
Streaming Algorithms with Few State Changes

RAJESH JAYARAM, Google Research, USA
DAVID P. WOODRUFF, Carnegie Mellon University and Google Research, USA

SAMSON ZHOU, Texas A&M University, USA

In this paper, we study streaming algorithms that minimize the number of changes made to their internal state

(i.e., memory contents). While the design of streaming algorithms typically focuses on minimizing space and

update time, these metrics fail to capture the asymmetric costs, inherent in modern hardware and database

systems, of reading versus writing to memory. In fact, most streaming algorithms write to their memory on

every update, which is undesirable when writing is significantly more expensive than reading. This raises the

question of whether streaming algorithms with small space and number of memory writes are possible.

We first demonstrate that, for the fundamental 𝐹𝑝 moment estimation problem with 𝑝 ≥ 1, any stream-

ing algorithm that achieves a constant factor approximation must make Ω(𝑛1−1/𝑝) internal state changes,
regardless of how much space it uses. Perhaps surprisingly, we show that this lower bound can be matched by

an algorithm which also has near-optimal space complexity. Specifically, we give a (1 + 𝜀)-approximation

algorithm for 𝐹𝑝 moment estimation that use a near-optimal Õ𝜀 (𝑛1−1/𝑝) number of state changes, while

simultaneously achieving near-optimal space, i.e., for 𝑝 ∈ [1, 2), our algorithm uses poly

(
log𝑛, 1𝜀

)
bits of space

for, while for 𝑝 > 2, the algorithm uses Õ𝜀 (𝑛1−1/𝑝) space. We similarly design streaming algorithms that are

simultaneously near-optimal in both space complexity and the number of state changes for the heavy-hitters

problem, sparse support recovery, and entropy estimation. Our results demonstrate that an optimal number of

state changes can be achieved without sacrificing space complexity.

CCS Concepts: • Theory of computation→ Streaming, sublinear and near linear time algorithms.

Additional Key Words and Phrases: streaming algorithms, memory states, moment estimation

ACM Reference Format:
Rajesh Jayaram, David P. Woodruff, and Samson Zhou. 2024. Streaming Algorithms with Few State Changes.

Proc. ACM Manag. Data 2, 2 (PODS), Article 82 (May 2024), 28 pages. https://doi.org/10.1145/3651145

1 INTRODUCTION
The streaming model of computation is a central paradigm for computing statistics for datasets that

are too large to store. Examples of such datasets include internet traffic logs, IoT sensor networks,

financial transaction data, database logs, and scientific data streams (such as huge experiments

in particle physics, genomics, and astronomy). In the one-pass streaming model, updates to an

underlying dataset are processed by an algorithm one at a time, and the goal is to approximate,

collect, or compute some statistic of the dataset while using space that is sublinear in the size of

the dataset (see [10, 83] for surveys).

Formally, an insertion-only data stream is modeled by a sequence of updates 𝑢1, . . . , 𝑢𝑚 , each of

the form 𝑢𝑡 ∈ [𝑛] for 𝑡 ∈ [𝑚], where [𝑛] = {1, . . . , 𝑛} is the universe size. The updates implicitly

define an underlying frequency vector 𝑓 ∈ R𝑛 by 𝑓𝑖 = |{𝑡 | 𝑢𝑡 = 𝑖}|, so that the value of each

Authors’ addresses: Rajesh Jayaram, Google Research, New York City, NY, USA, rkjayaram@google.com; David P. Woodruff,

Carnegie Mellon University and Google Research, Pittsburgh, PA, USA, dwoodruf@cs.cmu.edu; Samson Zhou, Texas A&M

University, College Station, TX, USA, samsonzhou@gmail.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/5-ART82

https://doi.org/10.1145/3651145

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

https://doi.org/10.1145/3651145
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3651145

82:2 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

coordinate of the frequency vector is the number of occurrences of the coordinate identity in the

data stream.

One of the most fundamental problems in the streaming literature is to compute a (1 + 𝜀)
approximation of the 𝐹𝑝 moment, defined by 𝐹𝑝 (𝑓) = (𝑓1)𝑝 + . . . + (𝑓𝑛)𝑝 , where 𝜀 > 0 is an accuracy

parameter. The frequency moment estimation problem has been the focus of more than two decades

of study in the streaming model [2, 5, 12, 15, 17, 32, 50, 55, 58, 60, 62, 68, 74, 76, 92, 94, 95]. In

particular, 𝐹𝑝 -estimation is used for 𝑝 = 0.25 and 𝑝 = 0.5 in mining tabular data [42], for 𝑝 = 1 in

network traffic monitoring [49] and dynamic earth-mover distance approximation [54], and for

𝑝 = 2 in estimating join and self-join sizes [4] and in detecting network anomalies [89].

Another fundamental streaming problem is to compute 𝐿𝑝-heavy hitters: given a threshold

parameter 𝜀 ∈ (0, 1], the 𝐿𝑝-heavy hitters problem is to output a list 𝐿 containing all 𝑗 ∈ [𝑛]
such that 𝑓𝑗 ≥ 𝜀 · ∥ 𝑓 ∥𝑝 , and no 𝑗 ∈ [𝑛] with 𝑓𝑗 <

𝜀
2
· ∥ 𝑓 ∥𝑝 . The heavy-hitter problem is used for

answering iceberg queries [48] in database systems, finding elephant flows and spam prevention

in network traffic monitoring [14], and perhaps has an even more extensive history than the 𝐹𝑝
moment estimation problem [19–22, 27, 36, 43, 56, 57, 70, 71, 75, 78, 80, 81].

The primary goal of algorithm design for the streaming model is to minimize the space and

update time of the algorithm. However, the generic per-update processing time fails to capture

the nuanced reality of many modern database and hardware systems, where the type of updates
which are made on a time step matter significantly for the real-world performance of the algorithm.

Specifically, it is typically the case that updates which only require reads to the memory contents of

the algorithm are significantly faster than updates which also modify the memory of the algorithm,

i.e., writes. Thus, while many streaming problems are well understood in terms of their space and

update time, little is known about their write complexity: namely, the number of state changes they

make over the course of the stream.

In this paper, we propose the number of state changes of a streaming algorithm as a complexity-

theoretic parameter of interest, and make the case for its importance as a central object of study, in

addition to the space and update-time of an algorithm.While there is significant practical motivation

for algorithms which update their internal state infrequently (see Section 1.1 for a discussion), from

a theoretical perspective it is not clear that having few state changes is even possible. Specifically,

most known streaming algorithms write to their memory contents on every update of the stream.

Moreover, even if algorithms using fewer state changes existed, such algorithms would not be

useful if they required significantly more space than prior algorithms (which do not minimize the

number of state changes). Thus, we address the following question:

Is it possible to design streaming algorithms which make few updates to their internal
state in addition to being space efficient?

Our main contribution is to answer this question positively. Specifically, we demonstrate that

algorithms exist which are simultaneously near-optimal in their space and state-change complexity.

This demonstrates further that we do not need to pay extra in the space complexity to achieve

algorithms with few state changes.

1.1 Motivation for Minimizing State Changes
Asymmetric read/write costs of non-volatile memory. The primary motivation of minimizing state

changes arises from the simple observation that different actions performed over the same allocated

memory may have different costs. For example, non-volatile memory (NVM) is low latency memory

that can be retained when power to the system is turned off and therefore can dramatically increase

system performance. Although NVM offers many benefits over dynamic random access memory

(DRAM), writing to NVM is significantly more costly than reading from NVM, incurring higher

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:3

energy costs, higher latency, and suffering lower per-chip bandwidth [18]. In fact, [79] noted that

an NVM cell generally wears out between 10
8
and 10

12
writes. Hence, in contrast to DRAM, NVM

has a significant asymmetry between read and write operation costs [3, 8, 44, 45, 69, 87, 96], which

has been the focus of several works in system design [39, 72, 97, 98] and database data structure

design [37, 90, 91].

One specific type of non-volatile memory is NAND flash memory, which is an electronic memory

storage unit that can be electrically erased, written, and read in blocks that are generally significantly

smaller than the entire device. NAND flash memory can be found in a number of common devices,

such as smartphones, USB flash drives, memory cards, or solid-state drives. However, [13] notes

that, at the time, individual NAND flash memory cells would wear out after 10
4
to 10

6
write/erase

operations. Indeed, Apple notes that “all iOS devices and some macOS devices use a solid-state

drive (SSD) for permanent storage” and recommends minimizing disk writes to optimize device

performance [7]. Although a line of work considered wear leveling to limit memory wear [34, 35, 59],

they did not immediately produce high-probability wear guarantees, thus motivating work that

focused on hashing algorithms that choose which memory cell to write/overwrite each item,

depending on the previous number of writes already incurred by that cell [46]. Subsequently, the

development of specific system software, e.g., the garbage collector, virtual memory manager, or

virtual machine hypervisor, automatically handled balancing write operations across memory cells

over long time horizons, so that an individual cell would not fail much faster than the overall unit.

Therefore, subsequent works focused on minimizing the overall number of write operations [18] to

the device rather than minimizing the number of write operations to a specific cell.

Asymmetric read/write costs of large data storage systems. Power consumption is a major consid-

eration for large enterprise data storage subsystems, which can often impact the density of servers

and the total cost of ownership [38, 99]. In [11], it was observed that given steady hit ratios of

read operations, write operations will eventually dominate file system performance and thus be

the main source of power consumption. Indeed, [84, 88] noted that there are substantial periods

of time where all the traffic in the request stream to the Microsoft data storage centers servicing

applications such as Hotmail and Messenger is write traffic.

In addition, for distributed data systems that each serve a number of clients, even when one server

is updated, they must periodically notify the other servers about their changes to maintain some

level of synchronization across the entire system. Therefore, write operations to a single server can

still induce expensive overheads from communication costs between servers, and thus, reducing

the number of writes has long been a goal in disk arrays, distributed systems, and cache-coherent

multiprocessors.

Challenges with deterministic algorithms. From a theoretical perspective, minimizing the number

of internal state changes immediately rules out a large class of deterministic streaming algorithms.

For example, counting the stream length can be performed deterministically by simply repeat-

edly updating a counter over the course of a stream. Similarly, 𝐿1-heavy hitters can be tracked

deterministically and in sublinear space using the well-known Misra-Gries data structure [81].

Another example is the common merge-and-reduce technique for clustering in the streaming

model, which can be implemented deterministically if the coreset construction in each reduce step

is deterministic. Other problems such as maintaining Frequent Directions [51] or 𝐿2 regression

in the row arrival model [23, 25] also admit highly non-trivial deterministic algorithms that use

sublinear space. However, these approaches all update the algorithm upon each stream update and

thus seem inherently at odds with achieving a sublinear number of internal state changes over the

course of the stream.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:4 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

Relationship with sampling. On the other hand, sampling-based algorithms inherently seem

useful for minimizing the number of internal state changes. There are a number of problems that

admit sublinear-size coresets based on importance sampling, such as clustering [24, 26, 41], graph

sparsification [1, 28], linear regression [40], and low-rank approximation [23]. These algorithms

generally assign some value quantifying the “importance” of each stream update as it arrives and

then sample the update with probability proportional to the importance. Thus if there are few

additional operations, then the number of internal state changes can be as small as the overall

data structure maintained by the streaming algorithm. On the other hand, it is not known that

space-optimal sampling algorithms exist for a number of other problems that admit sublinear-space

streaming algorithms, such as 𝐹𝑝 estimation, 𝐿𝑝 -heavy hitters, distinct elements, and entropy esti-

mation. Hence, a natural question is to ask whether there exist space-optimal streaming algorithms

for all of these problems that also incur a small number of internal state changes.

1.2 Our Contributions
In this work, we initiate the study of streaming algorithms which minimize state changes, and

demonstrate the existence of algorithms which achieve optimal or near-optimal space bounds while

simultaneously achieving an optimal or near optimal number of internal state changes.

Heavy-hitters. We first consider the 𝐿𝑝-heavy hitters problem, where the goal is to output

estimates 𝑓̂𝑗 to the frequency 𝑓𝑗 of every item 𝑗 ∈ [𝑛] such that

��� 𝑓̂𝑗 − 𝑓𝑗

��� ≤ 𝜀
2
· ∥ 𝑓 ∥𝑝 , given an input

accuracy parameter 𝜀 ∈ (0, 1). Note that under such a guarantee, along with a 2-approximation of

∥ 𝑓 ∥𝑝 , we can automatically output a list that contains all 𝑗 ∈ [𝑛] such that 𝑓𝑗 ≥ 𝜀 · ∥ 𝑓 ∥𝑝 but also no

index 𝑗 ∈ [𝑛] such that 𝑓𝑗 <
𝜀
4
· ∥ 𝑓 ∥𝑝 . We defer discussion of how to obtain a 2-approximation to

∥ 𝑓 ∥𝑝 for the moment and instead focus on the additive error guarantee for all 𝑓̂𝑗 . Our main result

for the heavy hitters problem is the following:

Theorem 1.1. Given a constant 𝑝 ≥ 1, there exists a one-pass insertion-only streaming algorithm
that has O

(
𝑛1−1/𝑝

)
· poly

(
log(𝑛𝑚), 1

𝜀

)
internal state changes, and solves the 𝐿𝑝 -heavy hitter problem,

i.e., it outputs a frequency vector 𝑓 such that

Pr
[
∥ 𝑓 − 𝑓 ∥∞ ≤

𝜀

2

· ∥ 𝑓 ∥𝑝
]
≥ 2

3

.

For 𝑝 ∈ [1, 2), the algorithm uses O
(
log

9+3𝑝 (𝑚𝑛)
𝜀4+4𝑝

)
bits of space, while for 𝑝 > 2, the algorithm uses

˜O
(

1

𝜀4+2𝑝 𝑛
1−2/𝑝

)
bits of space.

We next give a lower bound showing that any approximation algorithm achieving a (2 − Ω(1))-
approximation to 𝐹𝑝 requires Ω(𝑛1−1/𝑝) state updates.
Theorem 1.2. Let 𝜀 ∈ (0, 1) be a constant and 𝑝 ≥ 1. Any algorithm that solves the 𝐿𝑝 -heavy

hitters problem with threshold 𝜀 with probability at least 2

3
requires at least 1

2𝜀
𝑛1−1/𝑝 state updates.

Together, Theorem 1.2 and Theorem 1.1 show that we achieve a near-optimal number of internal

state changes. Furthermore, [9, 67] showed that for any 𝑝 > 0, the 𝐿𝑝-heavy hitters problem

requires Ω
(
1

𝜀𝑝
log𝑛

)
words of space, while [12, 52, 64] showed that for 𝑝 > 2 and even for constant

𝜀 > 0, the 𝐿𝑝 -heavy hitters problem requires Ω
(
𝑛1−2/𝑝

)
words of space. Therefore, Theorem 1.1 is

near-optimal for all 𝑝 ≥ 1, for both the number of internal state updates and the memory usage.

