
 

TRACE FORMULAS REVISITED AND A NEW 
REPRESENTATION OF KDV SOLUTIONS WITH SHORT-RANGE INITIAL DATA 

ALEXEI RYBKIN 

Abstract. We put forward a new approach to Deift-Trubowitz type trace formulas for the 
1D Schrodinger operator with potentials that are summable with the rst moment (short-
range potentials). We prove that these formulas are preserved under the KdV ow 
whereas the class of short-range potentials is not. Finally, we show that our formulas are 
well-suited to study the dispersive smoothing e⁄ect. 

We dedicate this paper to Vladimir Marchenko on the occasion of his centennial 
birthday. This paper is also dedicated to the memory of Vladimir Zakharov who has 
recently left us. 

1. Introduction 

We are concerned with the Cauchy problem for the Korteweg-de Vries (KdV) equation 

(@tq 6q@xq + @x3q = 0; x 2 R;t 0 

(1.1) 
q(x;0) = q(x): 

As is well-known, (1.1) is the rst nonlinear evolution PDE solved in the seminal 1967 
Gardner-Greene-Kruskal-Miura paper [7] by the method which is now referred to as the 
inverse scattering transform (IST). Conceptually, the IST is similar to the Fourier method 
but is based on the direct/inverse scattering (spectral) theory for the 1D Schr dinger 
operator Lq = @x2 + q(x). Explicit formulas, however, are in short supply and trace 
formulas are among a few available. Historically, for short-range potentials q (x) (i.e. 
summable with the rst moment) such a formula (see (5.7)) was put forward by Deift-
Trubowitz in [5] in the late 70s (we call it the Deift-Trubowitz trace formula). However, no 
adaptation of the trace formula (5.7) to the solution q (x;t) to (1.1) is o⁄ered in [5] and, to 
the best of our knowledge, it has not been done in the literature. The main goal of our 
contribution is to address this problem. 

To this end, we rst put forward an elementary approach to generate trace formulas for 

the Schr dinger operator Lq with a decaying (but not necessarily shortrange) potential q. 

More precisely, we start out with considering potentials q 2 L1 (R) such that the right Jost 

solution (x;k) of Lq = k2 satis es the condition: 
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for all real x 

 
where H2 is the usual Hardy space consisting of analytic functions on the upper half plane 
with L2 non-tangential boundary values on the real line. We show that for any > 0 and 
almost every x 

1 e ikx (x;k) 2kdk 
@x Re , (1.2) R k q (x) = 

+ i 

the integral being absolutely convergent. (see Theorem 5.1 for the complete statement.) 
While the proof, based on Hardy space arguments, is totally elementary, the formula 

(1.2) is surprisingly convenient. First of all, if q is short range then (1.2) readily recovers 
the Deift-Trubowitz trace formula (5.7) (see the Appendix). For this reason we call (1.2) a 
Deift-Trubowitz-type trace formula. 

The main advantage of (1.2) is that it is particularly convenient in the KdV context. We 
rst show that under additional assumptions on q it admits various derivations (5.4), (5.8), 
(5.12) that serve di⁄erent purposes. In particular, (5.12) remains valid for q (x;t) (see 
section 6). The problem with the original DeiftTrubowitz trace formula (5.7) is that, as we 
show below (see Corollary 7.3), q (x;t) need not remain short-range for t > 0 and therefore 
the approach of [5], where (5.7) is derived, breaks down in a serious way. We emphasize 
that we actually demonstrate as a corollary that (5.7) does hold for q (x;t);t 0. This also 
appears to be a new result. 

It should be noticed that (5.8) is well-suited for subtle analysis of the gain of regularity 
(aka dispersive smoothing) phenomenon for the KdV equation (section 7). We study this 
phenomenon in [16], [17], [18] where we rely on the Dyson formula (aka the second log 
determinant formula) and the theory of Hankel operators for extension of the IST to initial 
data q (x) that is essentially arbitrary at 1 (but still short-range at +1). Comparing with the 
Dyson formula considerations, our trace approach (which also crucially uses Hankel 
operators) is more robust for analysis of KdV solutions (see Remark 7.2). To the best of 
our knowledge Theorem 7.1 is new. 

