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Abstract
The study of the process of catastrophic tsunami-type waves on the coast makes it possible to determine the destructive force
of waves on the coast. In hydrodynamics, the one-dimensional theory of the run-up of non-linear waves on a flat slope has
gained great popularity, within which rigorous analytical results have been obtained in the class of non-breaking waves. In
general, the result depends on the characteristics of the wave approaching (or generated on) the slope, which is usually not
known in the measurements. Here, we describe a rigorous method for recovering the initial displacement in a source localised
in an inclined power-shaped channel from the characteristics of a moving shoreline. The method uses the generalised Carrier–
Greenspan transformation, which allows one-dimensional non-linear shallow-water equations to be reduced to linear ones.
The solution is found in terms of Erdélyi–Kober integral operator. Numerical verification of our results is presented for the
cases of a parabolic bay and an infinite plane beach.

1 Introduction

With the devastating loss of life caused by tsunamis such as
the Indian Ocean Tsunami in 2004 and the Tōhoku Tsunami
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in 2011, predictive modelling of tsunami wave run-up is of
great practical importance. In modern tsunami wave mod-
elling, the shallow-water, or long-wave, approximations are
commonly used to predict inundation areas (Levin andNosov
2016). Such models require initial conditions to compute
wave propagation. However, due to a lack of data on ini-
tial water displacement, models such as the Okada seismic
model (Okada 1992) are often used to generate the initial
data. An alternative approach is to indirectly estimate char-
acteristics of the tsunami source through various inversion
methods. Implementations have been used to recover the ini-
tial height of the water at the source (Abe 1973), the source
location (Fujii et al. 2011), as well as fault motion (Satake
1987) to name just three. The latter, through the inversion of
data gathered for the wave signal, is crucial in such fields as
seismic hazard assessment. Through studying the accumula-
tion of slip on each segment of a fault via the inverse problem,
the prediction of earthquake recurrence intervals becomes
increasingly more accurate. We suggest the recent review by
Satake (2022) and the sources therein for more details on
tsunami inversion methods, including waveform inversion,
inverse modelling for the purpose of examining the tsunami
source, and the generation of tsunami inverse refraction dia-
grams.Note thatmostmethods assume thatwavepropagation
is linear, while the tsunami wave run-up is a notoriously
non-linear phenomenon. Unfortunately, inverse problems for
non-linear PDEs are intractable in general. Thus, identifying
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a realistic class of bathymetries where non-linear inversion
methods can be applied is a primary objective of our research.

Currently, tsunami inundation calculations are conducted
using numerical codes that model wave propagation from
the source to the coast, validated against a series of bench-
marks supported by experimental data. A significant part
of this work involves analyzing the run-up of non-linear
long waves on a flat slope, which has a rigorous analyti-
cal solution in the class of non-breaking waves using the
Carrier–Greenspan transformation. The Carrier–Greenspan
transformation simplifies the non-linear shallow-water equa-
tions to a linear wave equation with cylindrical symmetry
(a particular class of the Euler–Poisson–Darboux equation)
(Carrier and Greenspan 1958). Within this framework, the
run-up of waves generated on the slope is considered, using
various forms of initial displacementwith the initial displace-
ment of the water surface, such as solitons (Synolakis 1987),
Gaussian (Carrier et al. 2003) and Lorentz (Pelinovsky and
Mazova 1992) pulses, N -waves (Tadepalli and Synolakis
1994), cnoidalwaves (Synolakis et al. 1988), algebraic pulses
(Dobrokhotov et al. 2017), and the Okada solution (Tinti and
Tonini 2005;Løvholt et al. 2012).Naturally, the specific char-
acteristics of the run-up depend on the features of the initial
displacement at the source. Thus, attempts have been made
to parametrise these formulas to reduce the number of initial
perturbation parameters (Didenkulova et al. 2008; Løvholt
et al. 2012). More broadly, recent studies have also consid-
ered the fluid velocity at the source (Kânoğlu and Synolakis
2006; Rybkin 2019) and addressed boundary problems for
waves approaching the coast (Antuono and Brocchini 2007;
Aydin 2020). Similar approaches have also been developed
for wave run-up in power-shaped bays (Hartle et al. 2021;
Nicolsky et al. 2018; Rybkin et al. 2014, 2021; Shimozono
2016).