Moment estimation. We then consider the 𝐹𝑝 moment estimation problem, where the goal is to

output an estimate of 𝐹𝑝 (𝑓) = (𝑓1)𝑝 + . . . + (𝑓𝑛)𝑝 of a frequency vector 𝑓 ∈ R𝑛 implicitly defined

through an insertion-only stream. Our main result is the following:

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:5

Theorem 1.3. Given a constant 𝑝 ≥ 1, there exists a one-pass insertion-only streaming algorithm
that has ˜O

(
𝑛1−1/𝑝

)
internal state changes, and outputs 𝐹𝑝 such that

Pr
[���𝐹𝑝 − 𝐹𝑝 ��� ≤ 𝜀 · 𝐹𝑝

]
≥ 2

3

.

For 𝑝 ∈ [1, 2), the algorithm uses O
(
log

9+3𝑝 (𝑚𝑛)
𝜀4+4𝑝

)
bits of space, while for 𝑝 > 2, the algorithm uses

˜O
(

1

𝜀4+2𝑝 𝑛
1−2/𝑝

)
space.

We next give a lower bound showing that any approximation algorithm achieving (2 − Ω(1))-
approximation to 𝐹𝑝 requires Ω(𝑛1−1/𝑝) state updates.
Theorem 1.4. Let 𝜀 ∈ (0, 1) be a constant and 𝑝 ≥ 1. Any algorithm that achieves a 2 − 𝜀

approximation to 𝐹𝑝 with probability at least 2

3
requires at least 1

2
𝑛1−1/𝑝 state updates.

Theorem 1.4 shows that our algorithm in Theorem 1.3 achieves a near-optimal number of internal

state changes. Moreover, it is known that any one-pass insertion-only streaming algorithm that

achieves (1 + 𝜀)-approximation to the 𝐹𝑝 moment estimation problem requires Ω
(
1

𝜀2
+ log𝑛

)
bits

of space [5, 92] for 𝑝 ∈ [1, 2] and Ω
(
1

𝜀2
𝑛1−2/𝑝

)
bits of space [94] for 𝑝 > 2, and thus Theorem 1.3 is

also near-optimal in terms of space for all 𝑝 ≥ 1.

1.3 Technical Overview
Heavy-hitters. We first describe our algorithm for 𝐿𝑝-heavy hitters using near-optimal space

and a near-optimal number of internal state changes. For ease of discussion, let us assume that

𝐹𝑝 = Θ̃𝜀 (𝑛), so that the goal becomes to estimate the frequencies of the coordinates 𝑗 ∈ [𝑛] with
𝑓𝑗 ≥ 𝜀 · 𝑛1/𝑝 , given an input accuracy parameter 𝜀 ∈ (0, 1).
We first define a subroutine SampleAndHold based on sampling a number of items into a

reservoir 𝑄 . As we observe updates in the stream, we sometimes update the contents of 𝑄 and

sometimes observe that some stream updates are to coordinates that are being held by the reservoir.

For the items that have a large number of stream updates while they are being held by the reservoir,

we create separate counters for these items.

We first describe the intuition for 𝑝 ≥ 2. We create a reservoir 𝑄 of size 𝜅 = Õ𝜀 (𝑛1−2/𝑝) and
sample each item of the stream into the reservoir 𝑄 with probability roughly

1

Θ̃𝜀 (𝑛1/𝑝) . Note that at

some point we may attempt to sample an item of the stream into the reservoir 𝑄 when the latter

is already full. In this case, we choose a uniformly random item of 𝑄 to be replaced by the item

corresponding to the stream update.

Our algorithm also checks each stream update to see if it matches an item in the reservoir;

if there is a match, we create an explicit counter tracking the frequency of the item. In other

words, if 𝑗 ∈ [𝑛] arrives as a stream update and 𝑗 ∈ 𝑄 is in the reservoir, then our algorithm

SampleAndHold creates a separate counter for 𝑗 to count the number of subsequent instances of

𝑗 .

Now for a heavy hitter 𝑗 ∈ [𝑛], we have 𝑓𝑗 ≥ 𝜀 · 𝑛1/𝑝 and thus since the sampling probability is

1

Θ̃𝜀 (𝑛1/𝑝) , then we can show that 𝑗 will likely be sampled into our reservoir 𝑄 at some point. In fact,

since the reservoir𝑄 has size 𝜅 = Õ𝜀 (𝑛1−2/𝑝), then in expectation, 𝑗 will be retained by the reservoir

for roughly Ω̃𝜀 (𝑛1−1/𝑝) stream updates before it is possibly replaced by some other item. Moreover,

since 𝑓𝑗 ≥ 𝜀 · 𝑛1/𝑝 , then we should expect another instance of 𝑗 to arrive in Ω̃𝜀 (𝑛1−1/𝑝) additional
stream updates, where the expectation is taken over the randomness of the sampled positions,

under the assumption that 𝐹𝑝 = Θ(𝑛) and thus the stream length is at most O (𝑛). Therefore, our

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:6 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

algorithm will create a counter for tracking 𝑗 before 𝑗 is removed from the reservoir𝑄 . Furthermore,

we can show that the counter for 𝑗 is likely created sufficiently early in the stream to provide

a (1 + 𝜀)-approximation to the frequency 𝑓𝑗 of 𝑗 . Then to decrease the number of internal state

updates, we can use Morris counters to approximate the frequency of subsequent updates for each

tracked item.

Counter maintenance for heavy-hitters. The main issue with this approach is that too many

counters can be created. As a simple example, consider when all items of each coordinate arrive

together, one item after the other. Although this is a simple case for counting heavy-hitters, our

algorithm will create counters for almost any item that it samples, and although our reservoir uses

space Õ𝜀 (𝑛1−2/𝑝), the total number of items sampled over the course of the stream is Õ𝜀 (𝑛1−1/𝑝)
and thus the number of created counters can also be Õ𝜀 (𝑛1−1/𝑝), which would be too much space.

We thus create an additional mechanism to remove half of the counters each time the number of

counters becomes too large, i.e., exceeds Õ𝜀 (𝑛1−2/𝑝). In particular, we remove the counters with the

smallest tracked frequencies, which overcomes per-counter analysis in similar algorithms based on

sampling [29, 31].

Since our algorithm samples each item of the stream of length O (𝑛) with probability
1

Õ𝜀 (𝑛1/𝑝)
,

then we expect our reservoir to have Ω̃𝜀 (𝑛1−1/𝑝) internal state changes. On the other hand, the

counters can increment each time another instance of the tracked item arrives. To that end, we

replace each counter with an approximate counter that has a small number of internal state changes.

In particular, by using Morris counters, the number of internal state changes for each counter is

poly

(
log𝑛, 1

𝜀
, log 1

𝛿

)
times over the course of the stream. Therefore, the total number of internal

state changes is Ω̃𝜀 (𝑛1−1/𝑝) while the total space used is Õ𝜀 (𝑛1−2/𝑝).
For 𝑝 ∈ [1, 2), we instead give the reservoir 𝑄 a total of 𝜅 = poly𝜀 (log𝑛) size, so that the total

space is poly𝜀 (log𝑛) while the total number of internal state changes remains Ω̃𝜀 (𝑛1−1/𝑝).

Removal of moment assumptions. To remove the assumption that 𝐹𝑝 = Õ𝜀 (𝑛), we note that if
each element of the stream of length 𝑚 is sampled with probability 𝑞 < 1, then the expected

number of sampled items is 𝑞𝑚, but the 𝑝-th power of the expected number of sampled items is

(𝑞𝑚)𝑝 . Although this is not the 𝑝-th moment of the stream, we nevertheless can expect the 𝐹𝑝
moment of the stream to decrease at a faster rate than the number of sampled items. Thus we

create 𝐿 = O (log(𝑛𝑚)) substreams so that for each ℓ ∈ [𝐿], we subsample each stream update [𝑚]
with probability

1

2
ℓ−1 . For one of these substreams 𝐽ℓ , we will need have 𝐹𝑝 (𝐽ℓ) = Õ𝜀 (𝑛). We show

that we can estimate the frequency of the heavy-hitters in the substream 𝐽ℓ and then rescale by the

inverse sampling rate to achieve a (1 + 𝜀)-approximation to the frequency of the heavy-hitters in

the original stream.

It then remains to identify the correct stream ℓ such that 𝐹𝑝 (𝐽ℓ) = Õ𝜀 (𝑛). A natural approach

would be to approximate the moment of each substream, to identify such a correct stream. However,

it turns out that our 𝐹𝑝 moment estimation algorithm will ultimately use our heavy hitter algorithm

as a subroutine. Furthermore, other 𝐹𝑝 moment estimation algorithms, e.g., [5, 50, 55, 74], use

a number of internal state changes that is linear in the stream length and it is unclear how to

adapt these algorithms to decrease the number of internal state changes. Instead, we note that

with high probability, the estimated frequency of each heavy-hitter by our algorithm can only

be an underestimate. This is because if we initialize counters throughout the stream to track the

heavy hitters, then our counters might miss some stream updates to the heavy hitters, but it is not

possible to overcount the frequency of each heavy hitter, i.e., we cannot count stream updates that

do not exist. Moreover, this statement is still true, up to a (1 + 𝜀) faactor, when we use approximate

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:7

counters. Therefore, it suffices to use the maximum estimation for the frequency for each heavy

hitter, across all the substreams. We can then use standard probability boosting techniques to

simultaneously accurately estimate all 𝐿𝑝 -heavy hitters.

Moment estimation. Given our algorithm for finding (1 + 𝜀)-approximations to the frequencies of

𝐿𝑝 -heavy hitters, we now adapt a standard subsampling framework [58] to reduce the 𝐹𝑝 approxi-

mation problem to the problem of finding the 𝐿𝑝 -heavy hitters. The framework has subsequently

been used in a number of different applications, e.g., [16, 30, 33, 73, 77, 93, 94] and has the following

intuition.

For ease of discussion, consider the level set Γ𝑖 consisting of the coordinates 𝑗 ∈ [𝑛] such that

𝑓𝑗 ∈
(
𝐹𝑝

2
𝑖 ,

𝐹𝑝

2
𝑖+1

]
for each 𝑖 , though we remark that for technical reasons, we shall ultimately define

the level sets in a slightly different manner. Because the level sets partition the universe [𝑛], then
if we define the contribution 𝐶𝑖 :=

∑
𝑗∈Γ𝑖 (𝑓𝑘)𝑝 of a level set Γ𝑖 to be the sum of the contributions

of all their coordinates, then we can decompose the moment 𝐹𝑝 into the sum of the contributions

of the level sets, 𝐹𝑝 =
∑

𝑖 𝐶𝑖 . Moreover, it suffices to accurately estimate the contributions of the

“significant” level sets, i.e., the level sets whose contribution is at least a poly

(
𝜀, 1

log(𝑛𝑚)

)
fraction of

the 𝐹𝑝 moment, and crudely estimate the contributions of the insignificant level sets.

[58] observed that the contributions of the significant level sets can be estimated by approxi-

mating the frequencies of the heavy hitters for substreams induced by subsampling the universe

at exponentially smaller rates. We emphasize that whereas we previously subsampled updates

of the stream [𝑚] for heavy hitters, we now subsample elements of the universe [𝑛]. That is, we
create 𝐿 = O (log(𝑛𝑚)) substreams so that for each ℓ ∈ [𝐿], we subsample each element of the

universe [𝑛] into the substream with probability
1

2
ℓ−1 . For example, a single item with frequency

𝐹
1/𝑝
𝑝 will be a heavy hitter in the original stream, which is also the stream induced by ℓ = 1. On

the other hand, if there are 𝑛 items with frequency (𝐹𝑝/𝑛)1/𝑝 , then they will be 𝐿𝑝-heavy hitters

at a subsampling level where in expectation, there are roughly Θ
(
1

𝜀𝑝

)
coordinates of the universe

that survive the subsampling. Then [58] notes that (1 + 𝜀)-approximations to the contributions

of the surviving heavy-hitters can then be rescaled inversely by the sampling rate to obtain good

approximations of the contributions of each significant level set. The same procedure also achieves

crude approximations for the contributions of insignificant level sets, which overall suffices for a

(1 + 𝜀)-approximation to the 𝐹𝑝 moment.

The key advantage in adapting this framework over other 𝐹𝑝 estimation algorithms, e.g., [5,

50, 55, 74] is that we can then use our heavy hitter algorithm FullSampleAndHold to provide

(1 + 𝜀)-approximations to the heavy hitters in each substream while guaranteeing a small number

of internal state changes.

1.4 Preliminaries
We use [𝑛] to denote the set {1, 2, . . . , 𝑛} for an integer 𝑛 > 0. We write poly(𝑛) to denote

a fixed univariate polynomial in 𝑛 and similarly, poly(𝑛1, . . . , 𝑛𝑘) to denote a fixed multivari-

ate polynomial in 𝑛1, . . . , 𝑛𝑘 . We use
˜O (𝑓 (𝑛1, . . . , 𝑛𝑘)) for a function 𝑓 (𝑛1, . . . , 𝑛𝑘) to denote

𝑓 (𝑛1, . . . , 𝑛𝑘) · poly(log 𝑓 (𝑛1, . . . , 𝑛𝑘)). For a vector 𝑓 ∈ R𝑛 , we use 𝑓𝑖 for 𝑖 ∈ [𝑛] to denote the 𝑖-th

coordinate of 𝑓 .

Model. In our setting, an insertion-only stream 𝑆 consists of a sequence of updates 𝑢1, . . . , 𝑢𝑚 . In

general, we do not require𝑚 to be known in advance, though in some cases, we achieve algorithmic

improvements when a constant-factor upper bound on𝑚 is known in advance; we explicitly clarify

the setting in these cases. For each 𝑡 ∈ [𝑚], we have 𝑢𝑡 ∈ [𝑛], where without loss of generality, we

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:8 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

use [𝑛] to represent an upper bound on the universe, which we assume to be known in advance. The

stream 𝑆 defines a frequency vector 𝑓 ∈ R𝑛 by 𝑓𝑖 = |{𝑡 | 𝑢𝑡 = 𝑖}|, so that for each 𝑖 ∈ [𝑛], the 𝑖-th
value of the frequency vector 𝑆 is how often 𝑖 appears in the data stream 𝑆 . Observe that through a

simple reduction, this model suffices to capture the more general case where some coordinate is

increased by some amount in {1, . . . , 𝑀} for some integer𝑀 > 0 in each update.

For a fixed algorithmA, suppose that at each time 𝑡 ∈ [𝑚], the algorithmA maintains a memory

state 𝜎𝑡 . Let |𝜎𝑡 | denote the size of the memory state, in words of space, where each word of space

is assumed to used O (log𝑛 + log𝑚) bits of space. We say the algorithm A uses 𝑠 words of space

or equivalently, O (𝑠 log𝑛 + log𝑚) bits of space, if max𝑡 ∈[𝑚] |𝜎𝑡 | ≤ 𝑠 . For each 𝑡 ∈ [𝑚], let 𝑋𝑡 be

the indicator random variable for whether the algorithm A changed its memory state at time 𝑡 .

