as a challenge and get response
aj ∈ ¶±1♢.

• For every i ∈ [N ], update score sj
i = sj−1

i + aj ·
ϕpj

(cj
i )

Importantly, the attack enforces the following complete-
ness and soundness properties:

• Completeness: If i ∈ S1, the score of user i will
exceed some chosen threshold at some step j ∈ [ℓ], i.e.
with high probability, there exists j such that sj

i > σ.
• Soundness: Alternatively, if i ̸∈ S1, the score sj

i will
not exceed σ with high probability. The argument
uses the fact that the responses of P cannot have
high correlation with (c1

i , ..., cℓ
i) if P never sees this

information.

B. Preliminaries from Information Theory

We recall the following preliminaries from information
theory.

DeĄnition II.2 (Entropy and conditional entropy). The
entropy of a random variable X taking on possible values
in a Ąnite space Ω is deĄned as

H(X) :=
∑

x∈Ω

p(x) log
1

p(x)
,

where p(x) = Pr [X = x] is the probability mass function of
X. The conditional entropy of X with respect to a random
variable Y is deĄned as

H(X♣Y ) = EyH(X♣Y = y),

where H(X♣Y = y) :=
∑

x∈Ω p(x♣y) log 1
p(x♣y) , for the

conditional probability mass function p(x♣y).

DeĄnition II.3 (Mutual information and conditional
mutual information). We deĄne the mutual information
between random variables X and Y by

I(X; Y ) = H(X)−H(X♣Y ) = H(Y )−H(Y ♣X) = I(Y ; X).

We deĄne the conditional mutual information between X
and Y conditioned on a random variable Z by

I(X; Y ♣Z) = H(X♣Z)−H(X♣Y, Z).

Theorem II.4 (Data-processing inequality). Let X, Y, Z
be random variables such that X → Y → Z forms a
Markov Chain, i.e., X and Z are conditionally independent
given Y . Then, we have I(X; Y ) ≥ I(X; Z).

Theorem II.5 (Chain rule for mutual information). For
random variables X1, . . . , Xn, Z, we have

I(X1, . . . , Xn; Z) =

n∑

i=1

I(Xi; Z♣X1, ..., Xi−1).

III. Pre-processing the Sketching Matrix

Our attack will rely on pre-processing and decomposing
the sketching matrix A into sparse part and a dense
part, which will consist of disjoint sets of non-zero indices.
This pre-processing procedure will have the property that
it can only make the streaming algorithm stronger, by
potentially allowing the algorithm to observe more entries
of the input vector x(t). More formally, our new matrix
A′ will satisfy several key properties, as stated in the next
lemma.

Lemma III.1. For any algorithm A with sketching matrix
A ∈ Z

r×n, there is a pre-processing procedure that produces
a new matrix A′ ∈ Z

r′×n for r′ = O (rs log n) satisfying
the following properties:

(1) The A′ has the form

[
D

S

]
where the D and S are

column-disjoint.
(2) We have ♣Frac(y⊤D)j ♣2 ≤ 1

s · ∥Frac(y⊤D)∥2
2 for

all y ∈ R
r and j ∈ [n]

(3) Each row and column of S has at most one non-zero
entry.

Moreover, without loss of generality, we can assume the
algorithm A uses sketching matrix A′ instead of A.

Proof. We consider the following procedure: we start
with the original sketching matrix A, and for each
time t, we identify a columns jt ∈ [n] such that
♣Frac(y⊤D(t−1))jt ♣2 > 1

s · ∥ Frac(y⊤D(t−1))∥2
2 where

Dt−1 is the Ąrst r rows of A(t−1), we zero the jt-th column
of At−1 and add a new row ejt

to the matrix A(t−1). We
then denote the new resulting matrix as A(t). Suppose
that the above procedure ends in the iteration T . From
Lemma III.3 we have T = O (rs log n).

Let D = D(T ) and S be the remaining rows of A(T ).

Then we have A′ =

[
D

S

]
has at most r + T = O (rs log n)

columns. Then from the procedure it is easy to see that
the D and S are column-disjoint and each row and column
of S has at most one non-zero entry.

At this point, it remains for us to show why we can
assume that the sketching matrix used by A is A′ instead
of A. Suppose that the algorithm A uses the sketching
matrix A and estimator f on Ax, then we consider
the following equivalent form of the algorithm A, where
it uses the sketching matrix A′ and another estimator
g. Given an A′x, estimator g will Ąrst invert the row
operations that transfer A′x to Ax (recall that all of the
operations we apply on A are invertible) and output the
value f(Ax). From the deĄnition of g, we immediately
get that g(A′x) = f(Ax) for every input x, which means
we can assume A has the form g(A′x) without loss of
generality.

A. Bounding the Number of Added Rows

Let Frac(x) = x− int(x) ∈ (− 1
2 , 1

2 ] where int(x) is the
closest integer number to x and for a vector x ∈ R

n, let



Frac(x) ∈ R
n be the coordinate-wise fractional parts of

x, i.e., Frac(x)j = Frac(xj).

Lemma III.2. Let A ∈ Z
r×n be a Ąxed matrix and

let x ∈ ¶−1, 0, 1♢n such that each coordinate is chosen
independently and with probability 1 − 2c

s , xi = 0, and
with probability 2c

s , xi = 1 or −1 with equal probability,
where c is a sufficiently small constant. Suppose there exists
y ∈ R

r and j ∈ [n] such that for ♣Frac((y⊤A)j)♣2 ≥
1
s · ∥Frac(y⊤A)∥2

2. Then we have I(Ax; xj) = Ω
(

1
s

)
.

Proof. Observe that since by the data-processing inequal-
ity,

I(Ax; xj) ≥ I(y⊤Ax; xj) ≥ I(Frac(y⊤Ax); xj),

then it suffices to show I(Frac(y⊤Ax); xj) = Ω
(

1
s

)
. Let

a = y⊤A ∈ R
n. We sample column vectors x(1), . . . , x(t),

such that all coordinates are selected randomly from
¶−1, 0, 1♢ from the distribution in the lemma statement
but the j-th coordinate is the same in all t vectors. Since
the marginal distributions are the same for each x(k), we
have that I(Frac(⟨a, x⟩); xj) = I(Frac(⟨a, x(k))⟩; xj).

We next claim that, by looking at t = O (log s) samples
Frac(⟨a, x(k))⟩ from k = 1, 2, · · · t, we can determine the
value of xj with probability at least 1− 1/ poly(s), which
means that

I(Frac(⟨a, x(1)⟩, . . . , Frac(⟨a, x(t)⟩); xj) = Ω(log s/s).

a) Mutual information from independent instances.:
Firstly, note that if ∥Frac(a)∥2

2 > s, then 1
s ·

∥Frac(a)∥2
2 > 1 and so there cannot exist y such that

♣Frac(aj)♣2 ≥ 1
s · ∥Frac(a)∥2

2. Thus it suffices to consider
∥Frac(a)∥2

2 ≤ s.
We next consider one of the instances x, let S be the

set of indices such that xi ̸= 0 and i ̸= j. Then we have
E
[
∥Frac(aS)∥2

2

]
≤ 2c

s ∥Frac(a)∥2
2, by MarkovŠs inequal-

ity we have with probability at least 0.99, ∥Frac(aS)∥2
2 ≤

1
100s∥Frac(a)∥2

2. Condition on this event, by MarkovŠs
inequality again we can have with probability at least 0.9,

∑

i∈S

(Frac(ai) · xi)
2 ≤ 1

10s
∥Frac(a)∥2

2 ≤
1

10
.

which means that Frac(⟨a, x⟩) = Frac(Frac(aj) · xj +
α) where α =

∑
i∈S Frac(ai) · xi ≤ 1

3
√

s
∥Frac(a)∥2 ≤

1
3 ♣Frac(aj)♣.

Condition on the above events happen, consider the case
where xj = 0. In this case, we have ♣Frac(⟨a, x⟩)♣ ≤
1
3 ♣Frac(aj)♣. On the other hand, if xj ̸= 0, we will
have ♣Frac(⟨a, x⟩)♣ ≥ 2

3 ♣Frac(aj)♣ and the sign of
♣Frac(⟨a, x⟩)♣ is the same as xj , which means that we
can determine the value of xj by looking at the value of
Frac(⟨a, x⟩).

The above procedure succeeds with high constant proba-
bility, to boost the success probability, we can instead look

at the majority of the outputs by O (log s) independent
instances

(Frac(⟨a, x(1)⟩, . . . , Frac(⟨a, x(t)⟩) ,

which makes the error probability 1
poly(s) at most. This

means that we have

I(Frac(⟨a, x(1)⟩, . . . , Frac(⟨a, x(t)⟩); xj) = Ω

(
log s

s

)

b) Mutual information from a single instance.: On
the other hand, by the chain rule for mutual information,
i.e., Theorem II.5, we have

I(Frac(⟨a, x
(1)⟩), . . . , Frac(⟨a, x

(t)⟩); xj)

=

t∑

k=1

I(Frac(⟨a, x
(k)⟩); xj ♣ Frac(⟨a, x

(1)⟩), . . . , Frac(⟨a, x
(k−1)⟩)).

Since Frac(⟨a, x(k)⟩) is independent of
Frac(⟨a, x(1)⟩, . . . ⟨a, x(k−1)⟩) conditioned on xj , we
have

Ω(1) = I(Frac(⟨a, x(1)⟩), . . . , Frac(⟨a, x(t)⟩); xj)

≤
t∑

k=1

I(Frac(⟨a, x(k)⟩); xj)

=

t∑

k=1

I(Frac(⟨a, x⟩); xj).

Thus we have

I(Frac(y⊤Ax; xj)) = I(Frac(⟨a, x⟩); xj) = Ω

(
log s

st

)

= Ω

(
1

s

)
.

Lemma III.3. Let A ∈ Z
r×n be a Ąxed matrix. There ex-

ists a pre-processing procedure to A and produces a matrix
A′ ∈ Z

r×n such that A′ zero out at most O (rs log n log s)
columns of A. Moreover, we have ♣Frac(y⊤A′)j ♣2 ≤
1
s · ∥Frac(y⊤A′)∥2

2 for all y ∈ R
r and j ∈ [n].

Proof. Let A(0) = A and let x ∈ ¶−1, 0, 1♢n drawn
from the same distribution in Lemma III.2, so that Ax

has O (r log n) bits. Suppose that the above procedure
ends in T rounds where T ≤ n. SpeciĄcally, for each
t ∈ [T ], we identify a columns jt ∈ [n] such that
♣Frac(y⊤A(t−1))j ♣2 > 1

s · ∥ Frac(y⊤A(t−1))∥2
2 and let

A(t) be the matrix A(t−1) after zeroing out the identiĄed
column. We next apply the chain rule for mutual informa-
tion, i.e., Theorem II.5. we have

I(A(T )x; xj1 , · · · , xjT
) =

T∑

t=1

I(A(T )x; xjt ♣ xjt+1 , · · ·xjT
) .