In the papers cited above, the direct problem (the Cauchy
problem) of the non-linear equations of the shallow-water
theory was solved. In this case, since there are no mea-
surements of wave parameters in the shelf zone, model
functions were used as initial conditions. In view of this,
the inverse problem of recovering the initial conditions from
the given (experimental or model) characteristics of themov-
ing shoreline is of interest. This is especially important for
fast estimates of tsunami waves in situations with uncertain
wave properties during real events.

In this work, we consider the problem of recovering the
shape of an incident wave from the known oscillations of
a moving shoreline. This problem was first considered in
Rybkin et al. (2023) and our work here is a generalisation
of those results to a more diverse set of bathymetries. In
this case, the following restrictions are imposed: the tsunami
source is located on a slope at an arbitrary distance from
the shoreline. Two configurations of the bottom relief are
considered: a flat slope and an inclined parabolic channel.

The solution of the inverse problem is found using the Abel
transform in the class of non-breaking waves.

Our work here is organised as follows. In Sect. 2, we
introduce the shallow-water framework our model is built
upon. In Sect. 3, we give the statement of both the direct and
inverse problem and introduce the Carrier–Greenspan hodo-
graph transformation onwhich ourmethod is based.We solve
both the direct and inverse problems in Sect. 4 through the
derivation of what we call the shoreline equation, an equation
relating the mechanical energy of the wave at the shoreline
and the initial wave profile. Section5 discusses the recov-
ery of certain characteristics of the initial wave. In Sect. 6,
we give numerical verifications of our method. Finally, in
Sect. 7, we give some concluding remarks and discuss some
potential future directions.

2 Shallowwater equations (SWE)

The shallow-water equations (SWE) are a set of non-linear,
hyperbolicPDEswhich are commonlyused tomodel tsunami
wave run-up. The 2+1 [that is the unknown functions are
of two spatial variables x, y and the temporal variable t]
SWE are a simplification of the Euler equations, a highly
non-linear 3+1 (that is the unknown functions are of three
spatial variables x, y, z and the temporal variable t) system.
They can be derived with the truncation of Taylor expan-
sions of non-linear terms and the assumptions of no vorticity,
small vertical velocity, and small depth/wavelength andwave
height/depth ratios. The 2+1 SWE can be further reduced
to a 1+1 system [that is now the functions are of x and t
only] by assuming that the bathymetry is centred along the x
axis and is uniformly inclined. For the bathymetries we are
concerned with here (see Fig. 1), power-shaped bays with y
cross-section |y|m , the non-linear SWE in non-dimensional
units are given as

∂tη + u (1 + ∂xη) + m

m + 1
(x + η) ∂xu = 0,

∂t u + u∂xu + ∂xη = 0,
(2.1)

where u(x, t) is the depth averaged flow velocity over the
corresponding cross-section, and η(x, t) is the water dis-
placement exceeding the unperturbed water level. The total
perturbed water depth is given as H(x, t) = h(x) + η(x, t)
along the x axis, where h(x) is the depth of the bay, and so,
in dimensionless units, we simply have h(x) = x . Typically,
the system seen in (2.1) is given in dimensional units. The
substitution

x̃ = (H0/α)x, ˜t = √

H0/g t/α, η̃ = H0η,

ũ = √

H0g u, (2.2)
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Fig. 1 Geometrical representations of a power-shaped bathymetry resembling the case m = 2. In 1a, we have cross sectional view of the xOz
plane, in 1b a cross sectional view of the yOz plane, and in 1c a 3-dimensional view of the bay and an N -wave

where H0 is the characteristic height of the wave, α is the
slope of the bathymetry, and g is the acceleration of grav-
ity, turns the dimensionless system into one with dimension
(dimensional variables are the ones with tildes). The shore-
line in the physical plane (i.e., the wet/dry boundary) is given
by

x + η(x, t) = 0. (2.3)

The solution to (2.3), let us call it x0(t), describes the run-
up and draw-down of the tsunami wave. We consider the
initial value problem for (2.1) with typical initial conditions
characterised the instantaneous bottom displacement (see for
instance Okada 1985)

η(x, 0) = η0(x), u(x, 0) = 0. (2.4)

While the choice of zero initial velocity may be restrictive in
physical application, there are good reasons for this choice.
For earthquake generated tsunamis, it is typical to assume

that the initial velocity is zero. Additionally, it is a convenient
choice, a common technique in finding solutions to the SWE.