That is, 𝑋𝑡 = 1 if 𝜎𝑡 ≠ 𝜎𝑡−1 and 𝑋𝑡 = 0 if 𝜎𝑡 = 𝜎𝑡−1, where we use the convention 𝜎0 = ∅. Then we

say the total number of internal changes by the algorithm A is

∑𝑚
𝑡=1 𝑥𝑡 .

We also require the following definition of Morris counters to provide approximate counting.

Theorem 1.5 (Morris counters). [82, 85] There exists an insertion-only streaming algorithm
(Morris counter) that uses space (in bits) O

(
log log𝑛 + log 1

𝜀
+ log log 1

𝛿

)
and outputs a (1 + 𝜀)-

approximation to the frequency of an item 𝑖 , with probability at least 1 − 𝛿 . Moreover, the algorithm is
updated at most poly

(
log𝑛, 1

𝜀
, log 1

𝛿

)
times over the course of the stream.

2 HEAVY HITTERS
In this section, we first describe our algorithm for identifying and accurately approximating the

frequencies of the 𝐿𝑝 -heavy hitters.

2.1 Sample and Hold
A crucial subroutine for our 𝐹𝑝 estimation algorithm is the accurate estimation of heavy hitters. In

this section, we first describe such a subroutine SampleAndHold for approximating the frequencies

of the 𝐿𝑝 -heavy hitters under the assumption that 𝐹𝑝 is not too large.

We now describe our algorithm for the case 𝑝 ≥ 2. Our algorithm creates a reservoir 𝑄 of size

𝜅 = Õ𝜀 (𝑛1−2/𝑝) and samples each item of the stream into the reservoir 𝑄 with probability roughly

1

Θ̃𝜀 (𝑛1/𝑝) . If the reservoir 𝑄 is full when an item of the stream is sampled, then a uniformly random

item of 𝑄 is replaced with the stream update. Thus if the stream has length 𝑛, then we will incur

Õ𝜀 (𝑛1−2/𝑝) internal state changes due to the sampling. For stream length𝑚, we set the sampling

probability to be roughly
Õ𝜀 (𝑛1−1/𝑝)

𝑚
.

Our algorithm also checks each stream update to see if it matches an item in the reservoir and

creates a counter for the item if there is a match. In other words, if 𝑗 ∈ [𝑛] arrives as a stream update

and 𝑗 ∈ 𝑄 is in the reservoir, then our algorithm SampleAndHold creates a separate counter for 𝑗

to count the number of subsequent instances of 𝑗 . In addition, we remove half of the counters each

time the number of counters becomes too large, i.e., exceeds Õ𝜀 (𝑛1−2/𝑝). In particular, we remove

the counters with the smallest tracked frequencies. To reduce the number of internal state changes,

we use Morris counters rather than exact counters for each item.

For 𝑝 ∈ [1, 2), we set 𝜅 = poly𝜀 (log𝑛) to be the size of the reservoir 𝑄 , so that the total space is

poly𝜀 (log𝑛) while the total number of internal state changes remains Ω̃𝜀 (𝑛1−1/𝑝). Our algorithm
SampleAndHold appears in Algorithm 1.

We first analyze how many additional counters are available at a time when a heavy hitter 𝑗 is

sampled.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:9

Algorithm 1 SampleAndHold

Input: Stream 𝑠1, . . . , 𝑠𝑚 of items from [𝑛], accuracy parameter 𝜀 ∈ (0, 1), 𝑝 ≥ 1

Output: Accurate estimation of an 𝐿𝑝 heavy hitter frequency

1: 𝜅1 ← Θ
(
log

11+3𝑝 (𝑚𝑛)
𝜀4+4𝑝

)
, 𝛾 ← 2

20𝑝

2: if 𝑚 ≥ 𝑛 then
3: 𝜚 ← 𝛾2𝑛1−1/𝑝

log
4 (𝑛𝑚)

𝜀2𝑚
, 𝜅2 ← Θ

(
𝑛1−2/𝑝

log
11+3𝑝 (𝑚𝑛)

𝜀4+4𝑝

)
4: else if 𝑚 < 𝑛 then
5: 𝜚 ← 𝛾2𝑚1−1/𝑝

log
4 (𝑛𝑚)

𝜀2𝑚
, 𝜅2 ← Θ

(
𝑚1−2/𝑝

log
11+3𝑝 (𝑚𝑛)

𝜀4+4𝑝

)
6: 𝜅 ← 𝜅1 if 𝑝 ∈ [1, 2), 𝜅 ← 𝜅2 if 𝑝 ≥ 2

7: 𝑘 ∼ Uni([200𝑝𝜅 log2 (𝑛𝑚), 202𝑝𝜅 log2 (𝑛𝑚)])
8: for 𝑡 = 1 to 𝑡 =𝑚 do
9: 𝑞𝑖 ← ∅ for 𝑖 ∈ [𝑘]
10: if there is a Morris counter for 𝑠𝑡 then
11: Update the Morris counter

12: else if there exists 𝑖 ∈ [𝑘] with 𝑞𝑖 = 𝑠𝑡 then ⊲item is in the reservoir

13: Start a Morris counter for 𝑠𝑡 ⊲hold a counter for the item

14: else
15: Pick 𝜇𝑡 ∈ [0, 1] uniformly at random

16: if 𝜇𝑡 < 𝜚 then ⊲with probability 𝜚

17: Pick 𝑖 ∈ [𝑘] uniformly at random

18: 𝑞𝑖 ← 𝑠𝑡

19: if there exist 𝑘 active Morris counters initialized between time 𝑡 −2𝑧 and 𝑡 −2𝑧+1 for integer
𝑧 > 0 then ⊲too many counters

20: 𝑘 ← Uni([200𝑝𝜅 log2 (𝑛𝑚), 202𝑝𝜅 log2 (𝑛𝑚)])
21: Retain the

𝑘
2
counters initialized between time 𝑡 − 2𝑧 and 𝑡 − 2𝑧+1 for integer 𝑧 > 0 with

largest approximate frequency

22: return the estimated frequencies by the Morris counters

Lemma 2.1. Let 𝑗 ∈ [𝑛] be an item with (𝑓𝑗)𝑝 ≥
𝜀2 ·𝐹𝑝

2
10𝛾 log

2 (𝑛𝑚) and let 𝐽 = {𝑡 ∈ [𝑚] | 𝑠𝑡 = 𝑗}. Let
𝑘 ∈ [200𝑝𝜅 log2 (𝑛𝑚), 202𝑝𝜅 log2 (𝑛𝑚)] be chosen uniformly at random. Let 𝑣 be the last time that 𝑗
is sampled by the algorithm. Then with probability at least 1 − 1

50𝑝 log
2 (𝑛𝑚) , there are at most 𝑘 − 𝜅

counters at time 𝑣 .

Proof. Consider any fixing of the random samples of the algorithm and the random choices

of 𝑘 , before time 𝑣 . Let 𝑇1 < 𝑇2 < . . . be the sequence of times when the counters are reset.

Note that since 𝑘 ∈ [200𝑝𝜅 log2 (𝑛𝑚), 202𝑝𝜅 log2 (𝑛𝑚)], then each time the counters are reset,

between [100𝑝𝜅2 (𝑛𝑚), 101𝑝𝜅 log2 (𝑛𝑚)] counters are newly allocated. Note that the sequence could
be empty, in which case our claim is vacuously true. For each 𝑇𝑖 , consider the times T𝑖 at which
additional counters would be created after𝑇𝑖 is fixed if there were no limit to the number of counters.

Moreover, let 𝑢𝑖 be the choice of 𝑘 at time 𝑇𝑖 . Note that the first 100𝑝𝜅 log
2 (𝑛𝑚) of the times in T𝑖

are independent of the choice of 𝑢𝑖 , while latter times in T𝑖 may not actually be sampled due to the

choice of 𝑢𝑖 . Let𝑇𝑤 be the first time for which which 𝑣 appears in the first 101𝑝𝜅 log2 (𝑛𝑚) terms of

the T𝑤 . Then with probability at most
1

100𝑝 log
2 (𝑚𝑛) , the choice of 𝑢𝑤 will be within 𝜅 indices after 𝑣

in the sequence T𝑖 . On the other hand, the choice of 𝑢𝑤 could cause 𝑇𝑤+1 to be before 𝑣 , e.g., if 𝑣 is

the (101𝑝𝜅 log2 (𝑛𝑚))-th term and 𝑢𝑤 = 100𝜅 log2 (𝑛𝑚), in which case the same argument shows

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:10 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

that with probability at most
1

100𝑝 log
2 (𝑚𝑛) , the choice of 𝑢𝑤+1 will be within 𝜅 indices after 𝑣 in the

sequence T𝑤+1. Note that since𝑢𝑤 +𝑢𝑤+1 ≥ 200𝑝𝜅2 (𝑛𝑚), then 𝑣 must appear before𝑇𝑤+2. Therefore
by a union bound, with probability at least 1 − 1

50𝑝 log
2 (𝑛𝑚) , there are at most 𝑘 − 𝜅 counters at time

𝑣 . □

Accurate estimation of the heavy-hitter frequencies can be used in a number of applications

such as moment estimation, 𝐿𝑝 sampling [6, 61, 63], cascaded norms [65, 66], etc. We next upper

bound how many additional counters are created between the time a heavy hitter 𝑗 is sampled

until it becomes too large to delete.

Lemma 2.2. Suppose𝑚 ≥ 𝑛 and 𝐹𝑝 = O
(
𝑛 log

3 (𝑛𝑚)
𝜀4𝑝

)
. Let 𝑗 ∈ [𝑛] be an itemwith (𝑓𝑗)𝑝 ≥

𝜀2 ·𝐹𝑝
2
10𝛾 log

2 (𝑛𝑚) .
Let 𝐽 = {𝑡 ∈ [𝑚] | 𝑠𝑡 = 𝑗} and let 𝑢 ∈ 𝐽 be chosen uniformly at random and suppose that the
algorithm samples 𝑗 at time 𝑢. Then for 𝑝 ∈ [1, 2], over the choice of 𝑢 and the internal randomness of
the algorithm, the probability that fewer than 𝜅1 = O

(
log

11+3𝑝 (𝑚𝑛)
𝜀4+4𝑝

)
new counters are generated after

𝑢 and before 𝜀4 ·𝐹𝑝
2
10𝛾 log

2 (𝑛𝑚) additional instances of 𝑗 arrive is at most 1 − 1

100𝑝 log(𝑛𝑚) .
Similarly for 𝑝 ∈ [1, 2), over the choice of 𝑢 and the internal randomness of the algorithm, the

probability that fewer than 𝜅2 = O
(
𝑛1−2/𝑝

log
11+3𝑝 (𝑚𝑛)

𝜀4+4𝑝

)
new counters are generated after 𝑢 and before

𝜀4 ·𝐹𝑝
2
10𝛾 log

2 (𝑛𝑚) additional instances of 𝑗 arrive is at most 1 − 1

100𝑝 log(𝑛𝑚) .

Proof. Let 𝐿 = O (𝑝 log(𝑛𝑚)) and let ℓ ∈ [𝐿] be fixed. Let𝑊ℓ be the items with frequency in

[2ℓ−1, 2ℓ) so that

𝑊ℓ = {𝑖 ∈ [𝑛] | 𝑓𝑖 ∈ [2ℓ−1, 2ℓ)}.

and observe that |𝑊ℓ | ≤
𝐹𝑝

2
𝑝ℓ . Let 𝜚 =

𝛾2𝑛1−1/𝑝
log

4 (𝑛𝑚)
𝜀2𝑚

and 𝑋 =
𝜀2𝐹

1/𝑝
𝑝

2
14𝛾2

log
4 (𝑛𝑚) .

We define 𝐵1, . . . , 𝐵𝛼 to be blocks that partition the stream, so that the 𝑖-th block includes the

items of the stream after the (𝑖 − 1)-th instance of 𝑓𝑗 , up to and including the 𝑖-th instance of 𝑓𝑗 .

We therefore have 𝛼 = 𝑓𝑗 + 1.
Observe that since (𝑓𝑗)𝑝 ≥

𝜀2 ·𝐹𝑝
2
10𝛾 log

2 (𝑛𝑚) , then we have 𝑓𝑗 = 𝛽𝑋 for some 𝛽 > 1. Since |𝑊ℓ | ≤
𝐹𝑝

2
𝑝ℓ ,

then the expected number of unique items in𝑊ℓ contained in a block is at most

𝐹𝑝

2
𝑝ℓ𝛼

, conditioned on

any fixing of indices that are sampled. Thus in a block, the conditional expectation of the number

of stream updates that correspond to items in𝑊ℓ is at most

𝐹𝑝

2
(𝑝−1)ℓ𝛼

, and so the expected number

of items in𝑊ℓ that are sampled in a block is at most

𝜚𝐹𝑝

2
(𝑝−1)ℓ𝛼

. Therefore, the expected number of

retained items in the previous and following 2
𝑖
blocks for 𝑖 ≤ ℓ is at most

𝜚𝐹𝑝

2
(𝑝−1)ℓ𝛼

·min(2𝑖 , 2ℓ) ≤
𝜚𝐹𝑝

2
(𝑝−2)ℓ𝛼

≤
2𝜚𝐹𝑝

2
(𝑝−2)ℓ𝑋

,

since 𝛼 = 𝑓𝑗 + 1 and by assumption (𝑓𝑗)𝑝 ≥
𝜀2 ·𝐹𝑝

2
10𝛾 log

2 (𝑛𝑚) , but 𝑋 =
𝜀2𝐹

1/𝑝
𝑝

2
14𝛾2

log
4 (𝑛𝑚) . For 𝑖 > ℓ , note that

since𝑊ℓ only contains elements of frequency 2
ℓ
, then no elements of𝑊ℓ will be retained over 𝑗

once the consideration is for 2
𝑖 > 2

ℓ
blocks.