Note that given the matrix A and xjt+1
, xjt+2

, · · ·xjT
,

we can recover A(t). Hence, by a similar
approach to that in Lemma III.2, we have



I(A(T )x; xjt
♣ xjt+1

, xjt+2
, · · ·xjT

) ≥ O
(

1
s log s

)
from

♣Frac(y⊤A(t−1))j ♣2 > 1
s · ∥ Frac(y⊤A(t−1))∥2

2. Since Ax

can be represented using O (r log n) bits, then it follows
that I(A(T )x; xj1

, xj2
, · · · , xjT

) ≤ O (r log n). Putting
these two things together, we have that Cr log n ≥ T

s log s
for some constant C, which means that we have
T = O (rs log n log s).

IV. Attack Against Linear Sketches

In this section, we give a full description of our attack
against linear sketches for ℓ0-estimation. In particular, we
prove the following theorem.

Theorem IV.1. Suppose that A is a linear streaming
algorithm that solves the (α+c, β−c)-ℓ0 gap norm problem
with some constant α, β and c, where A ∈ Z

r×n is the
sketching matrix with r << n, f : Z

r×n → ¶−1, +1♢ is
any estimator used by A, and A returns f(A, Ax) for each
query x.

Then, there exists a randomized algorithm, which after
making an adaptive sequence of queries to A, with high
constant probability can generate a distribution D on Z

n

such that A fails on D with constant probability. Moreover,
this adaptive attack algorithm makes at most Õ(r8) queries
and runs in poly(r) time.

A. Construction and Analysis Overview

The full description of the attack is given in Figure 1. We
Ąrst deĄne the probability distribution Pa,b with support

[a, b] to have probability density function µ(p) =
Ca,b√
p(1−p)

,

where Ca,b is a normalizing constant.
For p ∈ [0, 1], we deĄne ϕp : ¶±1♢ → R by ϕ0(c) =

ϕ1(c) = 0, and for p ∈ (0, 1), ϕp(1) = −
√

p
1−p and

ϕp(−1) =
√

1−p
p so that by construction, ϕp(c) has mean

0 and variance 1 when Pr [c = −1] = p and Pr [c = 1] =
1− p.

In this section, we give a high-level description of our
algorithm. First, recall that by Lemma III.1 with parame-
ter s = O

(
r3 log3 n

)
, we can assume the sketching matrix

A has the form

A =

[
D

S

]

without loss of generality in our attack. Importantly, we
recall that A has the following properties:

(1) The D and S are column-disjoint.
(2) We have that ♣Frac(y⊤D)j ♣2 ≤ 1

s · ∥Frac(y⊤D)∥2
2

for all y ∈ R
r and j ∈ [n]

(3) S contains at most h = O (rs log n) = O
(
r4 log3 n

)

non-zero columns.

Suppose that D is the distribution family in Lemma V.2
with K = O (r log n). Then, for x ∼ Dα and x′ ∼ Dβ ,
by Lemma V.4, we know that dtv(Dx, Dx′) ≤ 1

poly(n) . Let
S denote the set of non-zero column indices of S. Then,
if we set xi = 0 and x′

i = 0 for all i ∈ S, the streaming

algorithm A must fail to solve the ℓ0 gap norm problem
in one of these two cases, with constant probability. With
this motivation in mind, the main task of the adaptive
adversary is to design an adaptive sequence of queries to
learn the set of indices in S.

In each iteration, we query a random vector xt ∼ Dn
p

where p is sampled in Pα,β . We maintain a score st
i for each

coordinate i ∈ [n], which represents some measure of the
correlation between the i-th coordinate of the inputs and
the outputs of the algorithm A up until step t. In particu-
lar, at the t-th iteration and for each coordinate, let ct

i = 1
if xt

i ̸= 0 and ct
i = −1 if xt

i = 0. Suppose that the output
of the algorithm is at, then we update each coordinateŠs
current store st

i = st−1
i + at · ϕp(ct

i), where ϕp(·) is some
specially-chosen function which depends on the choice of p.
If for coordinates i, the score st

i exceeds a pre-determined
threshold σ, then we accuse this coordinate and treat it
as a coordinate in the secret set S. Furthermore, we set
this coordinate to 0 in all future queries, so the algorithm
cannot get any information about this coordinate in future
iterations.

From the guarantee of the algorithm A, we get that
when p is close to α, with high probability it should output
−1 and when p is close to β, it should output 1. However,
from Lemma V.4 we know that the algorithmA can almost
get nothing about the value of p from the part of the
sketch DxD, which means its output should have a higher
correlation with the coordinates in S. With this ind mind,
the proof is comprised of the following two parts:

• Soundness: For any coordinate i ̸∈ S, the score
si will never exceed σ with high probability, which
means that coordinate i will never be falsely accused.

• Completeness: Let Sj be the remaining (undiscov-
ered) coordinates in S in the j-th round. We will
show that if the algorithm still has the correctness
guarantee on Dn

α and Dn
β after we zero out the accused

coordinates, then the sum
∑

i∈S si will increase faster
than the scores of other coordinates. This means
that as we accuse more and more coordinates in S,
we either Ąnd a distribution that A or Ąnd more
coordinates in S (note that if Ąnd the whole set S,
the algorithm A must fail in the next iteration).

To simplify our argument in Sections IV-B and IV-C,
we will Ąrst prove that soundness and completeness hold
in the case that the streaming algorithm A only uses xS to
estimate the ℓ0 norm at each step. Then, in Section IV-D,
we show that the soundness and completeness guarantees
hold for an arbitrary algorithm A which uses both the
sparse part xS and the dense part DxD to compute its
responses to each query.

B. Soundness

Lemma IV.2. For p ∈ [α, β], let τ = min(α, 1 − β) and

t ∈
[
−

√
τ

2 ,
√

τ
2

]
. Then

E
v∼Dp

[
etϕp(c)

]
≤ et2

,



Let α and β be deĄned as in Lemma V.2
Let D be the distribution family in Lemma V.2 with K = O (r log n)
h← O (rs log n) = O

(
r4 log3 n

)
, σ ← O (h log(n)), ℓ← O (h) · σ, c← O (1)

Let zJ(v) denote the vector where we make vi to 0 for all i ∈ J .
A ← An instantiation of the ℓ0 gap-norm algorithm.
Initialize s0

i = 0 for all i ∈ [n].
For j ∈ [ℓ]:

Sample u1, · · · , uc ∼ Dn
α and v1, · · · , vc ∼ Dn

β .
If A fails with constant probability on one of zIj−1(ui) or zIj−1(vi): Output this distribution as the attack.
Sample pj ∼ Pα,β and vj ∼ Dn

pj .

For each i ∈ [n], set cj
i = 1 if vj

i ̸= 0 and cj
i = −1 otherwise if vj

i = 0.
Query zIj−1(vj) ∈ Z

n and receive aj = A(zIj−1(vj)) ∈ ¶±1♢ as the output.
For i ∈ [n], update sj

i ← sj−1
i + aj · ϕpj

(cj
i ).

Set Ij = Ij−1 ∪ ¶i ∈ [n] ♣ sj
i > σ♢ and Sj+1 = S \ Ij .

Fig. 1. Construction of Our Attack

where c = 1 if v is nonzero and c = −1 if v is zero.

Proof. Although the statement is slightly different from
Lemma 2.4 in [SU15] due to drawing v ∼ Dp, the proof is
almost verbatim; we include it for completeness.

Observe that E
v∼Dp

[ϕp(c)] = p · ϕp(−1) + (1− p) · ϕp(1),

since Pr
v∼Dp

[v = 0] = p. Then we have E
v∼Dp

[ϕp(c)] = 0

and E
v∼Dp

[
(ϕp(c))2

]
= 1. Moreover, for c ∈ ¶±1♢, we have

♣ϕp(c)♣ ≤ 1√
τ

. Thus, we have ♣ϕp(c) · t♣ ≤ 1
2 .

Since ex ≤ 1 + x + x2 for x ∈
[
− 1

2 , 1
2

]
, then

E
v∼Dp

[
etϕp(c)

]
≤ 1 + t · E

v∼Dp

[ϕp(c)] + t2 · E
v∼Dp

[
(ϕp(c))2

]

= 1 + t2 ≤ et2

.

Lemma IV.3. Let p1, . . . , pm ∈ [α, β] and vi ∼ Dpj . Let
a1, . . . , am ∈ [−1, 1] be Ąxed and τ = min(α, 1 − β). Then
for all λ ≥ 0,

Pr


∑

j∈[m]

ajϕpj

(cj
i ) ≥ λ


 ≤ e−λ2/4m + e−√

τλ/4,

where for all i ∈ [n], we have ci = 1 if vj
i ̸= 0 and cj

i = −1
otherwise if vj

i = 0.

Proof. The proof follows exactly along the lines of Lemma
2.5 in [SU15], using τ = min(α, 1− β) instead due to the
range of p ∈ [α, β] as the probability of Dp drawing a zero.
We include the proof for completeness. By Lemma IV.2,

for all t ∈
[
−

√
τ

2 ,
√

τ
2

]
,

E
v

[
e

t
∑

i∈[m]
ajϕpj

(cj
i
)
]
≤
∏

j∈[m]

E
vj

i
∼Dpj

[
etajϕpj

(cj
i
)

]
≤ et2m.

By MarkovŠs inequality, we have

Pr


∑

i∈[m]

ajϕpj

(cj
i ) ≥ λ


 ≤

E

[
e

t
∑

i∈[m]
ajϕpj

(cj
i
)
]

etλ

≤ et2m−tλ.

We set t = min
(√

τ
2 , λ

2m

)
. Then for λ ∈ [0, m

√
τ ], we

have t = λ
2m and so

Pr


∑

i∈[m]

ajϕpj

(cj
i ) ≥ λ


 ≤ e−λ2/4m,

and for λ ≥ m
√

τ ,

Pr


∑

i∈[m]

ajϕpj

(cj
i ) ≥ λ


 ≤ eτm/4−√

τλ/2 ≤ e−
√

τλ
4 .

Theorem IV.4 (EtemadiŠs inequality). [Ete85] Let
X1, . . . , Xn be independent random variables and for all
k ∈ [n], let Sk =

∑k
i=1 Xi be the k-th partial sum of the

sequence X1, . . . , Xn. Then for all λ > 0,

Pr

[
max
k∈[n]

♣Sk♣ > 4λ

]
≤ 4 ·max

k∈[n]
Pr [♣Sk♣ > λ] .

Lemma IV.5 (Individual soundness). For all i ∈ [n] \ S,
we have

Pr
[
i ∈ Iℓ

]
≤ 1

n2
.

