Streaming Algorithms with Few State Changes

RAJESH JAYARAM, Google Research, USA
DAVID P. WOODRUFF, Carnegie Mellon University and Google Research, USA
SAMSON ZHOU, Texas A&M University, USA

In this paper, we study streaming algorithms that minimize the number of changes made to their internal state
(i.e., memory contents). While the design of streaming algorithms typically focuses on minimizing space and
update time, these metrics fail to capture the asymmetric costs, inherent in modern hardware and database
systems, of reading versus writing to memory. In fact, most streaming algorithms write to their memory on
every update, which is undesirable when writing is significantly more expensive than reading. This raises the
question of whether streaming algorithms with small space and number of memory writes are possible.

We first demonstrate that, for the fundamental F, moment estimation problem with p > 1, any stream-
ing algorithm that achieves a constant factor approximation must make Q(n'~1/P) internal state changes,
regardless of how much space it uses. Perhaps surprisingly, we show that this lower bound can be matched by
an algorithm which also has near-optimal space complexity. Specifically, we give a (1 + ¢)-approximation
algorithm for F, moment estimation that use a near-optimal O¢(n'~1/P) number of state changes, while

simultaneously achieving near-optimal space, i.e., for p € [1, 2), our algorithm uses poly (Iog n, %) bits of space

for, while for p > 2, the algorithm uses 5g(n1’1/ P) space. We similarly design streaming algorithms that are
simultaneously near-optimal in both space complexity and the number of state changes for the heavy-hitters
problem, sparse support recovery, and entropy estimation. Our results demonstrate that an optimal number of
state changes can be achieved without sacrificing space complexity.

CCS Concepts: » Theory of computation — Streaming, sublinear and near linear time algorithms.
Additional Key Words and Phrases: streaming algorithms, memory states, moment estimation

ACM Reference Format:
Rajesh Jayaram, David P. Woodruff, and Samson Zhou. 2024. Streaming Algorithms with Few State Changes.
Proc. ACM Manag. Data 2, 2 (PODS), Article 82 (May 2024), 28 pages. https://doi.org/10.1145/3651145

1 INTRODUCTION

The streaming model of computation is a central paradigm for computing statistics for datasets that
are too large to store. Examples of such datasets include internet traffic logs, IoT sensor networks,
financial transaction data, database logs, and scientific data streams (such as huge experiments
in particle physics, genomics, and astronomy). In the one-pass streaming model, updates to an
underlying dataset are processed by an algorithm one at a time, and the goal is to approximate,
collect, or compute some statistic of the dataset while using space that is sublinear in the size of
the dataset (see [10, 83] for surveys).

Formally, an insertion-only data stream is modeled by a sequence of updates uy, . . ., un,, each of
the form u; € [n] for t € [m], where [n] = {1,..., n} is the universe size. The updates implicitly
define an underlying frequency vector f € R" by f; = |{t | u; = i}|, so that the value of each

Authors’ addresses: Rajesh Jayaram, Google Research, New York City, NY, USA, rkjayaram@google.com; David P. Woodruft,
Carnegie Mellon University and Google Research, Pittsburgh, PA, USA, dwoodruf@cs.cmu.edu; Samson Zhou, Texas A&M
University, College Station, TX, USA, samsonzhou@gmail.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.
BY

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/5-ART82
https://doi.org/10.1145/3651145

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

https://doi.org/10.1145/3651145
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3651145

82:2 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

coordinate of the frequency vector is the number of occurrences of the coordinate identity in the
data stream.

One of the most fundamental problems in the streaming literature is to compute a (1 + ¢)
approximation of the F, moment, defined by F,,(f) = () +...+ (fp)?, where £ > 0 is an accuracy
parameter. The frequency moment estimation problem has been the focus of more than two decades
of study in the streaming model [2, 5, 12, 15, 17, 32, 50, 55, 58, 60, 62, 68, 74, 76, 92, 94, 95]. In
particular, F,-estimation is used for p = 0.25 and p = 0.5 in mining tabular data [42], for p = 1in
network traffic monitoring [49] and dynamic earth-mover distance approximation [54], and for
p = 2 in estimating join and self-join sizes [4] and in detecting network anomalies [89].

Another fundamental streaming problem is to compute L,-heavy hitters: given a threshold
parameter £ € (0,1], the L,-heavy hitters problem is to output a list L containing all j € [n]
such that f; > ¢ - [|f|l, and no j € [n] with f; < £ - ||f|l,. The heavy-hitter problem is used for
answering iceberg queries [48] in database systems, finding elephant flows and spam prevention
in network traffic monitoring [14], and perhaps has an even more extensive history than the F,
moment estimation problem [19-22, 27, 36, 43, 56, 57, 70, 71, 75, 78, 80, 81].

The primary goal of algorithm design for the streaming model is to minimize the space and
update time of the algorithm. However, the generic per-update processing time fails to capture
the nuanced reality of many modern database and hardware systems, where the type of updates
which are made on a time step matter significantly for the real-world performance of the algorithm.
Specifically, it is typically the case that updates which only require reads to the memory contents of
the algorithm are significantly faster than updates which also modify the memory of the algorithm,
i.e., writes. Thus, while many streaming problems are well understood in terms of their space and
update time, little is known about their write complexity: namely, the number of state changes they
make over the course of the stream.

In this paper, we propose the number of state changes of a streaming algorithm as a complexity-
theoretic parameter of interest, and make the case for its importance as a central object of study, in
addition to the space and update-time of an algorithm. While there is significant practical motivation
for algorithms which update their internal state infrequently (see Section 1.1 for a discussion), from
a theoretical perspective it is not clear that having few state changes is even possible. Specifically,
most known streaming algorithms write to their memory contents on every update of the stream.
Moreover, even if algorithms using fewer state changes existed, such algorithms would not be
useful if they required significantly more space than prior algorithms (which do not minimize the
number of state changes). Thus, we address the following question:

Is it possible to design streaming algorithms which make few updates to their internal
state in addition to being space efficient?

Our main contribution is to answer this question positively. Specifically, we demonstrate that
algorithms exist which are simultaneously near-optimal in their space and state-change complexity.
This demonstrates further that we do not need to pay extra in the space complexity to achieve
algorithms with few state changes.

1.1 Motivation for Minimizing State Changes

Asymmetric read/write costs of non-volatile memory. The primary motivation of minimizing state
changes arises from the simple observation that different actions performed over the same allocated
memory may have different costs. For example, non-volatile memory (NVM) is low latency memory
that can be retained when power to the system is turned off and therefore can dramatically increase
system performance. Although NVM offers many benefits over dynamic random access memory
(DRAM), writing to NVM is significantly more costly than reading from NVM, incurring higher

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:3

energy costs, higher latency, and suffering lower per-chip bandwidth [18]. In fact, [79] noted that
an NVM cell generally wears out between 10® and 10'? writes. Hence, in contrast to DRAM, NVM
has a significant asymmetry between read and write operation costs [3, 8, 44, 45, 69, 87, 96], which
has been the focus of several works in system design [39, 72, 97, 98] and database data structure
design [37, 90, 91].

One specific type of non-volatile memory is NAND flash memory, which is an electronic memory
storage unit that can be electrically erased, written, and read in blocks that are generally significantly
smaller than the entire device. NAND flash memory can be found in a number of common devices,
such as smartphones, USB flash drives, memory cards, or solid-state drives. However, [13] notes
that, at the time, individual NAND flash memory cells would wear out after 10 to 10° write/erase
operations. Indeed, Apple notes that “all iOS devices and some macOS devices use a solid-state
drive (SSD) for permanent storage” and recommends minimizing disk writes to optimize device
performance [7]. Although a line of work considered wear leveling to limit memory wear [34, 35, 59],
they did not immediately produce high-probability wear guarantees, thus motivating work that
focused on hashing algorithms that choose which memory cell to write/overwrite each item,
depending on the previous number of writes already incurred by that cell [46]. Subsequently, the
development of specific system software, e.g., the garbage collector, virtual memory manager, or
virtual machine hypervisor, automatically handled balancing write operations across memory cells
over long time horizons, so that an individual cell would not fail much faster than the overall unit.
Therefore, subsequent works focused on minimizing the overall number of write operations [18] to
the device rather than minimizing the number of write operations to a specific cell.

Asymmetric read/write costs of large data storage systems. Power consumption is a major consid-
eration for large enterprise data storage subsystems, which can often impact the density of servers
and the total cost of ownership [38, 99]. In [11], it was observed that given steady hit ratios of
read operations, write operations will eventually dominate file system performance and thus be
the main source of power consumption. Indeed, [84, 88] noted that there are substantial periods
of time where all the traffic in the request stream to the Microsoft data storage centers servicing
applications such as Hotmail and Messenger is write traffic.

In addition, for distributed data systems that each serve a number of clients, even when one server
is updated, they must periodically notify the other servers about their changes to maintain some
level of synchronization across the entire system. Therefore, write operations to a single server can
still induce expensive overheads from communication costs between servers, and thus, reducing
the number of writes has long been a goal in disk arrays, distributed systems, and cache-coherent
multiprocessors.

Challenges with deterministic algorithms. From a theoretical perspective, minimizing the number
of internal state changes immediately rules out a large class of deterministic streaming algorithms.
For example, counting the stream length can be performed deterministically by simply repeat-
edly updating a counter over the course of a stream. Similarly, L,-heavy hitters can be tracked
deterministically and in sublinear space using the well-known Misra-Gries data structure [81].
Another example is the common merge-and-reduce technique for clustering in the streaming
model, which can be implemented deterministically if the coreset construction in each reduce step
is deterministic. Other problems such as maintaining Frequent Directions [51] or L, regression
in the row arrival model [23, 25] also admit highly non-trivial deterministic algorithms that use
sublinear space. However, these approaches all update the algorithm upon each stream update and
thus seem inherently at odds with achieving a sublinear number of internal state changes over the
course of the stream.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:4 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

Relationship with sampling. On the other hand, sampling-based algorithms inherently seem
useful for minimizing the number of internal state changes. There are a number of problems that
admit sublinear-size coresets based on importance sampling, such as clustering [24, 26, 41], graph
sparsification [1, 28], linear regression [40], and low-rank approximation [23]. These algorithms
generally assign some value quantifying the “importance” of each stream update as it arrives and
then sample the update with probability proportional to the importance. Thus if there are few
additional operations, then the number of internal state changes can be as small as the overall
data structure maintained by the streaming algorithm. On the other hand, it is not known that
space-optimal sampling algorithms exist for a number of other problems that admit sublinear-space
streaming algorithms, such as F, estimation, L,-heavy hitters, distinct elements, and entropy esti-
mation. Hence, a natural question is to ask whether there exist space-optimal streaming algorithms
for all of these problems that also incur a small number of internal state changes.

