TRACE FORMULAS REVISITED AND A NEW
REPRESENTATION OF KDV SOLUTIONS WITH SHORT-RANGE INITIAL DATA

ALEXEI RYBKIN

Abstract. We put forward a new approach to Deift-Trubowitz type trace formulas for the
1D Schrodinger operator with potentials that are summable with the rst moment (short-
range potentials). We prove that these formulas are preserved under the KdV ow
whereas the class of short-range potentials is not. Finally, we show that our formulas are
well-suited to study the dispersive smoothing e/ect.

We dedicate this paper to Vladimir Marchenko on the occasion of his centennial
birthday. This paper is also dedicated to the memory of Vladimir Zakharov who has
recently left us.

1. Introduction

We are concerned with the Cauchy problem for the Korteweg-de Vries (KdV) equation

(@:q 6q@xq + @3q=0;x 2R;t0

(1.1)
q(x,0) = q(x):

As is well-known, (1.1) is the rst nonlinear evolution PDE solved in the seminal 1967
Gardner-Greene-Kruskal-Miura paper [7] by the method which is now referred to as the
inverse scattering transform (IST). Conceptually, the IST is similar to the Fourier method
but is based on the direct/inverse scattering (spectral) theory for the 1D Schr dinger
operator Lg = @x2 + q(x). Explicit formulas, however, are in short supply and trace
formulas are among a few available. Historically, for short-range potentials g (x) (i.e.
summable with the rst moment) such a formula (see (5.7)) was put forward by Deift-
Trubowitz in [5] in the late 70s (we call it the Deift-Trubowitz trace formula). However, no
adaptation of the trace formula (5.7) to the solution g (x;t) to (1.1) is o/ered in [5] and, to
the best of our knowledge, it has not been done in the literature. The main goal of our
contribution is to address this problem.

To this end, we rst put forward an elementary approach to generate trace formulas for

the Schr dinger operator Lq with a decaying (but not necessarily shortrange) potential q.
More precisely, we start out with considering potentials g 2 L* (R) such that the right Jost

solution (x;k) of Lq = k2 satis es the condition:
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for all real x
Je'd)

2ik (e (2, k) — 1) + / q(s)ds € H?,
x
where H2is the usual Hardy space consisting of analytic functions on the upper half plane
with LZ non-tangential boundary values on the real line. We show that for any > 0 and

almost every x
Z
1 ek (x;k) 2kdk

q x) = @x Re (1.2)r k

+i

the integral being absolutely convergent. (see Theorem 5.1 for the complete statement.)

While the proof, based on Hardy space arguments, is totally elementary, the formula
(1.2) is surprisingly convenient. First of all, if q is short range then (1.2) readily recovers
the Deift-Trubowitz trace formula (5.7) (see the Appendix). For this reason we call (1.2) a
Deift-Trubowitz-type trace formula.

The main advantage of (1.2) is that it is particularly convenient in the KdV context. We
rst show that under additional assumptions on q it admits various derivations (5.4), (5.8),
(5.12) that serve di/erent purposes. In particular, (5.12) remains valid for q (x;t) (see
section 6). The problem with the original DeiftTrubowitz trace formula (5.7) is that, as we
show below (see Corollary 7.3), q (x;t) need not remain short-range for t > 0 and therefore
the approach of [5], where (5.7) is derived, breaks down in a serious way. We emphasize
that we actually demonstrate as a corollary that (5.7) does hold for g (x;t);¢t 0. This also
appears to be a new result.

It should be noticed that (5.8) is well-suited for subtle analysis of the gain of regularity
(aka dispersive smoothing) phenomenon for the KdV equation (section 7). We study this
phenomenon in [16], [17], [18] where we rely on the Dyson formula (aka the second log
determinant formula) and the theory of Hankel operators for extension of the IST to initial
data g (x) that is essentially arbitrary at 1 (but still short-range at +1). Comparing with the
Dyson formula considerations, our trace approach (which also crucially uses Hankel
operators) is more robust for analysis of KdV solutions (see Remark 7.2). To the best of
our knowledge Theorem 7.1 is new.

Note that for periodic potentials the trace formula was studied in great detail the 70s
by McKean-Moerbeke [25], Trubowitz [32] and many others (see e.g. [9] for a nice historic
review) before (5.7). It was generalized by Craig in [4] in the late 80s to arbitrary bounded
continuous potentials (the so-called Craig s trace formula). In the 90s Gesztesy et al [10] -
[14] developed a general approach to Craig type trace formulas based on the Krein trace
formula (the "true" trace formula) under the only condition of essential boundedness
from below. The general trace formulas studied in [10] - [14] yield previously known ones.
In the 2000s we [28] introduced a new way of generating trace-type formulas that is not
based upon Krein s trace formula but rests on the Titchmarsh-Weyl theory for second
order di/erential equations and asymptotics of the Titchmarsh-Weyl m-function. The
approach is quite elementary and essentially free of any conditions. Recently, in Binder
et al [1] Craig s trace formulas was used in the KdV context to address some open
problems related to almost periodic initial data.

The paper is organized as follows. In section 2 we introduce our notations Section 3 is
devoted to basics of Hardy spaces and Hankel operator our approach is based upon. In
section 4 we review the classical direct/inverse scattering theory for Schrodinger
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operators on the line using the language of Hankel operators. Section 5 is where our trace
formulas are introduced. We do not claim their originality but believe that the approach
is new. In Section 6 we derive a representation for the solution to the KdV equation with
short-range initial data. To the best of our knowledge it is new. In the nal section 7 we
demonstrate how our trace formula for the KdV is well-suited for the analysis of dispersive
smoothing. The approach builds upon our recent [18] and suggests an e/ective way to
understanding how the KdV ow trades the decay of initial data for gain of regularity. In
Appendix we demonstrate that the Deift-Trubowitz trace formula is actually a
"nonlinearization" of ours.

2. Notations

Our notations are quite standard:

Unless otherwise stated, all integrals are Lebesgue and, as is commonly done, we
drop limits of integration if the integral (absolutely convergent) is over the whole
line. For convergent integrals that are not absolutely convergent we always use
the Cauchy principal value

(PV) /= im [

a— 00 .
J —a.

sis the characteristic function of a (measurable) set S.