3 Statement of the direct and inverse
problems

In this paper, we investigate the following direct problem:
knowing the initial displacement of the water η0(x) and
assuming zero initial velocity of the water, we find the move-
ment of the shoreline x0(t). The direct problem was solved
both numerically and analytically by many authors (see the
references in the introduction). The corresponding inverse
problem then consists of restoring the initial displacement
of the water, assuming zero initial velocity and knowing the
shoreline movement x0(t) and the time of an earthquake, i.e.,
zero time. It isworth noting that a non-linear inverse problem,
as is the case with our problem, presents several challenges
in terms of deriving a solution. The main difficulty is that
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the shoreline is moving. The Carrier–Greenspan transform
allows to reduce the original problem to a linear one onR>0.

Carrier–Greenspan Transform

The Carrier–Greenspan (CG) hodograph transform, intro-
duced in Carrier and Greenspan (1958), can be used to
linearise (2.1) into a form which can then be solved using
Hankel transforms (Courant and Hilbert 1989). We use the
form of the CG transform, originally introduced for power-
shaped bays in Tuck and Hwang (1972)

ϕ(τ, σ ) = u(x, t), σ = x + η(x, t),

ψ(τ, σ ) = η(x, t) + u2(x, t)/2, τ = t − u(x, t). (3.1)

Applying (3.1) to (2.1) yields the linear hyperbolic system

∂τψ + m

m + 1
σ∂σ ϕ + ϕ = 0,

∂τ ϕ + ∂σ ψ = 0,
(3.2)

which is often written as the second-order equation

∂2τ ψ = m

m + 1
σ∂2σ ψ + ∂σ ψ. (3.3)

We therefore obtain a linear hyperbolic equation (3.3)
from a non-linear system (2.1). Physically, σ denotes wave
height from the bottom, τ is a delayed time, ϕ is the flow
velocity, and ψ can be called the total energy. The CG trans-
forms main benefit is that the moving shoreline x0(t) is fixed
at σ = 0. Nevertheless, the CG transform has some notable
drawbacks; for one, the ICs become complicated in the hodo-
graph coordinates, making standard techniques difficult to
apply. However, by setting the initial velocity of the wave to
be zero, that is u0(x) = 0, one avoids this issue. While, this
premiss is restrictive, it is typical when considering earth-
quake generated tsunamis. Thus, we assume this condition
which is equivalent to ϕ(0, σ ) = 0, and so, (2.4) becomes

ϕ

∣

∣

∣

	
= 0, ψ

∣

∣

∣

	
= ψ0(σ ) = η0(γ (σ )), (3.4)

where	 is the vertical line (0, σ ) in the hodograph plane and
x = γ (σ ) solves σ = η(x, t) + x . Additionally, the regular
singularity at σ = 0 causes computational difficulties at the
shoreline. Finally,we note that the transformation onlyworks
provided that it is invertible, i.e., the wave does not break
(Rybkin et al. 2021), so we must surmise this going forward.

4 The shoreline equation

In this section, we derive what we call the shoreline equation
of an arbitrary power-shaped bay. Specifically, we derive an

equation relatingψ(τ, 0), the energy of thewater at the shore-
line, and ψ(0, σ ) = ψ0(σ ) the initial displacement of the
water. Notably, the direct problemhas previously been solved
for power-shaped bathymetries (see, for instance, Garayshin
et al. (2016); Didenkulova and Pelinovsky (2011)) and the
inverse problem in the narrow case of a plane beach (Rybkin
et al. 2023). Here, the direct problem is solved both analyt-
ically, as follows in this section, and numerically, as can be
seen in Sect. 6, to ensure that propagation of thewave is being
accounted for as described in Satake (1987). Since the energy
at the shoreline can be computed from the movement of the
shoreline x0(t), the shoreline equation allows us to easily
solve the inverse problem and recover η0(x) after converting
back into physical space.