Note that for periodic potentials the trace formula was studied in great detail the 70s 
by McKean-Moerbeke [25], Trubowitz [32] and many others (see e.g. [9] for a nice historic 
review) before (5.7). It was generalized by Craig in [4] in the late 80s to arbitrary bounded 
continuous potentials (the so-called Craig s trace formula). In the 90s Gesztesy et al [10] - 
[14] developed a general approach to Craig type trace formulas based on the Krein trace 
formula (the "true" trace formula) under the only condition of essential boundedness 
from below. The general trace formulas studied in [10] - [14] yield previously known ones. 
In the 2000s we [28] introduced a new way of generating trace-type formulas that is not 
based upon Krein s trace formula but rests on the Titchmarsh-Weyl theory for second 
order di⁄erential equations and asymptotics of the Titchmarsh-Weyl m-function. The 
approach is quite elementary and essentially free of any conditions. Recently, in Binder 
et al [1] Craig s trace formulas was used in the KdV context to address some open 
problems related to almost periodic initial data. 

The paper is organized as follows. In section 2 we introduce our notations Section 3 is 
devoted to basics of Hardy spaces and Hankel operator our approach is based upon. In 
section 4 we review the classical direct/inverse scattering theory for Schrodinger 
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operators on the line using the language of Hankel operators. Section 5 is where our trace 
formulas are introduced. We do not claim their originality but believe that the approach 
is new. In Section 6 we derive a representation for the solution to the KdV equation with 
short-range initial data. To the best of our knowledge it is new. In the nal section 7 we 
demonstrate how our trace formula for the KdV is well-suited for the analysis of dispersive 
smoothing. The approach builds upon our recent [18] and suggests an e⁄ective way to 
understanding how the KdV ow trades the decay of initial data for gain of regularity. In 
Appendix we demonstrate that the Deift-Trubowitz trace formula is actually a 
"nonlinearization" of ours. 

2. Notations 

Our notations are quite standard: 
Unless otherwise stated, all integrals are Lebesgue and, as is commonly done, we 
drop limits of integration if the integral (absolutely convergent) is over the whole 
line. For convergent integrals that are not absolutely convergent we always use 
the Cauchy principal value 

: 

S is the characteristic function of a (measurable) set S. 

SAs usual,. If S = LRpthen we abbreviate(S); 0 <p 1, is the Lebesgue space on a 
(measurable) setLp (R) = Lp. We include Lp in the family 

of weighted Lp spaces de ned by 

Lp = f j Z jf (x)jp hxi dx< 1 ; > 0: 

p1 + x2. The class  is basic to scattering theory for 1D where hxi = 

Schr dinger operators (short-range potentials). 

k kX =X Lstands for a norm in a Banach space2. We merely write k k in this case 
and alsoX. The most common space is 

kfk2 = hf;fi where hf;gi = Z f (x)g (x)dx: 

We write x ’ y if x = Cy for some universal constant C; x.a y if x;y 0 and x C (a)y 
with a positive C dependent on a. We drop a if C is a universal constant. 

We do not distinguish between classical and distributional derivatives. A 
statement A means two separate statements: A and A+. 
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3. Hardy spaces and Hankel operators 

To x our notation we review some basics of Hardy spaces and Hankel operators 
following [26]. 

A function f analytic in C = fz 2 C : Imz> 0g is in the Hardy space Hp for some 0 <p 1 if 

: 
We set : It is a fundamental fact of the theory of Hardy spaces that any f (z) 2 

Hp with 0 < p 1 has non-tangential boundary values f (x i0) for almost every (a.e.) x 2 R 

and 

 kfkHp = kf ( i0)kLp = kfkLp : (3.1) 

Classes H1 and H2 will be particularly important. H1 is the algebra of uniformly bounded in 
C functions and H2 is the Hilbert space with the inner product induced from L2. 

It is well-known that  the orthogonal (Riesz) projection P onto H2 being 
given by 

 : (3.2) 
Observe that the Riesz projections can also be rewritten in the form 

) 

 
 (3.3) 

where 

is well-de ned for any . This representation is very important in what follows. 
If f 2 L2 then P f is by de nition in H2 but of course not in L1. However under a stronger 

decay condition we have the following statement. 