SAs usual,. If S = LRPthen we abbreviate(S); 0 <p 1, is the Lebesgue space on a
(measurable) setLy (R) = Lp. We include Lyin the family

of weighted Lrspaces de ned by
Lr=fjZif (x)jphxidx<1; > 0:

where hxi = pl +x2. The cIassL% is basic to scattering theory for 1D
Schr dinger operators (short-range potentials).

k kX =x Lstands for a norm in a Banach spacez2. We merely write k K in this case
and alsoX. The most common space is

kfk? = hffi where hfigi = Z f(x)g (x)dx:

We write x ' y if x = Cy for some universal constant C; x.ay if x;y 0 and x C (a)y
with a positive C dependent on a. We drop a if Cis a universal constant.

We do not distinguish between classical and distributional derivatives. A
statement A means two separate statements: A and A-.
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3. Hardy spaces and Hankel operators

To x our notation we review some basics of Hardy spaces and Hankel operators
following [26].

A function fanalyticin C =fz 2 C: Imz> Og is in the Hardy space H? for some 0 <p 1 if

def
||f||p——SUP||f(ily)||p<OC

We set!1” = Hi: It is a fundamental fact of the theory of Hardy spaces that any f(z) 2
Hr with 0 < p 1 has non-tangential boundary values f (x i0) for almost every (a.e.) x 2 R

and

Kk, = kf( 10)key = kfk,: (3.1)

Classes H1and H2 will be particularly important. His the algebra of uniformly bounded in

C functions and HZis the Hilbert space with the inner product induced from L2.

2 _ 772 2
It is well-known that” = HI ® HZ, e orthogonal (Riesz) projection P onto H2being
given by

I f(s)ds 1 f(s) ds
(P f)() = i% eli%l+ s—(x+ig) i% s — (z £10). (3.2)

Observe that the Riesz projections can also be rewritten in the form

®n @) = (Eer) @5, [ 10 as )

(3.3)

where () ( ) (P+ ) @)= (@ +1) (m%) ()
(1)

is well-de ned for any I € L™ This representation is very important in what follows.
If f2 L2then P fis by de nition in H2but of course not in L1. However under a stronger

decay condition we have the following statement.

Lemma 3.1. If hxif (x) 2 L2 then

V) ./]P /= %/ - (3.4)

Proof. Note rst that if hxif (x) 2 L2then fis of course integrable as one sees from

Ji1= [1@ @i <ie o] <o

a>0
It follows then that for aa nite we have
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/ P f=(P-f,X||<a) = (/,P-X|j<a) (by (33)) P X.>|<> 7r t /

X a 1 X|-|<a X|-|<a 1 1 1
: b [ Xl=ey <e\ (1 :
< . > 27ri/ —ords ff.P_ s ) Warctana f

=f(+1) (3.5)

Here we have used

L [Xpgay _ Lo f"ds 1 11
i) s—i 0 om)  s—1 2 @oomy

— =, a— +00.

2’ (3.6)
Since jja=1 jiraand 1=(x + i) 2 H2 we have
7XH§.a _p 1 __p X|-|>.a _ —IP’,X g
._+_1 .+1 .+1 . +i
and therefore
X|-|<a . X|-\>a
f7 P* . > = — 7]P_
(1) “t1 ( ) -+
It follows that
. X|-|<a . X jj>
(-2 X < gy X ibe

+1i

X|-|>a
<1712 0 -

This means that

X||<a
lim ([P "+<i>=0

a1

a — OQ:

e 1
lim P f= —/f.
and we can passin (3.5)as ¢ 7">*J-a 2

We now de ne the Hankel operator on H2. Let (Jf)(x) = f{ x) be the operator of re
ection. Given "2 L1the operator H() : H2! H2given by the formula

H(p)f =IP_of, f€H3, (3.7)

is called the Hankel operator with symbol ’. Clearly kH()k k’kei, H() is

self-adjoint if (J))(x) = ’(x) (this is always our case), H(") = 0 if "is a constant, and
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H(yp) = H(P_¢)
=H(P ¢) (if p € L*NL®). (3.8)
The relevance of the Hankel operator in our setting is on the surface as the Marchenko
operator, the cornerstone of the IST, is a Hankel operator. However, while in the literature
on integrable systems it is rarely used in the form (3.7), we nd it particularly convenient
due, among others, to the property (3.8), which is less transparent in the integral
representation.
Finally we note that reliance on the theory of Hankel operator in the study of
completely integrable systems has recently picked up momentum (see e.g. [2], [6], [8],
[15], [23] and the references cited therein).

4. Overview of short-range scattering

Unless otherwise stated all facts are taken from [24]. Through this section we assume
that q is short-range, i.e. ¢ € Li. Associate with g the full line Schr dinger operator Lq =
@x% + q(x). As is well-known, Lqis self-adjoint on L2 and its spectrum consists of ] simple
negative eigenvalues{_“JQ’ Py < called bound states (/ = 0 if there are no bound
states), and two fold absolutely continuous component lling (0;1). There is no singular
continuous spectrum. Two linearly independent (generalized) eigenfunctions of the a.c.
spectrum (x;k);k 2 R, can be chosen to satisfy

(xk) = e+ 0o(1),@x (x;k) ik (x;k) =o(1); x! 1: (4.1)
The function, referred to as right/left Jost solution of the Schr dinger equation
Lg=Kk2; (4.2)
is analytic for Imk> 0. It is convenient to introduce
y (kx) = ek (x;k) 1;

(1 +y (k:;x) is sometimes referred to as the Faddeev function), which is H2for each x. Since
q is real, also solves (4.2) and one can easily see that the pairs

f+; +gandf; gform fu;_damental sets for (4.2). Hence is a linear combination of f; g. We

write this fact as follows

T(K) (k) = (xK) + R (K) (x:k); k 2R, (4.3)

where T and R ; are called transmission, right/left re ection coe¢ cients respectively. The
function T (k) is meromorphic for Imk> 0 with simple poles at (i ;) and continuous for
Imk = 0. Generically, T (0) = 0. The re ection coe¢ cient R (k) 2 L2but need not admit be
analytic.