We start with the bounded analytical solution to the initial
value problem (3.3, 3.4), which is given in Rybkin et al.
(2021)

ψ(τ, σ ) = σ− 1
2m

∫ ∞

0
2k

(∫ ∞

0
ψ0(s)s

1
2m J 1

m
(2k

√
s) ds

)

cos

(√

m

m + 1
kτ

)

J 1
m
(2k

√
σ) dk, (4.1)

where J 1
m

is the Bessel function of the first kind of order

1/m and 	(z) is the gamma function. Since Jν(z) =
zν2−ν/	 (ν + 1) + o(1) as z → +0, we obtain

ψ(τ, 0) = 2

	( 1
m + 1)

∫ ∞

0
k

1
m +1

×
(∫ ∞

0
ψ0(s)s

1
2m J 1

m
(2k

√
s) ds

)

× cos

(√

m

m + 1
kτ

)

dk, (4.2)

which after the substitution λ = √
s and ̂ψ0(λ) = ψ0(λ

2)

becomes

ψ(τ, 0) = 4

	( 1
m + 1)

∫ ∞

0
k

1
m +1

×
(∫ ∞

0

̂ψ0(λ)λ
1
m +1 J 1

m
(2kλ) dλ

)

× cos

(√

m

m + 1
kτ

)

dk. (4.3)

Now, define the modified Hankel transform as

[

̂Hν f (r)
]

(k) = k−ν

∫ ∞

0
f (r)Jν(kr)r

ν+1 dr . (4.4)

Note that

[

̂Hν f (r)
]

(λ) = λ−ν
[Hνr

ν f (r)
]

(λ), (4.5)
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where Hν is the standard Hankel transform, and so, we
observe that ̂Hν is self-inverse.

Therefore, applying (4.4) to (4.3), we have

ψ(τ, 0) = 22+ 1
m

	( 1
m + 1)

∫ ∞

0
k1+

2
m

[

̂H 1
m

̂ψ0(λ)
]

(2k)

× cos (2πξk) dk, (4.6)

where ξ = (
√
m/(m + 1)τ )/2π =: q−1τ . Let g(k) =

k1+ 1
2m

[

̂H 1
m

̂ψ0(λ)
]

(2k) and denote

[Fc f (t)] (ξ) =
∫ ∞

0
f (t) cos(2πξ t) dt, (4.7)

as the Fourier cosine transform. Then, we obtain

ψ(τ, 0) = 22+ 1
m

	( 1
m + 1)

∫ ∞

0
g(k) cos(2πξk) dk

= 22+ 1
m

	( 1
m + 1)

[Fcg(k)] (ξ)

= 22+ 1
m

	( 1
m + 1)

[

Fck
1+ 1

2m

[

̂H 1
m

̂ψ0(λ)
]

(2k)
]

(ξ).

(4.8)

Therefore, (4.8) allows us to solve the direct problem.
For that, one would need to find ψ0(σ ) from the Carrier–
Greenspan transform as

η0 (x) = ψ0 (σ ) , σ = x + η0 (x), (4.9)

then compute two integral transforms, and finally return
to the (x, t) space using the inverse CG transform, which at
the shoreline becomes

ψ (τ, 0) = −x0 (t) + ẋ0 (t)2 /2, τ = t − ẋ0 (t) . (4.10)

Solution to the inverse problem

In this section, we invert the transform given in (4.8) to solve
the inverse problem.

Applying the inverse Fourier cosine transform to (4.8), we
obtain

	( 1
m + 1)

22+ 1
m

ψ(qξ, 0) = [Fcg(k)] (ξ)

	( 1
m + 1)

22+ 1
m

[F−1
c ψ(qξ, 0)

]

(k) = k1+
1
2m

[

̂H 1
m

̂ψ0(λ)
]

(2k)

	( 1
m + 1)

22+ 1
m k1+ 1

2m

[F−1
c ψ(qξ, 0)

]

(k) =
[

̂H 1
m

̂ψ0(λ)
]

(2k).

(4.11)

Applying the inverse Hankel transform and utilising the
identity (Gradshteyn and Ryzhik 2007)

Jν(z) = 2
( z
2

)ν

	
(

ν + 1
2

)√
π

∫ 1

0
cos zs(1 − s2)ν− 1

2 ds

for z > 0, ν > −1

2
, (4.12)

we obtain

̂ψ0(λ) = 2	(1 + 1/m)λ− 1
m

∫ ∞

0
ψ(qξ, 0) cos(2πkξ) dξ J 1

m
(2kλ) d(2k)

[use integral representation of Bessel function]

= 2	

(

1 + 1

m

)

λ− 1
m

∫ ∞

0
k− 1

m

∫ ∞

0
ψ(qξ, 0) cos(2πkξ) dξ

2(kλ)
1
m

	
( 1
m + 1

2

) √
π

∫ 1

0
cos(2kλs)(1 − s2)

1
m − 1

2 ds d(2k)

[regroup and change order of integration]

= 8	(1 + 1/m)

	(1/m + 1/2)
√

π

∫ 1

0
(1 − s2)

1
m − 1

2

∫ ∞

0

∫ ∞

0
cos(2πkξ) cos(2kλs)ψ(qξ, 0) dξ dk ds.