Lemma 3.1. If hxif (x) 2 L2 then 

  (3.4) 

Proof. Note rst that if hxif (x) 2 L2 then f is of course integrable as one sees from 

: 

It follows then that for a  nite we have 
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 = f;( + i) (3.5) 
+ i 

 = ( i)   
Here we have used 

  (3.6) 

Since j j a = 1 j j>a and 1=(x + i) 2 H2 we have 

j j>a 

+ i 
and therefore 

 ( i)   : 
It follows that 

j j>a 

+ i 

: 
This means that 

lim (
 i) 
a!1 

and we can pass in (3.5) as  

We now de ne the Hankel operator on H2. Let (Jf)(x) = f( x) be the operator of re 
ection. Given ’ 2 L1 the operator H(’) : H2 ! H2 given by the formula 

  (3.7) 

is called the Hankel operator with symbol ’. Clearly kH(’)k k’kL1, H(’) is 

 
self-adjoint if (J’)(x) = ’(x) (this is always our case), H(’) = 0 if ’ is a constant, and 
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  (3.8) 
The relevance of the Hankel operator in our setting is on the surface as the Marchenko 
operator, the cornerstone of the IST, is a Hankel operator. However, while in the literature 
on integrable systems it is rarely used in the form (3.7), we nd it particularly convenient 
due, among others, to the property (3.8), which is less transparent in the integral 
representation. 

Finally we note that reliance on the theory of Hankel operator in the study of 
completely integrable systems has recently picked up momentum (see e.g. [2], [6], [8], 
[15], [23] and the references cited therein). 

4. Overview of short-range scattering 

Unless otherwise stated all facts are taken from [24]. Through this section we assume 
that q is short-range, i.e. . Associate with q the full line Schr dinger operator Lq = 
@x2 + q(x). As is well-known, Lq is self-adjoint on L2 and its spectrum consists of J simple 

negative eigenvalues  called bound states (J = 0 if there are no bound 
states), and two fold absolutely continuous component lling (0;1). There is no singular 
continuous spectrum. Two linearly independent (generalized) eigenfunctions of the a.c. 
spectrum (x;k);k 2 R, can be chosen to satisfy 

  (x;k) = e ikx + o(1);@x (x;k) ik (x;k) = o(1); x ! 1: (4.1) 
The function , referred to as right/left Jost solution of the Schr dinger equation 

 Lq = k2 ; (4.2) 

is analytic for Imk> 0. It is convenient to introduce 

 y (k;x) := e ikx (x;k) 1; 

(1 + y (k;x) is sometimes referred to as the Faddeev function), which is H2 for each x. Since 
q is real, also solves (4.2) and one can easily see that the pairs 

 
f +; +g and f ; g form fundamental sets for (4.2). Hence is a linear combination of f ; g. We 

write this fact as follows 

 
 T(k) (x;k) = (x;k) + R (k) (x;k); k 2 R, (4.3) 

where T and R ; are called transmission, right/left re ection coe¢ cients respectively. The 
function T (k) is meromorphic for Imk> 0 with simple poles at (i j) and continuous for 
Imk = 0. Generically, T (0) = 0. The re ection coe¢ cient R (k) 2 L2 but need not admit be 
analytic. 

In the context of the IST Zakharov-Faddeev trace formulas [34] (conservation laws) play 
very important role. For Schwarz potentials q they are in nitely many. 
Explicitly, 
 8 1 
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 Z log 1 jR(k)j2 dk = Z q + X n ( rst trace formula) (4.4) 

 (second trace formula) (4.5) 
It is shown in the recent [19] that (4.4) holds for any q 2 L1, each term being nite. Since jR 

(k)j 1 and 

1 log 1 jR (k)j2

 jR (k)j2 ; 

one concludes that R (k) 2 L2 for q 2 L1. The second one (4.5) holds for q 2 L1 \ L2 [21] and 

readily implies that kR (k) 2 L2. Note, that Zakharov-Faddeev trace formulas are not 

directly related to the trace formulas we discuss in Introduction but they are also related 

to the trace of some operators. 

The identities (4.3) are totally elementary but serve as a basis for inverse scattering 
theory and for this reason they are commonly referred to as basic scattering relations. As 
is well-known (see, e.g. [24]), the triple fR ;( j;c ;j)g, where c ;j = k ( ;i j)k 1, determines q 
uniquely and is called the scattering data for Lq. We emphasize that in order to come from 
a  potential the scattering data fR ;( n;c ;n)g must satisfy some conditions known as 
Marchenko s characterization [24]. The actual process of solving the inverse scattering 
problem necessary for the IST is historically based on the Marchenko theory (also knows 
as FaddeevMarchenko or Gelfand-Levitan-Marchenko). In fact, this procedure is quite 
transparent from the Hankel operator point of view. Indeed, replacing in (4.3) with y and 
applying the operator JP , a straightforward computation [16] leads to 

 y + H(’ )y = H(’ )1; (Marchenko s equation) (4.6) 

where H(’ ) is the Hankel operator (3.7) with symbol 

(4.7) 
n 

and H(’ )1 is understood as 

H(’ )1 = JP ’ = P+J’ = P+’ : 