In the context of the IST Zakharov-Faddeev trace formulas [34] (conservation laws) play
very important role. For Schwarz potentials g they are in nitely many.
Explicitly,
8 1
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—Zlog 1jR(k)j2 dk=Zq+Xn (rst trace formula) (4.4)

8 o\ 1 5 16
2 /l-c2 log (1 — Ry (k)\z) dk = /qz—— K
- 3 (second trace formula) (4.5)

It is shown in the recent [19] that (4.4) holds for any q 2 L1, each term being nite. Since jR
(kj1land

1log 1 jR (k)j?
JR (K)j?;

one concludes that R (k) 2 LZfor q 2 L1. The second one (4.5) holds for g 2 L1\ L2[21] and
readily implies that kR (k) 2 L2. Note, that Zakharov-Faddeev trace formulas are not
directly related to the trace formulas we discuss in Introduction but they are also related
to the trace of some operators.

The identities (4.3) are totally elementary but serve as a basis for inverse scattering
theory and for this reason they are commonly referred to as basic scattering relations. As
is well-known (see, e.g. [24]), the triple R ;( j;c ;)g, where ¢ ;;=k (;i;)k 1, determines q
uniquely and is called the scattering data for Lg. We emphasize that in order to come from
aL% potential the scattering data fR ;( n;c .n)g must satisfy some conditions known as
Marchenko s characterization [24]. The actual process of solving the inverse scattering
problem necessary for the IST is historically based on the Marchenko theory (also knows
as FaddeevMarchenko or Gelfand-Levitan-Marchenko). In fact, this procedure is quite
transparent from the Hankel operator point of view. Indeed, replacing in (4.3) with y and
applying the operator JP, a straightforward computation [16] leads to

y+H()y=H()1; (Marchenko s equation) (4.6)
where H(’) is the Hankel operator (3.7) with symbol
N .2 F K F2KknT
1c € — n
prba) =3 e Rt AT
— 1K
n=1 (47)

and H(’)1 is understood as

H(')l =JP’=P+) =P+";
We call (4.6) the Marchenko equation as its Fourier image is the Marchenko integral
equation. It is proven in [16, Theorem 8.2] that I + H() is positive de nite and therefore

y= [I+HC)IH()1 2 H= (4.8)

Thus, given data fR ;( j;c ;)g we compute "by (4.7) and form the Hankel operator H("). The
function y (k;x) is found by (4.8). The potential q (x) can then be recovered in a few ways.
Our method is, of course, to apply a suitable trace formula, which we derive in the next

section.

+2ikx
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Since many of our proofs below are based on limiting arguments we need to

. . . . 1
understand in what sense scattering data converges as we approximate q in thel1. In

particular the following statement plays an important role.

Proposition 4.1. If qn (x) converges inLi to ¢ () then the sequence of re ection coe¢ cients

R :n (k) corresponding to qn (x) converges in L?to R (k):

Proof. We consider the + case only and we suppress + sign. We use the following a priori

estimates (see e.g. [5])
v (x;k)j .q hxi=hki
ly— (2,k) =y (2, 8)] g (@) 2 — gul 1
T (k) = T ()] S 1F] " llg = gal s

Consider kR R:k?and rewrite it as ("is any)

kR Rnk2= (R Rn) ji "2 4 (R Rn) ]'].>"2

2
8"+ (RRn)jj:

It follows from the general formula [5]

T (k o
Ry =T e 50 @) 14y @)
that
R(0) = Ry (1) = DB [ ot ) (g (o)) o
Tn k —2ikx
L0 e 4(0) — gu () s
2k
T, (k ik
D [ @) (- () = g (o
ik
=1, (k) + Iz (k) + I3 (k) ))dx
and hence
(R Rn) jjo" Ijjpr+ L2+ I3y
Estimate each term separately. For [1jj>" we have
> T (k) = T (k)|
A LR Ty B e e
>e

Sq ||q—qn||2L% /|k E~4dk (by (4.9),(4.11))
>e

S lg—anll3:

Thus

(4.9)
(4.10)

(4.11)

(4.12)

(4.13)
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||11XH>5|| Sq e%/? llg — Qn”L{:

For I2jj>" we have
2
2 2 T, (k‘)
HIQXH>5 < ||q_anL1/ nk dk
|k|>e
1 2
< - lla—al},
| T2xp5e]l Sae 2 lla— anllps-
and hence I
Finally for I2jj>~ one has in a similar manner
Ijj" q " 1=2supkZ e 2ikxq (x)(y (x;k) y . (x,k))dx
q "172kq qnkLi1 (by (4.10))
and hence
||I3XH>&‘H Sq e /2 llg — (InHL}
Il I ;
One can now sees that each I; ji>, j = 1,2;3; vanishes as”q a q"”Li does and

hence, since "is arbitrary, it follows from (4.12) that

KRR:k!0;n!1:

Note that the question in what sense the re ection coe¢ cient converges when we
approximate the potential in a certain way is a subtle one [27].
Finally we observe that ;y ;T;R as functions of k (momentum) satisfy

VA =f(k) =f(l?] (symmetry property). (4.14)

5. Trace formulas

In this section we put forward a new approach to generate Deift-Trubowitz type trace
formulas. It is based on Hardy spaces and Hankel operators.