(4.13)

Further change of variables r = λs/π yields

̂ψ0(λ) = 8	(1 + 1/m)

	(1/m + 1/2)
√

π

∫ λ/π

0

(

1 − π2r2

λ2

)
1
m − 1

2

∫ ∞

0

∫ ∞

0
cos(2πkξ) cos(2πkr)ψ(qξ, 0)

π

λ
dξ dk dr

[split 8 = 2 · 4 and regroup]

= 2
√

π	(1 + 1/m)

λ	(1/m + 1/2)

∫ λ/π

0

(

1 − π2r2

λ2

)
1
m − 1

2

4
∫ ∞

0

∫ ∞

0
cos(2πkξ) cos(2πkr)ψ(qξ, 0) dξ dk dr

[Fourier transforms cancel]

= 2
√

π	(1 + 1/m)

λ	(1/m + 1/2)

∫ λ/π

0

(

1 −
(πr

λ

)2
)1/m−1/2

ψ(qr , 0) dr .

(4.14)

123



Journal of Ocean Engineering and Marine Energy

Fig. 2 A comparison of an initial displacement of an N -wave with the displacement predicted by our model for varying power-shaped bays. The
solid black line gives the exact initial displacement and the open circles denote the initial displacement predicted by our model

Upon switching back to variable σ , one obtains [note that
above r corresponds to ξ ]

ψ0(σ
2) = 2

√
π	(1 + 1/m)

σ 2	(1/m + 1/2)

∫ σ 2/π

0

(

1 −
(

πξ

σ 2

)2
)1/m−1/2

ψ(qξ, 0) dξ. (4.15)

Now, denote

[Aα f (x)] (s) =
∫ s

0

f (x) dx

(s2 − x2)α
(4.16)

as the singular Abel type integral of order α as seen in Deans
(2007). After a straightforward substitution one obtains

ψ0(σ
2) = 2	

(m+1
m

)

	
( 1
m + 1

2

)√
π

σ− 4
m

[

A1/2−1/mψ
(qr

π
, 0

)]

(σ 2).

(4.17)

Now, we can use (4.17) to solve the inverse problem
as follows: from the shoreline movement x0(t), we find
ψ(τ, 0) = −x0(t) + ẋ0(t)2/2 and τ = t − ẋ0(t); after
that, from (4.17), we find ψ0(σ ), and finally, we find
η0(x) = ψ0(σ ) and x = σ − η0(x). Note that the algorithm
laid out above uses dimensionless units. The substitution
(2.2) should be used when dealing with dimensional mea-
surements.
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Fig. 3 Estimated vertical shift for an initial N -wave displacement corresponding to various bathymetries, where R(t) = −x0(t)/α, where α = 1

Some remarks

The transform defined in (4.16) is in fact Erdélyi–Kober
fractional integration operator (see for example Sneddon
1975). This operator is closely connected (Erdélyi 1970) to
the Euler–Poisson–Darboux (EPD) equation, which one can
obtain from SWE (2.1) by taking in the CG transform (3.1)
σ 2 = x + η(x, t). Moreover, one can use the CG transform
used in Garayshin et al. (2016) to obtain the IBVP for the
EPD equation, that solves the inverse problem, and after that
use the technique laid out in Erdélyi (1970) to solve it. The
only disadvantage of this approach is that it only applies for
m > 2,while ourmethodworks for any positivem. InErdélyi
(1970), there is the claim that this restriction can be relaxed
to any positive m; however, we have not investigated that.

It is worth noting that (4.16) has an inverse formula for
α ∈ (0, 1) (Deans 2007), given as

[

A−1
α f (x)

]

(s) = 2 sin(απ)

π

d

ds

∫ s

0

x f (x) dx

(s2 − x2)1−α
. (4.18)

Thus, for all m > 2, we can invert (4.17) to obtain (after
substituting s = σ 2)

ψ(qr/π, 0) =
√

π

	(1 + 1
m )	( 12 − 1

m )

d

dr

[

Am+2
2m

s
2
m ψ0(s)

]

(r).