For 𝑝 ∈ [1, 2), note that 2ℓ ≤ 𝐹
1/𝑝
𝑝 , so that

1

2
(𝑝−2)ℓ = 2

(2−𝑝)ℓ ≤ 𝐹
2/𝑝−1
𝑝 . Therefore, after 2

𝑖
blocks,

the expected number of items in 𝑊ℓ is at most

2𝜚𝐹𝑝

2
(𝑝−2)ℓ𝑋

≤ 2𝜚𝐹
2/𝑝
𝑝

𝑋
. For 𝜚 =

𝛾2𝑛1−1/𝑝
log

4 (𝑛𝑚)
𝜀2𝑚

and

𝑋 =
𝜀2𝐹

1/𝑝
𝑝

2
14𝛾2

log
4 (𝑛𝑚) , we have that the expected number of retained items in the previous and following

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:11

2
𝑖
blocks is at most

O
(
2𝛾4𝑛1−1/𝑝𝐹

1/𝑝
𝑝 log

8 (𝑛𝑚)
𝜀4𝑚

)
= O

(
log

8+3𝑝 (𝑛𝑚)
𝜀4+4𝑝

)
,

for𝑚 ≥ 𝑛 and 𝐹𝑝 = O
(
𝑛 log

3𝑝 (𝑛𝑚)
𝜀4𝑝

)
. By Markov’s inequality, we have that with probability 1 −

1

100𝑝 log
3 (𝑛𝑚) over a random time𝑢, the number of counters for the items with frequency in [2ℓ−1, 2ℓ)

is at most 𝜅1 = O
(
log

11+3𝑝 (𝑛𝑚)
𝜀4+4𝑝

)
across 2

𝑖
blocks before and after 𝑢. Thus, by a union bound over

all 𝑖 = O (log𝑚) and 𝐿 = O (𝑝 log(𝑛𝑚)) choices of ℓ , we have that with probability at least

1 − 1

100𝑝 log(𝑛𝑚) , 𝜅1 new counters are generated after 𝑢.

For 𝑝 ≥ 2, we have that the expected number of retained items across 2
𝑖
blocks is at most

2𝜚𝐹𝑝

2
(𝑝−2)ℓ𝑋

≤ 2𝜚𝐹𝑝

𝑋
. For 𝜚 =

𝛾2𝑛1−1/𝑝
log

4 (𝑛𝑚)
𝜀2𝑚

and 𝑋 =
𝜀2𝐹

1/𝑝
𝑝

2
14𝛾2

log
4 (𝑛𝑚) , we have that the expected number

of retained items across 2
𝑖
blocks is at most

O
(
2𝛾4 (𝑛𝐹𝑝)1−1/𝑝 log8 (𝑛𝑚)

𝜀4𝑚

)
= O

(
𝑛1−2/𝑝 log8+3𝑝 (𝑚𝑛)

𝜀4+4𝑝

)
,

for𝑚 ≥ 𝑛 and 𝐹𝑝 = O
(
𝑛 log

3𝑝 (𝑛𝑚)
𝜀4𝑝

)
. By Markov’s inequality, we have that with probability 1 −

1

100𝑝 log
3 (𝑛𝑚) over a random time𝑢, the number of counters for the items with frequency in [2ℓ−1, 2ℓ)

is at most 𝜅2 = O
(
𝑛1−2/𝑝

log
11+3𝑝 (𝑚𝑛)

𝜀4+4𝑝

)
across 2

𝑖
blocks after 𝑢. Moreover, observe that the number

of counters generated within 2
𝑧
timesteps is certainly at most the number of counters generated

within 2
𝑧
blocks. Thus, by a union bound over all 𝑧 = O (log𝑚) and 𝐿 = O (𝑝 log(𝑛𝑚)) choices of

ℓ , we have that with probability at least 1 − 1

100𝑝 log(𝑛𝑚) , 𝜅2 new counters are generated after 𝑢. □

By Lemma 2.1 and Lemma 2.2, we have:

Lemma 2.3. Suppose𝑚 ≥ 𝑛 and 𝐹𝑝 = O
(
𝑛 log

3 (𝑛𝑚)
𝜀4𝑝

)
. Let 𝑗 ∈ [𝑛] be an itemwith (𝑓𝑗)𝑝 ≥

𝜀2 ·𝐹𝑝
2
10𝛾 log

2 (𝑛𝑚) .

Then with probability at least 1 − 1

100𝑝 log(𝑛𝑚) , the counters are not reset between the times at which 𝑗

is sampled and 𝜀4 ·𝐹𝑝
2
10𝛾 log

2 (𝑛𝑚) occurrences of 𝑗 arrive after it is sampled.

We now claim that a heavy hitter 𝑗 will be sampled early enough to obtain a good approximation

to its overall frequency.

Lemma 2.4. Suppose 𝐹𝑝 = O
(
𝑛 log

3 (𝑛𝑚)
𝜀4𝑝

)
. Let 𝑗 ∈ [𝑛] be an item with (𝑓𝑗)𝑝 ≥

𝜀2 ·𝐹𝑝
2
10𝛾 log

2 (𝑛𝑚) . Then

with probability at least 0.99, SampleAndHold outputs 𝑓̂𝑗 such that(
1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 .

Proof. Note that for the purposes of analysis, we can assume𝑚 ≥ 𝑛, since otherwise if𝑚 < 𝑛,

then SampleAndHold essentially redefines 𝑛 to be the number of unique items in the induced

stream by setting 𝜚 and 𝜅 appropriately, even though the overall universe can be larger. Note that

𝑚 ≤ 2

(
𝐹𝑝

)
1/𝑝 · 𝑛1−1/𝑝 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:12 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

By assumption, we have (𝑓𝑗)𝑝 ≥
𝜀2 ·𝐹𝑝

2
7𝛾 log

2 (𝑛𝑚) and thus, we certainly have 𝑓𝑗 ≥
𝜀 ·(𝐹𝑝)1/𝑝

2
7𝛾 log

2 (𝑛𝑚) for

𝑝 ≥ 2 and 𝜀 ∈ (0, 1). Let 𝑇 be the set of the first
𝜀

16 log(𝑛𝑚) fraction of occurrences of 𝑗 , so that

|𝑇 | ≥
𝜀2 ·

(
𝐹𝑝

)
1/𝑝

2
11𝛾 log3 (𝑛𝑚)

.

We claim that with probability at least
2

3
, a Morris counter for 𝑗 will be created by the stream as it

passes through 𝑇 . Indeed, observe that since each item of the stream is sampled with probability

𝜚 =
𝛾2𝑛1−1/𝑝 log4 (𝑛𝑚)

𝜀2𝑚
≥ 𝛾2 log4 (𝑛𝑚)

2𝜀2
(
𝐹𝑝

)
1/𝑝 ,

then we have with high probability, an index in 𝑇 is sampled. By Lemma 2.3, the index will not be

removed by the counters resetting.

Since 𝑇 is the set of the first
𝜀

16 log(𝑛𝑚) fraction of occurrences of 𝑗 , then the Morris counter is

used for at least

(
1 − 𝜀

16 log(𝑛𝑚)

)
𝑓𝑗 occurrences of 𝑗 . We use Morris counters with multiplicative

accuracy

(
1 + O

(
𝜀

log(𝑛𝑚)

))
. Hence by Theorem 1.5, we obtain an output 𝑓̂𝑗 such that(

1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 .

□

2.2 Full Sample and Hold

Wenow address certain shortcomings of Lemma 2.4 – namely, the assumption that 𝐹𝑝 = O
(
𝑛 log

3 (𝑛𝑚)
𝜀4𝑝

)
and the fact that Lemma 2.4 only provides constant success probability for each heavy hitter 𝑗 ∈ [𝑛],
but there can be many of these heavy-hitters.

Algorithm 2 FullSampleAndHold

Input: Stream 𝑠1, . . . , 𝑠𝑚 of items from [𝑛], accuracy parameter 𝜀 ∈ (0, 1), 𝑝 ≥ 2

Output: Accurate estimations of 𝐿𝑝 heavy hitter frequencies

1: 𝑅 ← O (log𝑛), 𝑌 = O (log𝑚)
2: for 𝑟 ∈ [𝑅], 𝑥 ∈ [𝑌] do
3: Let 𝐽

(𝑟)
𝑥 be a (nested) subset of [𝑚] subsampled at rate 𝑝𝑥 := min(1, 21−𝑥)

4: Let𝑚
(𝑟)
𝑥 be the length of the stream 𝐽

(𝑟)
𝑥

5: Run SampleAndHold
(𝑟)
𝑥 on 𝐽

(𝑟)
𝑥

6: Let
�
𝑓
(𝑟,𝑥)
𝑗

be the estimated frequency for 𝑗 by SampleAndHold
(𝑟)
𝑥

7: 𝑓̂ 𝑥
𝑗
← median𝑟 ∈[𝑅]

�
𝑓
(𝑟,𝑥)
𝑗

8: Let ℓ = min{𝑥 ∈ [𝑋] | 𝑚𝑥 ≥ (𝑓̂ 𝑥𝑗)𝑝 }
9: return 𝑓 ℓ

𝑗

We first show subsampling allows us to find a substream that satisfies the required assumptions.

We can then boost the probability of success for estimating the frequency of each heavy hitter

using a standard median-of-means argument.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:13

Lemma 2.5. Let 𝑗 ∈ [𝑛] be an item with (𝑓𝑗)𝑝 ≥
𝜀2 ·𝐹𝑝

2
10𝛾 log

2 (𝑛𝑚) . Then with probability 1 − 1

poly(𝑛) ,

FullSampleAndHold outputs 𝑓̂𝑗 such that(
1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 .

Proof. Consider a fixed 𝑗 ∈ [𝑛] with (𝑓𝑗)𝑝 ≥
𝜀2 ·𝐹𝑝

2
10𝛾 log

2 (𝑛𝑚) . Let 𝑞 > 0 be the integer such that

𝑓𝑗

2
𝑞 ∈

[
400

𝜀2
, 800
𝜀2

]
. Let 𝐴 𝑗 be the random variable denoting the number of occurrences of 𝑗 in 𝐽𝑞

and note that over the randomness of the sampling, we have E
[
𝐴 𝑗

]
=

𝑓𝑗

2
𝑞 ≤ 400

𝜀2
. We also have

E
[
𝐴2

𝑗

]
≤ 𝑓𝑗

2
𝑞 + (𝑓𝑗)

2

2
2𝑞 , so that V

[
𝐴 𝑗

]
≤ 400

𝜀2
. By Chebyshev’s inequality, we have that the number of

occurrences of 𝑗 in 𝐽
(𝑟)
𝑞 is a (1 + 𝜀)-approximation of

𝑓𝑗

2
𝑞 with probability at least 0.9. We similarly

have that with probability at least 0.9,𝑚𝑥 ∈
[
(1−𝜀)𝑚

2
𝑞 ,

(1+𝜀)𝑚
2
𝑞

]
and thus (𝐴 𝑗)𝑝 ≤ 800

𝑝

𝜀2𝑝
·𝑚𝑞 .

Since (𝑓𝑗)𝑝 ≥
𝜀2 ·𝐹𝑝

2
10𝛾 log

2 (𝑛𝑚) , then by a Chernoff bound, we have that for any 𝑦 ∈ [𝑛], the number

of occurrences of 𝑦 in 𝐽
(𝑟)
𝑞 is at most

𝜉 log3 (𝑛𝑚)
𝜀4

for some constant 𝜉 > 1, with high probability. Thus

by a union bound, we have that with high probability,

𝐹𝑝 (𝐽 (𝑟)𝑞) ≤
𝜉 ′𝑛 log3𝑝 (𝑛𝑚)

𝜀4𝑝
,

for some sufficiently large constant 𝜉 ′ > 1, which satisfies the assumptions of Lemma 2.4. Hence we

have with probability at least 0.99,
�
𝑓
(𝑟,𝑞)
𝑗

is a (1+𝜀)-approximation to the number of occurrences of 𝑗

in 𝐽
(𝑟)
𝑞 . Thus,

�
𝑓
(𝑟,𝑞)
𝑗

≤ 2·800𝑝
𝜀2𝑝
·𝑚𝑞 with probability at least 0.7. Observe that since (𝑓𝑗)𝑝 ≥

𝜀2 ·𝐹𝑝
2
10𝛾 log

2 (𝑛𝑚) ,

then for any 𝑦 ∈ [𝑛], we have that the expected number of occurrences of 𝑦 in 𝐽
(𝑟)
𝑞 is at most

𝜉 log2 (𝑛𝑚)
𝜀4

, for some sufficiently large constant 𝜉 > 1. Hence by standard Chernoff bounds, we have

that the median satisfies

𝑓
(𝑞)
𝑗

= median

𝑟 ∈[𝑅]
�
𝑓
(𝑟,𝑞)
𝑗

≤ 2 · 800𝑝
𝜀2𝑝

·𝑚𝑞,

with high probability.

Moreover, observe that (1) for any stream with subsampling rate
1

2
𝑥 > 1

2
𝑞 , we similarly have

that the number of occurrences of 𝑗 in 𝐽𝑥 is a (1 + 𝜀)-approximation of
𝑓𝑗

2
𝑥 with high proba-

bility and (2) SampleAndHold cannot overestimate the frequency of 𝑗 . Thus, 𝑓
(ℓ)
𝑗

output by

FullSampleAndHold satisfies(
1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝

with high probability. □

3 𝐹𝑝 ESTIMATION
In this section, we present insertion-only streaming algorithms for 𝐹𝑝 estimation with a small

number of internal state changes. We first observe that an 𝐹𝑝 estimation algorithm by [62] achieves

a small number of internal state changes for 𝑝 < 1. We then build upon our 𝐿𝑝-heavy hitter

algorithm to achieve an 𝐹𝑝 estimation algorithm that achieves a small number of internal state

changes for 𝑝 > 1.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:14 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

3.1 𝐹𝑝 Estimation, 𝑝 < 1

As a warm-up, we first show that the 𝐹𝑝 estimation streaming algorithm of [62] uses a small

number of internal state changes for 𝑝 < 1. We first recall the following definition of the 𝑝-stable

distribution:

Definition 3.1 (𝑝-stable distribution). [100] For 0 < 𝑝 ≤ 2, the 𝑝-stable distribution D𝑝 exists and
satisfies

∑𝑛
𝑖=1 𝑍𝑖𝑥𝑖 ∼ ∥𝑥 ∥𝑝 · 𝑍 for 𝑍, 𝑍1, . . . , 𝑍𝑛 ∼ D𝑝 and any vector 𝑥 ∈ R𝑛 .

A standard method [86] for generating 𝑝-stable random variables is to first generate 𝜃 ∼
Uni

([
−𝜋

2
, 𝜋
2

])
and 𝑟 ∼ Uni([0, 1]) and then set

𝑋 = 𝑓 (𝑟, 𝜃) = sin(𝑝𝜃)
cos

1/𝑝 (𝜃)
·
(
cos(𝜃 (1 − 𝑝))

log
1

𝑟

) 1

𝑝
−1

.

The 𝐹𝑝 estimation streaming algorithm of [62] first generates a sketch matrix 𝐷 ∈ R𝑘×𝑛 , where
𝑘 = O

(
1

𝜀2

)
and each entry of 𝐷 is generated from the 𝑝-stable distribution. Observe that 𝐷 can

be viewed as 𝑘 vectors 𝐷 (1) , . . . , 𝐷 (𝑘) ∈ R𝑛 of 𝑝-stable random variables. For 𝑖 ∈ [𝑘], suppose we
maintained ⟨𝐷 (𝑖) , 𝑥⟩, where 𝑥 is the frequency vector induced by the stream. Then it is known [55]

that with constant probability, the median of these inner products is a (1 + 𝜀)-approximation to 𝐹𝑝 .