Theorem 5.1. Suppose that q 2 L' and

x

@@= [ 490 @ [ s

—o00

Let (x;k) be right/left Jost solution and

y (k;x) = e kx (x;k) 1:
If for all real x
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2iky (k;x) + Q then(x) 2 H?; (5.1)
forany >0 anda.e. x

2 k
q(z) = ZF—E)w/Re Mkdk
™ k + i (trace formula). (5.2)
If for every real x
y(;x) 2 H? (5.3)
then (5.2) simpli es to read
2
¥) = (5.4)
79 _@xZ Rey (kx)dk:

Proof. Note rst that both Jost solutions exist for g 2 L1 (not only forLi). Multiplying (5.1)

by i=(k+1i) 2 H?(> 0) and recalling that a product of two HZ functions is in H, we have

2k i 1
y —— (k) — QUH:
(55 k «
+1i k+i 2
But it is well-known that
f2H'=)Zf(k+i0)dk=0 (5.6)

and therefore

/ [ 2k Yy (k, ) i Q1 (x)} dk = 0:

k+ia  k+ia

For its real part we have Z Re

2k
L{ +ia?t (’”)} - ﬁ% (:c)} dk = 0,

which can be rearranged to read
Y (kx)
Q (x) =2ZRe _ kdk

k+i

and (5.2) follows upon di/erentiating in x.
We show now (5.4). To this end, we just split (5.2) as

ky. (k,
/Re Mdk:/Reyi (k,

k+ia )dk

+Im k 4+ ia

and observe that by (5.6) the second integral on the right hand side is zero (both y and
1=(k+1i) arein H2).
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Remark 5.2. Under the condition 4 € L1 the following formula is proven in [5] (only + sign

is considered):
N

b , . 2
q(z) = —42/1;”(311”1/)4_ (z,iKkn)
n=1 (57)

+_2i (PV)Z R+ (k) + (x;k)% kdk: (Deift-Trubowitz trace formula)
Visually it is very di‘erent from (5.4) ( + (x;k) appears in (5.7) squared whereas in (5.4) it
does not). One can however show that (5.4) implies (5.7). We demonstrate this fact in the
Appendix. Theorem 5.1 is an extension of (5.7) as it accepts certain singularities of (k;x)

at k= 0. The latter may occur ifd ¢ Li. Thus following the terminology of [5] we may refer
to our (5.2) and (5.4) as trace formulas.

The next statement o/ers a version of (5.7) that is linear with respect to the Jost
solution .

Corollary 5.3. Supposed € Linr? and let fR ; n;c .ng be its scattering data. Then

N
. 1 .
q(z) = £0, {QZcinep{”xwi (z,iKkpn) + — / e Ry (k) 1y (, k)dk} . (5.8)
: T

n=1

Proof. As is well-known (see e.g. [24]), for q 2 L1

i 2
y(kx)=—Qx)+0k; k! 1; (5.9)
2k

and furthermore y (k;:x) is bounded atk = 0 for g € Lj 1t immediately follows that the
condition (5.1) is satis ed. Also, the condition (5.3) holds due to (4.8). Therefore (5.4) holds
for short-range q. To show (5.8) we turn to the Marchenko equation (4.6). Applying the
operator of re ection J to this equation and recalling the symmetry property (4.14) we
have

y+P(y)=pP";
which together with (4.6) yield
2Rey=JP('y) P(y) PP’

[=]

/ Reyy = —/ P_py —/ P_ (@ﬂ/i). (5.10)

Consider each term on the right hand side of (5.10). Observing that (ki) 12

Since obviously

we have

H?and hence P (kin) 1= (kin) !, we have
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N —ic3 , et2rn® ;
Py =P ani +P [Ry (k) etk
— — 1Ky
N 22 F2lrnx
—icq e .
= Zi’n— +P_ [Ry (k) eiglkw]
k —iky
n=1
and thus
a a N _ Cgi e¥2nnx a N
- s ]d
—a —a -1 - K —a

N

) a dk‘ a .
=_lzcine¢2“n$/ — +/ P_ [Ry (k) e*# ] dk.  (5.11)
n=1 a n a
—i . F
/,P“’Qi:/, 2 1l

limitasa!1.By(3.6)

K

Pass in (5.11)

dk P [Ry (k)er?F*]
+/, [ £ (k)e ] now to the

¢ dk ¢ dk

a—oo | ok —iKky, a—oco | k—1 i

and hence substituting this into (5.11) one has

a N
e T
a n=1

+ (PV) / ’ P [Ry (k) e 5] dk.

—a

It remains to evaluate the integral on the right hand side. As we have shown in Section 4,
hkiR (k) 2 L2. By Lemma 3.1 then
a

(PV)/ P [Ry (k) e*2**] dk = %/Ri (k) e+ 2k,

and nally
N c
(PV) /ﬂt(pi = chinexznnx
n=1
1 +2ikz
+ 3 Ri(k)e dk.
Similarly,

[o

| =

(PV) /]P, (pry+) =

and from (5.10) we obtain
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/Reyiz—/ﬂ” wi—/ﬂ” (p+y+)

N
. o 1 o
— _T(-Zczi,ne f Zhn-’E _ 5 /H;E (k) €+211€Idk_
n=1

1 /
2 P+Y+-

Inserting this into (5.4) one has

2
¢(x) = T2, / Reys (k) dk
T

al dk dk
= 10, {2;Ci’ne¥2mlz + /Rj: (k) eiQﬂcm? + /@i (k, )y (k,:L‘) ?}
It remains to evaluate the last integral on the right hand side. By the Cauchy formula

—ic2 q:z""'nl'
lCi
/@iyi —/Z nm yi (k,z)
n

+ / Ry (k) %y, (k, z) dk

N
= QWZcine¥2“”myi (ikn, z) + /Ri (k) et2key (K, 2) dk

and hence
ad 412/«» : +2ikx dk
Z "1+ yy (ikn, )] + [ Re(k)e [1+y (ko) —
Recalling that y (k;x) —e”‘x (x:k) 1we nally obtain
. dk
Zci ne iy (x)iky,) +/€ilkai (k) ¥y (x, k)?} ,
which is (5.8).

Remark 5.4. It follows from (5.9) that y (k;x) 2=L1but Rey (k;x) 2 L1.