(4.19)

This allows to solve the direct problem using one integral
operator, rather then composing two Fourier transform for
m > 2.
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Fig. 4 A comparison of an initial displacement of an Gaussian wave with the displacement predicted by our model for varying power-shaped bays.
The solid black line gives the exact initial displacement and the open circles denote the initial displacement predicted by our model

Particular cases

In the twomost interesting cases, that is the case of the infinite
plane beach corresponding to m = ∞ and a parabolic bay
for m = 2, our solution can be shown to reduce down to
particularly nice forms. For m = ∞, we have q = 2π and
so, (4.17) easily simplifies to

ψ0(σ
2) = 2

π

[

A 1
2
ψ(2r , 0)

]

(σ 2). (4.20)

The substitution σ ′ = σ 2 and τ ′ = τ/2 turns (4.20) to the
form obtained in Rybkin et al. (2023).

For m = 2, we have q = π
√
6, and so, (4.17) simplifies

to

ψ0(σ
2) = 1

σ 2

[

A0ψ(
√
6r , 0)

]

(σ 2) = 1

σ 2

∫ σ 2

0
ψ(

√
6r , 0) dr .

(4.21)

5 Estimate of the shape of the incoming
wave

In this section, we give the exact lower bound for the support
of the initial water displacement in terms of the shoreline
data. First, we remind that for a scalar-valued function f :
X → C, its support is the set supp f = {x ∈ X | f (x) �= 0}.
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Fig. 5 Estimated vertical shift for an initial Gaussian wave displacement corresponding to various bathymetries, where R(t) = −x0(t)/α, where
α = 1

For the case m = 2, we have

ψ0(σ
2) = σ−2

∫ σ 2

0
ψ(

√
6r , 0) dr , (5.1)

and so, we deduce that inf suppψ0(σ
2) = inf suppψ

(√
6r , 0

)

.

Form > 2, we can use Titchmarsh’s convolution theorem,
which states (see Titchmarsh 1926 for details) that if

( f ∗ g)
∣

∣

∣

x∈(0,a)
=

(∫ x

0
f (t)g(x − t) dt

) ∣

∣

∣

∣

x∈(0,a)

= 0,

(5.2)

and g(x) > 0 on (0, a), then f (x) = 0 almost everywhere
on (0, a). From (4.19), we have

ψ
(qr

π
, 0

)

= C(m)
d

dr

×
(∫ r

0

(

ψ0(s)s
2
m (r + s)

2+m
2m

)

(r − s)
2+m
2m ds

)

,

(5.3)

and so, we deduce that inf suppψ0(s) ≤ inf suppψ
( qr

π
, 0

)

.
The inverse inequality immediately follows from (4.17), and
so, combining these results, we obtain inf suppψ0(s) =
inf suppψ

( qr
π

, 0
)

.
Therefore, we can express the lower bound of the sup-

port of ψ0(σ ). Since ψ0(σ ) = η0(x) and σ = x + η0(x),
we can obtain the exact lower bound of the support η0(x),
namely inf supp η0(x) = inf suppψ0(σ ). In simple language
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Fig. 6 Our model effectively cuts off any high-frequency waves, as can
be seen with a Gaussian initial wave profile (m = ∞)

that means that we can express how far from the shore the
displacement is at the time of an earthquake.

6 Numerical computations

In this section,we numerically verify ourmethod for recover-
ing η0 in cases where m ∈ {1, 2, 3,+∞}, that is for inclined

parabolic bays of different shapes and an infinite sloping
beach. In all of bathymetries, we consider an “N -wave”

η0(x) = 2.5 × 10−3e−3.5(x−1.9625)2

−1.25 × 10−3e−3.5(x−1.4)2 , (6.1)

and a Gaussian wave

η0(x) = 5 × 10−3e−(x−3)2 , (6.2)

with zero initial velocity. Existing code provided by
Rybkin et al. (2021) was used to generate the shoreline
data. We then implemented (4.20) and (4.21), respectively,
to recover the initial displacements. Comparison of the exact
initial wave profiles and those predicted by our model can be
seen in Figs. 2 and 4. Corresponding shoreline movements
can be seen in Figs. 3 and 5. It is worth noting that when we
consider the same initial displacement for various bathyme-
tries, the amplitude of the shoreline movement decreases as
m increases.