Proof. The proof follows similarly from Proposition 2.7 in
[SU15]. Consider a Ąxed i ∈ [n] \ S. Since the adversary
does not see cj

i , without the loss of generality we can
assume that the outputs aj are Ąxed and vj

i and then cj
i



are subsequently drawn since i /∈ S. By Lemma IV.3, we
have for every j ∈ [ℓ],

Pr
[
sj

i >
σ

4

]
= Pr


∑

k∈[j]

akϕpk (ck
i ) >

σ

4




≤ e− σ2

64ℓ + e−σ
√

τ/16

Similarly, by Lemma IV.3, for every j ∈ [ℓ],

Pr
[
sj

i < −σ

4

]
= Pr


∑

k∈[j]

akϕpk (ck
i ) < −σ

4




≤ e− σ2

64ℓ + e−σ
√

τ/16

Thus by Theorem IV.4,

Pr
[
i ∈ Ij

]
≤ Pr

[
max
t∈[j]
♣st

i♣ > σ

]

≤ 4 max
t∈[j]

Pr
[
♣st

i♣ >
σ

4

]

≤ 8(e− σ2

64ℓ + e−σ
√

τ/16) ≤ 1

n2
.

Lemma IV.6 (Soundness).

Pr
[
♣Iℓ \ S♣ ≥ 1

]
≤ 1

n
.

Proof. The proof follows similarly from Theorem 2.8 in
[SU15], as follows. For i ∈ [n] \ S, we use Yi to denote
the indicator random variable for the event i ∈ Iℓ \ S. By
Lemma IV.5, we have that E [Yi] ≤ 1

n2 for all i ∈ [n] \ S.
By MarkovŠs inequality,

Pr
[
♣Iℓ \ S♣ ≥ 1

]
≤ E


 ∑

i∈[n]\S
Yi


 ≤ 1

n2
(n− r) ≤ 1

n
.

Lemma IV.7. For each i ∈ [n], let ji ∈ [ℓ + 1] be the
Ąrst j such that i ∈ Ij, where we set Iℓ+1 = [n]. Then for
τ = min(α, β) and for any J ⊂ [n],

Pr

∑

i∈J

(sℓ
i − sji−1

i ) > λ

]
≤ e− λ2

4♣J♣ℓ + e−√
τλ/4.

Proof. The proof is nearly identical to that of Lemma 2.10
in [SU15], as follows. Observe that

∑

i∈J

(sℓ
i − sji−1

i ) =
∑

i∈J

∑

j∈[ℓ]

I(j ≥ ji)a
jϕpj (cj

i ),

where I denotes the standard indicator function. Again,
since we zero out the i-th coordinate after time jt − 1, we
can take the view that the outputs aj are Ąxed and then
the terms ϕpj (cj

i ) are subsequently drawn for j ≥ jt. Then
by Lemma IV.3, we have

Pr

∑

i∈J

(sℓ
i − sji−1

i ) > λ

]
≤ e− λ2

4♣J♣ℓ + e−√
τλ/4,

as desired.

C. Completeness

Recall that we use h to denote the size of S, where S
corresponds to the non-zero indices of columns in S.

1) Fourier Analysis:

Lemma IV.8. Let f : R
h → R and let g : [0, 1] → R

be deĄned so that g(p) = E
v1,...,vh∼Dp

[f(v)], where for all

i ∈ [h], ci = 1 if vi is nonzero and ci = −1 if vi is zero.
Then for any p ∈ [α, β],

E
v1,...,vh∼Dp


f(v) ·

∑

i∈[h]

ϕp(ci)


 = g′(p)

√
p(1− p)

Proof. The analysis is similar to Lemma 2.11 of [SU15],
but with differing probability distributions and thus corre-
spondingly slightly differing score functions ϕ. We include
the full proof for completeness.

For p ∈ (0, 1) and T ⊂ [h], we deĄne ϕp
T : ¶±1♢h → R

by ϕp
T (c) =

∏
i∈T ϕp(ci), so that the functions ϕp

T form an
orthonormal basis with respect to the product distribution
with bias p. SpeciĄcally, we have that for all T, U ⊂ [h],

E
v1,...,vh∼Dp

[ϕp
T (c) · ϕp

U (c)] =

{
1 T = U

0 T ̸= U,

where for all i ∈ [h], ci = 1 if vi is nonzero and ci = −1 if
vi is zero. We use c(v) to denote this mapping from v to
c. Therefore, we can decompose f by

f(v) =
∑

T ⊂[h]

f̂p(s) · ϕp
T (c(v)),

where we have the Fourier coefficients

f̂p(T ) = E
v1,...,vh∼Dp

[f(v) · ϕp
T (c(v))] ,

where all T ⊂ [h]. Then for p, q ∈ (0, 1), we can expand
g(q) by

g(q) = E
v1,...,vh∼Dq

[f(v)]

=
∑

T ⊂[h]

f̂p(T ) · E
v1,...,vh∼Dq

[ϕp
T (c(v))]

=
∑

T ⊂[h]

f̂p(T ) ·
∏

i∈T

E
vi∼Dq

[ϕp
T (ci(vi))]

=
∑

T ⊂[h]

f̂p(T ) ·
(

q ·
√

1− p

p
+ (1− q) ·

√
p

1− p

)♣T ♣

since for vi ∼ Dq, the probability that vi is zero (and thus
ci is −1) is q. Thus, for T ̸= ∅, we have

g′(q) =
∑

T ⊂[h]

f̂p(T )♣T ♣
(

q

√
1− p

p
+ (1− q)

√
p

1− p

)♣T ♣−1

·
(√

1− p

p
+

√
p

1− p

)



and

g′(p) =
∑

i∈[h]

f̂p(¶i♢) ·
(√

1− p

p
+

√
p

1− p

)
.

Since f̂p(¶i♢) = E
v1,...,vh∼Dp

[f(v) · ϕp(ci(vi))], then

E
v1,...,vh∼Dp


f(v) ·

∑

i∈[h]

ϕp(ci(vi))


 =

∑

i∈[h]

f̂p(¶i♢)

=
g′(p)√

1−p
p +

√
p

1−p

= g′(p) ·
√

p(1− p).

Lemma IV.9. Let f : R
h → R and let g : [0, 1] → R

be deĄned so that g(p) = E
v1,...,vh∼Dp

[f(v)], where for all

i ∈ [h], ci = 1 if vi is nonzero and ci = −1 if vi is zero.
Then there exists a constant ζ > 0 such that

E
p∼Pα,β


 E

v1,...,vh∼Dp


f(v) ·

∑

i∈[h]

ϕp(ci)




 ≥ ζ·(g(β)−g(α)).

Proof. The proof follows similarly from Proposition 2.12 in
[SU15], as follows. Recall that Pα,β has probability density

function µ(p) =
Cα,β√
p(1−p)

entirely on the interval [α, β]. By

Lemma IV.8,

E
p∼Pα,β


 E

v1,...,vh∼Dp


f(v) ·

∑

i∈[h]

ϕp(ci)






= E
p∼Pα,β

[
g′(p) ·

√
p(1− p)

]

=

∫ β

α

g′(p)
√

p(1− p) · µ(p) dp

= Cα,β ·
∫ β

α

g′(p) dp

= Cα,β · (g(β)− g(α)).

The proof then follows from setting Cα,β = ζ.

2) Concentration:

Lemma IV.10. Suppose that at the j-th round, the al-
gorithm A has error probability δj

α, δj
β ≤ c over the input

distribution zIj−1(u) and zIj−1(v) where u ∈ Dn
α, v ∈ Dn

β

for some small constant c, then we have there exists a
function f j : Rh → R that only depends on the interaction
up to round j−1 and satisĄes the value of f j(v) is decided
by the coordinates of v in Sj and f j(vj

Sj ) = aj where
Sj = S\Ij−1. Moreover, we have and gj(β)−gj(α) ≥ 2−η
for some η = O (1).

Proof. From the assumption we have
E

v1,...,vn∼Dα

[A(zIj−1(v))] ≤ −(1 − 2c) and

E
v1,...,vn∼Dβ

[A(zIj−1(v))] ≥ 1 − 2c. From the fact that

we have zeroed out the coordinates of v in Ij−1, we can

without loss of generality get that the output aj can be
represented by the value of a function f j that is only
decided by the coordinates on Sj . From this and the
assumption that δj

α, δj
β ≤ c we have that

gj(β)−gj(α) = E
v1,...,vh∼Dβ

[f(v)]− E
v1,...,vh∼Dα

[f(v)] ≥ 2−η

for some η = O (1).

For p ∼ Pα,β and v1, . . . , vh ∼ Dp, we set ξα,β(f) =
f(v) ·∑i∈[h] ϕp(ci), where for all i ∈ [h], ci = 1 if vi is
nonzero and ci = −1 if vi is zero.

Lemma IV.11. Let f : Rh → ¶±1♢, τ = min(α, 1 − β)

and t ∈
[
−

√
τ

8 ,
√

τ
8

]
. Then for C = 32ehτ/64

τ , we have

E

[
etξα,β(f)−E[tξα,β(f)]

]
≤ eCt2

.

Proof. Let Y =
∑

i∈[h] ϕp(ci). By Lemma IV.2 and inde-
pendence, we have that

E
[
etY
]

= E

[
e

t
∑

i∈[n]
ϕp(ci)

]
=

(
E

v∼Dp

[
etϕp(c)

])h

≤ et2h

for t ∈
[
−

√
τ

8 ,
√

τ
8

]
. Pick t ∈ ¶±

√
τ

8 ♢ such that

∞∑

k=0

t2k+1

(2k + 1)!
E
[
Y 2k+1

]
≥ 0.

Then by dropping the positive terms, for all j ≥ 1, we
have

0 ≤ E
[
Y 2j

]
≤ (2j)!

t2j

∞∑

k=0

tk

k!
E
[
Y k
]

=
(2j)!

t2j
E
[
etY
]

≤ (2j)!

t2j
et2h =

8j(2j)!

τ j
eτh/64 .

This means that we have bounded the even moment of Y .
For k = 2j + 1 ≥ 3, by Cauchy-Schwartz,

E
[
♣Y ♣k

]
≤
√
E [Y 2j ] · E [Y 2j+2]

≤
√

8j(2j)!

τ j
ehτ/64

8j+1(2j + 2)!

τ j+1
ehτ/64

=
8k/2k!

τk/2
ehτ/64

√
k + 1

k
.

Since ♣f(c)♣ ≤ 1, we have E
[
♣f(c) · Y ♣k

]
≤ E

[
♣Y ♣k

]
≤

2 · 8k/2k!ehτ/64/τk/2.



For t ∈
[
−

√
τ

8 ,
√

τ
8

]
, we have

E

[
etξα,β(f)

]
≤ 1 + tE [ξα,β(f)] +

∞∑

k=2

♣t♣k
k!

E
[
♣ξα,β(f)♣k

]

≤ 1 + tE [ξα,β(f)] +
∞∑

k=2

♣t♣k
k!

2 · 8k/2k!ehτ/64

τk/2

= 1 + tE [ξα,β(f)] + 2ehτ/64
∞∑

k=2

(√
8t√
τ

)k

≤ 1 + tE [ξα,β(f)] + 2ehτ/64
∞∑

k=2

(√
8t√
τ

)2

(
√

8)−(k−2)

≤ 1 + tE [ξα,β(f)] + 32ehτ/64 t2

τ

≤ etE[ξα,β(f)]+Ct2

.

Theorem IV.12 (Azuma-Doob Inequality, Theorem 2.16
in [SU15]). Let X1, . . . , Xm ∈ R, µ1, . . . , µm ∈ R, and
U0, . . . ,Um ∈ Ω be random variables such that for all i ∈
[m]:

• Xi and Ui−1 are Ąxed by Ui

• µi is Ąxed by Ui−1.