We call (4.6) the Marchenko equation as its Fourier image is the Marchenko integral 
equation. It is proven in [16, Theorem 8.2] that I + H(’ ) is positive de nite and therefore 

 y = [I + H(’ )] 1 H(’ )1 2 H2: (4.8) 

Thus, given data fR ;( j;c ;j)g we compute ’ by (4.7) and form the Hankel operator H(’ ). The 
function y (k;x) is found by (4.8). The potential q (x) can then be recovered in a few ways. 
Our method is, of course, to apply a suitable trace formula, which we derive in the next 
section. 
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Since many of our proofs below are based on limiting arguments we need to 
understand in what sense scattering data converges as we approximate q in the . In 
particular the following statement plays an important role. 

Proposition 4.1. If qn (x) converges in  then the sequence of re ection coe¢ cients 
R ;n (k) corresponding to qn (x) converges in L2 to R (k): 

Proof. We consider the + case only and we suppress + sign. We use the following a priori 
estimates (see e.g. [5]) 

 jy (x;k)j .q hxi=hki (4.9) 

  (4.10) 

  (4.11) 

Consider kR Rnk2 and rewrite it as (" is any) 

 kR Rnk2 = (R Rn) j j " 2 + (R Rn) j j>" 2 (4.12) 

2 
8" + (R Rn) j j>" : 

It follows from the general formula [5] 

  (4.13) 
that 

 

))dx 

and hence 

 (R Rn) j j>" I1 j j>" + I2 j j>" + I3 j j>" : 
Estimate each term separately. For I1 j j>" we have 

 
Thus 
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: 
For I2 j j>" we have 

and hence  
Finally for I2 j j>" one has in a similar manner 

 I3 j j>" q " 1=2 supk Z e 2ikxq (x)(y (x;k) y ;n (x;k))dx 

q " 1=2 kq qnkL11 (by (4.10)) 

and hence 

: 
One can now sees that each Ij j j>" , j = 1;2;3; vanishes as  does and 

hence, since " is arbitrary, it follows from (4.12) that 

kR Rnk ! 0;n ! 1: 

Note that the question in what sense the re ection coe¢ cient converges when we 
approximate the potential in a certain way is a subtle one [27]. 

Finally we observe that ;y ;T;R as functions of k (momentum) satisfy 

 
 (Jf)(k) = f ( k) = f (k) (symmetry property). (4.14) 

5. Trace formulas 

In this section we put forward a new approach to generate Deift-Trubowitz type trace 
formulas. It is based on Hardy spaces and Hankel operators. 

Theorem 5.1. Suppose that q 2 L1 and 

 
Let (x;k) be right/left Jost solution and 

 y (k;x) = e ikx (x;k) 1: 
If for all real x   
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2iky (k;x) + Q then 
for any > 0 and a.e. x 

(x) 2 H2; (5.1) 

  (trace formula). (5.2) 
If for every real x   

then (5.2) simpli es to read 
y ( ;x) 2 H2 (5.3) 

q (x) = 
2 

@x Z Rey (k;x)dk: 
(5.4) 

Proof. Note rst that both Jost solutions exist for q 2 L1 (not only for ). Multiplying (5.1) 

by i=(k + i ) 2 H2 (> 0) and recalling that a product of two H2 functions is in H1, we have 

 2k i 1 
  (k;x) Q (x) H :

 (5.5) 
 + i k + i 2 
But it is well-known that  

f 2 H1 =) Z f (k + i0)dk = 0 (5.6) 

and therefore 

: 
For its real part we have Z Re 

 

which can be rearranged to read 

y (k;x) 

 Q (x) = 2Z Re  kdk 

k + i 

and (5.2) follows upon di⁄erentiating in x. 
We show now (5.4). To this end, we just split (5.2) as 

)dk 

 +Im  
and observe that by (5.6) the second integral on the right hand side is zero (both y and 
1=(k + i ) are in H2). 
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Remark 5.2. Under the condition  the following formula is proven in [5] (only + sign 
is considered): 

  (5.7) 

+ 2i (PV )Z R+ (k) + (x;k)2 kdk: (Deift-Trubowitz trace formula) 
Visually it is very di⁄erent from (5.4) ( + (x;k) appears in (5.7) squared whereas in (5.4) it 
does not). One can however show that (5.4) implies (5.7). We demonstrate this fact in the 
Appendix. Theorem 5.1 is an extension of (5.7) as it accepts certain singularities of (k;x) 
at k = 0. The latter may occur if . Thus following the terminology of [5] we may refer 
to our (5.2) and (5.4) as trace formulas. 