[62] notes that each vector 𝐷 (𝑖) can be further decomposed into a vector 𝐷 (𝑖,+) containing
the positive entries of 𝐷 (𝑖) and a vector 𝐷 (𝑖,−) containing the negative entries of 𝐷 (𝑖) . Since
𝐷 (𝑖) = 𝐷 (𝑖,+) + 𝐷 (𝑖,−) , then it suffices to maintain ⟨𝐷 (𝑖,+) , 𝑥⟩ and ⟨𝐷 (𝑖,−) , 𝑥⟩ for each 𝑖 ∈ [𝑘]. For
insertion-only streams, all entries of 𝑥 are non-negative, and so the inner products ⟨𝐷 (𝑖,+) , 𝑥⟩ and
⟨𝐷 (𝑖,−) , 𝑥⟩ are both monotonic over the course of the stream, which permits the application of

Morris counters. Thus the algorithm of [62] instead uses Morris counters to approximately compute

⟨𝐷 (𝑖,+) , 𝑥⟩ and ⟨𝐷 (𝑖,−) , 𝑥⟩ to within a (1 + O (𝜀))-multiplicative factor. The key technical point is

that [62] shows that ���⟨𝐷 (𝑖,−) , 𝑥⟩��� + ���⟨𝐷 (𝑖,−) , 𝑥⟩��� = O (
∥𝑥 ∥𝑝

)
for 𝑝 < 1 and so (1 + O (𝜀))-multiplicative factor approximations to ⟨𝐷 (𝑖,+) , 𝑥⟩ and ⟨𝐷 (𝑖,−) , 𝑥⟩ are
enough to achieve a (1 + 𝜀)-approximation to ⟨𝐷 (𝑖) , 𝑥⟩. Now the main gain is that using Morris

counters to approximate ⟨𝐷 (𝑖,+) , 𝑥⟩ and ⟨𝐷 (𝑖,−) , 𝑥⟩, not only is the overall space usage improved

for the purposes of [62], but also for our purposes, the number of internal state updates is much

smaller.

As an additional technical caveat, [62] notes that the sketching matrix 𝐷 cannot be stored in

the allotted memory. Instead, [62] notes that by using the log-cosine estimator [68] instead of the

median estimator, the entries of 𝐷 can be generated using O
(

log(1/𝜀)
log log(1/𝜀)

)
-wise independence, so

that storing the randomness used to generate 𝐷 only requires O
(

log(1/𝜀)
log log(1/𝜀) log𝑛

)
bits of space.

Theorem 3.2. For 𝑝 ∈ (0, 1], there exists a one-pass insertion-only streaming algorithm that uses
poly

(
log𝑛, 1

𝜀
, log 1

𝛿

)
internal state changes, O

(
1

𝜀2

(
log log𝑛 + log 1

𝜀

)
+ log(1/𝜀)

log log(1/𝜀) log𝑛
)
bits of space,

and outputs a (1 + 𝜀)-approximation to 𝐹𝑝 with high probability.

3.2 𝐹𝑝 Estimation, 𝑝 > 1

In this section, we present our 𝐹𝑝 approximation algorithm for insertion-only streams that only

have Ω̃𝜀 (𝑛1−1/𝑝) internal state updates for 𝑝 > 1.

We first define the level sets of the 𝐹𝑝 moment, as well as the contribution of each level set.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:15

Definition 3.3 (Level sets and contribution). Let 𝐹𝑝 be the power of two such that 𝐹𝑝 ≤ 𝐹𝑝 < 2𝐹𝑝 .
Given a uniformly random 𝜆 ∈

[
1

2
, 1

]
, for each ℓ ∈ [𝐿], we define the level set

Γℓ :=

{
𝑖 ∈ [𝑛] | 𝑓𝑖 ∈

[
𝜆 · 𝐹𝑝
2
ℓ

,
2𝜆𝐹𝑝

2
ℓ

)}
.

We define the contribution 𝐶ℓ and the fractional contribution 𝜙ℓ of level set Γℓ to be 𝐶ℓ :=
∑

𝑖∈Γℓ (𝑓𝑖)𝑝
and 𝜙ℓ :=

𝐶ℓ

𝐹𝑝
.

For an accuracy parameter 𝜀 and a stream of length𝑚, we say that a level set Γℓ is significant if its
fractional contribution 𝜙ℓ is at least 𝜀

2𝑝 log(𝑛𝑚) . Otherwise, we say the level set is insignificant.

Our algorithm follows from the framework introduced by [58] and subsequently used in a number

of different applications, e.g., [16, 30, 33, 73, 77, 93, 94] and has the following intuition. We estimate

the contributions of the significant level sets by approximating the frequencies of the heavy hitters

for substreams induced by subsampling the universe at exponentially smaller rates. Specifically,

we create 𝐿 = O (log𝑛) substreams where for each ℓ ∈ [𝐿], we subsample each element of the

universe [𝑛] into the substream with probability
1

2
ℓ−1 . We rescale (1 + 𝜀)-approximations to the

contributions of the surviving heavy hitters by the inverse of the sampling rate to obtain good

approximations of the contributions of each significant level set.

To guarantee a small number of internal state changes, we use our heavy hitter algorithm

FullSampleAndHold to provide (1 + 𝜀)-approximations to the heavy hitters in each substream,

thereby obtaining good approximations to the contributions of each significant level set. Our

algorithm appears in full in Algorithm 3.

Algorithm 3 𝐹𝑝 approximation algorithm, 𝑝 ≥ 1

Input: Stream 𝑠1, . . . , 𝑠𝑚 of items from [𝑛], accuracy parameter 𝜀 ∈ (0, 1), 𝑝 ≥ 2

Output: (1 + 𝜀)-approximation to 𝐹𝑝

1: 𝑘 = O
(
log

8+3𝑝 (𝑚𝑛)
𝜀4+4𝑝

)
for 𝑝 ∈ [1, 2], 𝑘 = ˜O

(
𝑛1−2/𝑝

𝜀4

)
for 𝑝 > 2

2: 𝐿 = O (𝑝 log(𝑛𝑚)), 𝑅 = O (log log𝑛), 𝛾 = 2
20𝑝

3: for 𝑡 = 1 to 𝑡 =𝑚 do
4: for (ℓ, 𝑟) ∈ [𝐿] × [𝑅] do
5: Let𝑚

(𝑟)
ℓ

be a 2-approximation to the length of the induced stream ⊲Morris counter

6: Let 𝐼
(𝑟)
ℓ

be a (nested) subset of [𝑛] subsampled at rate 𝑝ℓ := min(1, 21−ℓ)
7: if 𝑠𝑡 ∈ 𝐼 (𝑟)ℓ

then
8: Send 𝑠𝑡 to FullSampleAndHold

(𝑟)
ℓ

9: Let 𝐻
(𝑟)
𝑖

be the outputs of the Morris counters at level 𝑖

10: Let𝑀 be the power of two such that𝑚𝑝 ≤ 𝑀 < 2𝑚𝑝

11: Let 𝑆
(𝑟)
𝑖

be the set of ordered pairs (𝑗, 𝑓̂𝑗) of 𝐻 (𝑟)𝑖
with

(
𝑓̂𝑗

)𝑝
∈

[
𝜆 ·𝑀
2
𝑖 , 2𝜆 ·𝑀

2
𝑖

]
12: for 𝑖 = 1 to 𝑖 = 𝐿 do
13: ℓ ← max

(
1, 𝑖 −

⌊
log

𝛾2
log(𝑛𝑚)
𝜀2

⌋)
14: 𝐶𝑖 ← 1

𝑝ℓ
median𝑟 ∈[𝑅]

(∑
(𝑗,𝑓𝑗) ∈𝑆 (𝑟)ℓ

(
𝑓̂𝑗

)𝑝)
15: return 𝐹𝑝 =

∑
ℓ∈[𝐿] 𝐶ℓ

We note the following corollary of Lemma 2.5.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:16 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

Lemma 3.4. Let 𝑟 ∈ [𝑅] be fixed. Suppose 𝑗 ∈ 𝐼 (𝑟)
ℓ

and (𝑓𝑗)𝑝 ≥
𝜀2 ·𝐹𝑝 (𝐼 (𝑟)ℓ)
2
7𝛾 log

2 (𝑛𝑚) . Then with probability at

least 9

10
, 𝐻 (𝑟)

ℓ
outputs 𝑓̂𝑗 with(

1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 .

Lemma 3.5. Let 𝜀 ∈ (0, 1), Γ𝑖 be a fixed level set and let ℓ := max

(
1, 𝑖 −

⌊
log

𝛾 log(𝑛𝑚)
𝜀2

⌋)
. For a fixed

𝑟 ∈ [𝑅], let E1 be the event that |𝐼 (𝑟)ℓ
| ≤ 32𝑛

2
ℓ and let E2 be the event that 𝐹𝑝 (𝐼 (𝑟)ℓ

) ≤ 32𝐹𝑝

2
ℓ . Then

conditioned on E1 and E2, for each 𝑗 ∈ Γ𝑖 ∩ 𝐼 (𝑟)ℓ
, there exists (𝑗, 𝑓̃𝑗) in 𝑆 (𝑟)𝑖

such that with probability
at least 9

10
, (

1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 .

We now justify the approximation guarantees of our algorithm.

Lemma 3.6. Pr
[���𝐹𝑝 − 𝐹𝑝 ��� ≤ 𝜀 · 𝐹𝑝

]
≥ 2

3
.

Putting things together, we give the full guarantees of our 𝐹𝑝 estimation algorithm in Theorem 1.3.

3.3 Entropy Estimation
In this section, we describe how to estimate the entropy of a stream using a small number of internal

state changes. Recall that for a frequency vector 𝑓 ∈ R𝑛 , the Shannon entropy of 𝑓 is defined

by 𝐻 (𝑓) = −∑𝑛
𝑖=1 𝑓𝑖 log 𝑓𝑖 . Observe that any algorithm that obtains a (1 + O (𝜀))-multiplicative

approximation to the function ℎ(𝑓) = 2
𝐻 (𝑓)

also obtains an O (𝜀)-additive approximation of the

Shannon entropy𝐻 (𝑓), and vice versa. Hence to obtain an additive 𝜀-approximation to the Shannon

entropy, we describe how to obtain a multiplicative (1 + 𝜀)-approximation to ℎ(𝑓) = 2
𝐻 (𝑓)

.

Lemma 3.7 ([53]). Given an accuracy parameter 𝜀 > 0, let 𝑘 = log
1

𝜀
+log log𝑚 and 𝜀′ = 𝜀

12(𝑘+1)3 log𝑚 .
Then there exists an efficiently computable set {𝑝0, . . . , 𝑝𝑘 } such that 𝑝𝑖 ∈ (0, 2) for all 𝑖 , as well as an
efficiently computable deterministic function that uses (1 + 𝜀′)-approximations to 𝐹𝑝𝑖 (𝑓) to compute a
(1 + 𝜀)-approximation to ℎ(𝑓) = 2

𝐻 (𝑓) .

Section 3.3 in [53] describes how to compute the set {𝑝0, . . . , 𝑝𝑘 } in Lemma 3.7 as follows. We

define ℓ = 1

2(𝑘+1) log𝑚 and the function 𝑔(𝑧) = ℓ (𝑘2 (𝑧−1)+1))
2𝑘2+1 . For each 𝑝𝑖 , we set 𝑝𝑖 = 1+𝑔(cos(𝑖𝜋/𝑘)),

which can be efficiently computed. Thus, the set {𝑝0, . . . , 𝑝𝑘 } in Lemma 3.7 can be efficiently

computed as pre-processing, assuming that 𝑛 and𝑚 are known a priori. Let 𝑃 (𝑥) be the degree
𝑘 polynomial interpolated at the points 𝑝0, . . . , 𝑝𝑘 , so that 𝑃 (𝑝𝑖) = 𝐹𝑝𝑖 (𝑓) for each 𝑖 ∈ [𝑘], where
𝐹𝑝𝑖 (𝑓) is the (𝑝𝑖)-th moment of the frequency vector 𝑓 . [53] then showed that a multiplicative

(1 + O (𝜀))-approximation to ℎ(𝑓) = 2
𝐻 (𝑓)

can then be computed from 2
𝑃 (0)

, and moreover a

(1 + O (𝜀))-approximation to 2
𝑃 (0)

can be computed from (1 + O (𝜀))-approximations to 𝐹𝑝𝑖 (𝑓),
for each 𝑖 ∈ [𝑘].

Thus by Lemma 3.7 and Theorem 1.3, we have:

Theorem 3.8. Given an accuracy parameter 𝜀 ∈ (0, 1), as well as the universe size 𝑛, and the stream
length𝑚 = poly(𝑛), there exists a one-pass insertion-only streaming algorithm that has ˜O

(
1

𝜀O(1)
√
𝑛

)
internal state changes, usesO

(
log
O(1) (𝑚𝑛)
𝜀O(1)

)
bits of space, and outputs𝐻 such that Pr

[���𝐻 − 𝐻 ��� ≤ 𝜀

]
≥ 2

3
,

where 𝐻 is the Shannon entropy of the stream.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:17

4 LOWER BOUND
In this section, we describe our lower bound showing that any streaming algorithm achieving a

(2 − Ω(1))-approximation to 𝐹𝑝 requires at least
1

2
𝑛1−1/𝑝 state updates, regardless of the memory

allocated to the algorithm. The proof of Theorem 1.2 is similar. The main idea is that we create two

streams S1 and S2 of length O (𝑛) that look similar everywhere except for a random contiguous

block 𝐵 of 𝑛1/𝑝 . In 𝐵, the first stream S1 has the same item repeated 𝑛1/𝑝 times, while the second

stream S2 has 𝑛1/𝑝 distinct items each appear once. The remaining 𝑛 − 𝑛1/𝑝 stream updates of S1
and S2 are additional distinct items that each appear once, so that 𝐹𝑝 (S1) ≥ (2−𝑜 (1)) · 𝐹𝑝 (S2) and
𝐹𝑝 (S2) = Ω(𝑛). Any algorithmA that achieves a (2− Ω(1))-approximation to 𝐹𝑝 must distinguish

between S1 and S2 and thus A must perform some action on 𝐵. However, 𝐵 has size 𝑛1/𝑝 and has

random location throughout the stream, so A must perform Ω(𝑛1−1/𝑝) state updates.

Theorem 1.4. Let 𝜀 ∈ (0, 1) be a constant and 𝑝 ≥ 1. Any algorithm that achieves a 2 − 𝜀

approximation to 𝐹𝑝 with probability at least 2

3
requires at least 1

2
𝑛1−1/𝑝 state updates.