Suppose that for all i ∈ [m], u ∈ Ω, and t ∈ [−c, c], we
have

E

[
et(Xi−µi) ♣ Ui−1 = u

]
≤ eCt2

.

Then for λ ∈ [0, 2Cmc], we have

Pr



∣∣∣∣∣∣
∑

i∈[m]

(Xi − µi)

∣∣∣∣∣∣
≥ λ


 ≤ 2e− λ2

4Cm ,

and for λ ≥ 2Cmc, we have

Pr



∣∣∣∣∣∣
∑

i∈[m]

(Xi − µi)

∣∣∣∣∣∣
≥ λ


 ≤ 2e− −cλ

2 .

3) Lower Bounding the Correlation:

Lemma IV.13. Let τ = min(α, 1 − β) and let ζ be the
constant from Lemma IV.9. Suppose that for every j ∈ [ℓ]-
th round, the algorithm A has error probability δj

α, δj
β ≤ c

over the distribution zIj−1(Dn
α), zIj−1(Dn

β ) for some small
constant c, where zIj−1 means we zero out the coordinates

in Ij−1. Then for any λ ∈
[
0, 15ℓ√

τ

]
,

Pr

∑

i∈S
sℓ

i < 2ℓζ(1− η)− λ

]
< 2e− λ2τ

200ℓ .

Proof. For each j ∈ [ℓ], from the discussion of
Lemma IV.10 we can have a function f j : R

h → ¶±1♢
that only depends on the interaction up to round j − 1
and satisĄes f j(vj

Sj ) = aj . DeĄne

Xj = f j(vj
Sj )

∑

i∈[h]

ϕp(cj
i ) ∼ ξα,β(f j) ,

where ∼ denotes that has the same distribution. We than
have ∑

i∈S
sℓ

i =
∑

j∈[ℓ]

Xj .

From Lemma IV.9 and Lemma IV.10. We have that

µj = E [Xj ] ≥ 2ζ(1− η)

for all f j . Then, from Lemma IV.11 we have,

E

[
et(Xj−µj)

]
= E

[
etξα,β(fj)−E[tξα,β(fj)]

]
≤ eCt2

.

DeĄne Uj = (f1, p1, v1, · · · , f j , pj , vj , f j+1). Now
X1, ..., Xℓ, µ1, ..., µℓ, and U1, ...,Uℓ satisĄes the condition
in Lemma IV.11. For λ ∈ [0, 2Cmc] = [0, 15ℓ/

√
τ ], we

have that

Pr

∑

i∈S
sℓ

i < 2ℓζ(1− η)− λ

]
≤ Pr

∣∣∣∣∣
∑

i

Xi − µi

∣∣∣∣∣

]

≤ 2e−λ2/4Cm < 2e− λ2τ
200ℓ .

Lemma IV.14. Let τ = min(α, 1−β). Then for all λ > 0,

Pr

∑

i∈S
sℓ

i > λ + hσ +
h√
τ

]
≤ e− λ2

4hℓ + e−√
τλ/4.

Proof. For each i ∈ [n], let ji be as in Lemma IV.7. That
is, i /∈ Sji and i ∈ Sji−1 , where we deĄne Sℓ+1 = ∅ and
S0 = [n]. By the deĄnition of ji, we have that sji−2

i ≤ σ
for all i ∈ S. Hence we have

∑

i∈S
sji−1

i =
∑

i∈S
sji−2

i + aji−1ϕji−1(cji−1
i )

≤
∑

i∈S
(σ +

1√
τ

) ≤ hσ +
h√
τ

.

By Lemma IV.7 we have

Pr

∑

i∈S

(sℓ
i − sji−1

i ) > λ

]
≤ e− λ2

4hℓ + e−√
τλ/4

which completes the proof.

Lemma IV.15 (Completeness). With high constant prob-
ability, at the end of ℓ rounds of the attack, we can Ąnd
a distribution on Z

n such that the algorithm A fails with
constant probability when the input is sampled from this
distribution.

Proof. Suppose that at some round j ∈ [ℓ] we have
max¶δj

α, δj
β♢ = Ω(1), then from ChernoffŠs bound we have

with probability at least 0.99, we can Ąnd this distribution
zIj−1(Dα) or zIj−1(Dβ) that the algorithm A fails from a
constant number of samples.

We next consider the other case where δj
α, δj

β ≤ c
over the distribution Dn

α, Dn
β for all j ∈ [ℓ]. Then from

Lemma IV.13 we have
∑

i∈S
sℓ

i ≥ 2ℓζ(1− η)− λ = Ω(ℓ)



with probability at least 1− 2 exp(−Ω(ℓ)) by setting λ =
O (ℓ). On the other hand, from Lemma IV.14 we have

∑

i∈S
sℓ

i < λ + hσ +
h√
τ
≤ 3hσ

with probability at least 1− 2 exp(−Ω(σ)) by setting λ =
hσ. This is a contradiction when ℓ ≥ C ·hσ for a sufficient
large constant C.

D. Proof of Our Main Theorem

We are now ready to prove Theorem IV.1.

Proof of Theorem IV.1. First, without loss of generality,
we can assume that n = poly(r). This follows since we can
always query on the Ąrst poly(r) coordinates and make the
remaining poly(r) coordinates of the query vector x to 0
(in this case, we are attacking the Ąrst poly(r) columns of
the sketching matrix A).

We now prove the correctness of our attack. Suppose
that the algorithm A which we attack uses the estimator
f , and suppose we sample x ∼ Dpt at time t. Next,
we consider A′ which uses the same estimator f , but

instead takes the input

[
Dx′

SxS

]
where x′ ∼ D

♣D♣
γ for

a Ąxed γ ∈ [α, β], which is independent of input x.
Since Dx and Sx are independent conditioned on pt, by
Lemma V.4, we know that for each iteration t, the total

variation distance between


Dx

(t)
D

Sx
(t)
S

]
and

[
Dx′

Sx
(t)
S

]
is at most

1/ poly(n). Therefore, we have that

dtv

(
¶A(x(t))♢t=1,2,··· ,ℓ, ¶A′(x(t))♢t=1,2,··· ,ℓ

)
≤ ℓ · 1

poly(n)

=
1

poly(n)

Hence, it suffices for us to show that by interacting
with A′, we can Ąnd the attack distribution on which
A′ fails with high constant probability. Note that A′ has
the property that it only uses xS in the computation.
From Lemma IV.6, we see that with probability at least
1 − 1/n, we never falsely accuse any index i /∈ S;
Additionally, by Lemma IV.15, we know that with high
constant probability, our attack correctly identiĄes (some,
or all) coordinates i ∈ S and outputs a distribution on
which A′ fails. From the above discussion we can see that
the algorithm A must also fail on this distribution with
constant probability. By conditioning on these two events
and taking a union bound, it follows that our attack Ąnds
some hard query distribution q on which A fails with
constant probability.

Next, we analyze the query complexity and time com-
plexity of our attack. In each of the ℓ iterations, we
make O (1) queries. Thus, the total number of queries is
O (ℓ) = O

(
r8 log7 n

)
= Õ

(
r8
)
. Since we only maintain

the accumulated score st
i in each iteration t ∈ [ℓ], the total

runtime of the attack is O (ℓn) = poly(r), since it suffices
to consider n = poly(r).

V. Constructing the Hard Input Distribution

In this section, we give the construction of the hard
distribution family that is used in Section IV. We will
make use of the following lemma.

Lemma V.1 (Claim 1 of [LWY20]). For every ε >
2−O(R), there exists a univariate polynomial Q of degree

at most R− Ω
(√

R log 1
ε

)
such that

♣Q(0)♣ > ε ·
R∑

i=0

∣∣∣∣
(

R

i

)
·Q(i)

∣∣∣∣ = ε.

Furthermore, this polynomial Q has the property that

R∑

i=0

(−1)i

(
R

i

)
·Q(i) · it = 0.

for all non-negative integers t ≤ O
(√

R log 1
ε

)
.

Lemma V.2. For any K, there exist constants 0 ≤ α <
β ≤ 1 such that there exists a family D = ¶Dp♢ of
probability distributions parameterized by p ∈ [α, β] with
support on ¶−R, . . . , R♢ where R = O

(
K2
)

such that:

(1) For Dp ∈ D, we have Dp(0) = p and Dp(1) = Ω(1).
(2) For all p ∈ [α, β] and for all X ∈ [R], we have

Dp(X) = Dp(−X), so that Dp is a symmetric
distribution.

(3) For all p, q ∈ [α, β], we have E
X∼Dp

[
Xk
]

=

E
X∼Dq

[
Xk
]

for all k ∈ [K].

Proof. By Lemma V.1 with R = Θ(K2) and ε = 1/4,
there exists a univariate polynomial Q of degree at most

R− Ω
(√

R
)

such that

♣Q(0)♣ > 1

4
·

R∑

i=0

∣∣∣∣(−1)i

(
R

i

)
·Q(i)

∣∣∣∣ .

Moreover, for every non-negative integer t ≤ K, we have

R∑

i=0

(−1)i

(
R

i

)
·Q(i) · it = 0.

Let u(i) = (−1)i
(

R
i

)
· Q(i) for all i ∈ [R] and let U =∑

i∈[R] ♣u(i)♣. Without loss of generality, suppose Q(0) >

0, so that u(0) > 0 and u(0) > 1
4 · U . Moreover, since∑

i∈[R] u(i) = 0, then u(0) ≤ 1
2 · U .

We set α =
∣∣∣u(0)

2U

∣∣∣ and β = 2
∣∣∣u(0)

2U

∣∣∣. We Ąrst deĄne:

B(i) =





∣∣∣u(0)
2U

∣∣∣ , i = 0

1
2

(
1
2 +

∣∣∣u(1)
2U

∣∣∣
)

i = ±1

1
2

(∣∣∣u(i)
2U

∣∣∣
)

, ♣i♣ ∈ ¶2, . . . , R♢

Then for a Ąxed p ∈ [α, β], we deĄne

Dp(0) = B(0) +
( p

α
− 1
)
· u(0)

2U
,



and

Dp(i) = B(i) +
( p

α
− 1
)
· u(i)

4U
,

for all i with ♣i♣ ∈ ¶1, . . . , R♢.
We Ąrst prove that Dp(i) is a probability distribution.

Since
∑R

i=0 ♣u(i)♣ = U , then
∑R

i=0
♣u(i)♣

2U = 1
2 , and thus

∑

i:♣i♣∈¶0,1,...,R♢
B(i) =

1

2
+

R∑

j=0

♣u(j)♣
2U

= 1.

Moreover, since ♣u(i)♣ ≤ U
2 , then B(i) ∈ [0, 1] for all i

and thus B is a probability distribution. We also have∑R
i=0

u(i)
U = 0. Thus we have
∑

i:♣i♣∈¶0,1,...,R♢
Dp(i) =

=


 ∑

i:♣i♣∈¶0,1,...,R♢
B(i)


+


 ∑

i:i∈¶0,1,...,R♢

( p

α
− 1
) u(i)

2U




=
∑

i:♣i♣∈¶0,1,...,R♢
B(i) = 1.