The next statement o⁄ers a version of (5.7) that is linear with respect to the Jost 
solution . 

Corollary 5.3. Suppose  and let fR ; n;c ;ng be its scattering data. Then 

 

Proof. As is well-known (see e.g. [24]), for q 2 L1 

 i 2 
 y (k;x) = Q (x) + O k ; k ! 1; (5.9) 

2k 
and furthermore y (k;x) is bounded at . It immediately follows that the 
condition (5.1) is satis ed. Also, the condition (5.3) holds due to (4.8). Therefore (5.4) holds 
for short-range q. To show (5.8) we turn to the Marchenko equation (4.6). Applying the 
operator of re ection J to this equation and recalling the symmetry property (4.14) we 
have 

y + P (’ y ) = P ’ ; 

which together with (4.6) yield 

 2Rey = JP (’ y ) P (’ y ) JP ’ P ’ : 

Since obviously 

 
we have 

 : (5.10) 

Consider each term on the right hand side of (5.10). Observing that (k i n) 1 2 

H2 and hence P (k i n) 1 = (k i n) 1, we have 
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and thus 

Pass in (5.11) 
now to the 

limit as a ! 1. By (3.6) 

  i 

and hence substituting this into (5.11) one has 

 

It remains to evaluate the integral on the right hand side. As we have shown in Section 4, 
hkiR (k) 2 L2. By Lemma 3.1 then 

 

and nally 

 

Similarly, 

 

and from (5.10) we obtain 
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Inserting this into (5.4) one has 

: 
It remains to evaluate the last integral on the right hand side. By the Cauchy formula 

 

and hence 

: 

Recalling that y (k;x) = e ikx (x;k) 1 we nally obtain 

 

which is (5.8). 

Remark 5.4. It follows from (5.9) that y (k;x) 2=L1 but Rey (k;x) 2 L1. 

An important corollary of Theorem 5.1 is the following 

Theorem 5.5. Suppose that . Let fR; n;cng be its right scattering data and 0(x;k) be 

the right Jost solution corresponding to the data fR;?g. Denote 

0 (x) = ( 0 (x;i n)); C = diag c2n : 

Then 

 q (x) = q0 (x) (5.12) 
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 + 2@x 0 (x) C  

where q0 (x) admits the following representations 

q0 (x) = 2@x Z Re 1 e ikx 0(x;k) dk 

dk 
: 

Proof. We merely combine the formula (5.4) from Theorem 5.1 and the version of the 
binary Darboux transformation from our [30] q (x) = q0 (x) 2@x2 logdet C 

 
where q0 (x) is the potential corresponding to fR;?g. Indeed, by the Jacobi formula on 

di⁄erentiation of determinants one has 

 @x logdet C 
 1 1 
1T T 
C +0 (s) 0 (s)ds 0 (x) :  = 0 (x) 
x 

We will demonstrate below that the trace formula (5.12) is convenient for limiting 
arguments. Of course, a similar formula holds for the left scattering data. 

6. Trace formula and KdV solutions 

In this section we show that our trace formulas yield new representations for solutions 
to the KdV equation with short-range initial data. Note that the condition  
alone does not guaranty that  for t> 0 (see Corollary 7.3) and therefore (5.4) 
does not apply. We cannot even be sure that (5.1) holds for q (x;t): To overcome the 
problems we employ some limiting arguments. Through the rest of the paper we use the 
following convenient notation 

x;t (k) := expi 8k3t + 2kx : 

While highly oscillatory on the real line, this function has a rapid decay along R+ia for any 
a> 0. 

Z 



 KDV EQUATION 15 

Theorem 6.1. If  and fR; j;cjg are the associated right scattering data then the 

solution1 q (x;t) to the Cauchy problem for the KdV equation (1.1) with initial data q (x) 
can be represented by 

 q (x;t) = q0 (x;t) (6.1) 

 + 2@x 0 (x;t) C  
where 

0 (x;t) = ( 0 (x;t;i j)); C  

 0 (x;t;k) = eikx [1 + y0 (k;x;t)]; 

y0 ( ;x;t) is the H2 solution of the singular integral equation 

 

Proof. For Schwarz q (x) there is nothing to prove as q (x;t) is also a Schwarz function. 
Since KdV is well-posed in any Sobolev space H " with 0 <" 1 (see e.g. 