1.2 Our Contributions

In this work, we initiate the study of streaming algorithms which minimize state changes, and

demonstrate the existence of algorithms which achieve optimal or near-optimal space bounds while

simultaneously achieving an optimal or near optimal number of internal state changes.
Heavy-hitters. We first consider the L,-heavy hitters problem, where the goal is to output

estimates E to the frequency f; of every item j € [n] such that)ﬁ - ﬁ| < 5 - lIfllp, given an input

accuracy parameter ¢ € (0, 1). Note that under such a guarantee, along with a 2-approximation of

|If1lp, we can automatically output a list that contains all j € [n] such that f; > € || f||,, but also no
index j € [n] such that f; < £ - || fI|,. We defer discussion of how to obtain a 2-approximation to

|If1l, for the moment and instead focus on the additive error guarantee for all f; Our main result
for the heavy hitters problem is the following:

THEOREM 1.1. Given a constant p > 1, there exists a one-pass insertion-only streaming algorithm
that has O (nl_l/P) - poly (log(nm), %) internal state changes, and solves the L,-heavy hitter problem,

i.e., it outputs a frequency vector f such that

Pe[IF - fllo < 5 11| = 5.

log®*®P (mn)

For p € [1,2), the algorithm uses O (T) bits of space, while for p > 2, the algorithm uses
0 (E“LP nl_z/l’) bits of space.

We next give a lower bound showing that any approximation algorithm achieving a (2 — Q(1))-
approximation to F, requires Q(n'~Y/P) state updates.

THEOREM 1.2. Let ¢ € (0,1) be a constant and p > 1. Any algorithm that solves the L,-heavy
hitters problem with threshold ¢ with probability at least % requires at least énl_l/f’ state updates.

Together, Theorem 1.2 and Theorem 1.1 show that we achieve a near-optimal number of internal
state changes. Furthermore, [9, 67] showed that for any p > 0, the L,-heavy hitters problem
requires (gip log n) words of space, while [12, 52, 64] showed that for p > 2 and even for constant

¢ > 0, the L,-heavy hitters problem requires Q (n'~%/?) words of space. Therefore, Theorem 1.1 is
near-optimal for all p > 1, for both the number of internal state updates and the memory usage.

Moment estimation. We then consider the F;, moment estimation problem, where the goal is to
output an estimate of F,(f) = (f{)? +...+ (fz)? of a frequency vector f € R" implicitly defined
through an insertion-only stream. Our main result is the following:

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:5

THEOREM 1.3. Given a constant p > 1, there exists a one-pass insertion-only streaming algorithm
that has O (n'~Y/?) internal state changes, and outputs F, such that

_ 2
Pr ”Fp —Fp(<e B2 =
log®**P (mn)

For p € [1,2), the algorithm uses O (T) bits of space, while for p > 2, the algorithm uses
10) (Eqizp nl‘z/l’) space.

We next give a lower bound showing that any approximation algorithm achieving (2 — Q(1))-
approximation to F, requires Q(n'~V/P) state updates.

THEOREM 1.4. Let ¢ € (0,1) be a constant and p > 1. Any algorithm that achieves a 2 — ¢
approximation to F,, with probability at least % requires at least %nl_l/f’ state updates.

Theorem 1.4 shows that our algorithm in Theorem 1.3 achieves a near-optimal number of internal
state changes. Moreover, it is known that any one-pass insertion-only streaming algorithm that

achieves (1 + ¢)-approximation to the F, moment estimation problem requires Q (ﬁ + log n) bits

of space [5, 92] for p € [1,2] and Q (Eiznl’z/f’) bits of space [94] for p > 2, and thus Theorem 1.3 is

also near-optimal in terms of space for all p > 1.

1.3 Technical Overview

Heavy-hitters. We first describe our algorithm for L,-heavy hitters using near-optimal space
and a near-optimal number of internal state changes. For ease of discussion, let us assume that
F, = ©,(n), so that the goal becomes to estimate the frequencies of the coordinates j € [n] with
fize- n/p, given an input accuracy parameter ¢ € (0, 1).

We first define a subroutine SAMPLEANDHOLD based on sampling a number of items into a
reservoir Q. As we observe updates in the stream, we sometimes update the contents of Q and
sometimes observe that some stream updates are to coordinates that are being held by the reservoir.
For the items that have a large number of stream updates while they are being held by the reservoir,
we create separate counters for these items.

We first describe the intuition for p > 2. We create a reservoir Q of size ¥ = 55(711_2/1’) and
m. Note that at

some point we may attempt to sample an item of the stream into the reservoir Q when the latter
is already full. In this case, we choose a uniformly random item of Q to be replaced by the item
corresponding to the stream update.

Our algorithm also checks each stream update to see if it matches an item in the reservoir;
if there is a match, we create an explicit counter tracking the frequency of the item. In other
words, if j € [n] arrives as a stream update and j € Q is in the reservoir, then our algorithm
SaMPLEANDHOLD creates a separate counter for j to count the number of subsequent instances of
Jj-

Now for a heavy hitter j € [n], we have f; > ¢ - n'/? and thus since the sampling probability is
then we can show that j will likely be sampled into our reservoir Q at some point. In fact,

sample each item of the stream into the reservoir Q with probability roughly

1
6. (n17)’ v
since the reservoir Q has size k = O, (n'~%/?), then in expectation, j will be retained by the reservoir
for roughly Q,(n!~'/P) stream updates before it is possibly replaced by some other item. Moreover,
since f; > ¢~ n'/?_ then we should expect another instance of j to arrive in Q, (n'"1/P) additional
stream updates, where the expectation is taken over the randomness of the sampled positions,
under the assumption that F, = ©(n) and thus the stream length is at most O (n). Therefore, our

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:6 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

algorithm will create a counter for tracking j before j is removed from the reservoir Q. Furthermore,
we can show that the counter for j is likely created sufficiently early in the stream to provide
a (1 + ¢)-approximation to the frequency f; of j. Then to decrease the number of internal state
updates, we can use Morris counters to approximate the frequency of subsequent updates for each
tracked item.

Counter maintenance for heavy-hitters. The main issue with this approach is that too many
counters can be created. As a simple example, consider when all items of each coordinate arrive
together, one item after the other. Although this is a simple case for counting heavy-hitters, our
algorithm will create counters for almost any item that it samples, and although our reservoir uses
space O, (n'~%/?), the total number of items sampled over the course of the stream is O, (n!~'/?)
and thus the number of created counters can also be 55(711_1/ P), which would be too much space.
We thus create an additional mechanism to remove half of the counters each time the number of
counters becomes too large, i.e., exceeds Og(nl_z/). In particular, we remove the counters with the
smallest tracked frequencies, which overcomes per-counter analysis in similar algorithms based on
sampling [29, 31].

1

Since our algorithm samples each item of the stream of length O (n) with probability RCIOR

then we expect our reservoir to have Q.(n'~1/?) internal state changes. On the other hand, the
counters can increment each time another instance of the tracked item arrives. To that end, we
replace each counter with an approximate counter that has a small number of internal state changes.
In particular, by using Morris counters, the number of internal state changes for each counter is
poly (log n, % log %) times over the course of the stream. Therefore, the total number of internal

state changes is Q,(n'~1/?) while the total space used is O, (n!~2/?).
For p € [1,2), we instead give the reservoir Q a total of k = poly,(log n) size, so that the total
space is poly, (log n) while the total number of internal state changes remains Q. (n'~1/?).

Removal of moment assumptions. To remove the assumption that F, = 5g(n), we note that if
each element of the stream of length m is sampled with probability ¢ < 1, then the expected
number of sampled items is gm, but the p-th power of the expected number of sampled items is
(gm)?P. Although this is not the p-th moment of the stream, we nevertheless can expect the F,
moment of the stream to decrease at a faster rate than the number of sampled items. Thus we
create L = O (log(nm)) substreams so that for each ¢ € [L], we subsample each stream update [m]
with probability 2,1—,1 For one of these substreams J;, we will need have F,(J;) = (i(n) We show
that we can estimate the frequency of the heavy-hitters in the substream J, and then rescale by the
inverse sampling rate to achieve a (1 + ¢)-approximation to the frequency of the heavy-hitters in
the original stream.

It then remains to identify the correct stream ¢ such that F,(J,) = (i(n) A natural approach
would be to approximate the moment of each substream, to identify such a correct stream. However,
it turns out that our F, moment estimation algorithm will ultimately use our heavy hitter algorithm
as a subroutine. Furthermore, other F, moment estimation algorithms, e.g., [5, 50, 55, 74], use
a number of internal state changes that is linear in the stream length and it is unclear how to
adapt these algorithms to decrease the number of internal state changes. Instead, we note that
with high probability, the estimated frequency of each heavy-hitter by our algorithm can only
be an underestimate. This is because if we initialize counters throughout the stream to track the
heavy hitters, then our counters might miss some stream updates to the heavy hitters, but it is not
possible to overcount the frequency of each heavy hitter, i.e., we cannot count stream updates that
do not exist. Moreover, this statement is still true, up to a (1 + ¢) faactor, when we use approximate

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:7

counters. Therefore, it suffices to use the maximum estimation for the frequency for each heavy
hitter, across all the substreams. We can then use standard probability boosting techniques to
simultaneously accurately estimate all L,-heavy hitters.

Moment estimation. Given our algorithm for finding (1 + ¢)-approximations to the frequencies of
Lp-heavy hitters, we now adapt a standard subsampling framework [58] to reduce the F, approxi-
mation problem to the problem of finding the L,-heavy hitters. The framework has subsequently
been used in a number of different applications, e.g., [16, 30, 33, 73, 77, 93, 94] and has the following
intuition.

For ease of discussion, consider the level set I} consisting of the coordinates j € [n] such that
fi€ (o7 T] for each i, though we remark that for technical reasons, we shall ultimately define

the level sets in a slightly different manner. Because the level sets partition the universe [n], then
if we define the contribution C; := } jcr, (fx)? of a level set I} to be the sum of the contributions
of all their coordinates, then we can decompose the moment F, into the sum of the contributions
of the level sets, Fj, = >.;: Ci. Moreover, it suffices to accurately estimate the contributions of the

“significant” level sets, i.e., the level sets whose contribution is at least a poly (E) fraction of

the F, moment, and crudely estimate the contributions of the insignificant level sets.