An important corollary of Theorem 5.1 is the following

Theorem 5.5. Suppose thatd € L1, Let fR; n;cng be its right scattering data and o(x;k) be

the right Jost solution corresponding to the data fR;?g. Denote

0(x) = (o(x1in)); C=diagc?n:
Then

q(x)=qo(x) (5.12)
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b /x T, (s)" W (s)ds) W, ()",
+ 2@x 0 (X) C x

where qo (x) admits the following representations

qo (x) =2@xZ Re 1 e ik o(x;k) _dk

=0, (PV) [ R (K)ol k)

-
ethr _ dk -
o2 [ =R T o, [ R ) o (k.0)
dk

Proof. We merely combine the formula (5.4) from Theorem 5.1 and the version of the

binary Darboux transformation from our [30] q (x) = qo (x) 2@x* logdet C
[T e w ).

where qo (x) is the potential corresponding to fR;?g. Indeed, by the Jacobi formula on

di’erentiation of determinants one has

! - Tl (5) W, (s
@x  logdet c - /:c 0 (5)¥o(s)
1 1
1T T
= 0(x) C+o(s) o(s)ds o(x):

X

We will demonstrate below that the trace formula (5.12) is convenient for limiting
arguments. Of course, a similar formula holds for the left scattering data.

6. Trace formula and KdV solutions

In this section we show that our trace formulas yield new representations for solutions
to the KdV equation with short-range initial data. Note that the condition q(z) € Ly
alone does not guaranty that4 (,1) € Lifort>0 (see Corollary 7.3) and therefore (5.4)
does not apply. We cannot even be sure that (5.1) holds for g (x;t): To overcome the
problems we employ some limiting arguments. Through the rest of the paper we use the
following convenient notation

xt (k) := expi 8k3t + 2kx :

While highly oscillatory on the real line, this function has a rapid decay along R+ia for any
a> 0.
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Theorem 6.1. If4 () € Li gnd fR; j;cjg are the associated right scattering data then the
solution q (x;t) to the Cauchy problem for the KdV equation (1.1) with initial data q (x)

can be represented by

q (xt) = qo (x;t) (6.1)
o0 ~1
07+ [0 w0 (s 0as) o)
+ 2@x 0 (X,'t) C x
where
3
0(t) = (o (i ); (V) = (G P 85E)
o(x;t;k) = e [1 + yo (k;x;t)];
yo (;x;t) is the H? solution of the singular integral equation
y +H(RE )y = —HI(RE, 1)1,
. , dk dk

Proof. For Schwarz q (x) there is nothing to prove as q (x;t) is also a Schwarz function.
Since KdV is well-posed in any Sobolev space H "with 0 <"1 (see e.g.

[22]) and L} C H™ for any sequence of (real) Schwarz functions g. (x) approximat-
ingd () in L] the sequence of gn (x;t) converges in H "to q (x;t), the solution to (1.1) with
the initial pro le g (x). Thus, we only need to compute lima1 g» (x;t). Note that
convergence of norming constants is somewhat inconvenient to deal with but results of
our recent [30] o/ers a simple detour of this circumstance. Take the scattering data fR;?g
(i.e. no bound states) and construct by (5.4) the corresponding potential

qo(X)=  2@:Z Reyo (kix)dk:

Since by construction Lqois positive, qois the Miura transformation

qo (x) = @xr(x) + r(x)>?
of some real r 2 L2 [20]. Choose a sequence (rs) of Schwarz function such that the
sequence qon = rn? +@xr approximatesdo in Li. As is well-known, each Rn (k) is also
Schwarz and so is qo;n (x;t) for t 0. Therefore, by (5.8) and recalling that »= ek (1 + yn)
we have

do (2,0) = D / B () 0t (B) [1 + g (2, 8)]

3
. ot (k) — dk dk
:3;/5 () 1Rn(k)?+3w/Rn(k)gw,t(k)yn(k,x,t)

.
= ") (2,0) + ¢52) (x, 1)

LThe general theory guaranties well-posedness at least in the L2- base Sobolev space H "with any index 0<” 1
(see, e.g. [22]).
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Here we have used a well-known regularization of the Fourier integral. This
representation is convenient for passing to the limit as n ! 1. By Proposition 4.1 the
sequence of re ection coe¢ cients Rnconverges in L2to R. Paring this sequence, if needed,
we may assume that R.! R a.e. Clearly Rux:t! R xta.e. too. But then, as is well-known (can
also be easily shown), the corresponding sequence of Hankel operators H(Rn xt)
converges to H(R x¢) in the strong operator topology. Since (all) I + H(Rnx:t) and I + H(R
xt) are positive de nite [16, Theorem 8.2] for all x;t we conclude that in H2yn= (I + H(Rn

x;t)) 1H (Rn x;t) 1

! (I+H(Rxt)) *H(Rx)1=:yon!1;

where yo ( € H? ;x;t). Therefore, for all x;t
&t (k) —
Z _ 2ikRn(ktydk!Zxi(2kik)—TR(k;t) d_k
and
Z R(k) xt (K)yn (k;x;1) _ VZR(Kk) xt (K)yo (k:x;t) —: dk
dk
Thus we conclude that for each t 0
w* —hm q()( t) = 92 MRU{) _
21k
dk
w* — lim q(() /R )Eat (K )yn(k,x,t)%
n—oo e

and (6.2) follows. Performing the binary Darboux transformation [30] we arrive at
(6.1).

Remark 6.2. Performing in (6.1) the inverse binary Darboux transformation [30], we can
conclude that we also have

q (x;t) = —@xZ Rey (k;x;t)dk (6.3)
but cannot claim that this integral is absolutely convergent as it was in (5.4). This of course
would be true if the asymptotic (5.9) held for q (x;t). The problem with (5.9) is that the
error in (5.9) depends on kq ( ;t)kii, which need not be nite. We however conjecture that
the integral in (6.3) is indeed absolutely convergent but we can no longer use tools and
estimates from the short-range scattering theory.

Corollary 6.3. The trace Deift-Trubowitz trace formula (5.7) holds for t> 0 (not only for t =
0).

Proof. Indeed, the approximating sequence gn (x;t) that corresponds to the sequence fR»;

j5¢ig where Ryis the same as constructed in the proof of Theorem 6.1 will do the job. The
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only question is why the rst term in (5.7) holds for t> 0. This easily follows from our
arguments. Indeed, since y» (;x;t) ! y (,;x;t) in H2we also have uniform convergence for

Imk > 0 on compacts. Therefore, » (i ;x;t) ! (i ;x;t) for all x;t.