We also have
∑

i
♣u(i)♣

2U = 1
2 and thus ♣u(i)♣

2U ≤ 1
2 . Moreover,

note that for p ∈ [α, β] with α =
∣∣∣u(0)

2U

∣∣∣ and β = 2
∣∣∣u(0)

2U

∣∣∣,
then

(
p
α − 1

)
∈ [0, 1]. Thus Dp(i) ∈ [0, 1] for all i and so

Dp is a valid probability distribution.
By construction, we have

Dp(0) =

∣∣∣∣
u(0)

2U

∣∣∣∣+
( p

α
− 1
)
· u(0)

2U

=

∣∣∣∣
u(0)

2U

∣∣∣∣+

(
2Up

♣u(0)♣ − 1

)
· u(0)

2U

= p,

since u(0) > 0 by assumption. Hence, the Ąrst part of the
claim follows.

By construction, we have Dp is symmetric distribution
for all p ∈ [α, β], which gives the second part of the claim.

It thus remains to prove the third part of the claim.
Let p < q be Ąxed, for p, q ∈ [α, β]. To that end, observe
that E

X∼Dp

[
Xj
]

= E
X∼Dq

[
Xj
]

if and only if
∑

X∈[R] Xj ·
(Dp(X) − Dq(X)) = 0. Now, for each X ∈ [R], we have

Dp(X) − Dq(X) = q−p
α · u(X)

2U . Since u(X) = (−1)X
(

R
X

)
·

Q(X), then it suffices to show that
∑

X∈[R] Xj ·(−1)X
(

R
X

)
·

Q(X) = 0, which is true by Lemma V.1. Thus, the third
part of the claim follows.

As an alternative view, we can Ąrst observe that since
Dp and Dq are symmetric distributions, then their odd
moments are all 0. To match their even moments, we can
deĄne M ∈ R

K×R be the following transposition of a
Vandermonde matrix:

M =




1 1 1 . . . 1
1 4 9 . . . R2

1 16 81 . . . R4

...
...

...
. . .

...
1 22K 32K . . . R2K




,

then E
X∼Dp

[
X2j

]
is the j-th row of the matrix-vector

product Mv, where vi = 2 ·Dp(i). Similarly, E
X∼Dq

[
X2j

]

is the j-th row of the matrix-vector product Mv′, where
v′

i = 2 ·Dq(i) and thus E
X∼Dp

[
X2j

]
= E

X∼Dq

[
X2j

]
if and

only if Mv−Mv′ = 0K , i.e., the all zeros vector of length
K, so that v−v′ is in the kernel of M. Now, the j-th entry
of Mv−Mv′ is precisely 2

∑
X∈[R] Xj ·(Dp(X)−Dq(X)) =

0 and we proceed as before.

A. Bounding the Total Variation Distance

Let D denote the dense part of sketching matrix A,
and let x ∼ Dn

p and x′ ∼ Dn
q , respectively. Before we

proceed to prove that dtv(Dx, Dx′) ≤ 1
poly(n) , we state

the following useful lemma.

Lemma V.3. ♣∏i∈[n](ai + δi) −
∏

i∈[n] ai♣ ≤
∑

i∈[n] ♣δi♣ ·
e

∑
j∈[n]

♣δj ♣
if ♣ai + δi♣ ≤ 1 for all i ∈ [n].

Proof. We have
∣∣∣∣∣∣
∏

j<i

(aj + δj)
∏

j≥i

aj −
∏

j<i+1

(aj + δj)
∏

j≥i+1

aj

∣∣∣∣∣∣

= ♣δi♣ ·
∏

j>i

♣aj + δj ♣
∏

j≥i+1

♣aj ♣.

Since ♣aj + δj ♣ ≤ 1, then we have ♣aj ♣ ≤ 1 + ♣δj ♣ by
triangle inequality. Thus,

∣∣∣∣∣∣
∏

j<i

(aj + δj)
∏

j≥i

aj −
∏

j<i+1

(aj + δj)
∏

j≥i+1

aj

∣∣∣∣∣∣

≤ ♣δi♣ ·
∏

j≥i+1

(1 + ♣δj ♣)

≤ ♣δi♣
∏

j∈[n]

e♣δi♣ ≤ ♣δi♣ · e
∑

j
♣δj ♣

.

Now, note that we can write
∣∣∣∣∣∣
∏

i∈[n]

(ai + δi)−
∏

i∈[n]

ai

∣∣∣∣∣∣

=

n∑

i=1

∣∣∣∣∣∣
∏

j<i

(aj + δj)
∏

j≥i

aj −
∏

j<i+1

(aj + δj)
∏

j≥i+1

aj

∣∣∣∣∣∣
.

Therefore, we have that
∣∣∣∣∣∣
∏

i∈[n]

(ai + δi)−
∏

i∈[n]

ai

∣∣∣∣∣∣
≤
∑

i∈[n]

♣δi♣ · e−
∑

j∈[n]
♣δj ♣

.

Lemma V.4. For Ąxed p and p′ ∈ [α, β], let P = Dp

and Q = Dp′ be the pair of probability distributions deĄned
in Lemma V.2. Let P n and Qn be the probability distri-
butions of vectors of dimension n, with each entry drawn



independently from P and Q, respectively. Let D ∈ Z
r×n

with entries bounded in [−poly(n), poly(n)] and

♣Frac(y⊤D)j ♣2 ≤
1

s
· ∥Frac(y⊤D)∥2

2 .

for all y ∈ R
r and j ∈ [n]. Let PD and QD be the

probability distributions of Dx and Dx′ for x ∼ P n and
x′ ∼ Qn respectively. Let K and R be the parameter from
Lemma V.2 and s be the parameter from Lemma III.3 with
s = Ω(R5/2). Then the total variation distance between PD

and QD is at most nO(r)
(
n · e−Ω(K) + e−Ω(K)

)
.

Proof. For u ∈ [−π, π]r and z = Dx, we have

P̂D(u) = E
z∼PD

[
e−⟨u,z⟩i

]
= E

z∼PD

[
e−⟨u

⊤
Dx⟩i

]
.

We have Dx =
∑

j∈[n] D(j)xj , where D(j) is the j-th
column of D. For all i ∈ [R], let Pi be the probability
that Pr

X∼P
[X = i]. Since each coordinate of x is drawn

independently from P , then we have

P̂D(u) =
∏

j∈[n]

E

[
e−u

⊤
D

(j)xji
]

=
∏

j∈[n]

∑

m≥0

Pm ·
(

cos(⟨u, D(j)⟩m) + i · sin(⟨u, D(j)⟩m)
)

.

Since Pi = P−i, then we have

P̂D(u) =
∏

j∈[n]

∑

m≥0

Pm · cos(⟨u, D(j)⟩m).

As before, we deĄne Frac(x) = x− int(x) ∈
[
− 1

2 , 1
2

)
and

Frac2π(x) = 2π ·Frac
(

x
2π

)
∈ [−π, π), so that cos(mθ) =

cos (m · Frac2π(θ)). Then

P̂D(u) =
∏

j∈[n]

∑

m≥0

Pm · cos
(

m · Frac2π(⟨u, D(j)⟩)
)

.

Rewriting cos(x) = 1 − x2

2! + x4

4! − x6

6! + . . . in its Taylor
expansion, we have

P̂D(u) =
∏

j∈[n]

∑

m≥0

Pm

∑

k≥0

(
mFrac2π(⟨u, D(j)⟩)

)2k
(−1)k

(2k)!

Since cos(x) is well-deĄned, the summation is absolutely
convergent, and so

P̂D(u) =
∏

j∈[n]

∑

k≥0

(∑

m≥0

Pmm
2k



·

(
Frac2π(⟨u, D

(j)⟩)
)2k

(−1)k

(2k)!

Let MP (2k) =
(∑

m≥0 Pm ·m2k
)

be the 2k-th moment

of P and MQ(2k) =
(∑

m≥0 Qm ·m2k
)

, so that

P̂D(u) =
∏

j∈[n]

∑

k≥0

MP (2k) ·
(
Frac2π(⟨u, D(j)⟩)

)2k

(2k)!
· (−1)k

and similarly

Q̂D(u) =
∏

j∈[n]

∑

k≥0

MQ(2k) ·
(
Frac2π(⟨u, D(j)⟩)

)2k

(2k)!
·(−1)k.

We claim ♣P̂D(u) − Q̂D(u)♣ ≤ n · e−Ω(K) + e−Ω(K) for all
u ∈ [−π, π]n. Now, for a Ąxed u, either there exists j ∈ [n]
such that ♣Frac2π(⟨u, D(j)⟩)♣ > 1

4K or for all j ∈ [n], we
have ♣Frac2π(⟨u, D(j)⟩)♣ ≤ 1

4K . We analyze these cases
separately.

Suppose there exists j ∈ [n] such that
♣Frac2π(⟨u, D(j)⟩)♣ > 1

4K . We write ι
(

u

2π

)
j

:=

Frac2π⟨u, D(j)⟩. Then ♣ι
(

u

2π

)
j
♣ > 1

4K and the deĄnition

Frac2π(x) = 2π · Frac
(

x
2π

)
∈ [−π, π) implies

ι
( u

2π

)2

j
=

∣∣∣∣Frac

(〈 u

2π
, D(j)

〉)2
∣∣∣∣ >

1

(16K2) · 2π
.

Since we have ♣Frac(y⊤D)j ♣2 < 1
s · ∥Frac(y⊤D)∥2

2 for
all vectors y ∈ R

r, then it follows that
∥∥∥ι
( u

2π

)∥∥∥
2

2
≥ s

(16K2)2π
=

K

32π
.

by setting s = O
(
K3
)
. From before, we have

♣P̂D(u)♣ =

∣∣∣∣∣∣
∏

j∈[n]

∑

m≥0

Pm · cos
(

m · Frac2π(⟨u, D(j)⟩)
)
∣∣∣∣∣∣

=
∏

j∈[n]

∣∣∣∣∣∣
∑

m≥0

Pm · cos

(
m · ι

( u

2π

)
j
· 2π

)∣∣∣∣∣∣
.

Since we have P1 = Ω(1), then

♣P̂D(u)♣ ≤
∏

j∈[n]

∣∣∣∣1− P1

(
1− cos

(
m · ι

( u

2π

)
j
· 2π

))∣∣∣∣

≤
∏

j∈[n]

e
−Ω

((
ι( u

2π )
j

)2
)

,

where the last inequality holds by the Taylor expansion
cos(x) = 1− x2

2! + x4

4! − x6

6! + . . . and the inequality 1−x ≤
e−x. We thus have

♣P̂D(u)♣ ≤ e
−Ω
(
∥ι( u

2π )∥2

2

)

≤ e−Ω(K),

and similarly ♣Q̂D(u)♣ ≤ e−Ω(K). Thus in this case,

♣P̂D(u)− Q̂D(u)♣ ≤ e−Ω(K), by triangle inequality.
In the other case, we have that for all j ∈ [n],
♣Frac2π(⟨u, D(j)⟩)♣ ≤ 1

4K . From before, we have

P̂D(u) =
∏

j∈[n]

∑

k≥0

MP (2k) ·
(
Frac2π(⟨u, D(j)⟩)

)2k

(2k)!
· (−1)k.