Proof. Consider the two following possible input streams. For the stream S1 of length 𝑛 on

universe 𝑛, we choose a random contiguous block 𝐵 of 𝑛1/𝑝 stream updates and set them all equal

to the same random universe item 𝑖 ∈ [𝑛]. We randomly choose the remaining 𝑛 − 𝑛1/𝑝 updates in

the stream so that they are all distinct and none of them are equal to 𝑖 . Note that by construction,

we have 𝐹𝑝 (S1) = (𝑛 − 𝑛1/𝑝) + (𝑛1/𝑝)𝑝 = 2𝑛 −𝑛1/𝑝 . For the stream S2 of length 𝑛 on universe 𝑛, we

choose S2 to be a random permutation of [𝑛], so that 𝐹𝑝 (S2) = 𝑛.

For fixed 𝜀 ∈ (0, 1), let A be an algorithm that achieves a 2 − 𝜀 approximation to 𝐹𝑝 with

probability at least
2

3
, while using fewer than

1

2
𝑛1−1/𝑝 state updates. We claim that with probability

1

2
, A must have the same internal state before and after 𝐵 in the stream S1. Note that we can

view each stream update as (𝑖, 𝑗) where 𝑖 ∈ [𝑛] is the index of the stream update and 𝑗 ∈ [𝑛]
is the identity of the universe item. Observe that for a random stream update 𝑖 ∈ [𝑛], a random
universe update 𝑗 ∈ [𝑛] alters the state of A with probability at most

1

2𝑛1/𝑝 , since otherwise for a

random stream, the expected number of state changes would be larger than
𝑛1−1/𝑝

2
, which would be

a contradiction. Since both the choice of 𝐵 and the element 𝑗 ∈ [𝑛] that is repeated 𝑛1/𝑝 times are

chosen uniformly at random, then the expected number of changes of the streaming algorithm on

the block 𝐵 is at most
𝑛1/𝑝

2𝑛1/𝑝 = 1

2
. Therefore, with probability at least

1

2
, the streaming algorithm’s

state is the same before and after the block 𝐵.

Moreover, the same argument applies to S2, and so therefore with probability at least
1

2
, the

streaming algorithm cannot distinguish between S1 and S2 if its internal state only changes fewer

than
𝑛1−1/𝑝

2
times. □

ACKNOWLEDGMENTS
We would like to thank Mark Braverman for asking questions related to the ones we studied in

this work. D. W. would like to thank Google Research and the Simons Institute for the Theory of

Computing, where part of this work was done, as well as a Simons Investigator Award. D.W. and

S.Z. are supported in part by NSF CCF-2335411.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:18 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

REFERENCES
[1] Kook Jin Ahn and Sudipto Guha. 2009. Graph Sparsification in the Semi-streaming Model. In Automata, Languages

and Programming, 36th Internatilonal Colloquium, ICALP Proceedings, Part II. 328–338.
[2] Miklós Ajtai, Vladimir Braverman, T. S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff, and Samson Zhou. 2022.

The White-Box Adversarial Data Stream Model. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS. 15–27.

[3] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson. 2011. Onyx: A Prototype

Phase Change Memory Storage Array. In 3rd USENIX Workshop on Hot Topics in Storage and File Systems, HotStorage1.
[4] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. 2002. Tracking Join and Self-Join Sizes in Limited

Storage. J. Comput. Syst. Sci. 64, 3 (2002), 719–747.
[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of Approximating the Frequency Moments.

J. Comput. Syst. Sci. 58, 1 (1999), 137–147.
[6] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2011. Streaming Algorithms via Precision Sampling. In

IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS. 363–372.
[7] Apple. 2023. https://developer.apple.com/documentation/xcode/reducing-disk-writes

[8] Manos Athanassoulis, Bishwaranjan Bhattacharjee, Mustafa Canim, and Kenneth A. Ross. 2012. Path processing

using Solid State Storage. In International Workshop on Accelerating Data Management Systems Using Modern Processor
and Storage Architectures - ADMS. 23–32.

[9] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. 2010. Lower Bounds for Sparse Recovery. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 1190–1197.

[10] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. 2002. Models and issues in data

stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 1–16.

[11] Mary Baker, John H. Hartman, Michael D. Kupfer, Ken Shirriff, and John K. Ousterhout. 1991. Measurements of

a Distributed File System. In Proceedings of the Thirteenth ACM Symposium on Operating System Principles, SOSP.
198–212.

[12] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2004. An information statistics approach to data stream

and communication complexity. J. Comput. Syst. Sci. 68, 4 (2004), 702–732.
[13] Avraham Ben-Aroya and Sivan Toledo. 2011. Competitive analysis of flashmemory algorithms. ACMTrans. Algorithms

7, 2 (2011), 23:1–23:37.

[14] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2017. Optimal elephant flow detection. In 2017 IEEE
Conference on Computer Communications, INFOCOM. 1–9.

[15] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. 2022. A Framework for Adversarially Robust

Streaming Algorithms. J. ACM 69, 2 (2022), 17:1–17:33.

[16] Jaroslaw Blasiok, Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, and Lin F. Yang. 2017. Streaming

symmetric norms via measure concentration. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC. 716–729.

[17] Jaroslaw Blasiok, Jian Ding, and Jelani Nelson. 2017. Continuous Monitoring of l_p Norms in Data Streams. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM.

32:1–32:13.

[18] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. 2015. Sorting with Asymmetric

Read and Write Costs. In Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures,
SPAA. 1–12.

[19] Jeremiah Blocki, Seunghoon Lee, Tamalika Mukherjee, and Samson Zhou. 2023. Differentially Private 𝐿2-Heavy

Hitters Model. In The Eleventh International Conference on Learning Representations, ICLR.
[20] Robert S. Boyer and J. Strother Moore. 1991. MJRTY: A Fast Majority Vote Algorithm. In Automated Reasoning: Essays

in Honor of Woody Bledsoe (Automated Reasoning Series). 105–118.
[21] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and David P. Woodruff. 2017.

BPTree: An ℓ2 Heavy Hitters Algorithm Using Constant Memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS. 361–376.

[22] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. 2016. Beating CountSketch for heavy

hitters in insertion streams. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC. 740–753.

[23] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay, David P. Woodruff, and

Samson Zhou. 2020. Near Optimal Linear Algebra in the Online and Sliding Window Models. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS. 517–528.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

https://developer.apple.com/documentation/xcode/reducing-disk-writes

Streaming Algorithms with Few State Changes 82:19

[24] Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus. 2019. Streaming Coreset Constructions for

M-Estimators. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM. 62:1–62:15.

[25] Vladimir Braverman, Dan Feldman, Harry Lang, Daniela Rus, and Adiel Statman. 2023. Least-Mean-Squares Coresets

for Infinite Streams. IEEE Trans. Knowl. Data Eng. 35, 9 (2023), 8699–8712.
[26] Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. 2021. Efficient Coreset Construc-

tions via Sensitivity Sampling. In Asian Conference on Machine Learning, ACML. 948–963.
[27] Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou. 2018. Nearly Optimal

Distinct Elements and Heavy Hitters on Sliding Windows. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM. 7:1–7:22.

[28] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and Samson Zhou. 2021.

Adversarial Robustness of Streaming Algorithms through Importance Sampling. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems, NeurIPSl. 3544–3557.

[29] Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. 2014. An Optimal Algorithm for

Large FrequencyMoments Using𝑂 (𝑛 (1−2/𝑘)) Bits. InApproximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM. 531–544.

[30] Vladimir Braverman, Joel Manning, Zhiwei Steven Wu, and Samson Zhou. 2023. Private Data Stream Analysis for

Universal Symmetric Norm Estimation. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM. 45:1–45:24.

[31] Vladimir Braverman and Rafail Ostrovsky. 2013. Approximating Large Frequency Moments with Pick-and-Drop

Sampling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 16th
International Workshop, APPROX 2013, and 17th International Workshop, RANDOM. Proceedings. 42–57.

[32] Vladimir Braverman, Emanuele Viola, David P. Woodruff, and Lin F. Yang. 2018. Revisiting Frequency Moment

Estimation in Random Order Streams. In 45th International Colloquium on Automata, Languages, and Programming,
ICALP. 25:1–25:14.

[33] Vladimir Braverman, Viska Wei, and Samson Zhou. 2021. Symmetric Norm Estimation and Regression on Sliding

Windows. In Computing and Combinatorics - 27th International Conference, COCOON, Proceedings. 528–539.
[34] Li-Pin Chang. 2007. On efficient wear leveling for large-scale flash-memory storage systems. In Proceedings of the

2007 ACM Symposium on Applied Computing (SAC). 1126–1130.
[35] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. 2007. Endurance Enhancement of Flash-Memory Storage, Systems:

An Efficient Static Wear Leveling Design. In Proceedings of the 44th Design Automation Conference, DAC. 212–217.
[36] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. 2004. Finding frequent items in data streams. Theor.

Comput. Sci. 312, 1 (2004), 3–15.
[37] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking Database Algorithms for Phase Change Memory.

In Fifth Biennial Conference on Innovative Data Systems Research, CIDR. 21–31.
[38] Tseng-Yi Chen, Tsung Tai Yeh, Hsin-Wen Wei, Yu-Xun Fang, Wei-Kuan Shih, and Tsan-sheng Hsu. 2012. CacheRAID:

An Efficient Adaptive Write Cache Policy to Conserve RAID Disk Array Energy. In IEEE Fifth International Conference
on Utility and Cloud Computing, UCC. 117–124.

[39] Sangyeun Cho and Hyunjin Lee. 2009. Flip-N-Write: a simple deterministic technique to improve PRAM write

performance, energy and endurance. In 42st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
42). 347–357.

[40] Michael B. Cohen, Cameron Musco, and Jakub Pachocki. 2020. Online Row Sampling. Theory Comput. 16 (2020),
1–25.

[41] Vincent Cohen-Addad, David P. Woodruff, and Samson Zhou. 2023. Streaming Euclidean 𝑘-median and 𝑘-means

with 𝑜 (log𝑛) Space. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS.
[42] Graham Cormode, Piotr Indyk, Nick Koudas, and S. Muthukrishnan. 2002. Fast Mining of Massive Tabular Data

via Approximate Distance Computations. In Proceedings of the 18th International Conference on Data Engineering.
605–614.

[43] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its

applications. J. Algorithms 55, 1 (2005), 58–75.
[44] Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. 2009. PCRAMsim: System-level performance, energy, and area

modeling for Phase-Change RAM. In 2009 International Conference on Computer-Aided Design, ICCAD. 269–275.
[45] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai Li, and Yiran Chen. 2008. Circuit and microarchitecture

evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In Proceedings of the 45th
Design Automation Conference, DAC. 554–559.

[46] David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawel Pszona. 2014. Wear Minimization for Cuckoo

Hashing: How Not to Throw a Lot of Eggs into One Basket. In Experimental Algorithms - 13th International Symposium,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:20 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

SEA. Proceedings. 162–173.
[47] Cristian Estan and George Varghese. 2002. New directions in traffic measurement and accounting. In Proceedings of the

ACM SIGCOMM 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication.
323–336.

[48] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D. Ullman. 1998. Computing

Iceberg Queries Efficiently. In VLDB’98, Proceedings of 24rd International Conference on Very Large Data Bases. 299–310.
[49] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. 2002. An Approximate L1-Difference

Algorithm for Massive Data Streams. SIAM J. Comput. 32, 1 (2002), 131–151.
[50] Sumit Ganguly and David P. Woodruff. 2018. High Probability Frequency Moment Sketches. In 45th International

Colloquium on Automata, Languages, and Programming, ICALP. 58:1–58:15.
[51] Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. 2016. Frequent Directions: Simple and

Deterministic Matrix Sketching. SIAM J. Comput. 45, 5 (2016), 1762–1792.
[52] André Gronemeier. 2009. Asymptotically Optimal Lower Bounds on the NIH-Multi-Party Information Complexity

of the AND-Function and Disjointness. In 26th International Symposium on Theoretical Aspects of Computer Science,
STACS Proceedings. 505–516.

[53] Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. 2008. Sketching and Streaming Entropy via Approximation

Theory. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS. 489–498.
[54] Piotr Indyk. 2004. Algorithms for dynamic geometric problems over data streams. In Proceedings of the 36th Annual

ACM Symposium on Theory of Computing. 373–380.
[55] Piotr Indyk. 2006. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM

53, 3 (2006), 307–323.

[56] Piotr Indyk. 2013. Sketching via hashing: from heavy hitters to compressed sensing to sparse fourier transform. In

Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS. 87–90.
[57] Piotr Indyk, Shyam Narayanan, and David P. Woodruff. 2022. Frequency Estimation with One-Sided Error. In

Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA. 695–707.
[58] Piotr Indyk and David P. Woodruff. 2005. Optimal approximations of the frequency moments of data streams. In

Proceedings of the 37th Annual ACM Symposium on Theory of Computing. 202–208.
[59] Sandy Irani, Moni Naor, and Ronitt Rubinfeld. 1992. On the Time and Space Complexity of Computation Using

Write-Once Memory Or Is Pen Really Much Worse Than Pencil? Math. Syst. Theory 25, 2 (1992), 141–159.

[60] Rajesh Jayaram and David P. Woodruff. 2018. Data Streams with Bounded Deletions. In Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 341–354.

[61] Rajesh Jayaram and David P. Woodruff. 2018. Perfect Lp Sampling in a Data Stream. In 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS. 544–555.

[62] Rajesh Jayaram and David P. Woodruff. 2019. Towards Optimal Moment Estimation in Streaming and Distributed Mod-

els. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2019. 29:1–29:21.

[63] Rajesh Jayaram, David P. Woodruff, and Samson Zhou. 2022. Truly Perfect Samplers for Data Streams and Sliding

Windows. In PODS ’22: International Conference on Management of Data, Philadelphia. 29–40.
[64] T. S. Jayram. 2009. Hellinger Strikes Back: A Note on the Multi-party Information Complexity of AND. In Approxi-

mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop,
APPROX 2009, and 13th International Workshop, RANDOM. Proceedings.

[65] T. S. Jayram and David P. Woodruff. 2009. The Data Stream Space Complexity of Cascaded Norms. In 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS. 765–774.

[66] Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. 2020. Learning-Augmented Data Stream

Algorithms. In 8th International Conference on Learning Representations, ICLR.
[67] Hossein Jowhari, Mert Saglam, and Gábor Tardos. 2011. Tight bounds for Lp samplers, finding duplicates in streams,

and related problems. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS. 49–58.

[68] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. 2010. On the Exact Space Complexity of Sketching and

Streaming Small Norms. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA. 1161–1178.

[69] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu. 2014. Evaluating Phase Change Memory for

Enterprise Storage Systems: A Study of Caching and Tiering Approaches. ACM Trans. Storage 10, 4 (2014), 15:1–15:21.
[70] Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. 2016. Heavy Hitters via Cluster-Preserving

Clustering. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS. 61–70.
[71] Christian Janos Lebeda and Jakub Tetek. 2023. Better Differentially Private Approximate Histograms and Heavy

Hitters using the Misra-Gries Sketch. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:21

of Database Systems, PODS. 79–88.
[72] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as a scalable

dram alternative. In 36th International Symposium on Computer Architecture (ISCA),. 2–13.
[73] Roie Levin, Anish Prasad Sevekari, and David P. Woodruff. 2018. Robust Subspace Approximation in a Stream. In

Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems,
NeurIPS.