[58] observed that the contributions of the significant level sets can be estimated by approxi-
mating the frequencies of the heavy hitters for substreams induced by subsampling the universe
at exponentially smaller rates. We emphasize that whereas we previously subsampled updates
of the stream [m] for heavy hitters, we now subsample elements of the universe [n]. That is, we
create L = O (log(nm)) substreams so that for each ¢ € [L], we subsample each element of the
universe [n] into the substream with probability . For example, a single item with frequency
F;/P

2[1-
will be a heavy hitter in the original stream, which is also the stream induced by £ = 1. On
the other hand, if there are n items with frequency (F,/ n)'/?_ then they will be L,-heavy hitters
at a subsampling level where in expectation, there are roughly © () coordinates of the universe
that survive the subsampling. Then [58] notes that (1 + ¢)-approximations to the contributions
of the surviving heavy-hitters can then be rescaled inversely by the sampling rate to obtain good
approximations of the contributions of each significant level set. The same procedure also achieves
crude approximations for the contributions of insignificant level sets, which overall suffices for a
(1 + ¢)-approximation to the F, moment.

The key advantage in adapting this framework over other F), estimation algorithms, e.g., [5,
50, 55, 74] is that we can then use our heavy hitter algorithm FuLLSAMPLEANDHOLD to provide
(1 + ¢)-approximations to the heavy hitters in each substream while guaranteeing a small number
of internal state changes.

1.4 Preliminaries

We use [n] to denote the set {1,2,...,n} for an integer n > 0. We write poly(n) to denote
a fixed univariate polynomial in n and similarly, poly(ny,...,nt) to denote a fixed multivari-
ate polynomial in ny, ..., ng. We use 10) (f(ny,...,ng)) for a function f(ny,...,n) to denote
f(ny,...,nx) - poly(log f(ny,...,nk)). For a vector f € R”, we use f; for i € [n] to denote the i-th
coordinate of f.

Model. In our setting, an insertion-only stream S consists of a sequence of updates uy, . .., . In
general, we do not require m to be known in advance, though in some cases, we achieve algorithmic
improvements when a constant-factor upper bound on m is known in advance; we explicitly clarify
the setting in these cases. For each t € [m], we have u; € [n], where without loss of generality, we

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:8 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

use [n] to represent an upper bound on the universe, which we assume to be known in advance. The
stream S defines a frequency vector f € R" by f; = |{t | u; = i}|, so that for each i € [n], the i-th
value of the frequency vector S is how often i appears in the data stream S. Observe that through a
simple reduction, this model suffices to capture the more general case where some coordinate is
increased by some amount in {1, ..., M} for some integer M > 0 in each update.

For a fixed algorithm A, suppose that at each time ¢ € [m], the algorithm A maintains a memory
state o;. Let |o;| denote the size of the memory state, in words of space, where each word of space
is assumed to used O (log n + log m) bits of space. We say the algorithm A uses s words of space
or equivalently, O (slogn +logm) bits of space, if max;c[pn |0:| < s. For each t € [m], let X; be
the indicator random variable for whether the algorithm A changed its memory state at time t.
That is, X; = 1if 6; # 0,—1 and X; = 0 if o; = 0,1, where we use the convention oy = 0. Then we
say the total number of internal changes by the algorithm A is }}%; x;.

We also require the following definition of Morris counters to provide approximate counting.

THEOREM 1.5 (MORRIS COUNTERS). [82, 85] There exists an insertion-only streaming algorithm
(Morris counter) that uses space (in bits) O (loglogn + log % +loglog (—13) and outputs a (1 + ¢)-
approximation to the frequency of an item i, with probability at least 1 — 8. Moreover, the algorithm is

1

updated at most poly (log n, < log %) times over the course of the stream.

2 HEAVY HITTERS

In this section, we first describe our algorithm for identifying and accurately approximating the
frequencies of the L,-heavy hitters.

2.1 Sample and Hold

A crucial subroutine for our F,, estimation algorithm is the accurate estimation of heavy hitters. In
this section, we first describe such a subroutine SAMPLEANDHOLD for approximating the frequencies
of the L,-heavy hitters under the assumption that F, is not too large.

We now describe our algorithm for the case p > 2. Our algorithm creates a reservoir Q of size
k = O,(n'"2/) and samples each item of the stream into the reservoir Q with probability roughly
m. If the reservoir Q is full when an item of the stream is sampled, then a uniformly random
item of Q is replaced with the stream update. Thus if the stream has length n, then we will incur
5,;(}11’2/1’) internal state changes due to the sampling. For stream length m, we set the sampling
probability to be roughly W

Our algorithm also checks each stream update to see if it matches an item in the reservoir and
creates a counter for the item if there is a match. In other words, if j € [n] arrives as a stream update
and j € Q is in the reservoir, then our algorithm SAMPLEANDHOLD creates a separate counter for j
to count the number of subsequent instances of j. In addition, we remove half of the counters each
time the number of counters becomes too large, i.e., exceeds 5g(n1_2/f’). In particular, we remove
the counters with the smallest tracked frequencies. To reduce the number of internal state changes,
we use Morris counters rather than exact counters for each item.

For p € [1,2), we set k = poly, (log n) to be the size of the reservoir Q, so that the total space is
poly, (log n) while the total number of internal state changes remains Q, (n'~'/?). Our algorithm
SampLEANDHOLD appears in Algorithm 1.

We first analyze how many additional counters are available at a time when a heavy hitter j is
sampled.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:9

Algorithm 1 SaMpLEANDHOLD

Input: Stream sy, ..., s, of items from [n], accuracy parameter ¢ € (0,1), p > 1

Output: Accurate estimation of an L, heavy hitter frequency
log!*% (mn)

1 k] — O (&T)’ y « 2%

2: if m > n then

2p1-1/p 1ot 1-2/p 1ol 1+3P
y°n og” (nm) n og (mn)
3: 0 «— — Ky «— Q) (T

4: else if m < n then

y2m'=VP log* (nm) ml-2/p log“+3p(mn))

5: 0 — Zm k2 — © (D

6 K xkpifpe[1,2),k —xpifp > 2

7: k ~ Uni([200pk log®(nm), 202px log®(nm)])
8: fort =1tot =mdo

9: qi < 0 forie [k]

10: if there is a Morris counter for s; then

11: Update the Morris counter

12: else if there exists i € [k] with g; = s; then >item is in the reservoir

13: Start a Morris counter for s; >hold a counter for the item

14: else

15: Pick p; € [0, 1] uniformly at random

16: if y; < o then >with probability o

17: Pick i € [k] uniformly at random

18: qi < St

19: if there exist k active Morris counters initialized between time ¢ — 27 and t — 2**! for integer
z > 0 then >too many counters

20: k « Uni([200pk log?(nm), 202pk log?(nm)])

21: Retain the % counters initialized between time ¢ — 27 and ¢t — 2**! for integer z > 0 with

largest approximate frequency

22: return the estimated frequencies by the Morris counters

2
& Fp

W andlet]: {te [m] | St =j}.Let

Lemma 2.1. Let j € [n] be an item with (f;)f >

k € [200px log®(nm), 202pk log?(nm)] be chosen uniformly at random. Let v be the last time that j
is sampled by the algorithm. Then with probability at least 1 — , there are at most k — k
counters at time v.

1
50p log? (nm)

Proor. Consider any fixing of the random samples of the algorithm and the random choices
of k, before time v. Let Ty < T, < ... be the sequence of times when the counters are reset.
Note that since k € [200p« log®(nm), 202pk log?(nm)], then each time the counters are reset,
between [100px?(nm), 101pk log?(nm)] counters are newly allocated. Note that the sequence could
be empty, in which case our claim is vacuously true. For each T;, consider the times 7; at which
additional counters would be created after T; is fixed if there were no limit to the number of counters.
Moreover, let u; be the choice of k at time T;. Note that the first 100px logz(nm) of the times in 7;
are independent of the choice of ;, while latter times in 7; may not actually be sampled due to the
choice of u;. Let T,, be the first time for which which v appears in the first 101pk log?(nm) terms of
the 7,,. Then with probability at most m, the choice of u,, will be within x indices after v

in the sequence 7;. On the other hand, the choice of u,, could cause T,,;; to be before v, e.g., if v is
the (101pk log®(nm))-th term and u,, = 100k log®(nm), in which case the same argument shows

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:10 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

that with probability at most , the choice of u,,,; will be within x indices after v in the

-1
100p log? (mn)
sequence 7y,+1. Note that since u,, + 41 > 200px?(nm), then v must appear before T,,42. Therefore
by a union bound, with probability at least 1 — le(nm), there are at most k — k counters at time
0. [m]

Accurate estimation of the heavy-hitter frequencies can be used in a number of applications
such as moment estimation, L, sampling [6, 61, 63], cascaded norms [65, 66], etc. We next upper
bound how many additional counters are created between the time a heavy hitter j is sampled
until it becomes too large to delete.

nlog’ (nm) £Fp

=).Letj € [n] be an item with (f;)? T o o)
Let J = {t € [m] | s; = j} and letu €] be chosen uniformly at random and suppose that the

algorithm samples j at time u. Then for p € [1, 2], over the choice of u and the internal randomness of
log!**? (mn)

the algorithm, the probability that fewer than k; = O (@*T) new counters are generated after

Lemma 2.2. Supposem > nandF, = O (

S4~Fp 1
210y log? (nm) 100p log(nm) *
Similarly for p € [1,2), over the choice of u and the internal randomness of the algorithm, the

1-2/p 11+3p
probability that fewer than k; = O (%) new counters are generated after u and before

u and before additional instances of j arrive is at most 1 —

4
&*-F, s
L additional instances of j arrive is at most 1 —

1
219y log? (nm) 100p log(nm)

Proor. Let L = O (plog(nm)) and let £ € [L] be fixed. Let W; be the items with frequency in
[2¢1, 2%) so that
We={ie[n] | fie[27}29).

£ F;,/P

2p1-1/p], 4(71”1)
y?n 7P log -
and observe that |W;| < zpi Leto = o and X = P Tog)

We define B, ..., B, to be blocks that partition the stream, so that the i-th block includes the
items of the stream after the (i — 1)-th instance of fj, up to and including the i-th instance of f;.