Remark 6.4. Extension of the Deift-Trubowitz trace formula (5.7) to KdV solution would be
a hard problem back in the 70s as the breakthrough in the understanding of wellposedness
in the L2 based Sobolev spaces with negative indexes only occurred after the seminal 1993
Bourgain paper [3], where wellposedness was proven in L2,

With no well-posedness at hand we cannot use limiting arguments even if q (x) 2

LinL?

7. How KdV trades decay for smoothness

The goal of this section is to show how the results of the previous section could be
useful in understanding the phenomenon of dispersive smoothing (aka gain of regularity).

o0

Theorem 7.1. If4 () € Li N L? thena (2,t) € Lis. N Lgfor t>0.

Proof. We rst note that we may assume that the negative spectrum is absent. l.e. Lq is
positive. Split our initial pro le as

q=q+q+q:=qjr:

We may assume that Lq.is positive as possible appearance of a negative eigenvalue could
only lead to minor technical complications. We use the following representation from
[18]:

R(k) = 1(k) +2(k) + A(k); (7.1)
where
o1 0 = 50 h),
To (k) -
2 (k) i)’ (k)

To2 H'is the transmission coe¢ cient for g+; p is the derivative of an absolutely continuous

function and

(@) Spasts 2@ +C [l w2
1o (k)
and A 2 H! (which form is not important). Note that 2ik remains bounded at
To (k)
P (k)
k=0aswellas (2ik) b.

0; (7.2)
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It follows from (6.2) that

0 @) =0 {(PV) [ R0 600 0T+ [ ROk ()00 (.00 2

=aAPV{/R@og¢%ﬁ%

™

R (k) [0x8a,t (k)] yo (k, 2, 1) %

/R (k) &o.t (F) [Oayo (k, @, 1)] ir_k

=q1 (z,t) + g2 (=,1) + g3 (,1) . (7.3)

_|_

_|_

Consider each term separately. By (7.1) for g1 (x;t) we have

q1 (x:t) = qu1 (x;t) + q12 (x;t) + q13 (%)

where

qin (z,t) := 0, (PV) /&t (k) ¢n () %, n=1,2

™

and
dk

q13 (x;t) = @x (PV)Z xt (K)A(k) —:

The simplest term is q13. Since xt (k + ia) (and all its x-derivatives) rapidly decays along
R+ia for any a> 0 we deform the contour of integration to R+ia that provides a rapid
convergence of the integral (the original integral need not be absolutely convergent).

The term qgizis also easy. Indeed, since 2is clearly in L1 we have

0z (e.0) = 0, [ 02(0) € (0) 5

[B 5w e s

It remains to show that this integral is absolutely convergent. It follows from (7.2) that
1 1 2 1=2

kpk .kq.kiikgk + C Zo Zx jiqi  dx!

71 Z1 1=2 1kgk + Coxjq (x)j

x iqj dx q2Li

kqgk + Ckgkir=12kqkir=112< 1

and hence p 2 L2. Therefore, q12 (x;t) is locally bounded for ¢ 0. (In fact, continuous).b
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Consider the remaining term gi1 (x;t). In order to proceed we need rst to regularize
the improper integral. It cannot be done by merely deforming R to R+ia as is done for g3
since q (k) need not admit analytic continuation into the upper

half plane. To detour this circumstance we de neb  gb(k) by
o0 —_
O=[ ¢*®aoa =
0

and apply the Cauchy-Green formula for the strip < < . We have

1 o0 =2 (PY) [0 B0 () &

™

To (k) . .~ dudv .
= 8x/ gx,t (k) 0.( )8Eq (k) B (/{ =u—+ w)
0<Im k<1 21k ™

vor gt M md

= qi11 (2, t) + qui2 (z, 1) .
qbk Imk 0;

0 Imk 1

ZR+i 2ik b

The second term qi12 (x;t) is treated the same way as qi3 (x;t) and one immediately
concludes that g112 (x;t) are bounded (in fact, smooth) for t> 0. Turn to q111. We rearrange

it by observing that the double integral is absolutely convergent and the order of
integration may be interchanged:

qn (z,t) = ax/ Eor (F) Ty (k) [/Ox (—2is) e gizsq(s) ds] dudv

: 2
0<Im k<1 2ik ™

& To (k 7 _dudv
= —ax/ sq(s) [/ &xt (K) Olc( )6721163 5 } ds
0 0<Im k<1 ™

fe’s} d d —
/ U e 2se, o, (k) To (k) “2”] sq(s)ds, (k=k— 2i)
= ilo 0<Im k<1 0

~ /000 {/0162“1(5 —x,t)dv} sq (s)ds,

where
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[(sxt) =2 x5t (k) To (k) dk
Z

R+iv

=xsit (k) To (k) dk

R+i

is independent of v 0. Thus

o] 1
q111 (z, 1) =~ Bm/ {/ eQ”de} I(s—ux,t)sq(s)ds
o o
[e'e} 1— —2s
:/ —el(s—x,t)q(s)ds
0 2

[e’e} 1— 2s
:/ I(s—x,t)—eq(s)ds.
0 2

It remains to study the behavior of? ask!landxis
xed we only need to worry aboutl (s x;t) as s ! +1. Since To (k) =1 +

Ok

Io(s;t) =Z st (K)dk;

R+i
which is closely related to the Airy function. For the reader convenience we o/er a direct
treatment. Rewrite

st (k) = expi[ S ()]
where S () = 3=3 and
I'=2(s=3t)172,;= 3t(s=3t)3=2; = k=!

Noticing that we need not adjust the contour of integration, we then have

Lo (s;t) := IZ €is0d: (7.4)
R+i

Apparently, the phase S () = 3=3 has stationary points at = 1 and we need to deform the
contour in (7.4) to pass through points = 1. We denote such a contour . To apply the
steepest descent we need to make sure that expi[!S ()] decay on away from 1. To this
end must be in the lower half plane between points 1 and 1. Noticing that = (3t=8)3, /=
0 s'=Z by the steepest descent method (see e.g.

[33]) one has I (s,t) = w/ SN AN = wO (Q
r

:O(s 1“), 5 — +00 ; l+1;
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Thus q111 (x;t) is bounded for t> 0 (even if q (x) decays slower than L1). All four pieces g1
(x;t) is made of are bounded and so is q1 (x;t).