[74] Ping Li. 2008. Estimators and tail bounds for dimension reduction in 𝑙𝛼 (0 < 𝛼 ≤ 2) using stable random projections.

In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, Shang-Hua Teng (Ed.).

10–19.

[75] Yi Li, Vasileios Nakos, and David P. Woodruff. 2018. On Low-Risk Heavy Hitters and Sparse Recovery Schemes.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM.

19:1–19:13.

[76] Yi Li and David P. Woodruff. 2013. A Tight Lower Bound for High Frequency Moment Estimation with Small Error.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 16th International
Workshop, APPROX 2013, and 17th International Workshop, RANDOM. Proceedings. 623–638.

[77] Sepideh Mahabadi, David P. Woodruff, and Samson Zhou. 2022. Adaptive Sketches for Robust Regression with

Importance Sampling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM), Amit Chakrabarti and Chaitanya Swamy (Eds.). 31:1–31:21.

[78] Gurmeet Singh Manku and Rajeev Motwani. 2012. Approximate Frequency Counts over Data Streams. Proc. VLDB
Endow. 5, 12 (2012), 1699.

[79] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen Tseng. 2014. Overview of emerging nonvolatile

memory technologies. Nanoscale research letters 9 (2014), 1–33.
[80] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Computation of Frequent and Top-k

Elements in Data Streams. In Database Theory - ICDT 2005, 10th International Conference, Proceedings. 398–412.
[81] Jayadev Misra and David Gries. 1982. Finding Repeated Elements. Sci. Comput. Program. 2, 2 (1982), 143–152.
[82] Robert H. Morris Sr. 1978. Counting Large Numbers of Events in Small Registers. Commun. ACM 21, 10 (1978),

840–842.

[83] Shanmugavelayutham Muthukrishnan et al. 2005. Data streams: Algorithms and applications. Foundations and
Trends® in Theoretical Computer Science 1, 2 (2005), 117–236.

[84] Dushyanth Narayanan, Austin Donnelly, and Antony I. T. Rowstron. 2008. Write off-loading: Practical power

management for enterprise storage. ACM Trans. Storage 4, 3 (2008), 10:1–10:23.
[85] Jelani Nelson and Huacheng Yu. 2022. Optimal Bounds for Approximate Counting. In PODS ’22: International

Conference on Management of Data. ACM, 119–127.

[86] John Nolan. 2003. Stable distributions: models for heavy-tailed data. Birkhauser New York.

[87] Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. 2011. Phase Change Memory: From Devices to
Systems. Morgan & Claypool Publishers.

[88] Eno Thereska, Austin Donnelly, and Dushyanth Narayanan. 2011. Sierra: practical power-proportionality for data

center storage. In European Conference on Computer Systems, Proceedings of the Sixth European conference on Computer
systems, EuroSys. 169–182.

[89] Mikkel Thorup and Yin Zhang. 2004. Tabulation based 4-universal hashing with applications to second moment

estimation. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 615–624.
[90] Stratis Viglas. 2012. Adapting the B + -tree for Asymmetric I/O. In Advances in Databases and Information Systems -

16th East European Conference, ADBIS. Proceedings. 399–412.
[91] Stratis Viglas. 2014. Write-limited sorts and joins for persistent memory. Proc. VLDB Endow. 7, 5 (2014), 413–424.
[92] David P. Woodruff. 2004. Optimal space lower bounds for all frequency moments. In Proceedings of the Fifteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 167–175.
[93] David P. Woodruff and Qin Zhang. 2012. Tight bounds for distributed functional monitoring. In Proceedings of the

44th Symposium on Theory of Computing Conference, STOC. 941–960.
[94] David P. Woodruff and Samson Zhou. 2021. Separations for Estimating Large Frequency Moments on Data Streams.

In 48th International Colloquium on Automata, Languages, and Programming, ICALP. 112:1–112:21.
[95] David P. Woodruff and Samson Zhou. 2021. Tight Bounds for Adversarially Robust Streams and Sliding Windows via

Difference Estimators. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS. 1183–1196.
[96] Cong Xu, Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. 2011. Design implications of memristor-based RRAM

cross-point structures. In Design, Automation and Test in Europe, DATE. 734–739.
[97] Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and Byoung-Gon Yu. 2007. A Low Power

Phase-Change Random Access Memory using a Data-Comparison Write Scheme. In International Symposium on
Circuits and Systems (ISCAS 2007). 3014–3017.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:22 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

[98] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy efficient main memory using phase

change memory technology. In 36th International Symposium on Computer Architecture (ISCA 2009). 14–23.
[99] Qingbo Zhu, Zhifeng Chen, Lin Tan, Yuanyuan Zhou, Kimberly Keeton, and John Wilkes. 2005. Hibernator: helping

disk arrays sleep through the winter. In Proceedings of the 20th ACM Symposium on Operating Systems Principles,
SOSP. 177–190.

[100] Vladimir M. Zolotarev. 1989. One-dimensional stable distributions. Bull. Amer. Math. Soc 20 (1989), 270–277.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:23

A MISSING PROOFS FROM SECTION 3
We note the following corollary of Lemma 2.5.

Lemma 3.4. Let 𝑟 ∈ [𝑅] be fixed. Suppose 𝑗 ∈ 𝐼 (𝑟)
ℓ

and (𝑓𝑗)𝑝 ≥
𝜀2 ·𝐹𝑝 (𝐼 (𝑟)ℓ)
2
7𝛾 log

2 (𝑛𝑚) . Then with probability at

least 9

10
, 𝐻 (𝑟)

ℓ
outputs 𝑓̂𝑗 with(

1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 .

Proof. The proof follows from Lemma 2.5 and the fact that FullSampleAndHold is only run

on the substream induced by 𝐼
(𝑟)
ℓ

. □

Lemma 3.5. Let 𝜀 ∈ (0, 1), Γ𝑖 be a fixed level set and let ℓ := max

(
1, 𝑖 −

⌊
log

𝛾 log(𝑛𝑚)
𝜀2

⌋)
. For a fixed

𝑟 ∈ [𝑅], let E1 be the event that |𝐼 (𝑟)ℓ
| ≤ 32𝑛

2
ℓ and let E2 be the event that 𝐹𝑝 (𝐼 (𝑟)ℓ

) ≤ 32𝐹𝑝

2
ℓ . Then

conditioned on E1 and E2, for each 𝑗 ∈ Γ𝑖 ∩ 𝐼 (𝑟)ℓ
, there exists (𝑗, 𝑓̃𝑗) in 𝑆 (𝑟)𝑖

such that with probability
at least 9

10
, (

1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 .

Proof. We consider casework on whether 𝑖 −
⌊
log

𝛾 log
2 (𝑛𝑚)
𝜀2

⌋
≤ 1 or 𝑖 −

⌊
log

𝛾 log
2 (𝑛𝑚)
𝜀2

⌋
> 1.

This corresponds to whether the frequencies

(
𝑓̂𝑗

)𝑝
in a significant level set are large or not large,

informally speaking. If the frequencies are large, then it suffices to estimate them using our sampling-

based algorithm. However, if the frequencies are not large, then subsamplingmust first be performed

before we can estimate the frequencies using our sampling-based algorithm.

Suppose 𝑖 −
⌊
log

𝛾 log
2 (𝑛𝑚)
𝜀2

⌋
≤ 1, so that

1

2
𝑖 ≥ 𝜀2

𝛾 log
2 (𝑛𝑚) . Since 𝑗 ∈ Γ𝑖 , we have (𝑓𝑗)

𝑝 ∈
[
𝜆 ·𝐹𝑝
2
𝑖 ,

2𝜆𝐹𝑝

2
𝑖

]
and thus

(𝑓𝑗)𝑝 ≥
𝜀2 · 𝐹𝑝

𝛾 log2 (𝑛𝑚)
, 𝑓𝑗 ≥

𝜀2/𝑝 ·
(
𝐹𝑝

)
2/𝑝

𝛾1/𝑝 log1/𝑝 (𝑛𝑚)

Moreover, for ℓ = max

(
1, 𝑖 −

⌊
log

𝛾 log
2 (𝑛𝑚)
𝜀2

⌋)
, we have ℓ = 1, so we consider the outputs by the

Morris counters 𝐻
(𝑟)
1

. By Lemma 3.4, we have that with probability at least
9

10
, 𝐻
(𝑟)
ℓ

outputs 𝑓̂𝑗 such

that (
1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ,

as desired.

For the other case, suppose 𝑖 −
⌊
log

𝛾 log
2 (𝑛𝑚)
𝜀2

⌋
> 1, so that ℓ = 𝑖 −

⌊
log

𝛾 log
2 (𝑛𝑚)
𝜀2

⌋
and 𝑝ℓ = 2

1−ℓ
.

Therefore,

1

2
ℓ
=
𝛾 log2 (𝑛𝑚)

𝜀2
1

2
𝑖
.

Since 𝑗 ∈ Γ𝑖 , we have again (𝑓𝑗)𝑝 ∈
[
𝜆 ·𝐹𝑝
2
𝑖 ,

2𝜆𝐹𝑝

2
𝑖

]
and therefore,

(𝑓𝑗)𝑝 ≥
𝐹𝑝

4 · 2𝑖 ≥
𝜀2

4𝛾 log2 (𝑛𝑚)
𝐹𝑝

2
ℓ
.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:24 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

Conditioning on the event E2, we have 𝐹𝑝 (𝐼 (𝑟)ℓ
) ≤ 32𝐹𝑝

2
ℓ and thus

(𝑓𝑗)𝑝 ≥
𝐹𝑝

4 · 2𝑖 ≥
𝜀2

128𝛾 log2 𝑛
· 𝐹𝑝 (𝐼 (𝑟)ℓ

).

Therefore by Lemma 3.4, we have that with probability at least
9

10
, 𝐻
(𝑟)
ℓ

outputs 𝑓̂𝑗 such that(
1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ,

as desired. □

We now justify the approximation guarantees of our algorithm.

Lemma 3.6. Pr
[���𝐹𝑝 − 𝐹𝑝 ��� ≤ 𝜀 · 𝐹𝑝

]
≥ 2

3
.

Proof. We would like to show that for each level set 𝑖 , we accurately estimate its contribution𝐶𝑖 ,

i.e., we would like to show |𝐶𝑖 −𝐶𝑖 | ≤ 𝜀
8 log(𝑛𝑚) · 𝐹𝑝 for all 𝑖 . For a fixed 𝑖 , recall that𝐶𝑖 =

∑
𝑗∈Γ𝑖 (𝑓𝑗)𝑝 ,

where 𝑗 ∈ Γ𝑖 if (𝑓𝑗)𝑝 ∈
[
𝜆 ·𝐹𝑝
2
𝑖 ,

2𝜆𝐹𝑝

2
𝑖

)
. On the other hand,𝐶𝑖 is a scaled sum of items 𝑗 whose estimated

frequency satisfies

(
𝑓̂𝑗

)𝑝
∈

[
𝜆 ·𝑀
2
𝑖 , 2𝜆 ·𝑀

2
𝑖

]
. Then 𝑗 could be classified into contributing to 𝐶𝑖 even if

𝑗 ∉ Γ𝑖 . Thus we first consider an idealized process where 𝑗 is correctly classified across all level sets

and show that in this idealized process, we achieve a (1 + O (𝜀))-approximation to 𝐹𝑝 . We then

argue that because we choose 𝜆 uniformly at random, then only a small number of coordinates

will be misclassified and so our approximation guarantee will only slightly degrade, but remain a

(1 + 𝜀)-approximation to 𝐹𝑝 .

Idealized process. We first show that in a setting where (𝑓̂𝑗)𝑝 is correctly classified for all 𝑗 ,

then for a fixed level set 𝑖 , we have |𝐶𝑖 −𝐶𝑖 | ≤ 𝜀
8 log(𝑛𝑚) · 𝐹𝑝 with probability 1 − 1

poly(𝑛𝑚) .

For a fixed 𝑟 ∈ [𝑅], let E1 be the event that |𝐼 (𝑟)𝑖
| ≤ 32𝑛

2
𝑖 and let E2 be the event that 𝐹𝑝 (𝐼 (𝑟)𝑖

) ≤ 32𝐹𝑝

2
𝑖 .

Let E3 be the event that(
1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 .

Conditioned on E1, E2, and 𝑗 ∈ 𝐼 (𝑟)
𝑖

, then we have that Pr [E3] ≥ 9

10
, by Lemma 3.5.

We define𝐶
(𝑟)
𝑖

:= 1

𝑝ℓ

∑
(𝑗,𝑓𝑗) ∈ 𝑆

(𝑟)
𝑖

(
𝑓̂𝑗

)𝑝
. Therefore, we have that𝐶𝑖 = median𝑟 ∈[𝑅] 𝐶

(𝑟)
𝑖

, recalling

ℓ = max

(
1, 𝑖 −

⌊
log

𝛾 log(𝑛𝑚)
𝜀2

⌋)
.

Conditioned on E3, we have(
1 − 𝜀

8 log(𝑛𝑚)

)
𝐷
(𝑟)
𝑖
≤ 𝐶

(𝑟)
𝑖
≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
𝐷
(𝑟)
𝑖

,

where we define

𝐷
(𝑟)
𝑖

=
1

𝑝ℓ

∑︁
𝑗∈𝑆 (𝑟)

𝑖
∩Γ𝑖

(𝑓𝑗)𝑝 .

Note that

E
[
𝐷
(𝑟)
𝑖

]
=

1

𝑝ℓ

∑︁
𝑗∈Γ𝑖

𝑝ℓ · (𝑓𝑗)𝑝 = 𝐶𝑖 ,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:25

where we recall that 𝐶𝑖 denotes the contribution of level set Γ𝑖 . We also have

V
[
𝐷
(𝑟)
𝑖

]
≤ 1

(𝑝ℓ)2
∑︁
𝑗∈Γ𝑖

𝑝ℓ · (𝑓𝑗)2𝑝 ≤
𝜀2

2
𝑖−1 · (𝛾2 log(𝑛𝑚))

∑︁
𝑗∈𝐶𝑖

(𝑓𝑗)2𝑝 .

For 𝑗 ∈ Γ𝑖 , we have (𝑓𝑗)2𝑝 ≤
4𝜆2 (𝐹𝑝)2

2
2𝑖 ≤ 16(𝐹𝑝)2

2
2𝑖 , since 𝜆 ≤ 1 and 𝐹𝑝 ≤ 2𝐹𝑝 . Therefore for sufficiently

large 𝛾 ,

V
[
𝐷
(𝑟)
𝑖

]
≤ 𝜀2 |Γ𝑖 |

100𝑝2 · 2𝑖 · log2 (𝑛𝑚)
(𝐹𝑝)2.