We therefore have a = f; + 1.
Observe that since (f;)? > iy

—zloylog) then we have f; = X for some f > 1. Since |W;| <

—_ 2p(>

then the expected number of unique items in W, contained in a block is at most 57— zpl , conditioned on
any fixing of indices that are sampled. Thus in a block, the conditional expectation of the number

of stream updates that correspond to items in W; is at most and so the expected number

g

of items in W, that are sampled in a block is at most . Therefore, the expected number of

oF,
2(p- 1)t’
retained items in the previous and following 2’ blocks for i < ¢ is at most

F, . F, 20F,
_& -min(2},2%) < °p < °r ,
2(p-1)ty 2(p-2)ty — 2(p-2)LY
. . P e-Fp SZF;,/p .
since a = fj + 1 and by assumption (f;)? > T Tog () but X = T Tog () For i > ¢, note that

since W; only contains elements of frequency 2, then no elements of W, will be retained over j
once the consideration is for 2! > 2¢ blocks.

For p € [1,2), note that 2¢ < Fl/p so that =20@-pt < Fz/p_l. Therefore, after 2! blocks,

(p 2)¢
: . . 20F 2 Fz/” 2p1-1p
the expected number of items in W; is at most 2(15—2)”,)(< Q .Forp = Ygz—l‘r;g("’") nd
2pl/p
X = ———2_— we have that the expected number of retained items in the previous and following

214y2 log* (nm)’

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:11

2! blocks is at most

1/ppl/
o (2y4n1 1/pr p logg(nm)) o (10g8+3p(nm))’

84 m €4+4p

form > nand F, = O (M). By Markov’s inequality, we have that with probability 1 —

£t
——L_ over a random time u, the number of counters for the items with frequency in [2¢71, 2¢)
100p log” (nm)

. log"**? (nm) i .
isat most k; = O #T) across 2' blocks before and after u. Thus, by a union bound over

alli = O(logm) and L = O (plog(nm)) choices of ¢, we have that with probability at least
1- 100+, K1 new counters are generated after u.
plog(nm)

For p > 2, we have that the expected number of retained items across 2’ blocks is at most
2,1-1/p
y'n

1/p
20F, 20F), _ log* (nm) _ ZF
2P DIX S X -Foro = eZm and X = 214 2log (nm)’

of retained items across 2° blocks is at most

o (2}/4(an)1‘1/1’ logs(nm)) _o (nl_z/f’ log®**? (mn)

we have that the expected number

&“m g4+ap ’

form > nand F, = O (M) By Markov’s inequality, we have that with probability 1 —

ap
over a random time u, the number of counters for the items with frequency in [2¢-1 2

. nl—z/p 10g11+3p(mn) i
is at most k; = O | —_&5——) across 2 blocks after u. Moreover, observe that the number

1
100p log® (nm)

of counters generated within 2% timesteps is certainly at most the number of counters generated
within 27 blocks. Thus, by a union bound over all z = O (logm) and L = O (p log(nm)) choices of

¢, we have that with probability at least 1 — m, Ky new counters are generated after u. O

By Lemma 2.1 and Lemma 2.2, we have:

log® . . . 2.F,
Lemma 2.3. Supposem > nandF, = O (%W).Let] € [n] be an item with (f;)? > m.

Then with probability at least 1 — the counters are not reset between the times at which j

1
100p log(nm)’

is sampled and occurrences of j arrive after it is sampled.

4
21 log’ (n)
We now claim that a heavy hitter j will be sampled early enough to obtain a good approximation
to its overall frequency.

2
e-Fp

> . Then

Lemma 2.4. Suppose F;, = O (nl()g—("m)) Let j € [n] be an item with (f;)? 707 1o ()

with probability at least 0.99, SAMPLEANDHOLD outputs f] such that

))P < (FH) <()-(fj)”-

€
(1 810g(nm) 8log(nm)

Proor. Note that for the purposes of analysis, we can assume m > n, since otherwise if m < n,
then SAMpLEANDHOLD essentially redefines n to be the number of unique items in the induced
stream by setting o and k appropriately, even though the overall universe can be larger. Note that

m<2 (Fp)l/p -plmlp,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:12 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

. 2., : e(Fy)"?
By assumption, we have (f;)? > m and thus, we certainly have f; > wi}g’% for
p >2ande € (0,1). Let T be the set of the first m fraction of occurrences of j, so that
2 1/p
e - (F,
T| > (—1;)'
2y log’(nm)

We claim that with probability at least % a Morris counter for j will be created by the stream as it
passes through T. Indeed, observe that since each item of the stream is sampled with probability

y2n' =P log* (nm) . y? log*(nm)
emo 2 (F)
then we have with high probability, an index in T is sampled. By Lemma 2.3, the index will not be

removed by the counters resetting.
Since T is the set of the first

161; fraction of occurrences of j, then the Morris counter is
og(nm)

used for at least (1- #) f; occurrences of j. We use Morris counters with multiplicative
g(nm) | JJ

accuracy (1 +0 (log(nm)

)) Hence by Theorem 1.5, we obtain an output ﬁ such that

) (H)F < (fH)r < (1+)'(fj)"-

(1 810g(nm) 8log(nm)

2.2 Full Sample and Hold

3
We now address certain shortcomings of Lemma 2.4 - namely, the assumption that F;, = O ("IOg—("m))

et
and the fact that Lemma 2.4 only provides constant success probability for each heavy hitter j € [n],
but there can be many of these heavy-hitters.

Algorithm 2 FuriSampLEANDHOLD

Input: Stream sy, ..., s, of items from [n], accuracy parameter ¢ € (0,1), p > 2
Output: Accurate estimations of L, heavy hitter frequencies
R« O (logn),Y =0 (logm)
forr € [R],x € [Y] do
Let],5’) be a (nested) subset of [m] subsampled at rate p, := min(1, 2!7¥)

Let m)(cr) be the length of the stream]35’)
r o (r)

gk » o

Run SampLEANDHOLD,

6: Let f; Fr) be the estimated frequency for j by SampLEANDHOLD!”

(rx)

7: fx — medlaan[R]f
8: Let £ = min{x € [X] | my > (]"j;)f’}

9: return fjf

We first show subsampling allows us to find a substream that satisfies the required assumptions.
We can then boost the probability of success for estimating the frequency of each heavy hitter
using a standard median-of-means argument.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:13

. . . 2.F, . 1.
Lemma 2.5. Let j € [n] be an item with (f;)P > m. Then with probability 1 — pol;W’

FurLSAMPLEANDHOLD outputs]?] such that

) U < G < () (.

(1 SToR) SToR)

Proor. Consider a fixed j € [n] with (fj)? >

{{I € [4%, %]. Let A; be the random variable denoting the number of occurrences of j in J,

> zlﬂyiog% Let g > 0 be the integer such that

and note that over the randomness of the sampling, we have E [A j] = zf% < 4‘%. We also have

E [A?] f’ + (géq , so that V [A j] < @. By Chebyshev’s inequality, we have that the number of
f]

occurrences of j in]q is a (1 + ¢)-approximation of 35
have that with probability at least 0.9, m,. € [(12#, (1;#] and thus (4;)? < 800p - my.
Since (f;)P >

of occurrences of y in]) is at most M for some constant & > 1, with high probability. Thus
by a union bound, we have that with hlgh probability,
& nlog (nm)

eip ’

with probability at least 0.9. We similarly

2,
WF(W then by a Chernoff bound, we have that for any y € [n], the number

E,(Ji7) <

for some sufficiently large constant & > 1, which satisfies the assumptions of Lemma 2.4. Hence we

have with probability at least 0.99, f (9 jsa (1+¢)-approximation to the number of occurrences of j
(r) /(Tq) 2: 8001’ 2-F,
n q’ . Thus, fJ -mg with probability at least 0.7. Observe that since (f;)? > zwylog—f(’nm)

then for any y € [n], we have that the expected number of occurrences of y in]q is at most

)
glogs—inm), for some sufficiently large constant & > 1. Hence by standard Chernoff bounds, we have
that the median satisfies

2 - 8007

-m
£ *

(@) _ : (r.9)
;= rrﬁ?}ee]m ;i<
with high probability.

Moreover, observe that (1) for any stream with subsampling rate 5 > 1

Z—q, we similarly have

that the number of occurrences of j in J; is a (1 + ¢)-approximation of £ 7 with high proba-

bility and (2) SAMPLEANDHOLD cannot overestimate the frequency of j. Thus, fj([) output by
FuriSampLEANDHOLD satisfies

. _
[~ gt) 9= = 1 gm0
with high probability. O

3 F, ESTIMATION

In this section, we present insertion-only streaming algorithms for F,, estimation with a small
number of internal state changes. We first observe that an F,, estimation algorithm by [62] achieves
a small number of internal state changes for p < 1. We then build upon our L,-heavy hitter
algorithm to achieve an F,, estimation algorithm that achieves a small number of internal state
changes for p > 1.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:14 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

3.1 F, Estimation, p <1

As a warm-up, we first show that the F,, estimation streaming algorithm of [62] uses a small
number of internal state changes for p < 1. We first recall the following definition of the p-stable
distribution:

Definition 3.1 (p-stable distribution). [100] For 0 < p < 2, the p-stable distribution D, exists and
satisfies Y.i_y Zix; ~ ||x||p - Z for Z,Z1, . .., Z, ~ D, and any vector x € R".

A standard method [86] for generating p-stable random variables is to first generate 6 ~

Uni ([-%, Z]) and r ~ Uni([0,1]) and then set

X =f(r,0) =

1
sin(p0) cos(6(1-p))\”
cos!/P(0) log £ '
The F,, estimation streaming algorithm of [62] first generates a sketch matrix D € RF*" where
k=0 (giz) and each entry of D is generated from the p-stable distribution. Observe that D can

be viewed as k vectors DY), ..., D) ¢ R of p-stable random variables. For i € [k], suppose we
maintained (D), x), where x is the frequency vector induced by the stream. Then it is known [55]
that with constant probability, the median of these inner products is a (1 + £)-approximation to Fj,.

[62] notes that each vector D) can be further decomposed into a vector D**) containing
the positive entries of D) and a vector D(>~) containing the negative entries of D). Since
DW = p*) 4 DE-) then it suffices to maintain (D%, x) and (D7), x) for each i € [k]. For
insertion-only streams, all entries of x are non-negative, and so the inner products (D*), x) and
(D7), x) are both monotonic over the course of the stream, which permits the application of
Morris counters. Thus the algorithm of [62] instead uses Morris counters to approximately compute
(D), x) and (D*7), x) to within a (1 + O (¢))-multiplicative factor. The key technical point is
that [62] shows that

[0, x)]+][0, x)] = 0 (11xll,)

for p < 1 and so (1 + O (¢))-multiplicative factor approximations to (D**), x) and (D7), x) are
enough to achieve a (1 + ¢)-approximation to (D), x). Now the main gain is that using Morris
counters to approximate (D), x) and (D»7), x), not only is the overall space usage improved
for the purposes of [62], but also for our purposes, the number of internal state updates is much
smaller.