, for any sequence of (real) Schwarz functions qn (x) approximat- 
ing  the sequence of qn (x;t) converges in H " to q (x;t), the solution to (1.1) with 
the initial pro le q (x). Thus, we only need to compute limn!1 qn (x;t). Note that 
convergence of norming constants is somewhat inconvenient to deal with but results of 
our recent [30] o⁄ers a simple detour of this circumstance. Take the scattering data fR;?g 
(i.e. no bound states) and construct by (5.4) the corresponding potential 

 q0 (x) = 2@x Z Rey0 (k;x)dk: 

Since by construction Lq0 is positive, q0 is the Miura transformation 

q0 (x) = @xr(x) + r(x)2 

of some real r 2 L2loc [20]. Choose a sequence (rn) of Schwarz function such that the 

sequence q0;n = rn2 +@xrn approximates . As is well-known, each Rn (k) is also 

Schwarz and so is q0;n (x;t) for t 0. Therefore, by (5.8) and recalling that  n = eikx (1 + yn) 
we have 

 

                                                                 
1 The general theory guaranties well-posedness at least in the L2- base Sobolev space H " with any index 0<" 1 

(see, e.g. [22]). 
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Here we have used a well-known regularization of the Fourier integral. This 

representation is convenient for passing to the limit as n ! 1. By Proposition 4.1 the 

sequence of re ection coe¢ cients Rn converges in L2 to R. Paring this sequence, if needed, 

we may assume that Rn ! R a.e. Clearly Rn x;t ! R x;t a.e. too. But then, as is well-known (can 

also be easily shown), the corresponding sequence of Hankel operators H(Rn x;t) 

converges to H(R x;t) in the strong operator topology. Since (all) I + H(Rn x;t) and I + H(R 

x;t) are positive de nite [16, Theorem 8.2] for all x;t we conclude that in H2 yn = (I + H(Rn 

x;t)) 1 H(Rn x;t)1 

 ! (I + H(R x;t)) 1 H(R x;t)1 =: y0 n ! 1; 

where y0 ( ;x;t). Therefore, for all x;t 

 Z 2ik Rn (k;t) dk ! Z x;t (2kik) 1R(k;t) d k 

and 
Z R(k) x;t (k)yn (k;x;t)  ! Z R(k) x;t (k)y0 (k;x;t) : dk

 dk 
Thus we conclude that for each t 0 

 
dk 

 
and (6.2) follows. Performing the binary Darboux transformation [30] we arrive at 
(6.1). 

Remark 6.2. Performing in (6.1) the inverse binary Darboux transformation [30], we can 
conclude that we also have 

2 

 q (x;t) = @x Z Rey (k;x;t)dk (6.3) 
but cannot claim that this integral is absolutely convergent as it was in (5.4). This of course 
would be true if the asymptotic (5.9) held for q (x;t). The problem with (5.9) is that the 
error in (5.9) depends on kq ( ;t)kL1, which need not be nite. We however conjecture that 
the integral in (6.3) is indeed absolutely convergent but we can no longer use tools and 
estimates from the short-range scattering theory. 

Corollary 6.3. The trace Deift-Trubowitz trace formula (5.7) holds for t> 0 (not only for t = 
0). 

Proof. Indeed, the approximating sequence qn (x;t) that corresponds to the sequence fRn; 

j;cjg where Rn is the same as constructed in the proof of Theorem 6.1 will do the job. The 
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only question is why the rst term in (5.7) holds for t> 0. This easily follows from our 

arguments. Indeed, since yn ( ;x;t) ! y ( ;x;t) in H2 we also have uniform convergence for 

Imk > 0 on compacts. Therefore,  n (i j;x;t) ! (i j;x;t) for all x;t. 

Remark 6.4. Extension of the Deift-Trubowitz trace formula (5.7) to KdV solution would be 
a hard problem back in the 70s as the breakthrough in the understanding of wellposedness 
in the L2 based Sobolev spaces with negative indexes only occurred after the seminal 1993 
Bourgain paper [3], where wellposedness was proven in L2. 
With no well-posedness at hand we cannot use limiting arguments even if q (x) 2 

. 

7. How KdV trades decay for smoothness 

The goal of this section is to show how the results of the previous section could be 
useful in understanding the phenomenon of dispersive smoothing (aka gain of regularity). 

Theorem 7.1. If  then  for t> 0. 