There is now only one term g3 left in (7.3) to analyze. We are done if we show that
@0 2 H?. Di/erentiating
yo+Hyo=H1;, H:=H(Rx);

in x one has
@xyo + H(@xyo) = @H1 (@XH)}/O.’
Thus
@xyO = (1 + H) 1 [(@XH)]. + (@XH)yO].'
It follows that we only need to show that (@xH)1 2 H2and @xH is a bounded operator.
Note rst that

(@XH) = H(ZlkR x;t).'

Since kR(k) 2 L2 (from the second Zakharov-Faddeev trace formula),

as desired. The proof of boundedness of (@xH) is a bit more complicated. By (7.1) we
have

H=H1+Hz2+H3
where
Hn:=H( nxt);n = 1,2; H3:= H(A x1):
For n = 1;2 both Hrnadmit a direct di/erentiation in x. Indeed, one can easily see that
@xHn = H( n@xx;¢) = H(2ik nxt);n = 1;2:
Since g;p 2 L!

2ik 1 (k) = To (k)gb(k) 2 L1 (7.5)
and
(k) ke (k) = O
2ik (k) 2 L1
amH(¢n>7n = 1727 p
and hence the operatorsare bounded. To di/erentiate H3 we
need rstto use (3.8). One has
H=HP (Rx):
But
L [ANE
P_[A(k)& (k)] =—
AW et =—y [0
1 A ,
= / AN & N gy
217r R+i )\ — k
xt ()

_ d
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i0)
where the integral is absolutely convergent, and therefore we may di/erentiate under the
integral sign
1 20A (M) Ex (A
0. (AW (K] =~ [ WA N & V)
217T R4+i )\ — k

which is well-de ned and bounded. Consequently, @xH3 is a bounded operator and so is
@xH. Thus, indeed @xy0 2 H=.

Remark 7.2. Theorem 7.1 of [17], which proof is based on the Dyson formula, relates
smoothness of q (x;t) with the decay of q (x). In particular, it follows from that result that

ifq (x) € Lé/Q nL? then q (x;t) 2 Llioc \ L2 for t> 0: Stronger decay is due to the fact the
Dyson formula involves det(I + H), which use requires to analyze di‘erentiability of H in
trace norm. (The latter is also technically much more involved. It was our attempt to
dispose of trace norm considerations that led us to our trace formulas, which require
uniform norms only.

The following important consequence directly follows from Theorem 7.1 and
invariance of the KdV with respect to (x;t) ! ( x; t).

Corollary 7.3. The c/assLi is not preserved under the KdV ow.

Proof. Suppose to the contrary thatL} is preserved under the KdV ow. l.e. if 4 (z) € Li

thend (#,1) € Liforanyl- Take ¢(z) € L1 N L? but g (x) 2=L1and x to> 0 By Theorem
o 2
7.1,90 () = q(z,t0) € Lz, N L® Take qo (x) as new initial data. By our assumption it
o0

1 2
is also inL1. Thus®o (¥) € Lis, N Li N L? gyt this leads us to a contradiction as qo (x;to)
= q ( x) was not assumed locally bounded.

In the conclusion we mention that much more general and precise statements can be
made regarding how the KdV solutions gain regularity (smoothness) in exchange for loss
of decay. We plan on showing elsewhere how the results of [17], [18], [29], and [31] may
be improved to optimal statements.

8. Appendix

We demonstrate that the Deift-Trubowitz trace formula is actually a "nonlinearization"
of our trace formulas. Assume for simplicity that there are no bound states (non-empty
negative spectrum merely complicates the computations) and do our computation for the
+ sign only. The reader who has been able to get to this point should be able to follow the
calculations below. Denoting H = H(R x¢), h := H1, 1a:=jjq, we have

. L
ﬂq:—Zaz/Rel :—8I/Re(l+]HI) 'h
71'

- 2aw/Re(I+H)*1h

—2/(1+H—]1)*1(axH) (H+H)*1}L+2/(1+H)*lawh

=:q1 + qo.
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For g1 we have

Q1=
2 alim D(I + H) 1 (@:H)(l + H) th;1aE: 11

For the inner product one has

(I+H)1(@xH)(l+H) th;P+14E

D
1 1

=D(@:H) (1 + H) (I + H) P.1E

= D(@XH)y,(I + H) P+1.E

= D(@XH)y,P+ hla (I + H) 1 HP+1aiE

=h(@xH)y,;P+14i + D(@xH);(I + H) 1 HP+1E:

Passing to the limit yields

qi= 27 (@XH)y + h(@xH)y,yl

One may now see how "nonlinear" dependence on y in (5.7) comes about. Indeed, the
second term h(@xH)y;yi is a quadratic form. For g2 we similarly have
qz2=2Z2 (I + H) 1 @sh = 2 lim D({ + H) 1
(@xh),'P+1aE aq = 2 llm D@xh,'P+1a (I + H) 1
HP+1.E @11

= Z @xh + h@xh,yl
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Since

@xHf (k)=21JP kR(k)e2ikf (k)
we have

q=q1+qz

=h(@:H)yyi + 2Z (@xH)y + h@:h;yi + 2Z @xh

= 2iZ kR(k)ezky (k;x)? dk

+ 4iZ kR(k)e%kxy (k;x)dk + 2iZ kR(k)e%xdk

= 2iZ kR(k)exk [1 +y (kx)]? dk

= 2iZ kR(k) (x;K)2 dk

and (5.7) with c» = 0 follows.

(1

(10]

References

Binder, Ilia; Damanik, David; Goldstein, Michael; Lukic, Milivoje Almost periodicity in time of solutions of
the KdV equation. Duke Math. J. 167 (2018), no. 14, 2633 2678.

Blower, Gordon; Doust, lan Linear systems, Hankel products and the sinh-Gordon equation. J. Math. Anal.
Appl. 525 (2023), no. 1, Paper No. 127140, 24 pp.

Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to
nonlinear evolution equations. Il. The KdV-equation. Geom. Funct. Anal. 3 (1993), no. 3, 209 262.