As an additional technical caveat, [62] notes that the sketching matrix D cannot be stored in
the allotted memory. Instead, [62] notes that by using the log-cosine estimator [68] instead of the
log(1/¢)
loglog(1/¢)

median estimator, the entries of D can be generated using O ()-wise independence, so

that storing the randomness used to generate D only requires O (log n) bits of space.

THEOREM 3.2. Forp € (0, 1], there exists a one-pass insertion-only streaming algorithm that uses
poly (logn, %, log (15) internal state changes, O (Eiz (loglogn + log %) + % log n) bits of space,

and outputs a (1 + €)-approximation to F, with high probability.

3.2 F, Estimation, p > 1
In this section, we present our F, approximation algorithm for insertion-only streams that only

have Q,(n'~!/P) internal state updates for p > 1.
We first define the level sets of the F,, moment, as well as the contribution of each level set.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:15

Definition 3.3 (Level sets and contribution). Let F; be the power of two such that F,, < I:“; < 2F,.
Given a uniformly random A € [% 1],for each t € [L], we define the level set

A-F, uﬁ;)}

n::{ie[nuﬁe o

We define the contribution C, and the fractional contribution ¢, of level set Ty to be Cy := ¥ ;cr, (fi)?
and ¢y := g—;.
For an accuracy parameter ¢ and a stream of length m, we say that a level set I, is significant if its

fractional contribution ¢, is at least m. Otherwise, we say the level set is insignificant.

Our algorithm follows from the framework introduced by [58] and subsequently used in a number
of different applications, e.g., [16, 30, 33, 73, 77, 93, 94] and has the following intuition. We estimate
the contributions of the significant level sets by approximating the frequencies of the heavy hitters
for substreams induced by subsampling the universe at exponentially smaller rates. Specifically,
we create L = O (log n) substreams where for each £ € [L], we subsample each element of the
universe [n] into the substream with probability 2(%1 We rescale (1 + ¢)-approximations to the
contributions of the surviving heavy hitters by the inverse of the sampling rate to obtain good
approximations of the contributions of each significant level set.

To guarantee a small number of internal state changes, we use our heavy hitter algorithm
FurLSamPLEANDHOLD to provide (1 + ¢)-approximations to the heavy hitters in each substream,
thereby obtaining good approximations to the contributions of each significant level set. Our
algorithm appears in full in Algorithm 3.

Algorithm 3 F}, approximation algorithm, p > 1

Input: Stream sy, ..., s, of items from [n], accuracy parameter ¢ € (0,1), p > 2
Output: (1 + ¢)-approximation to F,

: k:()(m) forp e [1,2],k=(j(”172/p)forp>2

€4+4p 54
: L=0 (plog(nm)),R= 0 (loglogn), y = 22°p
fort=1tot=mdo
for (£,r) € [L] X [R] do
Let m,”’ be a 2-approximation to the length of the induced stream >Morris counter

—_

Let Ié,(r) be a (nested) subset of [n] subsampled at rate p, := min(1, 2!~%)
if s; € I;r) then

Send s; to FULLSAMPLEANDHOLD(r)

¢
9: Let Hl.(r) be the outputs of the Morris counters at level i
10: Let M be the power of two such that m? < M < 2m?

—~ ~\? ~ -
11: Let Sl.(r) be the set of ordered pairs (j, f;) oin(r) with (f]) € [M, ”—M]
12: fori=1toi=Ldo
13: f < max (1, i— {log

® P Do Wy

£2

v*log(nm) J)

~) —\P
14: C; « Pi{medlanre[R] (Z(j’}—;_)esl(’r) (fj))

15: return F, = 2ee(L] C

We note the following corollary of Lemma 2.5.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:16 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

Lemma 3.4. Letr € [R] be fixed. Suppose j € I(r) and (f;)? > % Then with probability at
least 2 o H(r) outputsfj with

1-— P < P < —_ .

[+~ S) 0 = B =1+ i) 67

Lemma 3.5. Let ¢ € (0, 1), I} be a fixed level set and let £ := max (1, i— {Iog WJ). For a fixed

r € [R], let &, be the event that |I;r)| < 322—," and let &, be the event that FP(I{Sr)) < 322#. Then
conditioned on &, and E,, for each j € T; N I;r), there exists (j,f;) in Si(r) such that with probability

at least = 157

))P < (F) <(—) (f)?

(nm)

(1 810g(n m)

We now justify the approximation guarantees of our algorithm.

Lemma 3.6. Pr [

I:“;,—Fp‘ < E'Fp] > %
Putting things together, we give the full guarantees of our F;, estimation algorithm in Theorem 1.3.

3.3 Entropy Estimation

In this section, we describe how to estimate the entropy of a stream using a small number of internal
state changes. Recall that for a frequency vector f € R”, the Shannon entropy of f is defined
by H(f) = — X, filog f;. Observe that any algorithm that obtains a (1 + O (¢))-multiplicative
approximation to the function h(f) = 2H() also obtains an O (¢)-additive approximation of the
Shannon entropy H(f), and vice versa. Hence to obtain an additive e-approximation to the Shannon
entropy, we describe how to obtain a multiplicative (1 + ¢)-approximation to h(f) = 2/,

Lemma 3.7 ([53]). Given an accuracy parametere > 0, letk = log %+10g logmande’ = m.
Then there exists an efficiently computable set {py, . .., pr} such that p; € (0,2) for all i, as well as an
efficiently computable deterministic function that uses (1 + ¢")-approximations to Fy, (f) to compute a

(1 + ¢)-approximation to h(f) = 28,

Section 3.3 in [53] describes how to compute the set {py, . .., px} in Lemma 3.7 as follows. We
define £ = m and the function g(z) = % For each p;, we set p; = 1+g(cos(in/k)),
which can be efficiently computed. Thus, the set {py, ..., pr} in Lemma 3.7 can be efficiently
computed as pre-processing, assuming that n and m are known a priori. Let P(x) be the degree
k polynomial interpolated at the points p, . . ., px, so that P(p;) = F,, (f) for each i € [k], where
Fp,(f) is the (p;)-th moment of the frequency vector f. [53] then showed that a multiplicative
(1 + O (¢))-approximation to h(f) = 2H) can then be computed from 27(®), and moreover a
(1 + O (¢))-approximation to 2P(®) can be computed from (1 + O (¢))-approximations to Fy. (),
for each i € [k].

Thus by Lemma 3.7 and Theorem 1.3, we have:
THEOREM 3.8. Given an accuracy parameter ¢ € (0, 1), as well as the universe size n, and the stream

length m = poly(n), there exists a one-pass insertion-only streaming algorithm that has 9] (ﬁ\/ﬁ)

o) ~
internal state changes, uses O (W) bits of space, and outputs H such that Pr [55

?I—H’Ss]zg

where H is the Shannon entropy of the stream.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:17

4 LOWER BOUND

In this section, we describe our lower bound showing that any streaming algorithm achieving a
(2 — Q(1))-approximation to F, requires at least %nl_l/ P state updates, regardless of the memory
allocated to the algorithm. The proof of Theorem 1.2 is similar. The main idea is that we create two
streams S; and S, of length O (n) that look similar everywhere except for a random contiguous
block B of n'/?. In B, the first stream S; has the same item repeated n!/P times, while the second
stream S, has n'/? distinct items each appear once. The remaining n — n!/? stream updates of S;
and S; are additional distinct items that each appear once, so that F,(S1) > (2 —0(1)) - F,(S3) and
Fy(Sz) = Q(n). Any algorithm A that achieves a (2 — Q(1))-approximation to Fj, must distinguish
between S; and S, and thus A must perform some action on B. However, B has size n'/? and has
random location throughout the stream, so A must perform Q(n!~'/?) state updates.

THEOREM 1.4. Let ¢ € (0,1) be a constant and p > 1. Any algorithm that achieves a 2 — ¢
approximation to F,, with probability at least % requires at least %nl_l/‘" state updates.

Proor. Consider the two following possible input streams. For the stream S; of length n on
universe n, we choose a random contiguous block B of n!/? stream updates and set them all equal
to the same random universe item i € [n]. We randomly choose the remaining n — n'/? updates in
the stream so that they are all distinct and none of them are equal to i. Note that by construction,
we have F,(S;) = (n - n'/P) + (n'/P)P = 2n — n'/P. For the stream S, of length n on universe n, we
choose S; to be a random permutation of [n], so that F,,(S;) = n.

For fixed ¢ € (0,1), let A be an algorithm that achieves a 2 — ¢ approximation to F, with
probability at least 2, while using fewer than %nl’l/ P state updates. We claim that with probability
%, A must have the same internal state before and after B in the stream S;. Note that we can
view each stream update as (i, j) where i € [n] is the index of the stream update and j € [n]
is the identity of the universe item. Observe that for a random stream update i € [n], a random

universe update j € [n] alters the state of A with probability at most 2n+/1,, since otherwise for a

random stream, the expected number of state changes would be larger than "1_21/p, which would be
a contradiction. Since both the choice of B and the element j € [n] that is repeated n'/? times are

chosen uniformly at random, then the expected number of changes of the streaming algorithm on
the block B is at most 2';1 I/Z, = % Therefore, with probability at least % the streaming algorithm’s
state is the same before and after the block B.

Moreover, the same argument applies to S,, and so therefore with probability at least 1, the
streaming algorithm cannot distinguish between S; and S; if its internal state only changes fewer

than -

1/p .
5 times.]

ACKNOWLEDGMENTS

We would like to thank Mark Braverman for asking questions related to the ones we studied in
this work. D. W. would like to thank Google Research and the Simons Institute for the Theory of
Computing, where part of this work was done, as well as a Simons Investigator Award. D.W. and
S.Z. are supported in part by NSF CCF-2335411.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:18 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

REFERENCES

[1] Kook Jin Ahn and Sudipto Guha. 2009. Graph Sparsification in the Semi-streaming Model. In Automata, Languages
and Programming, 36th Internatilonal Colloquium, ICALP Proceedings, Part II. 328-338.

[2] Miklos Ajtai, Vladimir Braverman, T. S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff, and Samson Zhou. 2022.
The White-Box Adversarial Data Stream Model. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS. 15-27.

[3] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson. 2011. Onyx: A Prototype
Phase Change Memory Storage Array. In 3rd USENIX Workshop on Hot Topics in Storage and File Systems, HotStoragel.

[4] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. 2002. Tracking Join and Self-Join Sizes in Limited
Storage. J. Comput. Syst. Sci. 64, 3 (2002), 719-747.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of Approximating the Frequency Moments.
J. Comput. Syst. Sci. 58, 1 (1999), 137-147.