Proof. We rst note that we may assume that the negative spectrum is absent. I.e. Lq is 
positive. Split our initial pro le as 

q = q + q+; q := qjR : 

We may assume that Lq+ is positive as possible appearance of a negative eigenvalue could 
only lead to minor technical complications. We use the following representation from 
[18]: 
 R(k) = 1 (k) + 2 (k) + A(k); (7.1) 
where 

; 
 b 0 

T0 2 H1 is the transmission coe¢ cient for q+; p is the derivative of an absolutely continuous 

function and 

 0; (7.2) 

and A 2 H1 (which form is not important). Note that  remains bounded at 

k = 0 as well as b . 
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It follows from (6.2) that 

 (7.3) 

Consider each term separately. By (7.1) for q1 (x;t) we have 

q1 (x;t) = q11 (x;t) + q12 (x;t) + q13 (x;t) 

where 

 
and 

dk 

q13 (x;t) = @x (PV )Z x;t (k)A(k) : 

The simplest term is q13. Since x;t (k + ia) (and all its x-derivatives) rapidly decays along 
R+ia for any a> 0 we deform the contour of integration to R+ia that provides a rapid 
convergence of the integral (the original integral need not be absolutely convergent). 
 The term q12 is also easy. Indeed, since 2 is clearly in L1 we have 

: 

It remains to show that this integral is absolutely convergent. It follows from (7.2) that 
 1 1 2 1=2 

 kpk .kq+kL1 kqk + C Z0 Zx jqj dx! 

Z 1 Z 1 1=2 1 kqk + C 0 xjq (x)j

 x jqj dx q 2 L1 

kqk + C kqk1L=12 kqk1L=112 < 1 

and hence p 2 L2. Therefore, q12 (x;t) is locally bounded for t 0. (In fact, continuous).b 
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Consider the remaining term q11 (x;t). In order to proceed we need rst to regularize 
the improper integral. It cannot be done by merely deforming R to R+ia as is done for q3 

since q (k) need not admit analytic continuation into the upper 

half plane. To detour this circumstance we de neb qb(k) by 

 qb k Imk 0; 

 0 Imk 1 

 ZR+i 2ik b 

The second term q112 (x;t) is treated the same way as q13 (x;t) and one immediately 
concludes that q112 (x;t) are bounded (in fact, smooth) for t> 0. Turn to q111. We rearrange 
it by observing that the double integral is absolutely convergent and the order of 
integration may be interchanged: 

 

 = i  

 

where 



20 ALEXEI RYBKIN 

 I (s x;t) := Z x s;t (k)T0 (k)dk 

R+iv 

=x s;t (k)T0 (k)dk 
R+i 

is independent of v 0. Thus 

 

It remains to study the behavior of1 as k ! 1 and x is
xed we only need to worry aboutI (s x;t) as s ! +1. Since T0 (k) = 1 + 

O k 

 I0 (s;t) = Z s;t (k)dk; 

R+i 
which is closely related to the Airy function. For the reader convenience we o⁄er a direct 
treatment. Rewrite 

s;t (k) = expi[ S ( )]; 

where S ( ) = 3=3 and 

! = 2(s=3t)1=2 ;= 3t(s=3t)3=2 ; = k=! 

Noticing that we need not adjust the contour of integration, we then have 

 I0 (s;t) := !Z ei S( )d: (7.4) 

R+i 

Apparently, the phase S ( ) = 3=3 has stationary points at = 1 and we need to deform the 
contour in (7.4) to pass through points = 1. We denote such a contour . To apply the 
steepest descent we need to make sure that expi[!S ( )] decay on away from 1. To this 
end must be in the lower half plane between points 1 and 1. Noticing that = (3t=8)!3, ! = 
O s1=2 by the steepest descent method (see e.g. 
[33]) one has 

1=2 
 ; ! +1; 

: 

Z 
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Thus q111 (x;t) is bounded for t> 0 (even if q (x) decays slower than L1). All four pieces q1 

(x;t) is made of are bounded and so is q1 (x;t). 
There is now only one term q3 left in (7.3) to analyze. We are done if we show that 

@xy0 2 H2. Di⁄erentiating 
y0 + Hy0 = H1; 

in x one has 

H := H(R x;t); 

@xy0 + H(@xy0) = 
Thus 

@xH1 (@xH)y0: 

 @xy0 = (I + H) 1 [(@xH)1 + (@xH)y0]: 

It follows that we only need to show that (@xH)1 2 H2 and @xH is a bounded operator. 