At this point, we recall that R = O
(
K2
)

by Lemma V.2.
So, using R = O

(
K2
)

and the fact that for all j ∈ [n],



♣Frac2π(⟨u, D(j)⟩)♣ ≤ 1
4K (as well as StirlingŠs approxima-

tion), we can upper bound the higher moments as follows:
∣∣∣∣∣∣
∑

k≥K/2

MP (2k) ·
(
Frac2π(⟨u, D(j)⟩)

)2k

(2k)!
· (−1)k

∣∣∣∣∣∣

≤
∑

k>K/2

R2k · 1

(2k)!
·
(

1

16K2

)k

≤ K4K

(2K)2K/e2K ·
√

4πK · (16)K
· 1

K2K
≤ e−Ω(K)

We now apply Lemma V.3 with aj =
∑

k≤K/2 MP (2k) and
δj =

∑
k>K/2 MP (2k) so that

∣∣∣∣∣∣
P̂D(u) −

∏

j∈[n]

∑

k≤K/2

MP (2k)

(
Frac2π(⟨u, D

(j)⟩)
)2k

(−1)k

(2k)!

∣∣∣∣∣∣
≤ n · e

−Ω(K)
.

Similarly, we have
∣∣∣∣∣∣
Q̂D(u) −

∏

j∈[n]

∑

k≤K/2

MQ(2k)

(
Frac2π(⟨u, D

(j)⟩)
)2k

(−1)k

(2k)!

∣∣∣∣∣∣
≤ n · e

−Ω(K)
.

Moreover, we have MQ(2k) = MQ(2k) for k ≤ K/2 and

thus by triangle inequality, we have ♣P̂D(u) − Q̂D(u)♣ ≤
n · e−Ω(K).

Thus, combining both cases, we have ♣P̂D(u)−Q̂D(u)♣ ≤
n · e−Ω(K) + e−Ω(K) for all u ∈ [−π, π]n, as desired. Now,
we have

♣PD(x)−QD(x)♣

=

∣∣∣∣∣
1

(2π)r

∫

[−π,π)r

ei⟨u,x⟩
(

P̂D(u)− Q̂D(u)
)

du

∣∣∣∣∣
≤ n · e−Ω(K) + e−Ω(K).

Finally, we observe that since D ∈ Z
r×n with entries

bounded in [−poly(n), poly(n)], then PD(x) and QD(x)
only have support on a set of size nO(r). Thus, we have
that

dtv(PD(x), QD(x)) ≤ nO(r)
(

n · e−Ω(K) + e−Ω(K)
)

At this point, we note that s = O
(
K3
)

in the proof
of Lemma V.4. So, by setting K = r log n, we see that
s = O

(
(r log n)3

)
. For this choice of parameters s, K, we

get that dtv(PD(x), QD(x)) ≤ 1
poly(n) , as desired.

VI. Attack against Linear Sketches over Finite

Fields

In this section, we present our attack against linear
sketches for ℓ0-estimation in the case that the sketching
matrix A ∈ F

r×n
p and inputs x ∈ F

n
p come from a Ąnite

Ąeld for some prime p. Formally, we have the following
theorem.

Theorem VI.1. There exists an adaptive attack that
makes Õ

(
r3
)

queries and with high constant probability
outputs a distribution D over Z

n such that when x ∼ D,
A fails to distinguish between ∥x∥0 ≤ 1.1n and ∥x∥0 ≥ 1.9n
with constant probability.

Algorithm 1 Attack on L0 algorithms that use a sketch-
ing matrix over F

r×n
p

Input: Algorithm A that decides whether input vector x

satisĄes ∥x∥0 ≤ 1.1r or ∥x∥0 ≥ 1.9r, using a sketching
matrix A ∈ F

r×n
p

Output: A query distribution on which A does not suc-
ceed with constant probability.
T ← ∅
while ♣T ♣ < r do

Randomly choose R ⊆ ([n] \ T ) of size 2r
Let x(1) ∈ F

n
p be a random vector with support only

on T .
Let x(2) ∈ F

n
p be a random vector with support only

on T ∪R.
if A fails on x(1) or x(2) then

Return this distribution x(i).
for ℓ = 1 to ℓ = 5 + log log r + log r do ▷2ℓ indices

of TVD O
(

1
2ℓ

)

if FindColumn(T, R, ℓ) outputs a column j
then

T ← T ∪ ¶j♢
Let x(1) ∈ F

n
p be a random vector with support only on

T .
Let x(2) be a random vector from F

n
p .

Return one of x(1) and x(2)

Algorithm 2 FindColumn(T, R, ℓ)

Input: Set T , Set R, ℓ ∈ [5 + log log r + log r]
Output: A column j that is linear independent to T

1: Let Ri denote the Ąrst columns of R
2: for m3 = O

(
r
2ℓ log r

)
times do

3: Randomly choose i ∈ [2r]
4: for m4 = O

(
22ℓ log r

)
times do

5: Randomly generate v(3) ∈ F
n
p with support only

on Ri ∪ T .
6: Randomly generate v(4) ∈ F

n
p with support only

on Ri+1 ∪ T .
7: Query A on v(3) and v(4)

8: Let D3 and D4 be the output distributions of ¶v(3)♢
and ¶v(4)♢.

9: if dtv(D3,D4) ≥ 1
2ℓ+3 log r

then

10: return j

11: return FAIL

The full description of our algorithm is given in Algo-



rithm 1. The basic idea of our attack is due to the following
observation: let T and R be two subsets of columns in
A such that T and R have the same column span. Then
dtv(Ax(1), Ax(2)) = 0, where x(1) ∈ F

n
p and x(2) ∈ F

n
p

are uniformly random vectors with support on T and
R, respectively (Corollary VI.3). Thus, if we can Ąnd a
column-independent set T with r columns, the algorithm
A must fail on one of the following two cases where x is a
random vector that is on the support T or a random vector
over F

n
p , as they correspond to the different outputs of A.

Therefore, the remaining task is to devise a strategy to
Ąnd the column independent set T .

Lemma VI.2. Let T be a subset of columns in A and
suppose column j is linearly dependent with the columns
in T . Then dtv(Av(1), Av(2)) = 0, i.e., the distributions of
the sketch on v(1) and v(2) are identical. Here x(1) ∈ F

n
p

is random vector with support on T and x(2) ∈ F
n
p be a

random vector with support on T ∪ ¶j♢.
Proof. From the condition, we have that there exist
α1, . . . , α♣T ♣ ∈ Fp such that

α1A(T1) + . . . + α♣T ♣A
(T♣T ♣) = A(j).

Thus there exists a one-to-one correspondence for the
setting where the coordinate of v(1) corresponding to the
i-th index of T is βi ∈ Fp and the setting where the coordi-
nate of v(2) corresponding to the i-th index of T is βi, i.e.,
the coordinate of v(1) corresponding to the i-th index of T
is βi−αi. Thus, the output distributions of the sketch on
v(1) and v(2) are identical, i.e., dtv(Av(1), Av(2)) = 0.

Corollary VI.3. Let T and R be two subsets of columns
in A and suppose that they have the same column span.
Then dtv(Ax(1), Ax(2)) = 0, where x(1) ∈ F

n
p is random

vector with support on T and x(2) ∈ F
n
p be a random vector

with support on R.

We next give some high-level intuition of our procedure
that searches for this column-independent set: suppose T is
the current set of linear columns found, then we randomly
sample 2r columns in [n] \ T , and let R denote the set of
these new columns. Then from the correctness guarantee of
the algorithm A we have that dtv(A(x(1)),A(x(2))) ≥ 1/3
(as otherwise we Ąnd the distribution on which A fails
immediately), where x(1) is a random vector with support
on T and x(2) is a random vector with support on T + R.
Next let Ri denote the Ąrst i columns in R and µi denote
the distribution of A(x(i)) where x(i) is the random vector
in the support of T ∪Ri. From the triangle inequality we
have ∑

i

dtv(µi, µi+1) ≥ dtv(µ0, µ2r) ≥ 1

3
. (2)

One natural way at this point is from the above, we have
there must exist j such that dtv(µj−1, µj) ≥ Ω(1/r), and
then such j should be a column that is linearly indepen-
dent to the columns in T , as otherwise the total variation

distance should be 0. Hence, we can enumerate all i ∈ [2r]
to Ąnd such column j (from the results in statistical test-
ing, we can distinguish whether two binary distributions
have 0 distance or have total variation distance larger
than 1/r using Õ(r2) samples with error probability at
most 1/ poly(r) (Lemma VI.5)). However, such a way
might not be optimal, as in the worst case we need to
search every i ∈ [2r]. To get a better r dependence, we
consider the following level-set argument: deĄne the level

set I0 = [ 1
log r , 1) and Iℓ =

[
1

2ℓ+3 log r
, 1

2ℓ+2 log r

)
, then since∑

i dtv(µi, µi+1) ≥ 1
3 , there exists ℓ ∈ [5 + log log r + log r]

for which there exist at least 2ℓ−1 indices i such that
dtv(µi, µi+1) ∈ Iℓ−1 (Lemma VI.4). Hence, we can guess
the value of ℓ, and for each value of ℓ, we use a proper
sampling rate to sample the indices in [2r]. Note that since
the range of the total variation distance is different for each
ℓ, we can use different number of samples (which depends
on ℓ) to do the distribution testing. This results in a better
r3 dependence.

Lemma VI.4. Suppose that

2r−1∑

i=0

dtv(µi, µi+1) ≥ 1

3
.

DeĄne the level set I0 = [ 1
log r , 1) and Iℓ =[

1
2ℓ+3 log r

, 1
2ℓ+2 log r

)
. There exists ℓ ∈ [5 + log log r + log r]

for which there exist at least 2ℓ−1 indices i such that
dtv(µi, µi+1) ∈ Iℓ−1.

Proof. Suppose by way of contradiction that for all ℓ ∈
[5 + log log r + log r], there exists fewer than 2ℓ−1 indices
i such that dtv(µi, µi+1) ∈ Iℓ−1. Let Nℓ be the number of
indices i such that dtv(µi, µi+1) ∈ Iℓ−1. Then we have

2r−1∑

i=0

dtv(µi, µi+1) ≤
5+log log r+log r∑

ℓ=1

Nℓ

2ℓ+1 log r
+2r · 1

32r
<

1

4

Before proving our main theorem. We need the following
result in the discrete distribution testing.

Lemma VI.5 ( [CDVV14]). Suppose that p and q
are two distributions on [n] There is an algorithm that
uses O

(
max¶n2/3/ε4/3, n1/2/ε2♢

)
samples to distinguish

whether p = q or dtv(p, q) ≥ ε with probability at least 2/3.