[6] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2011. Streaming Algorithms via Precision Sampling. In
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS. 363-372.

[7] Apple. 2023. https://developer.apple.com/documentation/xcode/reducing-disk-writes

[8] Manos Athanassoulis, Bishwaranjan Bhattacharjee, Mustafa Canim, and Kenneth A. Ross. 2012. Path processing
using Solid State Storage. In International Workshop on Accelerating Data Management Systems Using Modern Processor
and Storage Architectures - ADMS. 23-32.

[9] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. 2010. Lower Bounds for Sparse Recovery. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 1190-1197.

[10] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. 2002. Models and issues in data
stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 1-16.

[11] Mary Baker, John H. Hartman, Michael D. Kupfer, Ken Shirriff, and John K. Ousterhout. 1991. Measurements of
a Distributed File System. In Proceedings of the Thirteenth ACM Symposium on Operating System Principles, SOSP.
198-212.

[12] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2004. An information statistics approach to data stream
and communication complexity. J. Comput. Syst. Sci. 68, 4 (2004), 702-732.

[13] Avraham Ben-Aroya and Sivan Toledo. 2011. Competitive analysis of flash memory algorithms. ACM Trans. Algorithms
7,2 (2011), 23:1-23:37.

[14] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2017. Optimal elephant flow detection. In 2017 IEEE
Conference on Computer Communications, INFOCOM. 1-9.

[15] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. 2022. A Framework for Adversarially Robust
Streaming Algorithms. J. ACM 69, 2 (2022), 17:1-17:33.

[16] Jaroslaw Blasiok, Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, and Lin F. Yang. 2017. Streaming
symmetric norms via measure concentration. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC. 716-729.

[17] Jaroslaw Blasiok, Jian Ding, and Jelani Nelson. 2017. Continuous Monitoring of 1_p Norms in Data Streams. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM.
32:1-32:13.

[18] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. 2015. Sorting with Asymmetric
Read and Write Costs. In Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures,
SPAA. 1-12.

[19] Jeremiah Blocki, Seunghoon Lee, Tamalika Mukherjee, and Samson Zhou. 2023. Differentially Private Ly-Heavy
Hitters Model. In The Eleventh International Conference on Learning Representations, ICLR.

[20] Robert S. Boyer and J. Strother Moore. 1991. MJRTY: A Fast Majority Vote Algorithm. In Automated Reasoning: Essays
in Honor of Woody Bledsoe (Automated Reasoning Series). 105-118.

[21] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and David P. Woodruff. 2017.
BPTree: An ¢, Heavy Hitters Algorithm Using Constant Memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS. 361-376.

[22] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. 2016. Beating CountSketch for heavy

hitters in insertion streams. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,

STOC. 740-753.

Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay, David P. Woodruff, and

Samson Zhou. 2020. Near Optimal Linear Algebra in the Online and Sliding Window Models. In 61st IEEE Annual

Symposium on Foundations of Computer Science, FOCS. 517-528.

[23

=

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

https://developer.apple.com/documentation/xcode/reducing-disk-writes

Streaming Algorithms with Few State Changes 82:19

[24] Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus. 2019. Streaming Coreset Constructions for
M-Estimators. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM. 62:1-62:15.

[25] Vladimir Braverman, Dan Feldman, Harry Lang, Daniela Rus, and Adiel Statman. 2023. Least-Mean-Squares Coresets
for Infinite Streams. IEEE Trans. Knowl. Data Eng. 35, 9 (2023), 8699-8712.

[26] Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. 2021. Efficient Coreset Construc-
tions via Sensitivity Sampling. In Asian Conference on Machine Learning, ACML. 948-963.

[27] Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou. 2018. Nearly Optimal
Distinct Elements and Heavy Hitters on Sliding Windows. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM. 7:1-7:22.

[28] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and Samson Zhou. 2021.
Adversarial Robustness of Streaming Algorithms through Importance Sampling. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems, NeurIPSI. 3544-3557.

[29] Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. 2014. An Optimal Algorithm for
Large Frequency Moments Using O(n(1~2/K)) Bits. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM. 531-544.

[30] Vladimir Braverman, Joel Manning, Zhiwei Steven Wu, and Samson Zhou. 2023. Private Data Stream Analysis for
Universal Symmetric Norm Estimation. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM. 45:1-45:24.

[31] Vladimir Braverman and Rafail Ostrovsky. 2013. Approximating Large Frequency Moments with Pick-and-Drop
Sampling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 16th
International Workshop, APPROX 2013, and 17th International Workshop, RANDOM. Proceedings. 42-57.

[32] Vladimir Braverman, Emanuele Viola, David P. Woodruff, and Lin F. Yang. 2018. Revisiting Frequency Moment
Estimation in Random Order Streams. In 45th International Colloquium on Automata, Languages, and Programming,
ICALP. 25:1-25:14.

[33] Vladimir Braverman, Viska Wei, and Samson Zhou. 2021. Symmetric Norm Estimation and Regression on Sliding
Windows. In Computing and Combinatorics - 27th International Conference, COCOON, Proceedings. 528-539.

[34] Li-Pin Chang. 2007. On efficient wear leveling for large-scale flash-memory storage systems. In Proceedings of the
2007 ACM Symposium on Applied Computing (SAC). 1126-1130.

[35] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. 2007. Endurance Enhancement of Flash-Memory Storage, Systems:
An Efficient Static Wear Leveling Design. In Proceedings of the 44th Design Automation Conference, DAC. 212-217.

[36] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. 2004. Finding frequent items in data streams. Theor.
Comput. Sci. 312, 1 (2004), 3-15.

[37] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking Database Algorithms for Phase Change Memory.
In Fifth Biennial Conference on Innovative Data Systems Research, CIDR. 21-31.

[38] Tseng-Yi Chen, Tsung Tai Yeh, Hsin-Wen Wei, Yu-Xun Fang, Wei-Kuan Shih, and Tsan-sheng Hsu. 2012. CacheRAID:
An Efficient Adaptive Write Cache Policy to Conserve RAID Disk Array Energy. In IEEE Fifth International Conference
on Utility and Cloud Computing, UCC. 117-124.

[39] Sangyeun Cho and Hyunjin Lee. 2009. Flip-N-Write: a simple deterministic technique to improve PRAM write
performance, energy and endurance. In 42st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
42). 347-357.

[40] Michael B. Cohen, Cameron Musco, and Jakub Pachocki. 2020. Online Row Sampling. Theory Comput. 16 (2020),
1-25.

[41] Vincent Cohen-Addad, David P. Woodruff, and Samson Zhou. 2023. Streaming Euclidean k-median and k-means
with o(logn) Space. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS.

[42] Graham Cormode, Piotr Indyk, Nick Koudas, and S. Muthukrishnan. 2002. Fast Mining of Massive Tabular Data
via Approximate Distance Computations. In Proceedings of the 18th International Conference on Data Engineering.
605-614.

[43] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its
applications. J. Algorithms 55, 1 (2005), 58-75.

[44] Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. 2009. PCRAMsim: System-level performance, energy, and area
modeling for Phase-Change RAM. In 2009 International Conference on Computer-Aided Design, ICCAD. 269-275.

[45] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai Li, and Yiran Chen. 2008. Circuit and microarchitecture
evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In Proceedings of the 45th
Design Automation Conference, DAC. 554-559.

[46] David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawel Pszona. 2014. Wear Minimization for Cuckoo
Hashing: How Not to Throw a Lot of Eggs into One Basket. In Experimental Algorithms - 13th International Symposium,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:20

[47]

(48]

[49

—

(50]
[51]

(52]

[65]

(66

—

[67]

[68]

[69]
[70]

(71]

Proc.

Rajesh Jayaram, David P. Woodruff, and Samson Zhou

SEA. Proceedings. 162-173.

Cristian Estan and George Varghese. 2002. New directions in traffic measurement and accounting. In Proceedings of the
ACM SIGCOMM 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication.
323-336.

Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D. Ullman. 1998. Computing
Iceberg Queries Efficiently. In VLDB’98, Proceedings of 24rd International Conference on Very Large Data Bases. 299-310.
Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. 2002. An Approximate L1-Difference
Algorithm for Massive Data Streams. SIAM J. Comput. 32, 1 (2002), 131-151.

Sumit Ganguly and David P. Woodruff. 2018. High Probability Frequency Moment Sketches. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP. 58:1-58:15.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. 2016. Frequent Directions: Simple and
Deterministic Matrix Sketching. SIAM J. Comput. 45, 5 (2016), 1762-1792.

André Gronemeier. 2009. Asymptotically Optimal Lower Bounds on the NIH-Multi-Party Information Complexity
of the AND-Function and Disjointness. In 26th International Symposium on Theoretical Aspects of Computer Science,
STACS Proceedings. 505-516.

Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. 2008. Sketching and Streaming Entropy via Approximation
Theory. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS. 489-498.

Piotr Indyk. 2004. Algorithms for dynamic geometric problems over data streams. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing. 373-380.

Piotr Indyk. 2006. Stable distributions, pseudorandom generators, embeddings, and data stream computation. 7 ACM
53, 3 (2006), 307-323.

Piotr Indyk. 2013. Sketching via hashing: from heavy hitters to compressed sensing to sparse fourier transform. In
Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS. 87-90.
Piotr Indyk, Shyam Narayanan, and David P. Woodruff. 2022. Frequency Estimation with One-Sided Error. In
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA. 695-707.

Piotr Indyk and David P. Woodruff. 2005. Optimal approximations of the frequency moments of data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing. 202—208.

Sandy Irani, Moni Naor, and Ronitt Rubinfeld. 1992. On the Time and Space Complexity of Computation Using
Write-Once Memory Or Is Pen Really Much Worse Than Pencil? Math. Syst. Theory 25, 2 (1992), 141-159.

Rajesh Jayaram and David P. Woodruff. 2018. Data Streams with Bounded Deletions. In Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 341-354.

Rajesh Jayaram and David P. Woodruff. 2018. Perfect Lp Sampling in a Data Stream. In 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS. 544-555.

Rajesh Jayaram and David P. Woodruff. 2019. Towards Optimal Moment Estimation in Streaming and Distributed Mod-
els. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2019. 29:1-29:21.

Rajesh Jayaram, David P. Woodruff, and Samson Zhou. 2022. Truly Perfect Samplers for Data Streams and Sliding
Windows. In PODS °22: International Conference on Management of Data, Philadelphia. 29-40.

T. S. Jayram. 2009. Hellinger Strikes Back: A Note on the Multi-party Information Complexity of AND. In Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop,
APPROX 2009, and 13th International Workshop, RANDOM. Proceedings.