Note rst that 

(@xH) = H(2ikR x;t): 

Since kR(k) 2 L2 (from the second Zakharov-Faddeev trace formula), 

(@xH)1 = JP (2ikR(k) x;t (k)) 2 H2 

as desired. The proof of boundedness of (@xH) is a bit more complicated. By (7.1) we 
have 

H = H1 + H2 + H3 
where 

Hn := H( n x;t);n = 1;2; H3 := H(A x;t): 

For n = 1;2 both Hn admit a direct di⁄erentiation in x. Indeed, one can easily see that 
@xHn = H( n@x x;t) = H(2ik n x;t);n = 1;2: 

Since q;p 2 L1 

 2ik 1 (k) = T0 (k)qb(k) 2 L1 (7.5) 
and 

T (k) 

p(k) 2 L1 

and hence the operatorsare bounded. To di⁄erentiate H3 we 
need rst to use (3.8). One has 

H = H P (R x;t) : 

But 

x;t ( ) 
d 
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i0) 

where the integral is absolutely convergent, and therefore we may di⁄erentiate under the 
integral sign 

 
which is well-de ned and bounded. Consequently, @xH3 is a bounded operator and so is 
@xH. Thus, indeed @xy0 2 H2. 

Remark 7.2. Theorem 7.1 of [17], which proof is based on the Dyson formula, relates 
smoothness of q (x;t) with the decay of q (x). In particular, it follows from that result that 

if  then q (x;t) 2 L1loc \ L2 for t> 0: Stronger decay is due to the fact the 
Dyson formula involves det(I + H), which use requires to analyze di⁄erentiability of H in 
trace norm. (The latter is also technically much more involved. It was our attempt to 
dispose of trace norm considerations that led us to our trace formulas, which require 
uniform norms only. 

The following important consequence directly follows from Theorem 7.1 and 
invariance of the KdV with respect to (x;t) ! ( x; t). 

Corollary 7.3. The class  is not preserved under the KdV ow. 

Proof. Suppose to the contrary that  is preserved under the KdV ow. I.e. if  
then  for any  but q (x) 2=L1 and x t0 > 0 By Theorem 
7.1, . Take q0 (x) as new initial data. By our assumption it 
is also in . Thus . But this leads us to a contradiction as q0 (x;t0) 
= q ( x) was not assumed locally bounded. 

In the conclusion we mention that much more general and precise statements can be 
made regarding how the KdV solutions gain regularity (smoothness) in exchange for loss 
of decay. We plan on showing elsewhere how the results of [17], [18], [29], and [31] may 
be improved to optimal statements. 

8. Appendix 

We demonstrate that the Deift-Trubowitz trace formula is actually a "nonlinearization" 
of our trace formulas. Assume for simplicity that there are no bound states (non-empty 
negative spectrum merely complicates the computations) and do our computation for the 
+ sign only. The reader who has been able to get to this point should be able to follow the 
calculations below. Denoting H = H(R x;t), h := H1, 1a := j j a, we have 
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For q1 we have 

q1 = 
2 alim D(I + H) 1 (@xH)(I + H) 1h;1aE: !1 

For the inner product one has 

(I + H) 1 (@xH)(I + H) 1h;P+1aE 

 1 1 

 = D(@xH)(I + H) h;(I + H) P+1aE 

1 

 = D(@xH)y;(I + H) P+1aE 

 = D(@xH)y;P+ h1a (I + H) 1 HP+1aiE 

= h(@xH)y;P+1ai + D(@xH);(I + H) 1 HP+1aE: 

Passing to the limit yields 

q1 = 2Z (@xH)y + h(@xH)y;yi: 

One may now see how "nonlinear" dependence on y in (5.7) comes about. Indeed, the 
second term h(@xH)y;yi is a quadratic form. For q2 we similarly have 

q2 = 2Z (I + H) 1 @xh = 2 lim D(I + H) 1 

(@xh);P+1aE a!1 = 2 lim D@xh;P+1a (I + H) 1 

HP+1aE a!1 

= Z @xh + h@xh;yi: 

D 
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Since 

@xHf (k)=2iJP kR(k)e2ikxf (k) 
we have 

q = q1 + q2 

= h(@xH)y;yi + 2Z (@xH)y + h@xh;yi + 2Z @xh 

= 2iZ kR(k)e2ikxy (k;x)2 dk 

+ 4iZ kR(k)e2ikxy (k;x)dk + 2iZ kR(k)e2ikxdk 

= 2iZ kR(k)e2ikx [1 + y (k;x)]2 dk 

= 2iZ kR(k) (x;k)2 dk 

and (5.7) with cn = 0 follows. 
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