Note that the distributions we test is binary as the
algorithm A only output 0 or 1. And to boost the error
probability to δ, we can run log(1/δ) independent copies
and then take the majority.

We are now ready to prove our Theorem VI.1.

Proof of Theorem VI.1: Consider Algorithm 1. With
probability at least 1 − 1/ poly(r), all of the distribution
testing subroutines succeeded, this is because we make an
extra of O (log r) factor in the number of samples for each
testing procedure and take a union bound. Condition on



this event, we only need to show in each iteration, with
probability at least 1−1/ poly(r) we can Ąnd a new column
j that is linearly independent to T .

Consider a Ąxed iteration and let x(1) is a random
vector with support on T and x(2) is a random vector
with support on T + R. We Ąrst consider the case where
dtv(A(x(1)),A(x(2))) ≤ 1/3, then from the guarantee of
the algorithm A, A must fail on one of the distributions.

We next consider the other case dtv(A(x(1)),A(x(2))) ≥
1/3. First, if during the process, FindColumn successfully
Ąnds a column j, since we assume the correctness of the
property testing subroutines, this means column j must be
linearly independent to T (as otherwise the total variation
distance is 0). One the other hand, from Lemma VI.4, we
know that there exists there exists ℓ ∈ [5 + log log r +
log r] for which there exist at least 2ℓ−1 indices i such that
dtv(µi, µi+1) ∈ Iℓ−1. Since we sample O

(
r
2ℓ log r

)
index i

in this range, with probability at least 1 − 1/ poly(r), we
can Ąnd such a j that dtv(µj , µj+1) ∈ Iℓ−1.

Now, assume that we have found such a column-
independent set T with r columns. Let x(1) ∈ F

n
p is random

vector with support on T and x(2) ∈ F
n
p be a random

vector on F
n
p . Recall that A ∈ F

r×n
p , this means that

we have dtv(Ax(1), Ax(2)) = 0, which means that the
algorithm A must fail on one of the distributions.

Finally, we analyze the query complexity. in each step
of the Ąnding of the r columns in T , we make log r +
log log r + 5 guess about the value of ℓ and in each guess
we sample O

(
r
2ℓ log r

)
column j and in each sample we

make O
(
22ℓ log r

)
samples of the two distributions, then

it follows that the overall query complexity is

r ·




(log r+log log r+5)∑

ℓ=1

r

2ℓ
log r · 22ℓ log r


 = r3 · polylog(r) .

□

VII. Attack against Real-Valued Linear

Sketches

In this section, we consider the case where the sketching
matrix A ∈ R

r×n has all subdeterminants at least 1
poly(r)

(note that the known sketches have this property). For-
mally, we prove the following theorem.

Theorem VII.1. Suppose that A with the estimator f
solves the (α + c, β − c)- ℓ0 gap norm problem with some
constants α, β, and c, where A ∈ R

r×n is the sketching
matrix and has all nonzero subdeterminants at least 1

poly(r) ,

and f : Rr×n → ¶−1, +1♢ is any estimator used by A, and
A returns f(A, Ax) for each query x.

Then, there exists a randomized algorithm, which after
making an adaptive sequence of queries to A, with high con-
stant probability can generate a distribution D on R

n such
that A fails on D with constant probability. Moreover, this
adaptive attack algorithm makes at most poly(r) queries
and runs in poly(r) time.

We follow a similar procedure as we did for x ∈ Z
n,

where the strategy is to design queries to learn the signif-
icant columns of the sketching matrix A. However, since
the sketching matrix A is real-valued, we may need to
redeĄne the signiĄcance of columns and re-design the hard
input distribution family for the insigniĄcant coordinates.
SpeciĄcally, we consider the following condition for the
signiĄcance of column i:

∃y⊤ ∈ R
r, (y⊤A)2

i ≥
1

s
· ∥y⊤A∥2

2 .

Next, we argue that we can iteratively remove a (small)
number of columns of a matrix A ∈ R

r×n such that the
resulting matrix A′ has leverage scores at most 1

s (note
that since A and x are real-valued matrix and vector now,
the previous information theoretic argument in Section III
no longer works). Since the sum of the leverage scores
is at most r, we would like to argue that we can just
remove rs columns. However, this may not be true, since
the leverage scores of some columns may increase when we
zero-out other columns during the pre-processing. Thus,
we require a more involved volume argument to bound the
total number of added rows ei, which has previously been
used to bound the sum of online leverage scores [CMP20],
[BDM+20].

Lemma VII.2 (Matrix determinant lemma). For any
vector u ∈ R

d and matrix M ∈ R
d×d, we have

det(M + uu⊤) = det(M) · (1 + uM−1u).

Now, we show that for matrices with bounded en-
tries and bounded subdeterminants, we can only zero-out
columns with high leverage scores for a Ąxed number of
times before the remaining columns have bounded leverage
score. Among this class of matrices is the class of integer
matrices with bounded entries. We remark that if each
entry in a general matrix is represented using b bits, then
by rescaling, this translates to an integer matrix whose
entries are bounded by at most 2b in magnitude.

We further remark that although the following state-
ment for matrices with subdeterminant at least 1

poly(r) ,
the statement easily extends to matrices with subdeter-
minants at least κ by removing O (rs log(κnr)) columns,
e.g., matrices with subdeterminants at least 1

npoly(r) would
require poly(r) · log n columns to be removed.

Lemma VII.3. Let A ∈ R
r×n be a matrix with nonzero

entries bounded by poly(r) and all subdeterminants either
zero or at least 1

poly(r) . Let s ≥ 1 be a given parameter.
Then there exists a pre-processing procedure to A that
produces a matrix A′ ∈ Z

r×n that zeros out at most
O
(
r2s log(nr)

)
columns of A such that the leverage score

of all columns of A′ is at most 1
s .

Proof. Let S = AA⊤ ∈ R
r×r. By the matrix determinant

lemma, c.f., Lemma VII.2, we have for any vector u ∈ R
r,

det(S + uu⊤) = det(S) · (1 + u⊤S−1u). Suppose a column
Ai is removed from the sketching matrix A, so that S



decreases by AiA
⊤
i . By the matrix determinant lemma,

c.f., Lemma VII.2, we have det(S−AiA
⊤
i ) = det(S)(1−

(A⊤
i S−1Ai)). Note by the deĄnition of leverage score,

A⊤
i S−1Ai is the i-th leverage score ℓi of the current S.

Hence, we have det(S−AiA
⊤
i ) = det(S)(1− ℓi). Observe

that if ℓi = 1, then the rank of S decreases, and the
analysis can be restarted with a new linearly independent
subset of columns of the matrix A at that time. Thus we
can have ℓi = 1 at most r times and for the remainder of
the analysis, we shall consider the number of columns that
must be removed while not decreasing the rank of A.

Now in the case that no columns have leverage score 1,
we seek to remove columns with leverage score ℓi > 1

s . In
this case, we have ♣det(S −AiA

⊤
i )♣ ≤ ♣det(S)♣ ·

(
1− 1

s

)
.

On the other hand, we have that ♣det(S)♣ ≤ ∥S∥r
F ≤

(n · poly(r))r, since S = A⊤A so that ∥S∥F ≤ ∥A∥2
F ≤

n · poly(r) since each of the entries of A have magni-
tude at most poly(r). Hence after O (rs log(nr)) itera-
tions of removing columns with leverage score at least
1
s , we have ♣det(S −AiA

⊤
i )♣ < 1

poly(r) , which contradicts

♣det(S−AiA
⊤
i )♣ ≥ 1

poly(r) , given the assumption that any

subdeterminant of A has value at least 1
poly(r) . Thus, we

remove O (rs log(nr)) columns for a given rank, and have
at most r changes to the rank of the matrix. Therefore, at
most O

(
r2s log(nr)

)
columns are removed in total before

no remaining columns have leverage score at last 1
s .

We next consider the construction of the hard distribu-
tion for the insigniĄcant coordinates. Let D = N (0, 1) and
let Dp for a constant p ∈ (0, 1) be the distribution such
that for x ∼ Dp satisĄes Pr [x = 0] = 1 − p. Otherwise,

with probability p, x ∼ N
(

0, 1
p

)
. Note that we can also

write x ∼ Dp by x = 1√
p ·Bern (p) ·N (0, 1), where Bern (p)

denotes a Bernoulli random variable with parameter p, i.e.,
1 with probability p and 0 with probability 1 − p, Thus,
we have

E
x∼D1

[x] = E
x∼D2

[x] = 0, E
x∼D1

[
x2
]

= E
x∼D2

[
x2
]

= 1.

We next turn to bound the total variation distance
dtv(Ax(1), Ax(2)) where x(1) ∼ Dp and x(2) ∼ Dq for p
and q randomly sampled in (α, 1) for some small constant
α. We Ąrst recall the following statement of AzumaŠs
inequality:

Theorem VII.4 (AzumaŠs inequality). Let Z1, . . . , Zn

be mean-zero random variables and β1, . . . , βn be upper
bounds such that for all i ∈ [n], ♣Zi♣ ≤ βi. Then

Pr

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > t

]
≤ exp

(
− t2

2
∑

i∈[n] β2
i


.

We next show that a random matrix B formed by
rescaling columns sampled from a matrix A is a good
subspace embedding of A.

Lemma VII.5. Let γ ≥ 1 be a Ąxed constant. Let A ∈
R

r×n and s = Θ
(

γ2

p2 · r4 log r
)

be Ąxed so that no column

of A has leverage score more than 1
s . Let B ∈ R

r×n be a
random matrix formed by sampling and scaling by 1

p each
column of A with probability p, otherwise zeroing out the
column entirely. Then with high probability, we have that
simultaneously for all x ∈ R

r

(
1− 1

γr

)
· ∥x⊤B∥2

2 ≤ ∥x⊤A∥2
2 ≤

(
1 +

1

γr

)
· ∥x⊤B∥2

2.

Proof. Let x ∈ R
r be any Ąxed vector and let y = A⊤x ∈

R
n. If y is the all zeros vector, then all columns of A have

dot product 0 with x and so y = x⊤B. Thus it suffices to
consider the case where y is nonzero, in which case we can
suppose y has unit L2 norm without loss of generality. Now
for i ∈ [n], let Zi = 1

p · y2
i ·Xi − y2

i , where Xi ∼ Bern (p).

Hence, we have E [Zi] = 0 and ♣Zi♣ ≤
(

1
p − 1

)
y2

i ≤(
1
p − 1

)
ℓi, where ℓi is the leverage score of column i, since

ℓi = maxv∈Rr
⟨v,ai⟩2

∥A⊤v∥2
2
. Thus for all i ∈ [n], we can set

βi = ℓi

p , so that
∑

i∈[n] βi ≤
∑

i∈[n]
ℓi

p ≤ r
p . Moreover, we

have that for all i ∈ [r], ℓi ≤ 1
s by our pre-processing,

and thus βi ≤ 1
s . We also have

∑n
i=1 y2

i = ∥y∥2
2 = 1.