T. S. Jayram and David P. Woodruff. 2009. The Data Stream Space Complexity of Cascaded Norms. In 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS. 765-774.

Tangiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. 2020. Learning-Augmented Data Stream
Algorithms. In 8th International Conference on Learning Representations, ICLR.

Hossein Jowhari, Mert Saglam, and Gabor Tardos. 2011. Tight bounds for Lp samplers, finding duplicates in streams,
and related problems. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS. 49-58.

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. 2010. On the Exact Space Complexity of Sketching and
Streaming Small Norms. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA. 1161-1178.

Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu. 2014. Evaluating Phase Change Memory for
Enterprise Storage Systems: A Study of Caching and Tiering Approaches. ACM Trans. Storage 10, 4 (2014), 15:1-15:21.
Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. 2016. Heavy Hitters via Cluster-Preserving
Clustering. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS. 61-70.

Christian Janos Lebeda and Jakub Tetek. 2023. Better Differentially Private Approximate Histograms and Heavy
Hitters using the Misra-Gries Sketch. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:21

[72]

(73]

(74]

(75]

[76]

(77]

(78]
(79]
(80]

[81]
[82

—

(83]
(84]
(85]

[86]
(87

—

(88]

of Database Systems, PODS. 79-88.

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as a scalable
dram alternative. In 36th International Symposium on Computer Architecture (ISCA),. 2-13.

Roie Levin, Anish Prasad Sevekari, and David P. Woodruff. 2018. Robust Subspace Approximation in a Stream. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems,
NeurlPS.

Ping Li. 2008. Estimators and tail bounds for dimension reduction in I, (0 < a < 2) using stable random projections.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, Shang-Hua Teng (Ed.).
10-19.

Yi Li, Vasileios Nakos, and David P. Woodruff. 2018. On Low-Risk Heavy Hitters and Sparse Recovery Schemes.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM.
19:1-19:13.

Yi Li and David P. Woodruff. 2013. A Tight Lower Bound for High Frequency Moment Estimation with Small Error.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 16th International
Workshop, APPROX 2013, and 17th International Workshop, RANDOM. Proceedings. 623-638.

Sepideh Mahabadi, David P. Woodruff, and Samson Zhou. 2022. Adaptive Sketches for Robust Regression with
Importance Sampling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM), Amit Chakrabarti and Chaitanya Swamy (Eds.). 31:1-31:21.

Gurmeet Singh Manku and Rajeev Motwani. 2012. Approximate Frequency Counts over Data Streams. Proc. VLDB
Endow. 5, 12 (2012), 1699.

Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen Tseng. 2014. Overview of emerging nonvolatile
memory technologies. Nanoscale research letters 9 (2014), 1-33.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Computation of Frequent and Top-k
Elements in Data Streams. In Database Theory - ICDT 2005, 10th International Conference, Proceedings. 398-412.
Jayadev Misra and David Gries. 1982. Finding Repeated Elements. Sci. Comput. Program. 2, 2 (1982), 143-152.
Robert H. Morris Sr. 1978. Counting Large Numbers of Events in Small Registers. Commun. ACM 21, 10 (1978),
840-842.

Shanmugavelayutham Muthukrishnan et al. 2005. Data streams: Algorithms and applications. Foundations and
Trends® in Theoretical Computer Science 1, 2 (2005), 117-236.

Dushyanth Narayanan, Austin Donnelly, and Antony I. T. Rowstron. 2008. Write off-loading: Practical power
management for enterprise storage. ACM Trans. Storage 4, 3 (2008), 10:1-10:23.

Jelani Nelson and Huacheng Yu. 2022. Optimal Bounds for Approximate Counting. In PODS °22: International
Conference on Management of Data. ACM, 119-127.

John Nolan. 2003. Stable distributions: models for heavy-tailed data. Birkhauser New York.

Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. 2011. Phase Change Memory: From Devices to
Systems. Morgan & Claypool Publishers.

Eno Thereska, Austin Donnelly, and Dushyanth Narayanan. 2011. Sierra: practical power-proportionality for data
center storage. In European Conference on Computer Systems, Proceedings of the Sixth European conference on Computer
systems, EuroSys. 169-182.

Mikkel Thorup and Yin Zhang. 2004. Tabulation based 4-universal hashing with applications to second moment
estimation. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 615-624.
Stratis Viglas. 2012. Adapting the B + -tree for Asymmetric I/O. In Advances in Databases and Information Systems -
16th East European Conference, ADBIS. Proceedings. 399-412.

Stratis Viglas. 2014. Write-limited sorts and joins for persistent memory. Proc. VLDB Endow. 7, 5 (2014), 413-424.
David P. Woodruff. 2004. Optimal space lower bounds for all frequency moments. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 167-175.

David P. Woodruff and Qin Zhang. 2012. Tight bounds for distributed functional monitoring. In Proceedings of the
44th Symposium on Theory of Computing Conference, STOC. 941-960.

David P. Woodruft and Samson Zhou. 2021. Separations for Estimating Large Frequency Moments on Data Streams.
In 48th International Colloquium on Automata, Languages, and Programming, ICALP. 112:1-112:21.

David P. Woodruff and Samson Zhou. 2021. Tight Bounds for Adversarially Robust Streams and Sliding Windows via
Difference Estimators. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS. 1183-1196.
Cong Xu, Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. 2011. Design implications of memristor-based RRAM
cross-point structures. In Design, Automation and Test in Europe, DATE. 734-739.

Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and Byoung-Gon Yu. 2007. A Low Power
Phase-Change Random Access Memory using a Data-Comparison Write Scheme. In International Symposium on
Circuits and Systems (ISCAS 2007). 3014-3017.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:22 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

[98] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy efficient main memory using phase
change memory technology. In 36th International Symposium on Computer Architecture (ISCA 2009). 14-23.
[99] Qingbo Zhu, Zhifeng Chen, Lin Tan, Yuanyuan Zhou, Kimberly Keeton, and John Wilkes. 2005. Hibernator: helping

disk arrays sleep through the winter. In Proceedings of the 20th ACM Symposium on Operating Systems Principles,
SOSP. 177-190.

[100] Vladimir M. Zolotarev. 1989. One-dimensional stable distributions. Bull. Amer. Math. Soc 20 (1989), 270-277.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:23

A MISSING PROOFS FROM SECTION 3

We note the following corollary of Lemma 2.5.

Lemma 3.4. Letr € [R] be fixed. Suppose j € I(r) and (f;)? > %u(nm) Then with probability at
least 2 o H(r) outputsfj with

1= — P < P < P —

(' Stagam) = 0 = 1+ gy) 0

Proor. The proof follows from Lemma 2.5 and the fact that FurLSAMPLEANDHOLD is only run
on the substream induced by I ;r). |

Lemma 3.5. Let¢ € (0,1), I be a fixed level set and let ¢ := max (1, i— {log WJ). For a fixed

r € [R], let &, be the event that |I(r)| 32—,” and let &, be the event that FP(I}r)) < 322#. Then

conditioned on &, and E,, for each j € T; N I{f), there exists (j,j?j) in Sl.(r) such that with probability

9
at least = 15

&
O) R O R

Proor. We consider casework on whether i — {log MJ <lori- {log MJ > 1.
=\P
This corresponds to whether the frequencies (fj) in a significant level set are large or not large,
informally speaking. If the frequencies are large, then it suffices to estimate them using our sampling-
based algorithm. However, if the frequencies are not large, then subsampling must first be performed
before we can estimate the frequencies using our sampling-based algorithm.

VE, 2AF,

2
Suppose i — {log MJ < 1,so0 that 3; > 7> o

— P
g (o) Since j € I}, we have (f;)? € [

and thus
2 F 20 . (p;)z/”
(f)P = —P >
ylog?(nm)’ Y7 log!/? (nm)

ylog (nm) J)

Moreover, for £ = max (1 i— [log we have ¢ = 1, so we consider the outputs by the

Morris counters H, (r) . By Lemma 3.4, we have that with probability at least -
that

o H;r) outputs ﬁ such

)mV<m><()<m,

(1 810g(nm) 810g(nm)
as desired.

For the other case, suppose i — llog ybg—(nm)J > 1,sothat £ =i— {log Yk)g—(nm)J and p, = 217,
Therefore,

1 ylog (nm) 1

20 &2 21
AF, 2,1F,,

Since j € T}, we have again (f;)? € [s

] and therefore,

6'2 Fp

P > p ~ > £
)" = 4-2" 7 4ylog?(nm) 2

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:24 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

32Fp

Conditioning on the event &,, we have Fp(

2

() = Fp(1").

4'2i21281 2
ylog®n

Therefore by Lemma 3.4, we have that with probability at least =, H {,(r) outputs }; such that

10°

S R S o) K

as desired.]

We now justify the approximation guarantees of our algorithm.

Lemma 3.6. Pr [

) 2
FP_FP) S[;‘-Fp] 23
Proor. We would like to show that for each level set i, we accurately estimate its contribution C;,

i.e., we would like to show |5 -GCi| < - Fy for all i. For a fixed i, recall that C; = 3 ;1 ()7,

VE, 2/1Fp
Zl 3

£
8log(nm)

where j € T; if (fj)P € . On the other hand, C; is a scaled sum of items Jj whose estimated

|8, 2
2l 2
Jj ¢ I;. Thus we first consider an idealized process where j is correctly classified across all level sets
and show that in this idealized process, we achieve a (1 + O (¢))-approximation to F,. We then
argue that because we choose A uniformly at random, then only a small number of coordinates
will be misclassified and so our approximation guarantee will only slightly degrade, but remain a
(1 + ¢)-approximation to Fj.

~\P —~
frequency satisfies (fJ) €] Then j could be classified into contributing to C; even if

Idealized process. We first show that in a setting where (E)P is correctly classified for all j,
then for a fixed level set i, we have |C; — C;| < m - F, with probability 1 — m

Forafixedr € [R],let &; be the event that |I(r) | < 32" and let &; be the event that F,, (I(r)) <
Let &E; be the event that

32Fp

) (ﬁ)"<(ﬁ)”<() ()P,

(1 8103((m)

Conditioned on &1, ;, and j € I(r) then we have that Pr [E;] > +, by Lemma 3.5.

= 10’
We define C(r) Z(]f) € S(r) (fj) . Therefore, we have thatC median,¢[g) C() , recalling

£ = max (l,i— {log WJ).