It is commonwhen a long tsunamiwave ismasked bywind
waves that have higher frequency. Typically, the tsunami
wave length is above 1km, while wind waves have length of
90–180ms. The integral transform we derived cuts off high-
frequency oscillations. To demonstrate that we consider a

Fig. 7 While our numerical model does not remove noise found within
the shoreline data, the model is able to cope with the existence of
noise and recover its behaviour. In this case, our model begins by
taking an analytical shoreline function with noise, given by x0(t) =
5×10−3e−3.5(t−1.9625)2 −2.5×10−3e−3.5(t−1.4)2 +2.5×10−4 sin(50t).

This x0(t) is utilised to compute η0 through the inverse problem. Sub-
sequently, the model verifies the validity of this ensuring that the η0
gained by recovering x0(t) through the direct problem directly matches
the analytical x0(t) used to begin the computations (done in the case
m = 2)
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Fig. 8 The model appears to reduce high-frequency noise. Here, we
took the shoreline to be x0(t) = 5 × 10−3e−3.5(t−1.9625)2 − 2.5 ×
10−3e−3.5(t−1.4)2 +2.5×10−4π sin(50π t) and then computed η0 using
(4.20) which recovered a relatively smooth curve, as seen above

long wave with added disturbance

η0(x) = 5 × 10−3e−(x−2)2 + 2.5 × 10−4 sin(50x). (6.3)

Using the samemethodology,we are again able to recover the
initial wave profile (see Fig. 6) without the noise created by
the high-frequency oscillations. While this is a coincidence
of our numerical scheme, it holds practical significance. It
suggests that our method can effectively reconstruct the long
wave, presumably generated by the tsunami source, even in
the presence of noise from common wind waves.

For analogous reasons, our model can handle noise in the
shoreline data effectively (see Figs. 7 and 8). This capability
may offer practical benefits, enhancing its robustness against
noisy data collection at the shore.

It is worth noting that the noise reduction happens
because of the numerical implementation of the integral.
If one was able to compute the derived integral transform
exactly, one would recover exact initial displacement with
the noise.

7 Conclusions

We have put forth and solved an inverse problem for non-
breaking tsunamiwaves in power-shaped bays assuming zero
initial velocity.We have shown that for non-braking waves in
power-shaped bathymetries, it is possible to recover the ini-
tial displacement of the water from the shoreline oscillations
under the assumption of zero initial velocity.

Of course, the formulation of the problem is quite
schematic from a practical standpoint: a one-dimensional
problem, a bay with a constant slope, and a tsunami source
relatively close to the coast. Nevertheless, this problem is part
of the benchmarks for numerical tsunami models, and it is
necessary for calculating possible scenarios to make predic-
tive assessments of tsunami heights. To create tsunami hazard
maps, calculations of potential tsunamis are currently being
conducted using data from a synthetic earthquake catalogue,
which includes approximately 100,000 events. Calculating
such a large number of tsunamis from the source to the shore
is too costly, so it is done in two stages: in the first stage, the
characteristics of the tsunami are calculated up to depths of
around 20–50ms, and then, the wave height is recalculated
at the shore using various versions of Green’s law (Sorensen
et al. 2012; Baptista et al. 2017; Basili et al. 2021). This is
where the non-linear problem of wave run-up on the shore
can serve as an effectivemeans to improve estimates obtained
throughGreen’s law, and it was used, for example, in tsunami
hazard assessments in the Sea of Japan (Choi et al. 2011).
The formula for the run-up height of a solitary wave (Syn-
olakis 1987) is especially often used. Refining the shape of
the initial wave (and more generally, the initial flow velocity)
in the run-up problem and assessing how critical it is for cal-
culating run-up heights can be aided by solving the inverse
problem.

While not considered here, we believe that a similar
inverse problem can be treated in the case where the ini-
tial velocity is given as a function of the initial displacement,
e.g., in the important case where u0 = −(2

√
x + η0−2

√
x).

Indeed, our preliminary results show this to be possible in the
plane beach bathymetry. We hope to return to this case in a
future work.

Our results here consider a tsunami wave with source
an arbitrary distance from the shoreline. However, this is
a highly idealised situation. In practice, dispersion can only
be ignored when the wave is close to the shoreline. This
suggests a more practical inverse problem where we have a
finite bathymetry, that is x ≤ L for L > 0 and attempt to
recover the wave at L . This is a boundary value problem and
the techniques developed in Antuono and Brocchini (2007)
and Rybkin et al. (2021) may be used to derive a shoreline
equation. Finally, we note that our inversion method can be
readily adjusted to the data read from a mareograph which is
close to the shore. Indeed, using the angle of inclination, the
mareograph readings can be converted into a displacement
of the shoreline.
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