Hence for s = Θ
(

γ2

p2 · r4 log r
)

, AzumaŠs inequality, c.f.,

Theorem VII.4, implies

Pr


1−

∑

i∈[n]

2 · y2
i ·Xi >

1

γr


 ≤ exp

(
− p2

γ2r2 · 2 · r
s

)

= exp(−Θ(γ2r log r))

for s = Θ
(

γ2

p2 · r4 log r
)

.

Now we take a 1
γr -net N of the unit vectors y in the row-

span of A. We have ♣N ♣ ≤ (γr)O(r) and thus by a union
bound over all N , we have that all net points y′ ∈ N have
their length preserved up to 1± 1

γr . Finally to show that
correctness over the net N implies correctness everywhere,
we can view our estimation procedure as generating a
diagonal sampling matrix D with

√
1/p on the diagonal

entries corresponding to the columns sampled into B, and
0 otherwise. Thus for an arbitrary unit vector y in the row-
span of A, let y′ be the vector of N closest to y. Then by
triangle inequality, we have

∥Dy∥2 ≤ ∥Dy′∥2 + ∥D(y− y′)∥2

≤ 1 +
1

γr
+
√

2 · ∥y− y∥2 ≤ 1 +O
(

1

γr

)
,

∥Dy∥2 ≥ ∥Dy′∥2 − ∥D(y− y′)∥2

≥ 1− 1

γr
−
√

2 · ∥y− y∥2 ≥ 1−O
(

1

γr

)
.

Since Dy = x⊤B, then the desired claim follows.

Recall the following deĄnition of KL divergence:

DeĄnition VII.6 (Kullback-Leibler Divergence). For
continuous distributions P and Q of a random variable



with probability densities p and q on support Ω, the KL
divergence is

dKL(P ♣♣Q) =

∫

x∈Ω

p(x) log
p(x)

q(x)
dx.

The following statement about the KL divergence of a
multivariate Gaussian distribution from another multivari-
ate Gaussian distribution is well-known, e.g., [Duc20].

Lemma VII.7. For P = N (µ1, Σ1) and
Q = N (µ2, Σ2), we have dKL(P ♣♣Q) =
1
2

(
log det(Σ2)

det(Σ1)
− r + Tr(Σ−1

2 Σ1) + (µ2 − µ1)⊤Σ−1
2 (µ2 − µ1)

)
.

Recall the following relationship between total variation
distance and KL divergence:

Theorem VII.8 (PinskerŠs inequality). For probability
distributions P and Q, we have

dtv(P, Q) ≤
√

1

2
dKL(P ♣♣Q).

We now upper bound the total variation distance of the
image of A after right-multiplying with two vectors x(1)

and x(2) whose entries are drawn from a normal distribu-
tion and a sparse scaled normal distribution, respectively.

Lemma VII.9. Let γ ≥ 1 be any Ąxed constant and let s =

Θ
(

γ2

p2 · r4 log r
)

. Let D = N (0, 1) and let Dp = Bern (p) ·
N
(

0, 1
p

)
for a constant p ∈ (0, 1). Let x(1) ∼ D and x(2) ∼

Dp. Let A ∈ R
r×n be a matrix with leverage score at most

1
s . Then dtv(Ax(1), Ax(2)) ≤ O

(
1
γ

)
.

Proof. Since x(1) is a multivariate Gaussian with identity
covariance matrix and mean 0n, then Ax(1) is a multivari-
ate Gaussian with mean 0r and covariance matrix AA⊤.
Let x(2) ∼ D2 and let S be the support of x(2). Note that
each coordinate of x(2) in the support of S is drawn from
the Gaussian distribution N (0, 1

p ). Therefore, Ax(2) is a
multivariate Gaussian with mean 0r and covariance matrix
BB⊤ for some matrix B. By Lemma VII.7, we have that

dKL(Ax(1), Ax(2))

=
1

2

(
log

det(B⊤B)

det(A⊤A)
− r + Tr((B⊤B)−1(A⊤A)

)

Let E be the event that
(

1− 1
γr

)2

B⊤B ⪯ A⊤A ⪯
(

1 + 1
γr

)2

B⊤B, so that by Lemma VII.5, Pr [E ] ≥ 1 −
1

poly(r) . Then we have conditioned on E ,

dKL(Ax(1), Ax(2) ♣ E)

≤ 1

2

(
r · log

(
1 +

1

γr

)
− r + r ·

(
1 +

1

γr

))

= O
(

1

γ

)

Let α and β be two constants such that α is close
to 0 and β is close to 1.
Let D be the distribution family where Dp =
Bern (p) · N (0, 1

p )

h ← O
(
r2s log r

)
= O

(
r12 log r

)
, σ ←

O (h log(n)), ℓ← O (h) · σ, c← O (1)
Let zJ(v) denote the vector where we make vi to 0
for all i ∈ J .
A ← An instantiation of the ℓ0 gap-norm algo-
rithm.
Initialize s0

i = 0 for all i ∈ [n]
For j ∈ [ℓ]:

Sample u1, · · · , uc ∼ Dn
α and v1, · · · , vc ∼ Dn

β .
If A fails with constant probability on one of
zIj−1(ui) or zIj−1(vi): Output this distribution
as the attack.
Sample pj ∼ Pα,β and vj ∼ Dn

pj .

For all i ∈ [n], set cj
i = 1 if vj

i ̸= 0 and cj
i = −1

otherwise if vj
i = 0.

Query zIj−1(vj) ∈ R
n and receive aj =

A(zIj−1(vj)) ∈ ¶±1♢ as the output.
For i ∈ [n], update sj

i ← sj−1
i + aj · ϕpj

(cj
i ).

Set Ij = Ij−1 ∪ ¶i ∈ [n] ♣ sj
i > σ♢ and Sj+1 =

S \ Ij .

Fig. 2. Construction of Our Attack over the Reals

since log(1 + x) = O (x) for x ∈
(
0, 1

2

)
, e.g., by the Taylor

series expansion of log(1 + x). By Theorem VII.8, we thus
have

dtv(Ax(1), Ax(2) ♣ E) ≤ O
(

1

γ

)
.

Since Pr [E ] ≥ 1− 1
poly(r) , then it follows that

dtv(Ax(1), Ax(2)) ≤ O
(

1

γ

)
.

Combining Lemma VII.9 and the triangle inequality, we
have the following lemma immediately.

Lemma VII.10. Let γ ≥ 1 be any Ąxed constant and let

s = Θ(γ2r4 log r). Let Dp = Bern (p) · N
(

0, 1
p

)
and Dq =

Bern (p) ·N
(

0, 1
p

)
for constant p, q ∈ (0, 1). Let x(1) ∼ Dp

and x(2) ∼ Dq. Let A ∈ R
r×n be a matrix with leverage

score at most 1
s . Then dtv(Ax(1), Ax(2)) ≤ O

(
1
γ

)
.

We are now ready to present our attack over real-valued
inputs, which is shown in Figure 2. Note that this is
analogous to the attack for Z

r×n, and the only difference
is that we use a different input distribution and a different
setting of parameters h, σ.

We now prove Theorem VII.1.



Theorem VII.1. Suppose that A with the estimator f
solves the (α + c, β − c)- ℓ0 gap norm problem with some
constants α, β, and c, where A ∈ R

r×n is the sketching
matrix and has all nonzero subdeterminants at least 1

poly(r) ,

and f : Rr×n → ¶−1, +1♢ is any estimator used by A, and
A returns f(A, Ax) for each query x.

Then, there exists a randomized algorithm, which after
making an adaptive sequence of queries to A, with high con-
stant probability can generate a distribution D on R

n such
that A fails on D with constant probability. Moreover, this
adaptive attack algorithm makes at most poly(r) queries
and runs in poly(r) time.

Proof. Our argument is similar to that of Section IV.
Recall that we set γ = r3 in Lemma VII.10, which means
that s = O

(
r10 log r

)
and r2s = O

(
r12 log r

)
and hence,

we can assume the sketching matrix A has the form

A =

[
D

S

]
,

where S has at most r2s non-zero columns and D satisĄes

∀y⊤ ∈ R
r, (y⊤D)2

i ≤
1

s
· ∥y⊤D∥2

2 . (3)

Let S denote the indices of the at most r2s non-zero
columns.

a) Soundness.: Consider the coordinates i ∈ I \ S.
From the choice of the parameters we have the total
variation distance of DxD for different p ∈ [α, β] is O

(
1
r3

)

where x ∼ Dp. Then, from this we can get that there
are at most O

(
r9
)

coordinates i ∈ I \ S such that the
expectation of st

i−st−1
i is Ω

(
1

r12

)
given DxD, which means

that with high probability there are at most Õ
(
r9
)

= o(s)
coordinates in I \ S will be accused in the procedure (as
there are total Õ

(
r2s4

)
number of queries).

Suppose that D is the matrix that satisĄes (3) and D′

is the matrix where we zero out o(s) columns of D. Then
for any y⊤ ∈ R

r, since for each remaining index i satisĄes
(y⊤D)2

i ≤ 1
s · ∥y⊤D∥2

2, then

∀y⊤ ∈ R
r, (y⊤D′)2

i ≤
1.1

s
· ∥y⊤D′∥2

2 .

Hence, in the rest of the argument, we can assume the
total variation bound for D′xD for different p still holds.

b) Completeness.: Suppose that the algorithm A we
attack uses the estimator f . We consider A′ to be an
algorithm that uses the same estimator f , but rather than
f takes the sketch Ax as the input, it takes the input[
D′x′

SxS

]
where x′ ∼ D

♣D♣
γ for a Ąxed γ ∈ [α, β], which

is sampled by the algorithm A and is independent of
the input x. From Lemma V.4, we know that for each

iteration t, the total variation distance between


D′x(t)

D

Sx
(t)
S

]

and

[
D′x′

Sx
(t)
S

]
is at most O

(
1
r3

)
for some small constant γ.

If A succeeds with probability at least 1 − δ over some

input distribution D, then over this distribution A will
also succeed with probability at least 1− δ −O

(
1
r3

)
.

Let us now Ąrst assume the algorithm we attack is A′.
Note that A′ has the property that it only uses xS in
the computation. From Lemma IV.6, we see that with
probability at least 1 − 1

n , we never falsely accuse any
index i /∈ S. Additionally, by Lemma IV.15, we know
that with high constant probability, our attack correctly
identiĄes (some, or all) coordinates i ∈ S and outputs a
distribution on which A′ fails (note that the increase of the
O
(

1
r3

)
in the error probability will make the g(β)− g(α)

in Lemma IV.10 decrease by at most O
(

1
r3

)
, which is still

Ω(1)). It follows that with high constant probability, our
attack Ąnds some hard query distribution q on which A′

fails with constant probability. Now, let us now consider
the original algorithm A. For the property of the total
variation distance we know that with probability at least
1 − 1

r3 , the output of A can be seen as sampled from
the same distribution from the output of A′, and the
probability is only over the random choice over input
vector x. Hence, without loss of generality it can be seen
as the algorithm A′ but with a O

(
1
r3

)
more inconsistency,

and the probability here is only over the choice of the
random input vector x (note that the algorithm is based on
a linear sketch and the output of the algorithm is binary).
Therefore, the same argument still applies.
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