Conditioned on &3, we have

£ (r) (r) € (r)
1-——|D;)"" <C/ < |1+ —— D;
(810g<nm>) PoEn ‘(810g<nm>)

D=

where we define

Note that

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:25

where we recall that C; denotes the contribution of level set I;. We also have

7o) = G e U = gy 2

jeli

2(F)2 2
For j € I}, we have (f;)? 4/12(# < 16(24—?0

large y,

IA

,since A < 1and 13;, < 2F,. Therefore for sufficiently

[gr)] |0
" 1T 100p2 - 27 - log® (nm)

(Fp)*.

Since IFI < ¢; < 1, then
2

W] <—f (R
[© 17 10000p log(nm) (Fp)™
Thus by Chebyshev’s inequality, we have
() J 1
Pr||D;"" -Ci|> —— - F,| < —.
r[! 1= 10plog(nm) ‘D} 10
Therefore,
e ‘ 4
Pr|lC" —Ci| < ———F | Ei AE| > =
r[i 10p log(nm) p | & 2

To analyze the probability of the events &; and &, occurring, note that in level ¢, each item is
sampled with probability 274!, Hence,

r n F
B[] < 5 B[RU] <

Since &, is the event that |I(r)| < 3 7+ and &, is the event that F, (I(r)) < then by Markov’s

inequality, we have

2(’:

15 15
E E] > —
Prib) > PrlBl> .
By a union bound,
(r) €
P C -Ci| < —— - F,| = 0.676.
r [l’ 10plog(nm) 7

Since C; = median,¢[g) Cl.(r) over R = O (loglog n) independent instances, then we have

—~ £ 1
Pr “Ci B Ci) = 10p log(nm) 'Fp] =1- polylog(n)
Hence by a union bound over the p log(nm) level sets,
plog(nm) plog(nm) plog(nm)
F-ml=| > G-) al< Y [6-al
i=1 i=1 i=1
plog(nm)

£ €
- .F,<—-F,
p = P
~ 10plog(nm) 10
Randomized boundaries. Given a fixed r € [R], we say that an item j € [n] is misclassified if
there exists a level set I such that
A Fp 22 - Fp

Y

(fi)f €

5

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:26 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

but for the estimate f;, we have either

- A-F, 21-F,
(fi)P < Zl” or (f)f = ".
By Lemma 3.4, we have that conditioned on &s,
11— — P < P < - -
(810g(nm)) £) (f]) (810g(nm)))",

independently of the choice of A. Since A € [% 1] is chosen uniformly at random, then the probability
that j € [n] is misclassified is at most m.
Furthermore, if j € [n] is misclassified, then it can only be classified into either level set T},

AW
or level set I;_;, because (fi) isa (1 + m)—apprommatlon to (f;)?. Thus, a misclassified
index induces at most 2(f;)? additive error to the contribution of level set I;. In expectation across
all j € [n], the total additive error due to misclassification is at most F,, - m. Therefore by

Markov’s inequality for sufficiently large n and m, the total additive error due to misclassification
is at most % - F,, with probability at least 0.999. Hence in total,
2

Pr[ﬁ;—FP‘SE-FP] Zg.

Putting things together, we give the full guarantees of our F,, estimation algorithm.

THEOREM 1.3. Given a constant p > 1, there exists a one-pass insertion-only streaming algorithm
that has O (nl‘l/l’) internal state changes, and outputs F, such that

—~ 2
Fp—Fp‘SE'Fp] > -

Pr[
3

log”**? (mn)

For p € [1,2), the algorithm uses O (W) bits of space, while for p > 2, the algorithm uses
0o (543217 nl_z/p) space.

Proor. The space bound follows from fact that for p € [1,2), only O (bgii#) counters

are stored, while for p > 2, only O (s‘*iZP n'=2/p) counters are stored. The internal state can
change each time an item is sampled. Since each item of the stream is sampled with probability

2,1-1/p 4
o = Y"z—log("m), then with high probability, the total number of internal state changes is
&m

y2n!~1P log* (nm)
= e m

&
Finally for correctness, we have by Lemma 3.6, that

2
Pr[|F - Fp| < Fy| > 2

B MISSING PROOFS FROM SECTION 4

THEOREM 1.2. Let ¢ € (0,1) be a constant and p > 1. Any algorithm that solves the L,-heavy
hitters problem with threshold ¢ with probability at least % requires at least inl‘l/f’ state updates.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

Streaming Algorithms with Few State Changes 82:27

Proor. Consider the two input streams S; and S, defined as follows. We define the stream S;
to have length n on a universe of size n. Similar to before, we choose a random contiguous block
B of ¢ - n'/? stream updates and set them all equal to the same random universe item i € [n]. We
randomly choose the remaining n — n'/? updates in the stream so that they are all distinct and
none of them are equal to i. Note that by construction, we have

Fy(S1) =(n— n'/P) + (n'/P)P = 2n — n'/P.

Therefore, the item replicated ¢ - n'/? times in block B is an £-heavy hitter with respect to L,.

We also define the stream S, to have length n on universe n. As before, we choose S; to be a
random permutation of [n], so that F,(S;) = n.

For fixed ¢ € (0, 1), let A be an algorithm that solves the e-heavy hitter problem with respect to
L,, with probability at least £, while using fewer than 2—1£n1_1/ P state updates. We claim that with
probability 3, A must have the same internal state before and after B in the stream S;.

Observe that each stream update can be viewed as (i, j) where i € [n] is the index of the stream
update and j € [n] is the identity of the universe item. For a random universe item i € [n], the

probability that a random stream update j € [n] alters the state of A is at most ;1/ since
2e-nl/P -1/p
-

otherwise for a random stream, the expected number of state changes would be larger than *5—,
which would be a contradiction. Because both the choice of B is uniformly and the element j € [n]
that is repeated - n'/? times are chosen uniformly at random, then the expected number of changes

eonllp
2¢-nl/P

state is the same before and after the block B, with probability at least %

of the streaming algorithm on the block B is at most = 1. Hence, the streaming algorithm’s

However, the same argument applies to S;. Thus with probability at least %, the streaming
algorithm cannot distinguish between S; and S if its internal state only changes fewer than ”I;/P
times. Therefore, any algorithm that solves the L,-heavy hitter problem with threshold ¢ with

probability at least % requires at least inl‘l/f’ state updates. O

C COMPARISON WITH PREVIOUS ALGORITHMS

There are a number of differences between our algorithm and the sample-and-hold approach of
[47]. Firstly, once [47] samples an item, a counter will be initialized and maintained indefinitely
for that item. By comparison, our algorithm will sample more items than the total space allocated
to the algorithm, so we must carefully delete a number of sampled items. In particular, it is NOT
correct to delete the sampled items with the largest counter. Secondly, [47] updates a counter each
time a subsequent instance of the sample arrives. Because our paper is focused on a small number
of internal state changes, our algorithm cannot afford such a large number of updates. Instead, we
maintain approximate counters that sacrifice accuracy in exchange for a smaller number of internal
state changes. We show that the loss in accuracy can be tolerated in choosing which samples to
delete.

Another possible point of comparison is the precision sampling technique of [6], which is a
linear sketch, so although it has an advantage of being able to handle insertion-deletion streams,
unfortunately it must also be updated for each stream element arrival, resulting in a linear number
of internal state changes. Similarly, a number of popular heavy-hitter algorithms such as Misra-
Gries [81], CountMin [43], CountSketch [36], and SpaceSaving [80] can only achieve a linear
number of internal state changes. By comparison, our sample-and-hold approach results in a
sublinear number of internal state changes.

Finally, several previous algorithms are also based on sampling a number of items throughout
the stream, temporarily maintaining counters for those items, and then only keeping the items
that are globally heavy, e.g., [29, 31]. It is known that these algorithms suffer a bottleneck at p = 3,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

82:28 Rajesh Jayaram, David P. Woodruff, and Samson Zhou

i.e., they cannot identify the L, heavy-hitters for p < 3. The following counterexample shows
why these algorithms cannot identify the L, heavy-hitters and illustrates a fundamental difference
between our algorithms.

Suppose the stream consists of y/n blocks of 4/n updates. Among these updates, there are \n
items with frequency n'/4, which we call pseudo-heavy. There is a single item with frequency v,
which is the heavy-hitter. Then the remaining items each have frequency 1 and are called light.
Note that the second moment of the stream is ©(n), so that only the item with frequency +/n is the
heavy-hitter, for constant ¢ < 1.

Let S ={1,2,..., n1/4} and suppose for each w € S, block w is a special block that consists of
n'/* different items, each with frequency n'/*. Let T = x + S, for x = {1,2,...,n"/%}, so that T

1/8 instances of the

consists of the n'/® blocks after each special block. Each block in T consists of n
heavy-hitter, along with v/n — n'/® light items. The remaining blocks all consist of light items.

Observe that without dynamic maintenance of counters for different scales, in each special block,
we will sample polylog(n) pseudo-heavy items whose counters each reach about 0 (nl/ 4). But then
each time a heavy-hitter is sampled, its count will not exceed the pseudo-heavy item before the
number of counters before it is deleted, because it only has n'/# instances in its block. Thus with
high probability, the heavy-hitter will never be found, and this is an issue with previously existing
sampling-based algorithms, e.g., [29, 31].

Our algorithm overcomes this challenge by only performing maintenance on counters that have
been initialized for a similar amount of time. Thus in the previous example, the counters for the
heavy-hitters will not be deleted because they are not compared to the counters for the pseudo-
heavy items until the heavy-hitters have sufficiently high frequency. By comparison, existing
algorithms will retain counters for the pseudo-heavy items, because they locally look “larger”, at
the expense of the true heavy-hitter.

Reference | State Changes Setting
[81] O (m) L;-Heavy Hitters Only
[43] O (m) L;-Heavy Hitters Only
[80] O (m) L;-Heavy Hitters Only
[36] O (m) L,-Heavy Hitters
Our Work | O (n'~%/?) L,-Heavy Hitters

Table 1. Summary of our results compared to existing results. We emphasize that reporting Ly heavy-hitters
includes the L; heavy-hitters. All algorithms use near-optimal space.

Received June 2023; revised August 2023; accepted September 2023

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 82. Publication date: May 2024.

	Abstract
	1 Introduction
	1.1 Motivation for Minimizing State Changes
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Preliminaries

	2 Heavy Hitters
	2.1 Sample and Hold
	2.2 Full Sample and Hold

	3 Fp Estimation
	3.1 Fp Estimation, p<1
	3.2 Fp Estimation, p>1
	3.3 Entropy Estimation

	4 Lower Bound
	Acknowledgments
	References
	A Missing Proofs from [sec:sec:fp]Section 3
	B Missing Proofs from [sec:sec:lab]Section 4
	C Comparison with Previous Algorithms