Since
|Γ𝑖 |
2
𝑖 ≤ 𝜙𝑖 ≤ 1, then

V
[
𝐷
(𝑟)
𝑖

]
≤ 𝜀2

10000𝑝 log(𝑛𝑚) · (𝐹𝑝)
2.

Thus by Chebyshev’s inequality, we have

Pr
[���𝐷 (𝑟)𝑖

−𝐶𝑖

��� ≥ 𝜀

10𝑝 log(𝑛𝑚) · 𝐹𝑝
]
≤ 1

10

.

Therefore,

Pr
[����𝐶 (𝑟)𝑖

−𝐶𝑖

���� ≤ 𝜀

10𝑝 log(𝑛𝑚) · 𝐹𝑝 | E1 ∧ E2
]
≥ 4

5

.

To analyze the probability of the events E1 and E2 occurring, note that in level ℓ , each item is

sampled with probability 2
−ℓ+1

. Hence,

E
[
|𝐼 (𝑟)
ℓ
|
]
≤ 𝑛

2
ℓ−1 , E

[
𝐹𝑝 (𝐼 (𝑟)ℓ

)
]
≤

𝐹𝑝

2
ℓ − 1 .

Since E1 is the event that |𝐼 (𝑟)ℓ
| ≤ 32𝑛

2
ℓ and E2 is the event that 𝐹𝑝 (𝐼 (𝑟)ℓ

) ≤ 32𝐹𝑝

2
ℓ , then by Markov’s

inequality, we have

Pr [𝐸1] ≥
15

16

, Pr [𝐸2] ≥
15

16

.

By a union bound,

Pr
[����𝐶 (𝑟)𝑖

−𝐶𝑖

���� ≤ 𝜀

10𝑝 log(𝑛𝑚) · 𝐹𝑝
]
≥ 0.676.

Since 𝐶𝑖 = median𝑟 ∈[𝑅] 𝐶
(𝑟)
𝑖

over 𝑅 = O (log log𝑛) independent instances, then we have

Pr
[���𝐶𝑖 −𝐶𝑖

��� ≤ 𝜀

10𝑝 log(𝑛𝑚) · 𝐹𝑝
]
≥ 1 − 1

polylog(𝑛) .

Hence by a union bound over the 𝑝 log(𝑛𝑚) level sets,���𝐹𝑝 − 𝐹𝑝 ��� =
������
𝑝 log(𝑛𝑚)∑︁

𝑖=1

𝐶𝑖 −
𝑝 log(𝑛𝑚)∑︁

𝑖=1

𝐶𝑖 |

������ ≤
𝑝 log(𝑛𝑚)∑︁

𝑖=1

���𝐶𝑖 −𝐶𝑖 |
���

≤
𝑝 log(𝑛𝑚)∑︁

𝑖=1

𝜀

10𝑝 log(𝑛𝑚) · 𝐹𝑝 ≤
𝜀

10

· 𝐹𝑝 .

Randomized boundaries. Given a fixed 𝑟 ∈ [𝑅], we say that an item 𝑗 ∈ [𝑛] is misclassified if

there exists a level set Γ𝑖 such that

(𝑓𝑗)𝑝 ∈
[
𝜆 · 𝐹𝑝
2
𝑖

,
2𝜆 · 𝐹𝑝
2
𝑖

]
,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:26 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

but for the estimate 𝑓̃𝑗 , we have either

(𝑓̃𝑗)𝑝 <
𝜆 · 𝐹𝑝
2
𝑖

or (𝑓̃𝑗)𝑝 ≥
2𝜆 · 𝐹𝑝
2
𝑖

.

By Lemma 3.4, we have that conditioned on E3,(
1 − 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ≤ (𝑓̃𝑗)𝑝 ≤

(
1 + 𝜀

8 log(𝑛𝑚)

)
· (𝑓𝑗)𝑝 ,

independently of the choice of 𝜆. Since 𝜆 ∈
[
1

2
, 1

]
is chosen uniformly at random, then the probability

that 𝑗 ∈ [𝑛] is misclassified is at most
𝜀

2 log(𝑛𝑚) .

Furthermore, if 𝑗 ∈ [𝑛] is misclassified, then it can only be classified into either level set Γ𝑖+1

or level set Γ𝑖−1, because
(
𝑓̂𝑗
𝑝
)
is a

(
1 + 𝜀

8 log(𝑛𝑚)

)
-approximation to (𝑓𝑗)𝑝 . Thus, a misclassified

index induces at most 2(𝑓𝑗)𝑝 additive error to the contribution of level set Γ𝑖 . In expectation across

all 𝑗 ∈ [𝑛], the total additive error due to misclassification is at most 𝐹𝑝 · 𝜀
2 log(𝑛𝑚) . Therefore by

Markov’s inequality for sufficiently large 𝑛 and𝑚, the total additive error due to misclassification

is at most
𝜀
2
· 𝐹𝑝 with probability at least 0.999. Hence in total,

Pr
[���𝐹𝑝 − 𝐹𝑝 ��� ≤ 𝜀 · 𝐹𝑝

]
≥ 2

3

.

□

Putting things together, we give the full guarantees of our 𝐹𝑝 estimation algorithm.

Theorem 1.3. Given a constant 𝑝 ≥ 1, there exists a one-pass insertion-only streaming algorithm
that has ˜O

(
𝑛1−1/𝑝

)
internal state changes, and outputs 𝐹𝑝 such that

Pr
[���𝐹𝑝 − 𝐹𝑝 ��� ≤ 𝜀 · 𝐹𝑝

]
≥ 2

3

.

For 𝑝 ∈ [1, 2), the algorithm uses O
(
log

9+3𝑝 (𝑚𝑛)
𝜀4+4𝑝

)
bits of space, while for 𝑝 > 2, the algorithm uses

˜O
(

1

𝜀4+2𝑝 𝑛
1−2/𝑝

)
space.

Proof. The space bound follows from fact that for 𝑝 ∈ [1, 2), only O
(
log

8+3𝑝 (𝑚𝑛)
𝜀4+4𝑝

)
counters

are stored, while for 𝑝 > 2, only
˜O
(

1

𝜀4+2𝑝 𝑛
1−2/𝑝

)
counters are stored. The internal state can

change each time an item is sampled. Since each item of the stream is sampled with probability

𝜚 =
𝛾2𝑛1−1/𝑝

log
4 (𝑛𝑚)

𝜀2𝑚
, then with high probability, the total number of internal state changes is

𝛾2𝑛1−1/𝑝
log

4 (𝑛𝑚)
𝜀2

.

Finally for correctness, we have by Lemma 3.6, that

Pr
[���𝐹𝑝 − 𝐹𝑝 ��� ≤ 𝜀 · 𝐹𝑝

]
≥ 2

3

.

□

B MISSING PROOFS FROM SECTION 4
Theorem 1.2. Let 𝜀 ∈ (0, 1) be a constant and 𝑝 ≥ 1. Any algorithm that solves the 𝐿𝑝 -heavy

hitters problem with threshold 𝜀 with probability at least 2

3
requires at least 1

2𝜀
𝑛1−1/𝑝 state updates.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:27

Proof. Consider the two input streams S1 and S2 defined as follows. We define the stream S1
to have length 𝑛 on a universe of size 𝑛. Similar to before, we choose a random contiguous block

𝐵 of 𝜀 · 𝑛1/𝑝 stream updates and set them all equal to the same random universe item 𝑖 ∈ [𝑛]. We

randomly choose the remaining 𝑛 − 𝑛1/𝑝 updates in the stream so that they are all distinct and

none of them are equal to 𝑖 . Note that by construction, we have

𝐹𝑝 (S1) = (𝑛 − 𝑛1/𝑝) + (𝑛1/𝑝)𝑝 = 2𝑛 − 𝑛1/𝑝 .
Therefore, the item replicated 𝜀 · 𝑛1/𝑝 times in block 𝐵 is an

𝜀
2
-heavy hitter with respect to 𝐿𝑝 .

We also define the stream S2 to have length 𝑛 on universe 𝑛. As before, we choose S2 to be a

random permutation of [𝑛], so that 𝐹𝑝 (S2) = 𝑛.

For fixed 𝜀 ∈ (0, 1), let A be an algorithm that solves the 𝜀-heavy hitter problem with respect to

𝐿𝑝 , with probability at least
2

3
, while using fewer than

1

2𝜀
𝑛1−1/𝑝 state updates. We claim that with

probability
1

2
, A must have the same internal state before and after 𝐵 in the stream S1.

Observe that each stream update can be viewed as (𝑖, 𝑗) where 𝑖 ∈ [𝑛] is the index of the stream
update and 𝑗 ∈ [𝑛] is the identity of the universe item. For a random universe item 𝑖 ∈ [𝑛], the
probability that a random stream update 𝑗 ∈ [𝑛] alters the state of A is at most

1

2𝜀 ·𝑛1/𝑝 , since

otherwise for a random stream, the expected number of state changes would be larger than
𝑛1−1/𝑝

2𝜀
,

which would be a contradiction. Because both the choice of 𝐵 is uniformly and the element 𝑗 ∈ [𝑛]
that is repeated 𝜀 ·𝑛1/𝑝 times are chosen uniformly at random, then the expected number of changes

of the streaming algorithm on the block 𝐵 is at most
𝜀 ·𝑛1/𝑝

2𝜀 ·𝑛1/𝑝 = 1

2
. Hence, the streaming algorithm’s

state is the same before and after the block 𝐵, with probability at least
1

2
.

However, the same argument applies to S2. Thus with probability at least
1

2
, the streaming

algorithm cannot distinguish between S1 and S2 if its internal state only changes fewer than
𝑛1−1/𝑝

2𝜀

times. Therefore, any algorithm that solves the 𝐿𝑝-heavy hitter problem with threshold 𝜀 with

probability at least
2

3
requires at least

1

2𝜀
𝑛1−1/𝑝 state updates. □

C COMPARISONWITH PREVIOUS ALGORITHMS
There are a number of differences between our algorithm and the sample-and-hold approach of

[47]. Firstly, once [47] samples an item, a counter will be initialized and maintained indefinitely

for that item. By comparison, our algorithm will sample more items than the total space allocated

to the algorithm, so we must carefully delete a number of sampled items. In particular, it is NOT

correct to delete the sampled items with the largest counter. Secondly, [47] updates a counter each

time a subsequent instance of the sample arrives. Because our paper is focused on a small number

of internal state changes, our algorithm cannot afford such a large number of updates. Instead, we

maintain approximate counters that sacrifice accuracy in exchange for a smaller number of internal

state changes. We show that the loss in accuracy can be tolerated in choosing which samples to

delete.

Another possible point of comparison is the precision sampling technique of [6], which is a

linear sketch, so although it has an advantage of being able to handle insertion-deletion streams,

unfortunately it must also be updated for each stream element arrival, resulting in a linear number

of internal state changes. Similarly, a number of popular heavy-hitter algorithms such as Misra-

Gries [81], CountMin [43], CountSketch [36], and SpaceSaving [80] can only achieve a linear

number of internal state changes. By comparison, our sample-and-hold approach results in a

sublinear number of internal state changes.

Finally, several previous algorithms are also based on sampling a number of items throughout

the stream, temporarily maintaining counters for those items, and then only keeping the items

that are globally heavy, e.g., [29, 31]. It is known that these algorithms suffer a bottleneck at 𝑝 = 3,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:28 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

i.e., they cannot identify the 𝐿𝑝 heavy-hitters for 𝑝 < 3. The following counterexample shows

why these algorithms cannot identify the 𝐿2 heavy-hitters and illustrates a fundamental difference

between our algorithms.

Suppose the stream consists of

√
𝑛 blocks of

√
𝑛 updates. Among these updates, there are

√
𝑛

items with frequency 𝑛1/4, which we call pseudo-heavy. There is a single item with frequency

√
𝑛,

which is the heavy-hitter. Then the remaining items each have frequency 1 and are called light.

Note that the second moment of the stream is Θ(𝑛), so that only the item with frequency

√
𝑛 is the

heavy-hitter, for constant 𝜀 < 1.

Let 𝑆 = {1, 2, . . . , 𝑛1/4} and suppose for each 𝑤 ∈ 𝑆 , block 𝑤 is a special block that consists of

𝑛1/4 different items, each with frequency 𝑛1/4. Let 𝑇 = 𝑥 + 𝑆 , for 𝑥 = {1, 2, . . . , 𝑛1/8}, so that 𝑇

consists of the 𝑛1/8 blocks after each special block. Each block in 𝑇 consists of 𝑛1/8 instances of the
heavy-hitter, along with

√
𝑛 − 𝑛1/8 light items. The remaining blocks all consist of light items.

Observe that without dynamic maintenance of counters for different scales, in each special block,

we will sample polylog(𝑛) pseudo-heavy items whose counters each reach about
˜O
(
𝑛1/4

)
. But then

each time a heavy-hitter is sampled, its count will not exceed the pseudo-heavy item before the

number of counters before it is deleted, because it only has 𝑛1/8 instances in its block. Thus with

high probability, the heavy-hitter will never be found, and this is an issue with previously existing

sampling-based algorithms, e.g., [29, 31].

Our algorithm overcomes this challenge by only performing maintenance on counters that have

been initialized for a similar amount of time. Thus in the previous example, the counters for the

heavy-hitters will not be deleted because they are not compared to the counters for the pseudo-

heavy items until the heavy-hitters have sufficiently high frequency. By comparison, existing

algorithms will retain counters for the pseudo-heavy items, because they locally look “larger”, at

the expense of the true heavy-hitter.

Reference State Changes Setting

[81] O (𝑚) 𝐿1-Heavy Hitters Only

[43] O (𝑚) 𝐿1-Heavy Hitters Only

[80] O (𝑚) 𝐿1-Heavy Hitters Only

[36] O (𝑚) 𝐿2-Heavy Hitters

Our Work
˜O
(
𝑛1−2/𝑝

)
𝐿2-Heavy Hitters

Table 1. Summary of our results compared to existing results. We emphasize that reporting 𝐿2 heavy-hitters
includes the 𝐿1 heavy-hitters. All algorithms use near-optimal space.

Received June 2023; revised August 2023; accepted September 2023

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

	Abstract
	1 Introduction
	1.1 Motivation for Minimizing State Changes
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Preliminaries

	2 Heavy Hitters
	2.1 Sample and Hold
	2.2 Full Sample and Hold

	3 Fp Estimation
	3.1 Fp Estimation, p<1
	3.2 Fp Estimation, p>1
	3.3 Entropy Estimation

	4 Lower Bound
	Acknowledgments
	References
	A Missing Proofs from [sec:sec:fp]Section 3
	B Missing Proofs from [sec:sec:lab]Section 4
	C Comparison with Previous Algorithms