Craig, W. The trace formula for Schr dinger operators on the line, Commun. Math. Phys, 126 (1989), 379-
407.

Deift, P.; Trubowitz, E. Inverse scattering on the line. Comm. Pure Appl. Math. 32 (1979), no. 2, 121 251.
Doikou, Anastasia; Malham, Simon J. A.; Stylianidis, loannis Grassmannian ows and applications to non-
commutative non-local and local integrable systems. Phys. D 415 (2021), Paper No. 132744, 13 pp.
Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; and Miura, R. M. Method for Solving the Korteweg-deVries
Equation. Phys. Rev. Lett. 19 (1967), 1095 1097.

G@rard, Patrick; Pushnitski, Alexander Unbounded Hankel operators and the ow of the cubic Szeg%o0
equation. Invent. Math. 232 (2023), no. 3, 995 1026.

Gesztesy, Fritz; Holden, Helge; Michor, Johanna; Teschl, Gerald Soliton equations and their algebro-
geometric solutions. Vol. I. (1+1)-dimensional continuous models, Cambridge Stud. Adv. Math., 79,
Cambridge University Press, Cambridge, 2003. x+438 pp.

Gesztesy, F.; Holden, H.; Simon, B;.and Zhao, Z. Trace formulae and inverse spectral theory for Schr dinger
operators, Bull. Am. Math. Soc. 29 (1993), 250-255.



(11]
(12]
(13]
(14]

[15]

[16]
(17]

(18]

(19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

(27]
(28]

[29]

(30]

(31]

(32]
(33]

(34]

KDV EQUATION 25

Gesztesy, F.; Holden, H.; Simon, B; and Zhao, Z. Higher order trace relations for Schr dinger operators, Rev.
Math. Phys. (1995), 893 922.

Gesztesy, F.; Holden, H. On new trace formulae for Schr dinger operators, Acta Applicandae Math. 39
(1995), 315 333.

Gesztesy, F. and Simon, B. Uniqueness theorems in inverse spectral theory for onedimensional Schr dinger
operators, Trans. Amer. Math. Soc. 348 (1996), 349 373.

Gesztesy, F. and Simon, B. The xi function, Acta Math. 176 (1996), 49 71.

Grudsky, Sergei M.; Kravchenko, Vladislav V.; Torba, Sergii M. Realization of the inverse scattering
transform method for the Korteweg de Vries equation. Math. Methods Appl. Sci. 46 (2023), no. 8, 9217
9251.

Grudsky, S.; Rybkin, A. Soliton theory and Hakel operators, SIAM J. Math. Anal. 47 (2015), no. 3, 2283 2323.
Grudski...¢, S. M.; Rybkin, A. V. On the trace-class property of Hankel operators arising in the theory of the
Korteweg de Vries equation. (Russian) Mat. Zametki 104 (2018), no. 3, 374 395; translation in Math. Notes
104 (2018), no. 3-4, 377 394

Grudsky S, Rybkin A. On classical solution to the KdV equation. Proc Lond Math Soc. 2020; 121(3): 354 371.
Hryniv, Rostyslav; Mykytyuk, Yaroslav On the rst trace formula for Schr dinger operators. J. Spectr. Theory
11 (2021), no. 2, 489 507.

Kappeler, T.; Perry, P.; Shubin, M.; Topalov, P. The Miura map on the line. Int. Math. Res. Not. (2005), no.
50, 3091 133.

Killip, Rowan; Simon, Barry Sum rules and spectral measures of Schr dinger operators with L2 potentials.
Ann. of Math. (2) 170 (2009), no. 2, 739 782.

Killip, R.; Visan, M. KdV is wellposed in H ! Ann. of Math. (2) 190 (2019), no. 1, 249 305.

Malham, Simon J. A. The non-commutative Korteweg de Vries hierarchy and combinatorial P ppe algebra.
Phys. D 434 (2022), Paper No. 133228, 25 pp.

Marchenko, Vladimir A. Sturm-Liouville operators and applications. Revised edition. AMS Chelsea
Publishing, Providence, RI, 2011. xiv+396 pp.

McKean, H. P.; Moerbeke, P. The spectrum of Hill s equation, Invent. Math. 30 (1975),

217-274.

Nikolski, N. K. Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel and Toeplitz.
Mathematical Surveys and Monographs, vol. 92, Amer. Math. Soc., Providence, 2002. 461 pp.

Remling, Christian Generalized re ection coe¢ cients. Comm. Math. Phys. 337 (2015), no. 2, 1011 1026.
Rybkin, Alexei On the trace approach to the inverse scattering problem in dimension one. SIAM J. Math.
Anal. 32 (2001), no. 6, 1248 1264.

Rybkin, Alexei. Spatial analyticity of solutions to integrable systems. I. The KdVcase Communications in
Partial Di’erential Equations, Volume 38 (2013), Issue 5, 802-822.

Rybkin, Alexei The binary Darboux transformation revisited and KdV solitons on arbitrary short-range
backgrounds. Stud. Appl. Math. 148 (2022), no. 1, 141 153.

Rybkin, Alexei A trace formula and classical solutions to the KdV equation. Oper. Theory Adv. Appl., 291
(2023), 667 677.

Trubowitz, E. The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30 (1977), 321-337.
Wong, R.S.C. Asymptotic Approximations of Integrals. Academic Press, Inc., 2001. xiv + 540 pp. ISBN: 978-
0-89871-497-5.

Zaharov, V. E.; Faddeev, L. D. The Korteweg-de Vries equation is a fully integrable Hamiltonian system.
(Russian) Funkcional. Anal. i Prilozen. 5 (1971), no. 4, 18 27.

Department of Mathematics and Statistics, University of Alaska Fairbanks, PO Box

756660, Fairbanks, AK 99775
E-mail address: arybkin@alaska.edu



	1. Introduction
	2. Notations
	3. Hardy spaces and Hankel operators
	4. Overview of short-range scattering
	5. Trace formulas
	6. Trace formula and KdV solutions
	7. How KdV trades decay for smoothness
	8. Appendix
	References

